

1 Building a Large-Scale E-commerce site with
Apache and mod_perl

115 Feb 2014

1 Building a Large-Scale E-commerce site with Apache and mod_perlBuilding a Large-Scale E-commerce site with Apache and mod_perl

1.1 Description
mod_perl’s speed and Perl’s flexibility make them very attractive for large-scale sites. Through careful
planning from the start, powerful application servers can be created for sites requiring excellent response
times for dynamic content, such as eToys.com, all by using mod_perl.

This paper was first presented at ApacheCon 2001 in Santa Clara, California, and was later published by
O’Reilly & Associates’ Perl.com site: http://perl.com/pub/a/2001/10/17/etoys.html

1.2 Common Myths
When it comes to building a large e-commerce web site, everyone is full of advice. Developers will tell
you that only a site built in C++ or Java (depending on which they prefer) can scale up to handle heavy
traffic. Application server vendors will insist that you need a packaged all-in-one solution for the software.
Hardware vendors will tell you that you need the top-of-the-line mega-machines to run a large site. This is
a story about how we built a large e-commerce site using mainly open source software and commodity
hardware. We did it, and you can do it too.

1.3 Perl Saves
Perl has long been the preferred language for developing CGI scripts. It combines supreme flexibility with
rapid development. Programming Perl is still one of O’Reilly’s top selling technical books, and commu-
nity support abounds. Lately though, Perl has come under attack from certain quarters. Detractors claim
that it’s too slow for serious development work and that code written in Perl is too hard to maintain.

The mod_perl Apache module changes the whole performance picture for Perl. Embedding a Perl inter-
preter inside of Apache provides performance equivalent to Java servlets, and makes it an excellent choice
for building large sites. Through the use of Perl’s object-oriented features and some basic coding rules,
you can build a set of code that is a pleasure to maintain, or at least no worse than other languages.

1.3.1 Roll Your Own Application Server

When you combine Apache, mod_perl, and open source code available from CPAN (the Comprehensive
Perl Archive Network), you get a set of features equivalent to a commercial application server:

Session handling

Load balancing

Persistent database connections

Advanced HTML templating

Security

15 Feb 20142

1.1 Description

http://perl.com/pub/a/2001/10/17/etoys.html

You also get some things you won’t get from a commercial product, like a direct line to the core develop-
ment team through the appropriate mailing list, and the ability to fix problems yourself instead of waiting
for a patch. Moreover, every part of the system is under your control, making you limited only by your
team’s abilities.

1.4 Case Study: eToys.com
When we first arrived at eToys in 1999, we found a situation that is probably familiar to many who have
joined a growing startup Internet company. The system was based on CGI scripts talking to a MySQL
database. Static file serving and dynamic content generation were sharing resources on the same machines.
The CGI code was largely written in a Perl4-ish style and not as modular as it could be, which was not
surprising since most of it was built as quickly as possible by a very small team.

Our major task was to figure out how to get this system to scale large enough to handle the expected
Christmas traffic. The toy business is all about seasonality, and the difference between the peak selling
season and the rest of the year is enormous. The site had barely survived the previous Christmas, and the
MySQL database didn’t look like it could scale much further.

The call had already been made to switch to Oracle, and a DBA team was in place. We didn’t have enough
time to do a re-design of the software, so we had to scramble to put in place whatever performance
improvements we could finish by Christmas.

1.4.1 Apache::PerlRun to the Rescue

Apache::PerlRun is a module that exists to smooth the transition between basic CGI and mod_perl. It
emulates a CGI environment, and provides some (but not all) of the performance benefits associated with
code written for mod_perl. Using this module and the persistent database connections provided by
Apache::DBI , we were able to do a basic port to mod_perl and Oracle in time for Christmas, and
combined with some new hardware we were ready to face the Christmas rush.

The peak traffic lasted for eight weeks, most of which were spent frantically fixing things or nervously
waiting for something else to break. Nevertheless, we made it through. During that time we collected the
following statistics:

60 - 70,000 sessions/hour

800,000 page views/hour

7,000 orders/hour

According to Media Metrix, we were the third most heavily trafficked e-commerce site, right behind eBay
and Amazon.

315 Feb 2014

1.4 Case Study: eToys.comBuilding a Large-Scale E-commerce site with Apache and mod_perl

1.4.2 Planning the New Architecture

It was clear that we would need to do a re-design for 2000. We had reached the limits of the current
system and needed to tackle some of the harder problems that we had been holding off on.

Goals for the new system included moving away from off-line page generation. The old system had been
building HTML pages for every product and product category on the site in a batch job and dumping them
out as static files. This was very effective when we had a small database of products since the static files
gave such good performance, but we had recently added a children’s bookstore to the site, which increased
the size of our product database by an order of magnitude and made the time required to generate every
page prohibitive. We needed a strategy that would only require us to build pages that customers were actu-
ally interested in and would still provide solid performance.

We also wanted to re-do the database schema for more flexibility, and structure the code in a more
modular way that would make it easier for a team to share the development work without stepping on each
other. We knew that the new codebase would have to be flexible enough to support a continuously evolv-
ing set of features.

Not all of the team had significant experience with object-oriented Perl, so we brought in Randal Schwartz
and Damian Conway to do training sessions with us. We created a set of coding standards, drafted a
design, and built our system.

1.5 Surviving Christmas 2000
Our capacity planning was for three times the traffic of the previous peak. That’s what we tested to, and
that’s about what we got:

200,000+ sessions/hour

2.5 million+ page views/hour

20,000+ orders/hour

The software survived, although one of the routers went up in smoke. Once again, we were rated the third
most highly trafficked e-commerce site for the season.

1.5.1 The Architecture

The machine strategy for the system is a fairly common one: low-cost Intel-based servers with a
load-balancer in front of them, and big iron for the database.

Figure 1. Server layout

Machine Layout

Like many commercial packages, we have separate systems for the front-end web servers (which we call
proxy servers) and the application servers that generate the dynamic content. Both the proxy servers and

15 Feb 20144

1.5 Surviving Christmas 2000

the application servers are load-balanced using dedicated hardware from f5 Networks.

We chose to run Linux on our proxy and application servers, a common platform for mod_perl sites. The
ease of remote administration under Linux made the clustered approach possible. Linux also provided
solid security features and automated build capabilities to help with adding new servers.

The database servers were IBM NUMA-Q machines, which ran on the DYNIX/ptx operating system..

1.5.2 Proxy Servers

The proxy servers ran a slim build of Apache, without mod_perl. They have several standard Apache
modules installed, in addition to our own customized version of mod_session, which assigned session
cookies. Because the processes were so small, we could run up to 400 Apache children per machine. These
servers handled all image requests themselves, and passed page requests on to the application servers.
They communicated with the app servers using standard HTTP requests, and cached the page results when
appropriate headers are sent from the app servers. The cached pages were stored on a shared NFS partition
of a Network Appliance filer. Serving pages from the cache was nearly as fast as serving static files.

This kind of reverse-proxy setup is a commonly recommended approach when working with mod_perl,
since it uses the lightweight proxy processes to send out the content to clients (who may be on slow
connections) and frees the resource-intensive mod_perl processes to move on to the next request. For more
information on why this configuration is helpful, see the strategy section in the users guide.

Figure 2. Proxy Server Setup

Proxy Server Setup

1.5.3 Application Servers

The application servers ran mod_perl, and very little else. They had a local cache for Perl objects, using
Berkeley DB. The web applications ran there, and shared resources like HTML templates were mounted
over NFS from the NetApp filer. Because they did the heavy lifting in this setup, these machines were
somewhat beefy, with dual CPUs and 1GB of RAM each.

Figure 3. Application servers layout

Application servers layout

1.5.4 Search servers

There was a third set of machines dedicated to handling searches. Since searching was such a large
percentage of overall traffic, it was worthwhile to dedicate resources to it and take the load off the applica-
tion servers and database.

The software on these boxes was a multi-threaded daemon which we developed in-house using C++. The
application servers talked to the search servers using a Perl module. The search daemon accepted a set of
search conditions and returned a sorted list of object IDs of the products whose data fits those conditions.

515 Feb 2014

1.5.2 Proxy ServersBuilding a Large-Scale E-commerce site with Apache and mod_perl

Then the application servers looked up the data to display these products from the database. The search
servers knew nothing about HTML or the web interface.

This approach of finding the IDs with the search server and then retrieving the object data may sound like
a performance hit, but in practice the object data usually came from the application server’s cache rather
than the database. This design allowed us to minimize the duplicated data between the database and the
search servers, making it easier and faster to refresh the index. It also let us reuse the same Perl code for
retrieving product objects from the database, regardless of how they were found.

The daemon used a standard inverted word list approach to searching. The index was periodically built
from the relevant data in Oracle. There are modules on CPAN which implement this approach, including
Search::InvertedIndex and DBIx::FullTextSearch . We chose to write our own because of
the very tight performance requirements on this part of the system, and because we had an unusually
complex set of sorting rules for the returned IDs.

Figure 4. Search server layout

Search server layout

1.6 Load Balancing and Failover
We took pains to make sure that we would be able to provide load balancing among nodes of the cluster
and fault tolerance in case one or more nodes failed. The proxy servers were balanced using a random
selection algorithm. A user could end up on a different one on every request. These servers didn’t hold any
state information, so the goal was just to distribute the load evenly.

The application servers used ‘‘sticky’’ load balancing. That means that once a user went to a particular app
server, all of her subsequent requests during that session were also passed to the same app server. The f5
hardware accomplished this using browser cookies. Using sticky load balancing on the app servers
allowed us to do some local caching of user data.

The load balancers ran a periodic service check on every server and removed any servers that failed the
check from rotation. When a server failed, all users that were ‘‘stuck’’; to that machine were moved to
another one.

In order to ensure that no data was lost if an app server died, all updates were written to the database. As a
result, user data like the contents of a shopping cart was preserved even in cases of catastrophic hardware
failure on an app server. This is essential for a large e-commerce site.

The database had a separate failover system, which we will not go into here. It followed standard practices
recommended by our vendors.

15 Feb 20146

1.6 Load Balancing and Failover

1.7 Code Structure
The code was structured around the classic Model-View-Controller pattern, originally from SmallTalk and
now often applied to web applications. The MVC pattern is a way of splitting an application’s responsibil-
ities into three distinct layers.

Classes in the Model layer represented business concepts and data, like products or users. These had an
API but no end-user interface. They knew nothing about HTTP or HTML and could be used in non-web
applications, like cron jobs. They talked to the database and other data sources, and managed their own
persistence.

The Controller layer translated web requests into appropriate actions on the Model layer. It handled
parsing parameters, checking input, fetching the appropriate Model objects, and calling methods on them.
Then it determined the appropriate View to use and send the resulting HTML to the user.

View objects were really HTML templates. The Controller passed data from the Model objects to them
and they generated a web page. These were implemented with the Template Toolkit, a powerful templat-
ing system written in Perl. The templates had some basic conditional statements and looping in them, but
only enough to express the formatting logic. No application control flow was embedded in the templates.

Figure 5. Code structure and interaction between the layers

1.8 Caching
The core of the performance strategy is a multi-tier caching system. On the application servers, data
objects are cached in shared memory with a backing store on local disk. Applications specify how long a
data object can be out of sync with the database, and all future accesses during that time are served from
the high-speed cache. This type of cache control is known as "time-to-live." The local cache is imple-
mented using a Berkeley DB database. Objects are serialized with the standard Storable module from
CPAN.

Data objects are divided into pieces when necessary to provide finer granularity for expiration times. For
example, product inventory is updated more frequently than other product data. By splitting the product
data up, we can use a short expiration for inventory that keeps it in tighter sync with the database, while
still using a longer expiration for the less volatile parts of the product data.

The application servers’ object caches share product data between them using the IP Multicast protocol
and custom daemons written in C. When a product is placed in the cache on one server, the data is repli-
cated to the cache on all other servers. This technique is very successful because of the high locality of
access in product data. During the 2000 Christmas season this cache achieved a 99% hit ratio, thus taking
a large amount of work off the database.

In addition to caching the data objects, entire pages that are not user-specific, like product detail pages, can
be cached. The application takes the shortest expiration time of the data objects used in the pages and
specifies that to the proxy servers as a page expiration time, using standard Expires headers. The proxy
servers cache the generated page on a shared NFS partition. Pages served from this cache have perfor-
mance close to that of static pages.

715 Feb 2014

1.7 Code StructureBuilding a Large-Scale E-commerce site with Apache and mod_perl

To allow for emergency fixes, we added a hook to mod_proxy that deletes the cached copy of a speci-
fied URL. This was used when a page needed to be changed immediately to fix incorrect information.

An extra advantage of this mod_proxy cache is the automatic handling of If-Modified-Since requests.
We did not need to implement this ourselves since mod_proxy already provides it.

Figure 6. Proxy and Cache Interaction

1.9 Session Tracking
Users are assigned session IDs using HTTP cookies. This is done at the proxy servers by our customized
version of mod_session . Doing it at the proxy ensures that users accessing cached pages will still get a
session ID assigned. The session ID is simply a key into data stored on the server-side. User sessions are
assigned to an application server and continue to use that server unless it becomes unavailable. This is
called ‘‘sticky” load balancing. Session data and other data modified by the user -- such as shop-
ping cart contents -- is written to both the object cache and the database. The double write carries a slight
performance penalty, but it allows for fast read access on subsequent requests without going back to the
database. If a server failure causes a user to be moved to a different application server, the data is simply
fetched from the database again.

Figure 7. Session tracking and caches

Session tracking and caches

1.10 Security
A large e-commerce site is a popular target for all types of attacks. When designing such a system, you
have to assume that you will be attacked and build with security in mind, at the application level as well as
the machine level.

The main rule of thumb is ‘‘don’t trust the client!’’ User-specific data sent to the client is protected using
multiple levels of encryption. SSL keeps sensitive data exchanges private from anyone snooping on
network traffic. To prevent ‘‘session hijacking’’ (when someone tampers with their session ID in order to
gain access to another user’s session), we include a Message Authentication Code (MAC) as part of the
session cookie. This is generated using the standard Digest::SHA1 module from CPAN, with a seed
phrase known only to our servers. By running the ID from the session cookie through this MAC algorithm
we can verify that the data being presented was generated by us and not tampered with.

In situations where we need to include some state information in an HTML form or URL and don’t want it
to be obvious to the user, we use the CPAN Crypt:: modules to encrypt and decrypt it. The
Crypt::CBC module is a good place to start.

To protect against simple overload attacks, when someone uses a program to send high volumes of
requests at our servers hoping to make them unavailable to customers, access to the application servers is
controlled by a throttling program. The code is based on some work by Randal Schwartz in his Stone-
henge::Throttle module. Accesses for each user are tracked in compact logs written to an NFS
partition. The program enforces limits on how many requests a user can make within a certain period of

15 Feb 20148

1.9 Session Tracking

time.

For more information on web security concerns including the use of MAC, encryption, and overload
prevention, we recommend looking at the books CGI Programming with Perl, 2nd Edition and Writing
Apache Modules with Perl and C, both from O’Reilly.

1.11 Exception Handling
When planning this system, we considered using Java as the implementation language. We decided to go
with Perl, but we really missed Java’s nice exception handling features. Luckily, Graham Barr’s Error
module from CPAN supplies similar capabilities in Perl.

Perl already has support for trapping runtime errors and passing exception objects, but the Error module
adds some nice syntactic sugar. The following code sample is typical of how we used the module:

 try {
 do_some_stuff();
 } catch My::Exception with {
 my $E = shift;
 handle_exception($E);
 };

The module allows you to create your own exception classes and trap for specific types of exceptions.

One nice benefit of this is the way it works with DBI . If you turn on DBI ’s RaiseError flag and use try
blocks in places where you want to trap exceptions, the Error module can turn DBI errors into simple
Error objects.

 try {
 $sth->execute();
 } catch Error with {
 # roll back and recover
 $dbh->rollback();
 # etc.
 };

This code shows a condition where an error would indicate that we should roll back a database transaction.
In practice, most DBI errors indicate something unexpected happened with the database and the current
action can’t continue. Those exceptions are allowed to propagate up to a top-level try{} block that
encloses the whole request. When errors are caught there, we log a stacktrace and send a friendly error
page back to the user.

1.12 Templates
Both the HTML and the formatting logic for merging application data into it is stored in the templates.
They use a CPAN module called Template Toolkit, which provides a simple but powerful syntax for
accessing the Perl data structures passed to them by the application. In addition to basics like looping and
conditional statements, it provides extensive support for modularization, allowing the use of includes and
macros to simplify template maintenance and avoid redundancy.

915 Feb 2014

1.11 Exception HandlingBuilding a Large-Scale E-commerce site with Apache and mod_perl

We found Template Toolkit to be an invaluable tool on this project. Our HTML coders picked it up very
quickly and were able to do nearly all of the templating work without help from the Perl coders. We
supplied them with documentation of what data would be passed to each template and they did the rest. If
you have never experienced the joy of telling a project manager that the HTML team can handle his
requested changes without any help from you, you are seriously missing out!

Template Toolkit compiles templates into Perl bytecode and caches them in memory to improve effi-
ciency. When template files change on disk they are picked up and re-compiled. This is similar to how
other mod_perl systems like Mason and Apache::Registry work.

By varying the template search path, we made it possible to assign templates to particular sections of the
site, allowing a customized look and feel for specific areas. For example, the page header template in the
bookstore section of the site can be different from the one in the video game store section. It is even possi-
ble to serve the same data with a different appearance in different parts of the site, allowing for co-brand-
ing of content.

This is a sample of what a basic loop looks like when coded in Template Toolkit:

 [% FOREACH item = cart.items %]
 name: [% item.name %]
 price: [% item.price %]
 [% END %]

1.13 Controller Example
Let’s walk through a simple Hello World example that illustrates how the Model-View-Controller pattern
is used in our code. We’ll start with the controller code.

 package ESF::Control::Hello;
 use strict;
 use ESF::Control;
 @ESF::Control::Hello::ISA = qw(ESF::Control);
 use ESF::Util;
 sub handler {
 ### do some setup work
 my $class = shift;
 my $apr = ESF::Util->get_request();

 ### instantiate the model
 my $name = $apr->param(’name’);

 # we create a new Model::Hello object.
 my $hello = ESF::Model::Hello-E<gt>new(NAME =E<gt> $name);

 ### send out the view
 my $view_data{’hello’} = $hello->view();

 # the process_template() method is inherited
 # from the ESF::Control base class

15 Feb 201410

1.13 Controller Example

 $class->process_template(
 TEMPLATE => ’hello.html’,
 DATA => \%view_data);
 }

In addition to the things you see here, there are a few interesting details about the ESF::Control base
class. All requests are dispatched to the ESF::Control->run() method first, which wraps them in a
try{} block before calling the appropriate handler() method. It also provides the
process_template() method, which runs Template Toolkit and then sends out the results
with appropriate HTTP headers. If the Controller specifies it, the headers can include Last-Modified
and Expires , for control of page caching by the proxy servers.

Now let’s look at the corresponding Model code.

 package ESF::Model::Hello;
 use strict;
 sub new {
 my $class = shift;
 my %args = @_;
 my $self = bless {}, $class;
 $self{’name’} = $args{’NAME’} || ’World’;
 return $self;
 }

 sub view {
 # the object itself will work for the view
 return shift;
 }

This is a very simple Model object. Most Model objects would have some database and cache interaction.
They would include a load() method which accepts an ID and loads the appropriate object state from
the database. Model objects that can be modified by the application would also include a save() method.

Note that because of Perl’s flexible OO style, it is not necessary to call new() when loading an object
from the database. The load() and new() methods can both be constructors for use in different circum-
stances, both returning a blessed reference.

The load() method typically handles cache management as well as database access. Here’s some
pseudo-code showing a typical load() method:

 sub load {
 my $class = shift;
 my %args = @_;
 my $id = $args{’ID’};
 my $self;
 unless ($self = _fetch_from_cache($id)) {
 $self = _fetch_from_database($id);
 $self->_store_in_cache();
 }
 return $self;
 }

1115 Feb 2014

1.13 Controller ExampleBuilding a Large-Scale E-commerce site with Apache and mod_perl

The save method would use the same approach in reverse, saving first to the cache and then to the
database.

One final thing to notice about our Model class is the view() method. This method exists to give the
object an opportunity to shuffle it’s data around or create a separate data structure that is easier for use
with a template. This can be used to hide a complex implementation from the template coders. For
example, remember the partitioning of the product inventory data that we did to allow for separate cache
expiration times? The product Model object is really a façade for several underlying implementation
objects, but the view() method on that class consolidates the data for use by the templates.

To finish off our Hello World example, we need a template to render the view. This one will do the job:

 <html>
 <title>Hello, My Oyster</title>
 <body>
 [% PROCESS header.html %]
 Hello [% hello.name %]!
 [% PROCESS footer.html %]
 </body>
 </html>

1.14 Performance Tuning
Since Perl code executes so quickly under mod_perl , the performance bottleneck is usually at the
database. We applied all the documented tricks for improving DBD::Oracle performance. We used
bind variables, prepare_cached() , Apache::DBI , and adjustments to the RowCache buffer size.

The big win of course is avoiding going to the database in the first place. The caching work we did had a
huge impact on performance. Fetching product data from the Berkeley DB cache was about ten times
faster than fetching it from the database. Serving a product page from the proxy cache was about ten times
faster than generating it on the application server from cached data. Clearly the site would never have
survived under heavy load without the caching.

Partitioning the data objects was also a big win. We identified several different subsets of product data that
could be loaded and cached independently. When an application needed product data, it could specify
which subset was required and skip loading the unnecessary data from the database.

Another standard performance technique we followed was avoiding unnecessary object creation. The
Template object is created the first time it’s used and then cached for the life of the Apache process.
Socket connections to search servers are cached in a way similar to what Apache::DBI does for
database connections. Resources that are used frequently within the scope of a request, such as database
handles and session objects, were cached in mod_perl ’s $r->pnotes() until the end of the request.

1.15 Trap: Nested Exceptions
When trying out a new technology like the Error module, there are bound to be some things to watch out
for. We found a certain code structure that causes a memory leak every time it is executed. It involves
nested try{} blocks, and looks like this:

15 Feb 201412

1.14 Performance Tuning

 my $foo;
 try {
 # some stuff...
 try {
 $foo++;
 # more stuff...
 } catch Error with {
 # handle error
 };

 } catch Error with {
 # handle other error
 };

It’s not Graham Barr’s fault that this leaks; it is simply a by-product of the fact that the try and catch
keywords are implemented using anonymous subroutines. This code is equivalent to the following:

 my $foo;
 $subref1 = sub {
 $subref2 = sub {
 $foo++;
 };
 };

This nested subroutine creates a closure for $foo and will make a new copy of the variable every time it
is executed. The situation is easy to avoid once you know to watch out for it.

1.16 Berkeley DB
One of the big wins in our architecture was the use of Berkeley DB. Since most people are not familiar
with it’s more advanced features, we’ll give a brief overview here.

The DB_File module is part of the standard Perl distribution. However, it only supports the interface of
Berkeley DB version 1.85, and doesn’t include the interesting features of later releases. To get those, you’ll
need the BerkeleyDB.pm module, available from CPAN. This module can be tricky to build, but
comprehensive instructions are included.

Newer versions of Berkeley DB offer many features that help performance in a mod_perl environment.
To begin with, database files can be opened once at the start of the program and kept open, rather than
opened and closed on every request. Berkeley DB will use a shared memory buffer to improve data access
speed for all processes using the database. Concurrent access is directly supported with locking handled
for you by the database. This is a huge win over DB_File , which requires you to do your own locking.
Locks can be at a database level, or at a memory page level to allow multiple simultaneous writers. Trans-
actions with rollback capability are also supported.

This all sounds too good to be true, but there are some downsides. The documentation is somewhat sparse,
and you will probably need to refer to the C API if you need to understand how to do anything compli-
cated.

1315 Feb 2014

1.16 Berkeley DBBuilding a Large-Scale E-commerce site with Apache and mod_perl

A more serious problem is database corruption. When an Apache process using Berkeley DB dies from a
hard kill or a segfault, it can corrupt the database. A corrupted database will sometimes cause subsequent
opening attempts to hang. According to the people we talked to at Sleepycat Software (which provides
commercial support for Berkeley DB), this can happen even with the transactional mode of operation.
They are working on a way to fix the problem. In our case, none of the data stored in the cache was essen-
tial for operation so we were able to simply clear it out when restarting an application server.

Another thing to watch out for is deadlocks. If you use the page-level locking option, you have to handle
deadlocks. There is a daemon included in the distribution that will watch for deadlocks and fix them, or
you can handle them yourself using the C API.

After trying a few different things, we recommend that you use database-level locking. It’s much simpler,
and cured our problems. We didn’t see any significant performance hit from switching to this mode of
locking. The one thing you need to watch out for when using exclusive database level write locks are long
operations with cursors that tie up the database. We split up some of our operations into multiple writes in
order to avoid this problem.

If you have a good C coder on your team, you may want to try the alternate approach that we finally ended
up with. You can write your own daemon around Berkeley DB and use it in a client/server style over Unix
sockets. This allows you to catch signals and ensure a safe shutdown. You can also write your own dead-
lock handling code this way.

1.17 Valuable Tools
If you plan to do any serious Perl development, you should really take the time to become familiar with
some of the available development tools. The debugger in particular is a lifesaver, and it works with
mod_perl . There is a profiler called Devel::DProf , which also works with mod_perl . It’s defi-
nitely the place to start when performance tuning your application.

We found the ability to run our complete system on individual’s workstations to be extremely useful.
Everyone could develop on his own machine, and coordinate changes using CVS source control.

For object modeling and design, we used the open source Dia program and Rational Rose. Both support
working with UML and are great for generating pretty class diagrams for your cubicle walls.

1.18 Do Try This at Home
Since we started this project, a number of development frameworks that offer support for this kind of
architecture have appeared. We didn’t use one of these, but they have a similar design to what we did and
may prove useful to you if you want to take an MVC approach with your system.

Some of the most interesting tools for MVC web development in Perl include Apache::PageKit ,
OpenInteract2 , CGI::Application , Maypole , and Catalyst . There isn’t room here to get
deeply into the differences between these tools, but watch for an article comparing these frameworks in
the future.

15 Feb 201414

1.17 Valuable Tools

If you want a ready-to-use cache module, there are several on CPAN now. The most popular is the
Cache::Cache framework, which can use files or shared memory for storage. Since the original writing
of this article, newer and faster options have appeared, particularly Cache::FastMmap and
Cache::Memcached .

The Java world has many options as well. The Struts framework, part of the Jakarta project, is a good
open source choice. There are also commercial products from several vendors that follow this sort of
design. Top contenders include ATG Dynamo, BEA WebLogic, and IBM WebSphere.

1.19 An Open Source Success Story
By building on the open source software and community, we were able to create a top-tier web site with a
minimum of cost and effort. The system we ended up with is scalable to huge amounts of traffic. It runs on
mostly commodity hardware making it easy to grow when the need arises. Perhaps best of all, it provided
tremendous learning opportunities for our developers, and made us a part of the larger development
community.

We’ve contributed patches from our work back to various open source projects, and provided help on
mailing lists. We’d like to take this opportunity to officially thank the open source developers who
contributed to projects mentioned here. Without them, this would not have been possible. We also have to
thank the hardworking web developers at eToys. The store may be closed, but the talent that built it lives
on.

1.20 Maintainers
The maintainer is the person(s) you should contact with updates, corrections and patches.

Per Einar Ellefsen <per.einar (at) skynet.be>

1.21 Authors
Bill Hilf <bill (at) hilfworks.com>
Perrin Harkins <perrin (at) elem.com>

Only the major authors are listed above. For contributors see the Changes file.

1515 Feb 2014

1.19 An Open Source Success StoryBuilding a Large-Scale E-commerce site with Apache and mod_perl

Table of Contents:
....... 11 Building a Large-Scale E-commerce site with Apache and mod_perl
................... 21.1 Description
................. 21.2 Common Myths
................... 21.3 Perl Saves
............ 21.3.1 Roll Your Own Application Server
................ 31.4 Case Study: eToys.com
............. 31.4.1 Apache::PerlRun to the Rescue
............. 41.4.2 Planning the New Architecture
............... 41.5 Surviving Christmas 2000
................ 41.5.1 The Architecture
................. 51.5.2 Proxy Servers
................ 51.5.3 Application Servers
................. 51.5.4 Search servers
............... 61.6 Load Balancing and Failover
.................. 71.7 Code Structure
................... 71.8 Caching
................. 81.9 Session Tracking
................... 81.10 Security
................ 91.11 Exception Handling
................... 91.12 Templates
................ 101.13 Controller Example
................ 121.14 Performance Tuning
............... 121.15 Trap: Nested Exceptions
.................. 131.16 Berkeley DB
................. 141.17 Valuable Tools
................ 141.18 Do Try This at Home
.............. 151.19 An Open Source Success Story
.................. 151.20 Maintainers
................... 151.21 Authors

i15 Feb 2014

Table of Contents:Building a Large-Scale E-commerce site with Apache and mod_perl

	1€€Building a Large-Scale E-commerce site with Apache and mod_perl
	1.1€€Description
	1.2€€Common Myths
	1.3€€Perl Saves
	1.3.1€€Roll Your Own Application Server

	1.4€€Case Study: eToys.com
	1.4.1€€Apache::PerlRun to the Rescue
	1.4.2€€Planning the New Architecture

	1.5€€Surviving Christmas 2000
	1.5.1€€The Architecture
	1.5.2€€Proxy Servers
	1.5.3€€Application Servers
	1.5.4€€Search servers

	1.6€€Load Balancing and Failover
	1.7€€Code Structure
	1.8€€Caching
	1.9€€Session Tracking
	1.10€€Security
	1.11€€Exception Handling
	1.12€€Templates
	1.13€€Controller Example
	1.14€€Performance Tuning
	1.15€€Trap: Nested Exceptions
	1.16€€Berkeley DB
	1.17€€Valuable Tools
	1.18€€Do Try This at Home
	1.19€€An Open Source Success Story
	1.20€€Maintainers
	1.21€€Authors

