User’s guide Table of Contents:

User’s guide

All you need to know about using mod_perl 2.0

Last modified Sun Feb 16 01:34:28 2014 GMT

15 Feb 2014 1

Table of Contents:

Part I: Introduction

|- 1. Getting Your Feet Wet with mod perl

This chapter gives you the bare minimum information to get you started with mod_perl 2.0. For most
people it's sufficient to get going.

|- 2. Overview of mod perl 2.0

This chapter should give you a general idea about what mod_perl 2.0 is and how it differs from

mod_perl 1.0. This chapter presents the new features of Apache 2.0, Perl 5.6.0 -- 5.8.0 and their influ-
ence on mod_perl 2.0. The new MPM models from Apache 2.0 are also discussed.

|- 3. Notes on the design and goals of mod pell-2.0
Notes on the design and goals of mod_perl-2.0.
Part Il Installation

|- 4. Installing mod perl 2/0

This chapter provides an in-depth mod_perl 2.0 installation coverage.

|- 5. mod perl 2.0 Server Configuration

This chapter provides an in-depth mod_perl 2.0 configuration details.

|- 6. Apache Server Configuration Customization in|Perl

This chapter explains how to create custom Apache configuration directives in Perl.
Part Ill: Coding

[7. Writing mod_perl Handlers and Scr|pts

This chapter covers the mod_perl coding specifics, different from normal Perl coding. Most other perl
coding issues are covered in the perl manpages and rich literature.

|- 8. Cooking Recipgs

As the chapter’s title implies, here you will find ready-to-go mod_perl 2.0 recipes.
Part IV: Porting

|- 9. Porting Apache:: Perl Modules from mod perl 1.0 tp 2.0

2.0 handlers.

This document describes the various options for porting a mod_perl 1.0 Apache module so that it
runs on a Apache 2.0 / mod_perl 2.0 server. It's also helpful to those who start developing mod_perl

|- 10. A Reference to mod perl 1.0 to mod perl 2.0 Migration.

This chapter is a reference for porting code and configuration files from mod_perl 1.0 to mod_perl
2.0.

Part V: mod_perl Handlers

15 Feb 2014

User’s guide Table of Contents:

|- 11. Introducing mod perl Handlgrs
This chapter provides an introduction into mod_perl handlers.

|- 12. Server Life Cycle Handlgrs
This chapter discusses server life cycle and the mod_perl handlers participating in it.

|- 13. Protocol Handlgrs
This chapter explains how to implement Protocol (Connection) Handlers in mod_perl.

|- 14. HTTP Handlefs
This chapter explains how to implement the HTTP protocol handlers in mod_perl.

|- 15. Input and Output Filtgrs
This chapter discusses mod_perl’'s input and output filter handlers.

|- 16. General Handlers Issties
This chapter discusses issues relevant too any kind of handlers.

Part VI: Performance

|- 17. Preventive Measures for Performance Enhanceément
This chapter explains what should or should not be done in order to keep the performance high

|- 18. Performance Considerations Under Different M[PMs
This chapter discusses how to choose the right MPM to use (on platforms that have such a choice),
and how to get the best performance out of it.

Part VII: Troubleshooting

|- 19. Troubleshooting mod perl probléms
Frequently encountered problems (warnings and fatal errors) and their troubleshooting.

- 20. User Help

This chapter is for those needing help using mod_perl and related software.

15 Feb 2014 3

1 Getting Your Feet Wet with mod_perl

1 Getting Your Feet Wet with mod_ perl

4 15 Feb 2014

Getting Your Feet Wet with mod_perl 1.1 Description

1.1 Description

This chapter gives you the bare minimum information to get you started with mod_perl 2.0. For most
people it's sufficient to get going.

1.2 Installation
If you are a Win32 user, please refer to the Win32 installation document.

First, download the mod_perl 2.0 source.

Before installing mod_perl, you need to check that you have the mod perl 2.0 preréqmssitesd.
Apache and the right Perl version have to be built and insth#éate you can proceed with building
mod_perl.

In this chapter we assume that httpd and all helper files were installedbH@®tE/httpd/preforkif your
distribution doesn’t install all the files under the same tree, please rgfer to the complete installation instruc-

ftiong.

Now, configure mod_perl:

% tar -xvzf mod_perl-2.x.xx.tar.gz
% cd modperl-2.0
% perl Makefile.PL MP_APXS=$HOME/httpd/prefork/bin/apxs

where MP_APXSis the full path to thepxs executable, normally found in the same directory as the
httpd executable, but could be put in a different path as well.

Finally, build, test and install mod_perl:

% make && make test && make install

Becomeroot before doingnake install if installing system-wide.

If something goes wrong or you need to enable optional features please [refer to the complete installation

instruction§.

1.3 Configuration

If you are a Win32 user, please refer to the Win32 configuration document.

Enable mod_perl built as DSO, by addindhttpd.conf

LoadModule perl_module modules/mod_perl.so

There are many other configuration options which you can find |n the configuration manual.

15 Feb 2014 5

1.4 Server Launch and Shutdown

If you want to run mod_perl 1.0 code on mod_perl 2.0 server enable the compatibility layer:

PerIModule Apache2::compat

For more information seg: Migrating from mod perl 1.0 to mod pdrl 2.0.

1.4 Server Launch and Shutdown

Apache is normally launched wittpachectl

% $HOME/httpd/prefork/bin/apachectl start

and shut down with:

% $HOME/httpd/prefork/bin/apachectl stop

Check$HOME/httpd/prefork/logs/error_lotp see that the server has started and it's a right one. It should
say something similar to:

[Fri Jul 22 09:39:55 2005] [notice] Apache/2.0.55-dev (Unix)
mod_ssl/2.0.55-dev OpenSSL/0.9.7e DAV/2 mod_perl/2.0.2-dev
Perl/v5.8.7 configured -- resuming normal operations

1.5 Registry Scripts

To enable registry scripts add the followinghtgpd.conf

Alias /perl/ /home/httpd/httpd-2.0/perl/
<Location /perl/>
SetHandler perl-script
PerlResponseHandler ModPerl::Registry
PerlOptions +ParseHeaders
Options +ExecCGl
Order allow,deny
Allow from all
</Location>

and now assuming that we have the following script:
#!/usr/bin/perl

print "Content-type: text/plain\n\n";
print "mod_perl 2.0 rocks\n";

saved inhome/httpd/httpd-2.0/perl/rock.dake the script executable and readable by everybody:

% chmod a+rx /home/httpd/httpd-2.0/perl/rock.pl

Of course the path to the script should be readable by the server too. In the real world you probably want
to have a tighter permissions, but for the purpose of testing that things are working this is just fine.

6 15 Feb 2014

Getting Your Feet Wet with mod_perl 1.6 Handler Modules

Now restart the server and issue a requdisttpo//localhost/perl/rock.pand you should get the response:

mod_perl 2.0 rocks!
If that didn’t work check therror_log file.

For more information on the registry scripts refer to MwdPerl::Registry manpage. (XXX: one
day there will a tutorial on registry, should port it from 1.0’s docs).

1.6 Handler Modules

Finally check that you can run mod_perl handlers. Let's write a response handler similar to the registry
script from the previous section:

#file:MyApache2/Rocks.pm
package MyApache2::Rocks;

use strict;
use warnings;

use Apache2::RequestRec ();
use Apache2::RequestlO ();

use Apache2::Const -compile => qw(OK);

sub handler {
my $r = shift;

$r->content_type(‘text/plain’);
print "mod_perl 2.0 rocks\n";

return Apache2::Const::OK;
}
1
Save the code in the fidyApache2/Rocks.preomewhere where mod_perl can find it. For example let's

put it under /home/httpd/httpd-2.0/perl/MyApache2/Rocks.prand we tell mod_perl that
/home/httpd/httpd-2.0/perig in @ING via a startup file which includes just:

use lib gw(/home/httpd/httpd-2.0/perl);
1

and loaded fronmttpd.conf
PerlRequire /home/httpd/httpd-2.0/perl/startup.pl

Now we can configure our modulelittpd.conf

<Location /rocks>
SetHandler perl-script
PerlResponseHandler MyApache2::Rocks
</Location>

15 Feb 2014 7

http://localhost/perl/rock.pl

1.7 Troubleshooting

Now restart the server and issue a requdisttpo//localhost/rocksand you should get the response:

mod_perl 2.0 rocks!

If that didn’t work check therror_logfile.

1.7 Troubleshooting

If after reading the complete installafion and configuration chapters you are still having problems, take a
look at thg troubleshooting sectipns. If the problem persist, please report them uging the followinpg guide-

fined.

1.8 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmarj [http://stason.qrg/]

1.9 Authors

e Stas Bekmar [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

8 15 Feb 2014

http://localhost/rocks
http://stason.org/
http://stason.org/

Overview of mod_perl 2.0 2 Overview of mod_perl 2.0

2 Overview of mod_perl 2.0

15 Feb 2014 9

2.1 Description

2.1 Description

This chapter should give you a general idea about what mod_perl 2.0 is and how it differs from mod_perl
1.0. This chapter presents the new features of Apache 2.0, Perl 5.6.0 -- 5.8.0 and their influence on
mod_perl 2.0. The new MPM models from Apache 2.0 are also discussed.

2.2 Version Naming Conventions

In order to keep things simple, here and in the rest of the documentation we refer to mod_perl 1.x series as
mod_perl 1.0 and to 2.0.x series as mod_perl 2.0. Similarly we call Apache 1.3.x series as Apache 1.3 and
2.0.x as Apache 2.0. There is also Apache 2.1, which is a development track towards Apache 2.2.

2.3 Why mod_perl, The Next Generation

mod_perl was introduced in early 1996, both Perl and Apache have changed a great deal since that time.
mod_perl has adjusted to both along the way over the past 4 and a half years or so using the same code
base. Over this course of time, the mod_perl sources have become more and more difficult to maintain, in
large part to provide compatibility between the many different flavors of Apache and Perl. And, compati-
bility across these versions and flavors is a more difficult goal for mod_perl to reach that a typical Apache
or Perl module, since mod_perl reaches a bit deeper into the corners of Apache and Perl internals than
most. Discussions of the idea to rewrite mod_perl as version 2.0 started in 1998, but never made it much
further than an idea. When Apache 2.0 development was underway it became clear that a rewrite of
mod_perl would be required to adjust to the new Apache architecture and API.

Of the many changes happening in Apache 2.0, the one which has the most significant impact on
mod_perl is the introduction of threads to the overall design. Threads have been a part of Apache on the
win32 side since the Apache port was introduced. The mod_perl port to win32 happened in version
1.00b1, released in June of 1997. This port enabled mod_perl to compile and run in a threaded windows
environment, with one major caveat: only one concurrent mod_perl request could be handled at any given
time. This was due to the fact that Perl did not introduce thread-safe interpreters until version 5.6.0,
released in March of 2000. Contrary to popular belief, the "threads support" implemented in Perl 5.005
(released July 1998), did not make Perl thread-safe internally. Well before that version, Perl had the notion
of "Multiplicity", which allowed multiple interpreter instances in the same process. However, these
instances were not thread safe, that is, concurrent callbacks into multiple interpreters were not supported.

It just so happens that the release of Perl 5.6.0 was nearly at the same time as the first alpha version of
Apache 2.0. The development of mod_perl 2.0 was underway before those releases, but as both Perl 5.6.0
and Apache 2.0 were reaching stability, mod_perl 2.0 was becoming more of a reality. In addition to the
adjustments for threads and Apache 2.0 API changes, this rewrite of mod_perl is an opportunity to clean
up the source tree. This includes both removing the old backward compatibility bandaids and building a
smarter, stronger and faster implementation based on lessons learned over the 4.5 years since mod_perl
was introduced.

10 15 Feb 2014

Overview of mod_perl 2.0 2.4 What's new in Apache 2.0

The new version includes a mechanism for the automatic building of the Perl interface to Apache API,
which allowed us to easily adjust mod_perl 2.0 to the ever changing Apache 2.0 API, during its develop-
ment period. Another important feature is tygache::Test framework, which was originally devel-

oped for mod_perl 2.0, but then was adopted by Apache 2.0 developers to test the core server features and
third party modules. Moreover the tests written usingApache::Test framework could be run with

Apache 1.0 and 2.0, assuming that both supported the same features.

There are multiple other interesting changes that have already happened to mod_perl in version 2.0 and
more will be developed in the future. Some of these are discussed in this chapter, others can be found in
the rest of the mod_perl 2.0 documentation.

2.4 What's new in Apache 2.0

Apache 2.0 has introduced numerous new features and enhancements. Here are the most important new
features:

® Apache Portable Runtim¢APR)

Apache 1.3 has been ported to a very large number of platforms including various flavors of unix,
win32, 0s/2, the list goes on. However, in 1.3 there was no clear-cut, pre-designed portability layer
for third-party modules to take advantage of. APR provides this API layer in a very clean way. APR
assists a great deal with mod_perl portability. Combined with the portablity of Perl, mod_perl 2.0
needs only to implement a portable build system, the rest comes "for free". A Perl interface is
provided for certain areas of APR, such as the shared memory abstraction, but the majority of APR is
used by mod_perl "under the covers".

The APR uses the concept of memory pools, which significantly simplifies the memory management
code and reduces the possibility of having memory leaks, which always haunt C programmers.

® |/O Filtering

Filtering of Perl modules output has been possible for years since tied filehandle support was added
to Perl. There are several modules, sucipache2::Filter and Apache::OutputChain

which have been written to provide mechanisms for filteringSRBOUTstream. There are several

of these modules because no one’s approach has quite been able to offer the ease of use one would
expect, which is due simply to limitations of the Perl tied filehandle design. Another problem is that
these filters can only filter the output of other Perl modules. C modules in Apache 1.3 send data
directly to the client and there is no clean way to capture this stream. Apache 2.0 has solved this
problem by introducing a filtering API. With the baseline I/O stream tied to this filter mechansim,
any module can filter the output of any other module, with any number of filters in between. Using
this new feature things like SSL, data (de-)compression and other data manipulations are done very
easily.

® Multi Processing Model module@MPMs).

In Apache 1.3 concurrent requests were handled by multiple processes, and the logic to manage these
processes lived in one plad¢dtp_main.¢ 7700 some odd lines of code. If Apache 1.3 is compiled on

15 Feb 2014 11

2.4 What's new in Apache 2.0

a Win32 system large parts of this source file are redefined to handle requests using threads. Now
suppose you want to change the way Apache 1.3 processes requests, say, into a DCE RPC listener. This is
possible only by slicing and dicingttp_main.cinto more pieces or by redefining thetan-
dalone_mainfunction, with a-DSTANDALONE_MAIN=your_function compile time flag.

Neither of which is a clean, modular mechanism.

Apache-2.0 solves this problem by introduciMglti Processing Model modulebetter known as
MPMs. The task of managing incoming requests is left to the MPMs, shrihkipgmain.cto less

than 500 lines of code. Now it's possible to write different processing modules specific to various
platforms. For example the Apache 2.0 on Windows is much more efficient now, since it uses
mpm_winnwhich deploys the native Windows features.

Here is a partial list of major MPMs available as of this writing.
O prefork

The prefork MPM emulates Apache 1.3’s preforking model, where each request is handled by a
different forked child process.

O worker

The worker MPM implements a hybrid multi-process multi-threaded approach based on the
pthreadsstandard. It uses one acceptor thread, multiple worker threads.

O mpmt_os2, netware, winnt and beos

These MPMs also implement the hybrid multi-process/multi-threaded model, with each based
on native OS thread implementations.

O perchild

The perchild MPM is similar to theworker MPM, but is extended with a mechanism which
allows mapping of requests to virtual hosts to a process running under the user id and group
configured for that host. This provides a robust replacement feutheanechanism.

META: as of this writing this mpm is not working

On platforms that support more than one MPM, it's possible to switch the used MPMs as the need
change. For example on Unix it's possible to start with a preforked module. Then when the demand is
growing and the code matures, it's possible to migrate to a more efficient threaded MPM, assuming
that the code base is capable of running i the threaded envirpnment.

® Protocol Modules

Apache 1.3 is hardwired to speak only one protocol, HTTP. Apache 2.0 has moved to more of a
"server framework" architecture making it possible to plugin handlers for protocols other than HTTP.
The protocol module design also abstracts the transport layer so protocols such as SSL can be hooked
into the server without requiring modifications to the Apache source code. This allows Apache to be
extended much further than in the past, making it possible to add support for protocols such as FTP,

12 15 Feb 2014

Overview of mod_perl 2.0 2.5 What's new in Perl 5.6.0 - 5.8.0

SMTP, RPC flavors and the like. The main advantage being that protocol plugins can take advantage
of Apache’s portability, process/thread management, configuration mechanism and plugin API.

® Parsed Configuration Tree

When configuration files are read by Apache 1.3, it hands off the parsed text to module configuration
directive handlers and discards that text afterwards. With Apache 2.0, the configuration files are first
parsed into a tree structure, which is then walked to pass data down to the modules. This tree is then
left in memory with an API for accessing it at request time. The tree can be quite useful for other
modules. For example, in 1.3, mod_info has its own configuration parser and parses the configuration
files each time you access it. With 2.0 there is already a parse tree in memory, which mod_info can then
walk to output its information.

If a mod_perl 1.0 module wants access to configuration information, there are two approaches. A
module can "subclass" directive handlers, saving a copy of the data for itself, then returning
DECLINE_CMD so the other modules are also handed the info. OfApache2::PerlSec-

tions::Save variable can be set to save <Perl> configuration indtiAgache2::ReadCon-

fig:: namespace. Both methods are rather kludgy, version 2.0 provjdes a Perl interfa¢e to the
[Apache configuration tree.

All these new features boost the Apache performance, scalability and flexibility. The APR helps the
overall performance by doing lots of platform specific optimizations in the APR internals, and giving the
developer the APl which was already greatly optimized.

Apache 2.0 now includes special modules that can boost performance. For example the mod_mmap_static
module loads webpages into the virtual memory and serves them directly avoiding the ovedpes)of
andread() system calls to pull them in from the filesystem.

The 1/O layering is helping performance too, since now modules don’'t need to waste memory and CPU
cycles to manually store the data in shared memoppnotesin order to pass the data to another module,
e.g., in order to provide response’s gzip compression.

And of course a not least important impact of these features is the simplification and added flexibility for
the core and third party Apache module developers.

2.5 What's new in Perl 5.6.0 - 5.8.0

As we have mentioned earlier Perl 5.6.0 is the minimum requirement for mod_perl 2.0. Though as we will
see later certain new features work only with Perl 5.8.0 and higher.

These are the important changes in the recent Perl versions that had an impact on mod_perl. For a
complete list of changes see the -corresponding to the used vepsiddelta manpages
(http://perldoc.perl.org/perli56delta.htiittp://perldoc.perl.org/perl561delta.htpahd
|http://perldoc.perl.org/perldelta.htinl

15 Feb 2014 13

http://perldoc.perl.org/perl56delta.html
http://perldoc.perl.org/perl561delta.html
http://perldoc.perl.org/perldelta.html

2.5 What's new in Perl 5.6.0 - 5.8.0

The 5.6 Perl generation has introduced the following features:

® The beginnings of support for running multiple interpreters concurrently in different threads. In
conjunction with the perl_clone() API call, which can be used to selectively duplicate the state of any
given interpreter, it is possible to compile a piece of code once in an interpreter, clone that interpreter
one or more times, and run all the resulting interpreters in distinct threads. Sperlémebed
(http://perldoc.perl.org/perlembed.hijréind perl56 1deltafhttp://perldoc.perl.org/perl561delta.htjnl
manpages.

® The core support for declaring subroutine attributes, which is used by mod_perim2itied
handlers See thattributesmanpage.

® Thewarningspragma, which allows to force the code to be super clean, via the setting:

use warnings FATAL =>"all’;

which will abort any code that generates warnings. This pragma also allows a fine control over what
warnings should be reported. See tperllexwarn (http://perldoc.perl.org/perllexwarn.htinl
manpage.

® CertainCORE:: functions now can be overridden WC®RE::GLOBAL:: namespace. For example
mod_perl now can overrid€ORE::exit() via CORE::GLOBAL:exit . See theperlsub
(http://perldoc.perl.org/perlsub.htinmanpage.

® TheXSLoader extension as a simpler alternativdDygnaloader . See theXSLoademanpage.

® The large file support. If you have filesystems that support "large files" (files larger than 2 gigabytes),
you may now also be able to create and access them from Perl. Seegertb@ldelta
(http://perldoc.perl.org/perl561delta.htjninanpage.

e Multiple performance enhancements were made. Sqeettigb1delta
(http://perldoc.perl.org/perl561delta.htjninanpage.

® Numerous memory leaks were fixed. Seegba561deltaihttp://perldoc.perl.org/perl561delta.htjnl
manpage.

® Improved security features: more potentially unsafe operations taint their results for improved secu-

rity. See theperlsec(http://perldoc.perl.org/perlsec.htinbindperl561delta
(http://perldoc.perl.org/peri561delta.htjnnanpages.

® Available on new platforms: GNU/Hurd, Rhapsody/Darwin, EPOC.

Overall multiple bugs and problems very fixed in the Perl 5.6.1, so if you plan on running the 5.6 genera-
tion, you should run at least 5.6.1. It is possible that when this tutorial is printed 5.6.2 will be out.

The Perl 5.8.0 has introduced the following features:

14 15 Feb 2014

http://perldoc.perl.org/perlembed.html
http://perldoc.perl.org/perl561delta.html
http://perldoc.perl.org/perllexwarn.html
http://perldoc.perl.org/perlsub.html
http://perldoc.perl.org/perl561delta.html
http://perldoc.perl.org/perl561delta.html
http://perldoc.perl.org/perl561delta.html
http://perldoc.perl.org/perlsec.html
http://perldoc.perl.org/perl561delta.html

Overview of mod_perl 2.0 2.5 What's new in Perl 5.6.0 - 5.8.0

® The introduced in 5.6.0 experimental PerllO layer has been stabilized and become the default 10
layer in 5.8.0. Now the 10 stream can be filtered through multiple layers. Sepetlaio
(http://perldoc.perl.org/perlapio.htplandperliol (http://perldoc.perl.org/perliol.htn)imanpages.

For example this allows mod_perl to inter-operate with the APR 10 layer and even use the APR 10
layer in Perl code. See tBé¢R::PerllO manpage.

Another example of using the new feature is the extension afpgée() functionality to create
anonymous temporary files via:

open my $fh, "+>", undef or die $!;

That is a literaundef() , not an undefined value. See thgen() entry in theperlfunc manpage
(http://perldoc.perl.org/functions/open.hjml

® More overridable viCORE::GLOBAL:: keywords. See thgerlsub
(http://perldoc.perl.org/perlsub.htinmanpage.

® The signal handling in Perl has been notoriously unsafe because signals have been able to arrive at
inopportune moments leaving Perl in inconsistent state. Now Perl delays signal handling until it is
safe.

e File::Temp was added to allow a creation of temporary files and directories in an easy, portable,
and secure way. See thge::Tempmanpage.

® A new command-line optiont is available. It is the little brother et : instead of dying on taint
violations, lexical warnings are given. This is only meant as a temporary debugging aid while secur-
ing the code of old legacy applicationShis is not a substitute for - T. See theperlrun
(http://perldoc.perl.org/perlrun.htmimanpage.

A new special variabl8{"TAINT} was introduced. It indicates whether taint mode is enabled. See
theperlvar (http://perldoc.perl.org/perlvar.htfpimanpage.

e Threads implementation is much improved since 5.6.
® A much better support for Unicode.

® Numerous bugs and memory leaks fixed. For example now you can localize tApaa::DBI
filehandles without leaking memory.

® Available on new platforms: AtheOS, Mac OS Classic, Mac OS X, MinGW, NCR MP-RAS,
NonStop-UX, NetWare and UTS. The following platforms are again supported: BeOS, DYNIX/ptx,
POSIX-BC, VM/ESA, z/OS (0S/390).

15 Feb 2014 15

http://perldoc.perl.org/perlapio.html
http://perldoc.perl.org/perliol.html
http://perldoc.perl.org/functions/open.html
http://perldoc.perl.org/perlsub.html
http://perldoc.perl.org/perlrun.html
http://perldoc.perl.org/perlvar.html

2.6 What's new in mod_perl 2.0

2.6 What's new in mod_perl 2.0

The new features introduced by Apache 2.0 and Perl 5.6 and 5.8 generations provide the base of the new
mod_perl 2.0 features. In addition mod_perl 2.0 re-implements itself from scratch providing such new
features as new build and testing framework. Let’s look at the major changes since mod_perl 1.0.

2.6.1 Threads Support

In order to adapt to the Apache 2.0 threads architecture (for threaded MPMs), mod_perl 2.0 needs to use
thread-safe Perl interpreters, also known as “ithreads" (Interpreter Threads). This mechanism can be

enabled at compile time and ensures that each Perl interpreter uses itsPenillaterpreter struc-

ture for storing its symbol tables, stacks and other Perl runtime mechanisms. When this separation is

engaged any number of threads in the same process can safely perform concurrent callbacks into Perl. This
of course requires each thread to have its Peminterpreter object, or at least that each instance

is only accessed by one thread at any given time.

The first mod_perl generation has only a siriggelinterpreter , Which is constructed by the parent
process, then inherited across the forks to child processes. mod_perl 2.0 has a configurable number of
Perlinterpreters and two classes of interpreteparentandclone A parentis like that in mod_perl

1.0, where the main interpreter created at startup time compiles any pre-loaded Perl clmhe i&\

created from the parent using the Perl Aill_clone()
(http://perldoc.perl.org/perlapi.html#Cloning-an-interpretdunction. At request timggarentinterpreters

are only used for making momones as theclonesare the interpreters which actually handle requests.
Care is taken by Perl to copy only mutable data, which means that no runtime locking is required and
read-only data such as the syntax tree is shared fropatkat which should reduce the overall mod_perl
memory footprint.

Rather than createRerlinterpreter per-thread by default, mod_perl creates a pool of interpreters.

The pool mechanism helps cut down memory usage a great deal. As already mentioned, the syntax tree is
shared between all cloned interpreters. If your server is serving more than mod_perl requests, having a
smaller number of Perlinterpreters than the number of threads will clearly cut down on memory usage.
Finally and perhaps the biggest win is memory re-use: as calls are made into Perl subroutines, memory
allocations are made for variables when they are used for the first time. Subsequent use of variables may
allocate more memory, e.g. if a scalar variable needs to hold a longer string than it did before, or an array
has new elements added. As an optimization, Perl hangs onto these allocations, even though their values
"go out of scope”. mod_perl 2.0 has a much better control over which Perlinterpreters are used for incom-
ing requests. The interpreters are stored in two linked lists, one for available interpreters and another for
busy ones. When needed to handle a request, one interpreter is taken from the head of the available list and
put back into the head of the same list when done. This means if for example you have 10 interpreters
configured to be cloned at startup time, but no more than 5 are ever used concurrently, those 5 continue to
reuse Perl’s allocations, while the other 5 remain much smaller, but ready to go if the need arises.

Various attributes of the pools are configurable using threads mode specific directives.

16 15 Feb 2014

http://perldoc.perl.org/perlapi.html#Cloning-an-interpreter

Overview of mod_perl 2.0 2.6.2 Thread-environment Issues

The interpreters pool mechanism has been abstracted into an APl known as "Tipoedd] Item Pool

This pool can be used to manage any data structure, in which you wish to have a smaller number than the
number of configured threads. For example a replacememtpfache::DBI based on théipool will

allow to reuse database connections between multiple threads of the same process.

2.6.2 Thread-environment Issues

While mod_perl itself is thread-safe, you may have issues with the thread-safety of your code. For more
information refer t¢ Threads Coding Issues Under mod perl.

Another issue is that "global" variables are only global to the interpreter in which they are created. It's
possible to share variables between several threads running in the same process. For more information see:
[Shared Variablé¢s.

2.6.3 Perl Interface to the APR and Apache APIs

As we have mentioned earlier, Apache 2.0 uses two APIs:

e the Apache Portable APR (APR) API, which implements a portable and efficient API to handle
generically work with files, sockets, threads, processes, shared memory, etc.

e the Apache API, which handles issues specific to the web server.

In mod_perl 1.0, the Perl interface back into the Apache API and data structures was done piecemeal. As
functions and structure members were found to be useful or new features were added to the Apache API,
the XS code was written for them here and there.

mod_perl 2.0 generates the majority of XS code and provides thin wrappers where needed to make the
APl more Perlish. As part of this goal, nearly the entire APR and Apache API, along with their public data
structures are covered from the get-go. Certain functions and structures which are considered "private"” to
Apache or otherwise un-useful to Perl aren’t glued. Most of the API behaves just as it did in mod_perl 1.0,
so users of the API will not notice the difference, other than the addition of many new methods. Where
API has changed a spedial back compatibility mgdule can be used.

In mod_perl 2.0 the APR API resides in tRBR:: namespace, and obviously tApache2:: names-
pace is mapped to the Apache API.

And in the case oAPR it is possible to usAPRmodules outside of Apache, for example:

% perl -MAPR -MAPR::UUID -le "print APR::UUID->new->format’
b059a4b2-d11d-b211-bc23-d644b8ce0981

The mod_perl 2.0 generator is a custom suite of modules specifically tuned for gluing Apache and allows

for complete control ovesverything providing many possibilities none x$ubpp SWIGor Inline.pmare
designed to do. Advantages to generating the glue code include:

15 Feb 2014 17

2.7 Integration with 2.0 Filtering

Not tied tightly to xsubpp

Easy adjustment to Apache 2.0 APl/structure changes
Easy adjustment to Perl changes (e.g., Perl 6)

Ability to "discover" hookable third-party C modules.
Cleanly take advantage of features in newer Perls
Optimizations can happen across-the-board with one-shot
Possible to AUTOLOAD XSUBs

Documentation can be generated from code

Code can be generated from documentation

2.7 Integration with 2.0 Filtering

The mod_perl 2.0 interface to the Apache filter APl comes in two flavors. First, similar to the C API,
where bucket brigades need to be manipulated. Second, streaming filtering, is much simpler than the C
API, since it hides most of the details underneath. For a full discussion on filters and implementation
examples refer to the Input and Output Filters chapter.

2.7.1 Other New Features

In addition to the already mentioned new features, the following are of a major importance:

® Apache 2.0 protocol modules are supported. Later we will see an example of a protocol module

18

running on top of mod_perl 2.0.

mod_perl 2.0 provides a very simply to use interface to the Apache filtering API. We will present a
filter module example later on.

A feature-full and flexibleApache::Test framework was developed especially for mod_perl
testing. While used to test the core mod_perl features, it is used by third-party module writers to
easily test their modules. Moreov&pache::Test was adopted by Apache and currently used to
test both Apache 1.3, 2.0 and other ASF projects. Anything that runs top of Apache can be tested
with Apache::Test , be the target written in Perl, C, PHP, etc.

The support of the new MPMs model makes mod_perl 2.0 can scale better on wider range of plat-
forms. For example if you've happened to try mod_perl 1.0 on Win32 you probably know that the
requests had to be serialized, i.e. only a single request could be processed at a time, rendering the
Win32 platform unusable with mod_perl as a heavy production service. Thanks to the new Apache
MPM design, now mod_perl 2.0 can be used efficiently on Win32 platforms using its wat82

MPM.

15 Feb 2014

Overview of mod_perl 2.0 2.8 Maintainers

2.7.2 Optimizations

The rewrite of mod_perl gives us the chances to build a smarter, stronger and faster implementation based
on lessons learned over the 4.5 years since mod_perl was introduced. There are optimizations which can
be made in the mod_perl source code, some which can be made in the Perl space by optimizing its syntax
tree and some a combination of both. In this section we’ll take a brief look at some of the optimizations
that are being considered.

The details of these optimizations from the most part are hidden from mod_perl users, the exception being
that some will only be turned on with configuration directives. A few of which include:

® "Compiled"Perl*Handlers
® Inlined Apache2::*.xs calls

e Use of Apache pools for memory allocations

2.8 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekmar) [http://stason.qrg/]

2.9 Authors

® Doug MacEachern <dougm (at) covalent.net>

e Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 19

http://stason.org/
http://stason.org/

3 Notes on the design and goals of mod_perl-2.0

3 Notes on the design and goals of mod_perl-2.0

20 15 Feb 2014

Notes on the design and goals of mod_perl-2.0 3.1 Description

3.1 Description
Notes on the design and goals of mod_perl-2.0.

We try to keep this doc in sync with the development, so some items discussed here were already imple-
mented, while others are only planned. If you find some inconsistencies in this document please let the list
know.

3.2 Introduction

In version 2.0 of mod_perl, the basic concept of 1.0 still applies:

Provide complete access to the Apache C API
via the Perl programming language.

Rather than "porting” mod_perl-1.0 to Apache 2.0, mod_perl-2.0 is being implemented as a complete
re-write from scratch.

For a more detailed introduction and functionality overview| see Ovgrview.

3.3 Interpreter Management

In order to support mod_perl in a multi-threaded environment, mod_perl-2.0 will take advantage of Perl’s
ithreadsfeature, new to Perl version 5.6.0. This feature encapsulates the Perl runtime inside a thread-safe
Perlinterpreterstructure. Each thread which needs to serve a mod_perl request will need Rertdvwn
terpreterinstance.

Rather than create a one-to-one mappinBasfinterpreterper-thread, a configurable pool of interpreters

is managed by mod_perl. This approach will cut down on memory usage simply by maintaining a minimal
number of intepreters. It will also allow re-use of allocations made within each interpreter by recycling
those which have already been used. This was not possible in the 1.3.x model, where each child has its
own interpreter and no control over which child Apache dispatches the request to.

The interpreter pool is only enabled if Perl is built with -Dusethreads otherwise, mod_perl will behave just
as 1.0, using a single interpreter, which is only useful when Apache is configured with the prefork mpm.

When the server is started, a Perl interpreter is constructed, compiling any code specified in the configura-
tion, just as 1.0 does. This interpreter is referred to as the "parent” interpreter. Then, for the number of
PerlinterpStartconfigured, a (thread-safe) clone of the parent interpreter is made (via perl_clone()) and
added to the pool of interpreters. This clone copies any writeable data (e.g. the symbol table) and shares
the compiled syntax tree. From my measurementssteréup.plincluding a few random modules:

15 Feb 2014 21

3.3 Interpreter Management

use CGl ();

use POSIX ();

use 10 ();

use SelfLoader ();
use AutoLoader ();
use B::Deparse ();
use B::Terse ();
use B ();

use B::C ();

The parent adds 6M size to the process, each clone adds less than half that size, ~2.3M, thanks to the
shared syntax tree.

NOTE: These measurements were made prior to finding memory leaks related to perl_clone() in 5.6.0 and
the GVSHARED optimization.

At request time, If any Perl*Handlers are configured, an available interpreter is selected from the pool. As
there is aconn_recand request_recper thread, a pointer is saved in either the conn_rec->pool or
request_rec->pool, which will be used for the lifetime of that request. For handlers that are called when
threads are not runnindgérlChild{Init,Exit}Handler), the parent interpreter is used. Several
configuration directives control the interpreter pool management:

e PerlinterpStart
The number of intepreters to clone at startup time.
® PerlinterpMax

If all running interpreters are in use, mod_perl will clone new interpreters to handle the request, up
until this number of interpreters is reached. wRenlInterpMax is reached, mod_perl will block
(via COND_WAIT()) until one becomes available (signaled via COND_SIGNAL())

® PerlinterpMinSpare

The minimum number of available interpreters this parameter will clone interpreterfeplin
terpMax , before a request comes in.

® PerlinterpMaxSpare

mod_perl will throttle down the number of interpreters to this humber as those in use become avail-
able

® PerlinterpMaxRequests

The maximum number of requests an interpreter should serve, the interpreter is destroyed when the
number is reached and replaced with a fresh one.

® PerlinterpScope

22 15 Feb 2014

Notes on the design and goals of mod_perl-2.0 3.3.1 TIPool

As mentioned, when a request in a threaded mpm is handled by mod_perl, an interpreter must be
pulled from the interpreter pool. The interpreter is then only available to the thread that selected it,
until it is released back into the interpreter pool. By default, an interpreter will be held for the lifetime
of the request, equivalent to this configuration:

PerlinterpScope request

For example, if @erlAccessHandler is configured, an interpreter will be selected before it is
run and not released until after the logging phase.

Intepreters will be shared across subrequests by default, however, it is possible to configure the
intepreter scope to be per-subrequest on a per-directory basis:

PerlinterpScope subrequest

With this configuration, an autoindex generated page for example would select an interpreter for each
item in the listing that is configured with a Perl*Handler.

It is also possible to configure the scope to be per-handler:

PerlinterpScope handler

With this configuration, an interpreter will be selected beRedAccessHandlers are run, and
putback immediately afterwards, before Apache moves onto the authentication phaBerlif a
FixupHandler is configured further down the chain, another interpreter will be selected and again
putback afterwards, befoRerIResponseHandler is run.

For protocol handlers, the interpreter is held for the lifetime of the connection. However, a C protocol
module might hook into mod_perl (e.g. mod_ftp) and providegaest_rec record. In this case,

the default scope is that of the request. Should a mod_perl handler want to maintain state for the life-
time of an ftp connection, it is possible to do so on a per-virtualhost basis:

PerlinterpScope connection

3.3.1 TIPool

The interpreter pool is implemented in terms of a "TIPool" (Thread Item Pool), a generic api which can be
reused for other data such as database connections. A Perl interface will be provided@feodheech-
anism, which, for example, will make it possible to share a pool of DBI connections.

3.3.2 Virtual Hosts

The interpreter management has been implemented in a way such thaVeaaiHost> can have
its own parent Perl interpreter and/or MIP (Mod_perl Interpreter Pool). It is also possible to disable
mod_perl for a given virtual host.

15 Feb 2014 23

3.4 Hook Code and Callbacks

3.3.3 Further Enhancements
® The interpreter pool management could be moved into its own thread.

® A "garbage collector”, which could also run in its own thread, examining the padlists of idle inter-
preters and deciding to release and/or report large strings, array/hash sizes, etc., that Perl is keeping
around as an optimization.

3.4 Hook Code and Callbacks

The code for hooking mod_perl in the various phases, incluemHandler directives is generated

by the ModPerl::Code module. Access to all hooks will be provided by mod_perl in both the tradi-
tional Perl*Handler configuration fashion and via dynamic registration methods (the ap_hook_* func-
tions).

When a mod_perl hook is called for a given phase, the glue code has an index into the array of handlers,
so it knows to return DECLINED right away if no handlers are configured, without entering the Perl
runtime as 1.0 did. The handlers are also now stored in an apr_array_header_t, which is much lighter and
faster than using a Perl AV, as 1.0 did. And more importantly, keeps us out of the Perl runtime until we're
sure we need to be there.

Perl*Handler s are now "compiled”, that is, the various forms of:
PerlResponseHandler MyModule->handler
defaults to MyModule::handler or MyModule->handler
PerlResponseHandler MyModule

PerlResponseHandler $MyObject->handler
PerlResponseHandler 'sub { print "foo\n"; return OK ¥’

are only parsed once, unlike 1.0 which parsed every time the handler was used. There will also be an
option to parse the handlers at startup time. Note: this feature is currently not enabled with threads, as each
clone needs its own copy of Perl structures.

A "method handler” is now specified using the ‘method’ sub attribute, e.g.

sub handler : method {};

instead of 1.0’s

sub handler ($$) {}

3.5 Perlinterface to the Apache APl and Data Structures

In 1.0, the Perl interface back into the Apache API and data structures was done piecemeal. As functions
and structure members were found to be useful or new features were added to the Apache API, the xs code
was written for them here and there.

24 15 Feb 2014

Notes on the design and goals of mod_perl-2.0 3.5 Perl interface to the Apache API and Data Structures

The goal for 2.0 is to generate the majority of xs code and provide thin wrappers where needed to make
the API more Perlish. As part of this goal, nearly the entire APR and Apache API, along with their public
data structures is covered from the get-go. Certain functions and structures which are considered "private
to Apache or otherwise un-useful to Perl don’t get glued.

The Apache header tree is parsed into Perl data structures which live in the geXmaatex®?::Func-
tionTable andApache2::StructureTable modules. For example, the following function proto-

type:

AP_DECLARE(int) ap_meets_conditions(request_rec *r);
is parsed into the following Perl structure:

{
'name’ =>'ap_meets_conditions’
return_type’ => 'int,

‘args’ => [
{
'name’ =>'r’,
‘type’ => 'request_rec *'
}
1
h

and the following structure:

typedef struct {
uid_t uid;
gid_t gid;

} ap_unix_identity_t;

is parsed into:

{
‘type’ =>"ap_unix_identity t’
‘elts’ => [
{
'name’ => "uid’,
‘type’ =>"uid_t’
h
{
'name’ =>'gid’,
'type’ =>'gid_t'
}
I,
}
Similar is done for the mod_perl source tree, buildiMpdPerl::FunctionTable and

ModPerl::StructureTable

Three files are used to drive these Perl structures into the generated xs code:

15 Feb 2014 25

3.5.1 Advantages to generating XS code

® lib/ModPerl/function.map

Specifies which functions are made available to Perl, along with which modules and classes they
reside in. Many functions will map directly to Perl, for example the following C code:

static int handler (request_rec *r) {
int rc = ap_meets_conditions(r);

maps to Perl like so:

sub handler {

my $r = shift;
my $rc = $r->meets_conditions;

The function map is also used to dispatch Apache/APR functions to thin wrappers, rewrite arguments
and rename functions which make the APl more Perlish where applicable. For example, C code such
as:

char uuid_buf[APR_UUID_FORMATTED_LENGTH+1];
apr_uuid_t uuid;
apr_uuid_get(&uuid)
apr_uuid_format(uuid_buf, &uuid);
printf("uuid=%s\n", uuid_buf);
is remapped to a more Perlish convention:
printf "uuid=%s\n", APR::UUID->new->format;
e lib/ModPerl/structure.map

Specifies which structures and members of each are made available to Perl, along with which
modules and classes they reside in.

® lib/ModPerl/type.map

This file defines how Apache/APR types are mapped to Perl types and vice-versa. For example:

apr_int32_t => SvIV
apr_inté4_t => SYNV
server_rec => SVRV (Perl object blessed into the Apache2::ServerRec class)

3.5.1 Advantages to generating XS code
® Not tied tightly to xsubpp
e Easy adjustment to Apache 2.0 API/structure changes

® Easy adjustment to Perl changes (e.g., Perl 6)

26 15 Feb 2014

Notes on the design and goals of mod_perl-2.0 3.6 Filter Hooks

e Ability to "discover" hookable third-party C modules.

e Cleanly take advantage of features in newer Perls

® Optimizations can happen across-the-board with one-shot
® Possible to AUTOLOAD XSUBs

e Documentation can be generated from code

® Code can be generated from documentation

3.5.2 Lvalue methods

A new feature to Perl 5.6.0 Igalue subroutineswhere the return value of a subroutine can be directly
modified. For example, rather than the following code to modify the uri:

$r->uri($new_uri);
the same result can be accomplished with the following syntax:
$r->uri = $new_uri;

mod_perl-2.0 will supportvalue subroutinedor all methods which access Apache and APR data struc-
tures.

3.6 Filter Hooks

mod_perl 2.0 provides two interfaces to filtering, a direct mapping to buckets and bucket brigades and a
simpler, stream-oriented interface. This is discussed |n the Chapter oh filters.

3.7 Directive Handlers

mod_perl 1.0 provides a mechanism for Perl modules to implement first-class directive handlers, but
requires an XS file to be generated and compiled. The 2.0 version provides the same functionality, but
does not require the generated XS module (i.e. everything is implemented in pure Perl).

3.8 <Perl> Configuration Sections

The ability to write configuration in Perl carries over from 1.0, but but implemented much different inter-
nally. The mapping of a Perl symbol table fits cleanly into the apwdirective_tAPI, unlike the hoop
jumping required in mod_perl 1.0.

15 Feb 2014 27

3.9 Protocol Module Support

3.9 Protocol Module Support

[Protocol module support is provided out-of-the-box, as the hooks and API are covered by the generated
code blankets. Any functionality for assisting protocol modules should be folded back into Apache if
possible.

3.10 mod_perl MPM

It will be possible to write an MPM (Multi-Processing Module) in Perl. mod_perl will provide a
mod_perl_mpm.c framework which fits into the server/mpm standard convention. The rest of the function-
ality needed to write an MPM in Perl will be covered by the generated xs code blanket.

3.11 Build System

The biggest mess in 1.0 is mod_perl’'s Makefile.PL, the majority of logic has been broken down and
moved to theApache2::Build module. TheMakefile.PLwill construct ampache2::Build object

which will have all the info it needs to generate scriptsMalefiles that apache-2.0 needs. Regardless of
what that scheme may be or change to, it will be easy to adapt to with build logic/variables/etc., divorced
from the actuaMakefiles and configure scripts. In fact, the new build will stay as far away from the
Apache build system as possible. The module librgmgnodperl.soor libmodperl.g is built with as little

help from Apache as possible, using only (RELUDEDIR provided byapxs

The new build system will also "discover" XS modules, rather than hard-coding the XS module names.

This allows for switchabilty between static and dynamic builds, no matter where the xs modules live in the

source tree. This also allows for third-party xs modules to be unpacked inside the mod_perl tree and built
static without modification to the mod_perl Makefiles.

For platforms such as Win32, the build files are generated similar to how unixMakefiles are.

3.12 Test Framework

Similar to 1.0, mod_perl-2.0 provides a 'make test’ target to exercise as many areas of the APl and module
features as possible.

The test framework in 1.0, like several other areas of mod_perl, was cobbled together over the years.
mod_perl 2.0 provides a test framework that is usable not only for mod_perl, but for third-party
Apache2::* modules and Apache itself. S&pache:: Test

3.13 CGI Emulation

As a side-effect of embedding Perl inside Apache and caching compiled code, mod_perl has been popular
as a CGl accelerator. In order to provide a CGl-like environment, mod_perl must manage areas of the
runtime which have a longer lifetime than when running under mod_cgi. For examglei-denviron-

ment variable table&ENDblocks,@INCinclude paths, etc.

28 15 Feb 2014

Notes on the design and goals of mod_perl-2.0 3.14 Apache2::* Library

CGI emulation is supported in mod_perl 2.0, but done so in a way that it is encapsulated in its own
handler. Rather than 1.0 which uses the same response handler, regardless if the module requires CGI
emulation or not. With aithreads enabled Perl, it's also possible to provide more robust namespace
protection.

Notice thatModPerl::Registry is used instead of 1.0&pache::Registry , and similar for other
registry groupsModPerl::RegistryCooker makes it easy to write your own customizable registry
handler.

3.14 Apache2::* Library

The majority of the standarpache2::* modules in 1.0 are supported in 2.0. The main goal being that
the non-core CGI emulation components of these modules are broken into small, re-usable pieces to
subclass Apache::Registry like behavior.

3.15 Perl Enhancements

Most of the following items were projected for inclusion in perl 5.8.0, but that didn’t happen. While these
enhancements do not preclude the design of mod_perl-2.0, they could make an impact if they were imple-
mented/accepted into the Perl development track.

3.15.1 GvSHARED

(Note: This item wasn’t implemented in Perl 5.8.0)

As mentioned, the perl_clone() API will create a thread-safe interpreter clone, which is a copy of all
mutable data and a shared syntax tree. The copying includes subroutines, each of which take up around
255 bytes, including the symbol table entry. Multiply that number times, say 1200, is around 300K, times
10 interpreter clones, we have 3Mb, times 20 clones, 6Mb, and so on. Pure perl subroutines must be
copied, as the structure includes BDLIST of lexical variables used within that subroutine. However,

for XSUBSs, there is no PADLIST, which means that in the general case, perl_clone() will copy the subrou-
tine, but the structure will never be written to at runtime. Other common global variables, such as
@EXPORAaNd%EXPORT_O#re built at compile time and never modified during runtime.

Clearly it would be a big win if XSUBs and such global variables were not copied. However, we do not
want to introduce locking of these structures for performance reasons. Perl already supports the concept of
a read-only variable, a flag which is checked whenever a Perl variable will be written to. A patch has been
submitted to the Perl development track to support a feature kno@vSIJARED This mechanism

allows XSUBs and global variables to be marked as shared, so perl_clone() will not copy these structures,
but rather point to them.

15 Feb 2014 29

3.15.2 Shared SvPVX

3.15.2 Shared SvPVX

The string slot of a Perl scalar is known as 8w¥VX As Perl typically manages the string a variable
points to, it must make a copy of it. However, it is often the case that these strings are never written to. It
would be possible to implement copy-on-write strings in the Perl core with little performance overhead.

3.15.3 Compile-time method lookups

A known disadvantage to Perl method calls is that they are slower than direct function calls. It is possible
to resolve method calls at compile time, rather than runtime, making method calls just as fast as subroutine
calls. However, there is certain information required for method look ups that are only known at runtime.
To work around this, compile-time hints can be used, for example:

my Apache2::Request $r = shift;

Tells the Perl compiler to expect an object in Apache2::Request class to be assigned $o . A

patch has already been submitted to use this information so method calls can be resolved at compile time.
However, the implementation does not take into account sub-classing of the typed object. Since the
mod_perl API consists mainly of methods, it would be advantageous to re-visit the patch to find an accept-
able solution.

3.15.4 Memory management hooks

Perl has its own memory management system, implemented in temalof andfree As an optimiza-

tion, Perl will hang onto allocations made for variables, for example, the string slot of a scalar variable. If

a variable is assigned, for example, a 5k chunk of HTML, Perl will not release that memory unless the
variable is explicitlyundegd. It would be possible to modify Perl in such a way that the management of
these strings are pluggable, and Perl could be made to allocate from an APR memory pool. Such a feature
would maintain the optimization Perl attempts (to avoid malloc/free), but would greatly reduce the process
size as pool resources are able to be re-used elsewhere.

3.15.5 Opcode hooks

Perl already has internal hooks for optimizing opcode trees (syntax tree). It would be quite possible for
extensions to add their own optimizations if these hooks were plugable, for example, optimizing calls to
print, so they directly call the Apaclag_rwrite function, rather than proxy viated filehandle

Another optimization that was implemented is "inlined" XSUB calls. Perl has a generic opcode for calling
subroutines, one which does not know the number of arguments coming into and being passed out of a
subroutine. As the majority of mod_perl APl methods have known in/fout argument lists, mod_perl imple-
ments a much faster version of the Pgrl entersulvoutine.

30 15 Feb 2014

Notes on the design and goals of mod_perl-2.0 3.16 Maintainers

3.16 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Doug MacEachern <dougm (at) covalent.net>

3.17 Authors

® Doug MacEachern <dougm (at) covalent.net>

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 31

4 Installing mod_perl 2.0

4 Installing mod_perl 2.0

32 15 Feb 2014

Installing mod_perl 2.0 4.1 Description

4.1 Description

This chapter provides an in-depth mod_perl 2.0 installation coverage.

4.2 Prerequisites

Before building mod_perl 2.0 you need to have its prerequisites installed. If you don’t have them, down-
load and install them first, using the information in the following sections. Otherwise proceed directly to
the mod_perl building instructions.

The mod_perl 2.0 prerequisites are:
® Apache
Apache 2.0 is required. mod_perl 2i@es notwork with Apache 1.3.

(DSO) mod_perl build requires Apache 2.0.47 or hidher. JStatic build requires Apache
2.0.51 or higher.

e Perl
O Prefork MPM

Requires at least Perl version 5.6.1.

You don’t need to have threads-support enabled in Perl. If you do havmitstibe ithreads
and not5005threadsIf you have:

% perl5.8.0 -V:use5005threads
use5005threads="define’;

you must rebuild Perl without threads enabled or wiflusethreads . Remember that
threads-support slows things down and on some platforms it's unstable (e.g., FreeBSD), so don’t
enable it unless you really need it.

O 64 bit Linux

If while runningmake test while building mod_perl 2 you get an error like this:

[usr/bin/Id: /usr/local/lib/perl5/5.10.1/x86_64-linux/CORE/libperl.a(op.0): \

relocation R_X86_64_32S against ‘PL_sv_yes’ can not be used when making a shared \
object; recompile with -fPIC

lusr/local/lib/perl5/5.10.1/x86_64-linux/CORE/libperl.a: could not read symbols: Bad \
value

You're likely on 64 bit Linux and will need to build Perl for that platform. You can do so by
running Perl’s Configure with the $CFLAGS environment variable and theA and
ccflags options. So if you normally build Perl with:

15 Feb 2014 33

4.2 Prerequisites

% ./Configure -des

You would instead configure with:
% CFLAGS="-m64 -mtune=nocona’ ./Configure -des -A ccflags=-fPIC

O Threaded MPMs

Require at least Perl version 5.8.0 with ithreads support built-in. That means that it should
report:

% perl5.8.0 -V:useithreads -V:usemultiplicity
useithreads="define’;
usemultiplicity="define’;

If that's not what you see rebuild Perl witbusethreads
O Static prefork build

Perl with ithreads support version 5.6.1 or higher

Perl without ithreads support version 5.8.2 or higher
O Static non-prefork build

Perl with ithreads support version 5.8.0 or higher
O threads.pm

If you want to run applications that take benefit of Pdhigads.pnPerl version 5.8.1 or higher
w/ithreads enabled is required. Perl 5.8t@ieads.pndoesn’t work with mod_perl 2.0.

® CPAN Perl Modules

34

The mod_perl 2.0 test suite has several requirements on its own. If you don't satisfy them, the tests
depending on these requirements will be skipped, which is OK, but you won't get to run these tests
and potential problems, which may exhibit themselves in your own code, could be missed. We don’t
require them fronMakefile.PL , which could have been automated the requirements installation,

in order to have less dependencies to get mod_perl 2.0 installed.

Also if your code uses any of these modules, chances are that you will need to use at least the version
numbers listed here.

o CGl.pm 3.11
O Compress::Zlib 1.09

Though the easiest way to satisfy all the dependencies is to Bstalle::Apache2 available
from CPAN.

15 Feb 2014

Installing mod_perl 2.0 4.2.1 Downloading Stable Release Sources

4.2.1 Downloading Stable Release Sources

If you are going to install mod_perl on a production site, you want to use the officially released stable
components. Since the latest stable versions change all the time you should check for the latest stable
version at the listed below URLSs:

o Perl

Download fromfhttp://cpan.org/src/README.htinl

This direct link which symlinks to the latest release should work too:
|http://cpan.org/src/stable.tar.pyz

For the purpose of examples in this chapter we will use the package pariBd.x.tar.gzwherex
should be replaced with the real version number.

® Apache

Download from/http://www.apache.org/dist/httgd/

For the purpose of examples in this chapter we will use the package htpted.x.xx.tar.gzwhere
x.xxshould be replaced with the real version number.

4.2.2 Getting Bleeding Edge Sources

If you really know what you are doing you can use the cvs/svn versions of the components. Chances are
that you don’t want to them on a production site. You have been warned!

o Perl

The cutting edge version of Perl (aka bleadperl or bleedperl) is only generally available through an
rsync repository maintained by ActiveState:

(--delete to ensure a clean state)
% rsync -acvz --delete --force \
rsync://public.activestate.com/perl-current/ perl-current

If you are re-building Perl after rsync-ing, make sure to cleanup first:
% make distclean
before running/Configure

You'll also want to install (at least) LWP if you want to fully test mod_perl. You can install LWP
with CPAN.pmshell:

% perl -MCPAN -e ’install("LWP"Y’

15 Feb 2014 35

http://cpan.org/src/README.html
http://cpan.org/src/stable.tar.gz
http://www.apache.org/dist/httpd/

4.2.3 Configuring and Installing Prerequisites

For more details on bleadperl, $&tp://dev.perl.org/perl5/source.html

® Apache

See Development mod_perl 2.0 Source Distribution.

4.2.3 Configuring and Installing Prerequisites
If you don’t have the prerequisites installed yet, install them now.

4.2.3.1 Perl

% cd perl-5.8.x
% ./Configure -des

If you[need the threads support, run:

% ./Configure -des -Dusethreads

Most likely you don’t want perl-support for threads enabled, in which case-pas&threads instead
of -Dusethreads

If you want to debug mod_perl segmentation faults, add the folloAdmomfigureoptions:
-Doptimize="-g’ -Dusedevel
Now build it:

% make && make test && make install

4.2.3.2 Apache

You need to have Apache built and installed prior to building mod_perl, only if you intend build a DSO
mod_perl. If you intend to build a statically linked Apache+mod_perl, you only need to have the Apache
source available (mod_perl will build and install Apache for you), you should skip this step.

% cd httpd-2.x.xx

% ./configure --prefix=$HOME/httpd/prefork --with-mpm=prefork
% make && make install

Starting from 2.0.49, the Apache logging APl escapes everything that gessotolog, therefore if
you're annoyed by this feature during the development phase (as your error messages will be all messed
up) you can disable the escaping during the Apache build time:

% CFLAGS="-DAP_UNSAFE_ERROR_LOG_UNESCAPED" ./configure ...

Do not use that CFLAGS in production unless you know what you are doing.

36 15 Feb 2014

http://dev.perl.org/perl5/source.html

Installing mod_perl 2.0 4.3 Installing mod_perl from Binary Packages

4.3 Installing mod_perl from Binary Packages

As of this writing only the binaries for the Win32 platform are available, kindly prepared and maintained
by Randy Kobes. See the documentation on Win32 binaries for details.

Some RPM packages can be found using rpmfind services, e.g.:

[http://www.rpmfind.net/linux/rom2html/search.php?query=mod _perl&submit=Sdarch+... However if you
have problems using them, you have to contact those who have created them.

4.4 Installing mod_perl from Source

Building from source is the best option, because it ensures a binary compatibility with Apache and Perl.
However it's possible that your distribution provides a solid binary mod_perl 2.0 package.

For Win32 specific details, see the documentation on Win32 installation.

4.4.1 Downloading the mod_perl Source
First download the mod_perl source.

® Stable Release

Download fromhttp://perl.apache.org/downlodat your favorite CPAN mirror.

This direct link which symlinks to the Ilatest release should work too:
[http://apache.org/dist/perl/mod_perl-2.0-current.taf.gz

For the purpose of examples in this chapter we will use the package nedegerl-2.x.x.tar.gz
wherex.x should be replaced with the real version number.

Open the package with:

% tar -xvzf mod_perl-2.x.x.tar.gz
or an equivalent command.
® Development Version

See Development mod_perl 2.0 Source Distribution.

4.4.2 Configuring mod_perl

To build mod_perl, yomust also use the same compiler that Perl was built with. You can find that out by
runningperl -V and looking at th€ompiler: section.

15 Feb 2014 37

http://www.rpmfind.net/linux/rpm2html/search.php?query=mod_perl&submit=Search+
http://perl.apache.org/download/
http://apache.org/dist/perl/mod_perl-2.0-current.tar.gz

4.4.2 Configuring mod_perl

Like any other Perl module, mod_perl is configured viaNtekefile.PLfile, but requires one or more
configuration options:

% cd modperl-2.x.x
% perl Makefile.PL <options>

where optionsis an optional list of key/value pairs. These options can include all the usual options
supported byextUtils::MakeMaker (e.g.,PREFIX, LIB , etc.).

The following sections give the details about all the available options, but let's mention first an important
one.

Configuration options are discussed in Build Options.
4.4.2.1 Dynamic mod_perl

Before you proceed, make sure that Apache 2.0 has been built and installed. mcahmparbe built
before that.

It seems that most users use pre-packaged Apache installation, most of which tend to spread the Apache
files across many directories (i.e. not using --enable-layout=Apache, which puts all the files under the
same directory). If Apache 2.0 files are spread under different directories, you need to use at least the
[MP_APX$option, which should be set to a full path to dipes executable. For example:

% perl Makefile.PL MP_APXS=/path/to/apxs

For example RedHat Linux system installs Htgpd binary, theapxs andapr-config scripts (the
latter two are needed to build mod_perl) all in different locations, therefore they configure mod_perl 2.0
as:

% perl Makefile.PL MP_APXS=/path/to/apxs \
MP_APR_CONFIG=/another/path/to/apr-config <other options>

However a correctly built Apache shouldn’t require [li® APR_CONFIGoption, sincdMP_APXF

should provide the location of this script.

If however all Apache 2.0 files were installed under the same directory, mod_perl 2.0’s build only needs to
know the path to that directory, passed vightie AP_PREF[Xoption:

% perl Makefile.PL MP_AP_PREFIX=$HOME/httpd/prefork

4.4.2.2 Static mod_perl

Before you proceed make sure that Apache 2.0 has been downloaded and extracted. caoohgbée
built before that.

If this is an svn checkout and not an official distribution tarball, you need to first run:

38 15 Feb 2014

Installing mod_perl 2.0 4.4.3 mod_perl Build Options

% cd httpd-2.0
% ./buildconf

To enable statically linking mod_perl into Apache, usgMie USE_STATI(¥lag like this:

% perl Makefile.PL MP_USE_STATIC=1\
MP_AP_PREFIX=$HOME/src/httpd-2.x \
MP_AP_CONFIGURE="--with-mpm=prefork"

[MP_AP_PREFIXmust point to an extracted Apache 2.0 source tree.

This will configure Apache by passifidP_AP_CONFIGUR#® Apache’s/configurescript.

Here is an example:

% cd ~/src

% tar -xvzf perl-5.8.x.tar.gz

% cd perl-5.8.x

% ./Configure -des

% make install

%cd ..

% tar -xvzf httpd-2.0.xx.tar.gz

% tar -xvzf mod_perl-2.x.x.tar.gz

% perl5.8.x Makefile.PL \
MP_USE_STATIC=1\
MP_AP_PREFIX="$HOME/src/httpd-2.0.xx" \
MP_AP_CONFIGURE="--with-mpm=prefork"

% make

% make test

% make install

% ./httpd -I | grep perl
mod_perl.c

4.4.3 mod_perl Build Options
4.4.3.1 Boolean Build Options

The following options are boolean and can be set Mh XXX=1or unset withVIP_XXX=0 where XXX
is the name of the option.

443.1.1 MP_PROMPT_DEFAULT

Accept default values for all would-be prompts.

4.4.3.1.2 MP_GENERATE_XS

Generate XS code from parsed source headesstables/$httpd_versioDefault is 1, set to 0 to disable.

15 Feb 2014 39

4.4.3 mod_perl Build Options

4.4.3.1.3 MP_USE_DSO

Build mod_perl as a DSOnd_perl.sp This is the default.

4.4.3.1.4 MP_USE_STATIC

Build static mod_peririod_perl.a.

4.4.3.1.5 MP_STATIC_EXTS

Build Apache2::*.xs as static extensions.
44.3.1.6 MP_USE_GTOP

Link with libgtop and enabldibgtop reporting.
4.43.1.7 MP_COMPAT_1X

MP_COMPAT _1X=br a lack of it enables several mod_perl 1.0 back-compatibility features, which are
deprecated in mod_perl 2.0. It's enabled by default, but can be disablelVitBOMPAT _1X=€@uring
the build process.

When this option is disabled, the following things will happen:
® Deprecated special variab®Apache2:: T won't be available. Us${"TAINT} instead.

® $ServerRooand$ServerRoot/lib/penvon’t be appended t@INC Instead use:

PerlSwitches -I/path/to/server -I/path/to/server/lib/perl

in httpd.confor:

use Apache2::ServerUtil ();

use File::Spec::Functions gw(catfile);

push @INC, catfile Apache2::ServerUTtil::server_root, "";

push @INC, catfile Apache2::ServerUtil::server_root, "lib/per!";

in startup.pl

e The following deprecated configuration directives won't be recognized by Apache:

PerlSendHeader
PerlSetupEnv
PerlHandler
PerlTaintCheck
PerlWarn

Usel their 2.0 equivalents instead.

40 15 Feb 2014

Installing mod_perl 2.0 4.4.3 mod_perl Build Options

4.4.3.1.8 MP_DEBUG

Turn on debugging¢ -Iperld) and tracing.

4.4.3.1.9 MP_MAINTAINER

Enable maintainer compile mode, which $42_DEBUG=4and adds the followingcc flags:

-DAP_DEBUG -Wall -Wmissing-prototypes -Wstrict-prototypes \
-Wmissing-declarations \

If gcc version 3.3.2+ is found, not compiling on OpenBSD, aideclaration-after-state-
ment is not already part of thgce flags add it.

To use this mode Apache must be build withable-maintainer-mode

4.4.3.1.10 MP_TRACE

Enable tracing

4.4.3.2 Non-Boolean Build Options

set the non-boolean options with MP_XXX=value.

4.4.3.2.1 MP_APXS

Path toapxs . For example if you've installed Apache 2.0 undeome/httpd/httpd-2.@&as DSO, the
default location would b&ome/httpd/httpd-2.0/bin/apxs

4.4.3.2.2 MP_AP_CONFIGURE

The command-line arguments to pass to httpd’'s configure script.

4.4.3.2.3 MP_AP_PREFIX

Apache installation prefix, under which theelude/ directory with Apache C header files can be found.
For example if you've installed Apache 2.0 in directékxpache2on Win32, you should use:

MP_AP_PREFIX=\Apache2

If Apache is not installed yet, you can point to the Apache 2.0 source directory, but only after you've built
or configured Apache in it. For example:

MP_AP_PREFIX=/home/stas/apache.org/httpd-2.0

Though in this casenake test won’t automatically findnttpd , therefore you should rudTEST
instead and pass the locatiorapiks orhttpd , e.g.:

15 Feb 2014 41

4.4.3 mod_perl Build Options

% t/TEST -apxs /home/stas/httpd/prefork/bin/apxs
or
% t/TEST -httpd /home/stas/httpd/prefork/bin/httpd

4.4.3.2.4 MP_AP_DESTDIR

This option exists to make the lives of package maintainers easier. If you aren’t a package manager you
should not need to use this option.

Apache installation destination directory. This path will be prefixed to the installation paths for all
Apache-specific files duringnake install . For instance, if Apache modules are normally installed
into /path/to/httpd-2.0/modulesand MP_AP_DESTDIRIs set to/tmp/foq the mod_perl.sowill be
installed in:

/tmp/foo/path/to/httpd-2.0/modules/mod_perl.so

4.4.3.2.5 MP_APR_CONFIG

If APR wasn'’t installed under the same file tree as httpd, you may need to tell the build process where it
can find the executablapr-config , which can then be used to figure out where the apr and aprutil
include/andlib/ directories can be found.

4.4.3.2.6 MP_CCOPTS

Add to compiler flags, e.qg.:

MP_CCOPTS=-Werror

(Notice thatWerror will work only with the Perl version 5.7 and higher.)

4.4.3.2.7 MP_OPTIONS_FILE

Read build options from given file. e.g.:
MP_OPTIONS_FILE=~/.my_mod_perl2_opts

4.4.3.2.8 MP_APR_LIB

On Win32, in order to build the APR and APR::* modules so as to be independent of mod_perl.so, a static
library is first built containing the needed functions these modules link into. The option

MP_APR_LIB=aprext

specifies the name that this library has. The default usedréxt . This option has no effect on plat-
forms other than Win32, as they use a different mechanism to accomplish the decoupling of APR and
APR::* from mod_perl.so.

42 15 Feb 2014

Installing mod_perl 2.0 4.4.4 Re-using Configure Options

4.4.3.3 mod_perl-specific Compiler Options
4.4.3.3.1 -DMP_IOBUFSIZE

Change the default mod_perl's 8K 10 buffer size, e.g. to 16K:

MP_CCOPTS=-DMP_IOBUFSIZE=16384

4.4.3.4 mod_perl Options File

Options can also be specified in the filkepl_args.mod_peri@ .makepl_args.mod_perlZhe file can

be placed undeBENV{HOME} the root of the source package or its parent directory. So if you unpack the
mod_perl source intimp/mod_perl-2.xand your home ifhhome/foa/the file will be searched in:
/tmp/mod_perl-2.x/makepl_args.mod_per|2

/tmp/makepl_args.mod_perl2

/home/foo/makepl_args.mod_perl2

/tmp/mod_perl-2.x/.makepl_args.mod_perl2

/tmp/.makepl_args.mod_perl2
/home/foo/.makepl_args.mod_per|2

If the file specified infMP_OPTIONS_FILEis found themakepl_args.mod_periill be ignored.

Options specified on the command line override those fnoamkepl _args.mod_perland those from
MP_OPTIONS_FILE

If your terminal supports colored text you may want to set the environment variable
APACHE_TEST_COLOMR 1 to enable the colored tracing which makes it easier to tell the reported errors
and warnings, from the rest of the notifications.

4.4.4 Re-using Configure Options

Since mod_perl remembers what build options were used to build it if first place, you can use this knowl-
edge to rebuild itself using the same options. Singplgir(1) to the mod_perl source directory and
run:

% cd modperl-2.x.
% perl -MApache2::Build -e rebuild

4.4.5 Compiling mod_perl

Next stage is to build mod_perl:

% make

15 Feb 2014 43

4.5 If Something Goes Wrong

4.4.6 Testing mod_perl
When mod_perl has been built, it's very important to test that everything works on your machine:
% make test

If something goes wrong with the test phase and want to figure out how to run individual tests and pass
various options to the test suite, see the corresponding sectipns of the bug reporting guidelines or the
Apache::Test Framework tutorial.

4.4.7 Installing mod_perl
Once the test suite has passed, it’s a time to install mod_perl.

% make install

If you install mod_perl system wide, you probably need to becooterior to doing the installation:

% su
make install

4.5 If Something Goes Wrong

If something goes wrong during the installation, try to repeat the installation process from scratch, while
verifying all the steps with this document.

If the problem persisis report the probjem.

4.6 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar) [http://stason.qrg/]

4.7 Authors

e Stas Bekmar [http://stason.qrg/]

® Doug MacEachern <dougm (at) covalent.net>

Only the major authors are listed above. For contributors see the Changes file.

44 15 Feb 2014

http://stason.org/
http://stason.org/

mod_perl 2.0 Server Configuration 5 mod_perl 2.0 Server Configuration

5 mod_perl 2.0 Server Configuration

15 Feb 2014 45

5.1 Description

5.1 Description

This chapter provides an in-depth mod_perl 2.0 configuration details.

5.2 mod_perl configuration directives

Similar to mod_perl 1.0, in order to use mod_perl 2.0 a few configuration settings should be added to
httpd.conf They are quite similar to 1.0 settings but some directives were renamed and new directives
were added.

5.3 Enabling mod_perl

To enable mod_perl built as DSO addttpd.conf

LoadModule perl_module modules/mod_perl.so

This setting specifies the location of the mod_perl module relative ®BeherRoot setting, therefore
you should put it somewhere af@erverRoot is specified.

If mod_perl has been statically linked it's automatically enabled.
For Win32 specific details, see the documentation on Win32 configuration.

Remember that you can’t use mod_perl until you have configured Apache to use it. You need to configure
Registry scripts or custom handlers.

5.4 Server Configuration Directives

5.4.1 <Per | > Sections
With <Perl> ..</Perl> sections, it is possible to configure your server entirely in Perl.
Please refer to the Apache2::PerlSections manpage for more information.

META: a dedicated chapter with examples?

See alsd: this directive argument types and allowed lo¢ation.

5.4.2 =pod, =over and=cut
It's known that anything written between tokergod and=cut is ignored by the Perl parser. mod_perl

allows you to use the same technique to make Apache ignore thimgigdrconf(similar to # comments).
With an exception teover apache and=over httpd sections which are visible to Apache.

46 15 Feb 2014

mod_perl 2.0 Server Configuration 5.4.3 PerlAddVar

For example the following configuration:

#file: httpd.conf
=pod

PerlSetvar A 1

=over apache

PerlSetVar B 2

=back

PerlSetvar C 3

=cut

PerlSetvar D 4
Apache will see:

PerlSetVar B 2
PerlSetvar D 4

but not:

PerlSetVar A 1
PerlSetvar C 3

=over httpd is just an alias te-over apache . Remember thatover requires a corresponding
=back .

5.4.3 Per | AddVar

PerlAddVar is useful if you need to pass in multiple values into the same variable emulating arrays and
hashes. For example:

PerlAddVar foo bar
PerlAddVar foo barl
PerlAddVar foo bar2

You would retrieve these values with:
my @foos = $r->dir_config->get('foo’);
This would fill the@foosarray with 'bar’, 'barl’, and 'bar2’.

To pass in hashed values you need to ensure that you use an even number of directives per key. For
example:

15 Feb 2014 47

5.4.4 PerlConfigRequire

PerlAddVar foo keyl
PerlAddVar foo valuel
PerlAddVar foo key2
PerlAddVar foo value2

You can then retrieve these values with:
my %foos = $r->dir_config->get('foo’);
Where%fooswill have a structure like:
%foos = (
keyl =>'valuel’,

key2 =>'value2’,

);

See alsd: this directive argument types and allowed lo¢ation.

5.4.4 Per| Confi gRequire

PerlConfigRequire does the same thing[BerlPostConfigRequire | but it is executed as soon
as it is encountered, i.e. during the configuration phase.

You should be using this directive to load only files that introduce new configuration directives, used later
in the configuration file. For any other purposes (like preloading modulef}ar#féostConfigRe- |

One of the reasons for avoding using BezlConfigRequire directive, is that th& TDERRstream is

not available during the restart phase, therefore the errors will be not reported. It is not a bug in mod_perl
but an Apache limitation. UgeerlPostConfigRequire |if you can, and there you have tB8DERR

stream sent to the error_log file (by default).

See alsd: this directive argument types and allowed lo¢ation.

5.4.5 Per| LoadMbdul e

The PerlLoadModule directive is similar t§PerlModule | in a sense that it loads a module. The
difference is that it's used to triggérs an early Perl sfartup. This can be useful for modules that need to be
loaded early, as is the case for modules that implegment new Apache directives, which are needed during
the configuration phase.

See alsd: this directive argument types and allowed lo¢ation.

5.4.6 Per | Modul e

PerIModule Foo::Bar

48 15 Feb 2014

mod_perl 2.0 Server Configuration 5.4.7 PerlOptions

is equivalent to Perl’s:
require Foo::Bar;
PerlModule is used to load modules using their package names.

You can pass one or more module names as argumdesitdodule

PerlModule Apache::DBI CGI DBD::Mysq|
Notice, that normally, the Perl startug) is deldyed until after the configuration phase.
See alsdPerlRequire |

See alsd: this directive argument types and allowed lo¢ation.

5.4.7 Per| Opti ons

The directive PerlOptions provides fine-grained configuration for what were compile-time only
options in the first mod_perl generation. It also provides control over what class of Perl interpreter pool is
used for aVirtualHost> or location configured witkLocation> , <Directory> , etc.

$r->is_perl_option_enabled($option) and $s->is_perl_option_enabled($option) can be used at run-time to
check whether a certaidoption has been enabled. (META: probably need to add/move this to the
coding chapter)

Options are enabled by prependihgnd disabled with.

See alsd: this directive argument types and allowed lo¢ation.

The available options are:

5.4.7.1Enabl e

On by default, can be used to disable mod_perl for a §fitualHost . For example:

<VirtualHost ...>
PerlOptions -Enable
</VirtualHost>

5.4.7.2C one

Share the parent Perl interpreter, but give MtualHost its own interpreter pool. For example
should you wish to fine tune interpreter pools for a given virtual host:

<VirtualHost ...>
PerlOptions +Clone
PerlinterpStart 2
PerlinterpMax 2

</VirtualHost>

15 Feb 2014 49

5.4.7 PerlOptions

This might be worthwhile in the case where certain hosts have their own sets of large-ish modules, used
only in each host. By tuning each host to have its own pool, that host will continue to reuse the Perl alloca-
tions in their specific modules.

54.7.31 nheritSw tches

Off by default, can be used to hav&iatualHost inherit the value of th€erlSwitches from the
parent server.

For instance, when cloning a Perl interpreter, to inherit the base Perl intergrerd8witches use:

<VirtualHost ...>
PerlOptions +Clone +InheritSwitches

</VirtualHost>

5.4.7.4 Par ent

Create a new parent Perl interpreter for the giVetualHost and give it its own interpreter pool
(implies theClone option).

A common problem with mod_perl 1.0 was the shared namespace between all code within the process.
Consider two developers using the same server and each wants to run a different version of a module with
the same name. This example will create tvaoent Perl interpreters, one for eaeWirtualHost> :

each with its own namespace and pointing to a different patsNg

META: is -Mlib portable? (problems with -Mlib on Darwin/5.6.0?)

<VirtualHost ...>

ServerName devl

PerlOptions +Parent

PerlSwitches -Mlib=/home/dev1/lib/perl
</VirtualHost>

<VirtualHost ...>

ServerName dev2

PerlOptions +Parent

PerlSwitches -Mlib=/home/dev2/lib/perl
</VirtualHost>

Remember thatParent gives you a completely new Perl interpreters pool, so all your modifications to
@INCand preloading of the modules should be done again. Consider| using PerlOption$ +Clone if you
want to inherit from the parent Perl interpreter.

Or even for a given location, for something like "dirty" cgi scripts:

50 15 Feb 2014

mod_perl 2.0 Server Configuration 5.4.7 PerlOptions

<Location /cgi-bin>
PerlOptions +Parent
PerlinterpMaxRequests 1
PerlinterpStart 1
PerlinterpMax 1
PerlResponseHandler ModPerl::Registry
</Location>

will use a fresh interpreter with its own namespace to handle each request.

5.4.7.5Per| *Handl er

DisablePerl*Handler s, all compiled-in handlers are enabled by default. The option name is derived
from the Perl*Handler name, by stripping th€erl andHandler parts of the word. S@erl-
LogHandler becomed.og which can be used to disalterlLogHandler

PerlOptions -Log

Suppose one of the hosts does not want to allow users to corfigtifaithenHandler , PerlAu-
thzHandler , PerlAccessHandler and <Perl> sections:

<VirtualHost ...>

PerlOptions -Authen -Authz -Access -Sections
</VirtualHost>

Or maybe everything but the response handler:
<VirtualHost ...>

PerlOptions None +Response
</VirtualHost>

5.4.7.6 Aut oLoad

ResolvePerl*Handlers at startup time, which includes loading the modules from disk if not already
loaded.

In mod_perl 1.0, configure®erl*Handlers which are not a fully qualified subroutine names are
resolved at request time, loading the handler module from disk if needed. In mod_perl 2.0, configured
Perl*Handlers are resolved at startup time. By default, modules are not auto-loaded during
startup-time resolution. It is possible to enable this feature with:

PerlOptions +Autoload
Consider this configuration:

PerlResponseHandler Apache::Magick

In this caseApache::Magick is the package name, and the subroutine name will defaudinttier If

the Apache::Magick module is not already loaddeerlOptions +Autoload will attempt to pull

it in at startup time. With this option enabled you don’t have to explicitly load the handler modules. For
example you don’t need to add:

15 Feb 2014 51

5.4.7 PerlOptions

PerlModule Apache::Magick
in our example.

Another way to preload only specific modules is to add + when configuring those, for example:

PerlResponseHandler +Apache::Magick
will automatically preload th&pache::Magick module.
5.4.7.7 A obal Request

Setup the globar object for use wit\pache2->request

This setting is enabled by default during[ferlResponseHandler | phase for sections configured as:

<Location ...>
SetHandler perl-script

</Location>

but is not enabled by default for sections configured as:

<Location ...>
SetHandler modperl

</Location>
And can be disabled with:
<Location ...>
SetHandler perl-script
PerlOptions -GlobalRequest

</Location>

Notice that if you need the global request object during other phases, you will need to explicitly enable it
in the configuration file.

You can also set that global object from the handler code, like so:
sub handler {

my $r = shift;
Apache2::RequestUtil->request($r);

}..

The +GlobalRequest setting is needed for example if you use older versiordGifpm to process
the incoming request. Starting from version 2.8&l.pm optionally acceptsbr as an argument to
new() , like so:

52 15 Feb 2014

mod_perl 2.0 Server Configuration 5.4.7 PerlOptions

sub handler {

my $r = shift;

my $q = CGIl->new($r);
}

Remember that inside registry scripts you can alway$meit the beginning of the script, since it gets
wrapped inside a subroutine and accéptss the first and the only argument. For example:

#!/usr/bin/perl
use CGl;
my $r = shift;
my $q = CGl->new($r);
of course you won't be able to run this under mod_cgi, so you may need to do:
#!/usr/bin/perl

use CGil;
my $q = SENV{MOD_PERL} ? CGI->new(shift @_) : CGI->new();

in order to have the script running under mod_perl and mod_cgi.

5.4.7.8 Par seHeader s

Scan output for HTTP headers, same functionality as mod_perl ReblSendHeader , but more
robust. This option is usually needs to be enabled for registry scripts which send the HTTP header with:

print "Content-type: text/html\n\n";

5.4.7.9 Mer geHandl er s

Turn on merging oPerl*Handler arrays. For example with a setting:
PerlFixupHandler Apache2::FixupA
<Location /inside>

PerlFixupHandler Apache2::FixupB
</Location>

a request fofinsideonly runsApache2::FixupB (mod_perl 1.0 behavior). But with this configuration:
PerlFixupHandler Apache2::FixupA
<Location /inside>
PerlOptions +MergeHandlers
PerlFixupHandler Apache2::FixupB

</Location>

a request fofinsidewill run bothApache2::FixupA andApache2::FixupB handlers.

15 Feb 2014 53

5.4.7 PerlOptions

5.4.7.10 Set upEnv
Set up environment variables for each request ala mod_cgi.

When this option is enabledjod_perlfiddles with the environment to make it appear as if the code is
called under the mod_cgi handler. For example $BNV{QUERY_STRING}environment variable is
initialized with the contents dkpache2::args()and the value returned Bypache?2::server_hostnameg)

put intoSENV{SERVER_NAME}

But %ENVpopulation is expensive. Those who have moved to the Perl Apache API no longer need this
extra%EN\population, and can gain by disabling it. A code usingddGé&pm module requird’erlOp-
tions +SetupEnv because that module relies on a properly populated CGI environment table.

This option is enabled by default for sections configured as:

<Location ...>
SetHandler perl-script

</Location>

Since this option adds an overhead to each request, if you don’t need this functionality you can turn it off
for a certain section:

<Location ...>
SetHandler perl-script
PerlOptions -SetupEnv

</Location>

or globally:

PerlOptions -SetupEnv
<Location ...>

</|_”o.cation>
and then it'll affect the whole server. It can still be enabled for sections that need this functionality.

When this option is disabled you can still read environment variables set by you. For example when you
use the following configuration:

PerlOptions -SetupEnv

PerlIModule ModPerl::Registry

<Location /perl>
PerlSetEnv TEST hi
SetHandler perl-script
PerlResponseHandler ModPerl::Registry
Options +ExecCGl

</Location>

54 15 Feb 2014

mod_perl 2.0 Server Configuration 5.4.8 PerlPassEnv

and you issue a request for this script:

setupenvoff.pl

use Data::Dumper;

my $r = Apache2::RequestUtil->request();
$r->content_type(text/plain’);

print Dumper(\%ENV);

you should see something like this:
$VARL ={
'"GATEWAY_INTERFACE’ => 'CGI-Perl/1.1’,
'"MOD_PERL’ =>'mod_perl/2.0.1’,
'PATH’ => "bin:/usr/bin’,
'TEST =>"hi’
I3

Notice that we have got the value of the environment vareb&T

5.4.8 Per | PassEnv

PerlPassEnv instructs mod_perl to pass the environment variables you specify to your mod_perl
handlers. This is useful if you need to set the same environment variables for your shell as well as
mod_perl. For example if you had this in your .bash_profile:

export ORACLE_HOME=/oracle
And defined the following in younttpd.conf
PerlPassEnv ORACLE_HOME
The your mod_perl handlers would have access to the value via the standard Perl mechanism:

my $oracle_home = $ENV{'ORACLE_HOME},

See alsd: this directive argument types and allowed lo¢ation.

5.4.9 Per | Post Confi gRequi re

PerlPostConfigRequire /home/httpd/perl/lib/startup.pl

is equivalent to Perl’s:

require "/home/httpd/perl/lib/startup.pl";

A PerlRequire filename argument can be absolute or relativBdrverRoot or a filepath in Perl’s
@INC

15 Feb 2014 55

5.4.10 PerlRequire

You can pass one or more filenames as argumeRwsrtBostConfigRequire

PerlPostConfigRequire pathl/startup.pl path2/startup.pl

PerlPostConfigRequire is used to load files with Perl code to be run at the server startup. It's not
executed as soon as it is encountered, but as late as possible during the server startup.

Most of the time you should be using this directive. For example to preload some modules or run things at
the server startup). Only if you need to load modules that introduce new configuration directives, used
later in the configuration file you should UBerlConfigRequire |

As with any file with Perl code that getsse() 'd or require() 'd, it must return arue value. To
ensure that this happens don't forget to apdat the end

See alsdPerlModule |andPerlLoadModule |

See alsd: this directive argument types and allowed lo¢ation.

5.4.10 Per | Requi re

PerlRequire does the same thing[RerlPostConfigRequire | but you have almost no control of
when this code is going to be execlited. Therefore you should be usingPatt@onfigRequire |
(executes immediately) dPerlPostConfigRequire | (executes just before the end of the server
startup) instead. Most of the time you want to use the latter.

See alsd: this directive argument types and allowed lo¢ation.

5.4.11 Per | Set Env

PerlSetEnv allows you to specify system environment variables and pass them into your mod_perl
handlers. These values are then available through the normgspliNmechanisms. For example:

PerlSetEnv TEMPLATE_PATH /usr/share/templates

would createSENV{TEMPLATE_PATH’} and set it tdusr/share/templates

See alsd: this directive argument types and allowed lo¢ation.

5.4.12 Per | Set Var

PerlSetvar allows you to pass variables into your mod_perl handlers from ktpd.conf This
method is preferable to usiferiSetEnv or Apache’sSetEnv andPassEnv methods because of the
overhead of having to popule#&ENMVor each request. An example of how this can be used is:

PerlSetVar foo bar

56 15 Feb 2014

mod_perl 2.0 Server Configuration 5.4.13 PerlSwitches

To retrieve the value of that variable in your Perl code you would use:
my $foo = $r->dir_config('foo’);

In this examplebfoo would then hold the value 'bafMNOTE: that these directives are parsed at request
time which is a slower method than udging custom Apache configuration directives

See alsd: this directive argument types and allowed lo¢ation.

54.13Perl Sw t ches

Now you can pass any Perl's command line switchddtpd.confusing thePerlSwitches directive.
For example to enable warnings and Taint checking add:

PerlSwitches -wT

As an alternative to usingse lib in startup.plto adjust@ING now you can use the command line
switch-1 to do that:

PerlSwitches -I/home/stas/modperl

You could also useMlib=/home/stas/modperl which is the exact equivalent ase lib , but
it's broken on certain platforms/version (e.g. Darwin/5.6U3e lib is removing duplicated entries,
whereas| does not.

See alsd: this directive argument types and allowed lo¢ation.

5.4.14 Set Handl er

mod_perl 2.0 provides two types &etHandler handlers:modperl and perl-script . The
SetHandler directive is only relevant for response phase handlers. It doesn’t affect other phases.

See alsd: this directive argument types and allowed lo¢ation.

5.4.14.1 nodper |

Configured as:

SetHandler modperl

The bare mod_perl handler type, which just callsRed*Handler ’s callback function. If you don’t
need the features provided by terl-scripthandler, with thenodperl handler, you can gain even more
performance. (This handler isn’t available in mod_perl 1.0.)

Unless théPerl*Handler callback, running under thmodperl handler, is configured with:

PerlOptions +SetupEnv

15 Feb 2014 57

5.4.14 SetHandler

or calls:

$r->subprocess_env;

in a void context with no arguments (which has the same effér#Sptions +SetupEnv for the
handler that called it), only the following environment variables are accessilSeENa/

e MOD_PERINAMOD_PERL_API_VERSIONalways)
e PATHandTZ (if you had them defined in the shelltttpd.conyf

Therefore if you don't want to add the overhead of popul@iiNywhen you simply want to pass some
configuration variables fronittpd.conf consider usingPerlSetVar and PerlAddvar instead of
PerlSetEnv andPerlPassEnv . In your code you can retrieve the values usingdtheconfig()
method. For example if you sethittpd.conf
<Location /print_env2>
SetHandler modperl
PerlResponseHandler Apache2::VarTest

PerlSetVar VarTest VarTestValue
</Location>

this value can be retrieved insidpache?2::VarTest::handler() with:
$r->dir_config('VarTest);

Alternatively use the Apache core directiv&etEnv and PassEnv, which always populate
r->subprocess_env , but this doesn’t happen until the Apadheaips phase, which could be too late
for your needs.

Notice also that this handler does not rés&NVafter each request’s response phase, so if one response
handler has changedbENWvithout localizing the change, it'll affect other handlers running after it as
well.

5.4.14.2perl -scri pt
Configured as:
SetHandler perl-script
Most mod_perl handlers use tperl-scripthandler. Among other things it does:

® PerlOptions +GlobalRequest is in effect only during the PerlResponseHandler phase
unless:

PerlOptions -GlobalRequest

is specified.

58 15 Feb 2014

mod_perl 2.0 Server Configuration 5.4.14 SetHandler

PerlOptions +SetupEnv is in effect unless:
PerlOptions -SetupEnv
is specified.

STDIN andSTDOUTget tied to the request objefit, which makes possible to read fr@&mDIN
and print directly t&8TDOUTvia CORE::print() , instead of implicit calls likér->puts()

Several special global Perl variables are saved before the response handler is called and restored
afterwards (similar to mod_perl 1.0). This includ#ENY@INGC $/ , STDOU® $| andENDblocks
array PL_endav).

Entries added t&ENVare passed on to tlseibprocess_env table, and are thus accessible via
r->subprocess_env during the laterPerlLogHandler and PerlCleanupHandler
phases.

5.4.14.3 Examples

Let's demonstrate the differences betweenrttoglperl and theperl-script core handlers in the
following example, which represents a simple mod_perl response handler which prints out the environ-
ment variables as seen by it:

file:MyApache2/PrintEnvl.pm

package MyApache2::PrintEnv1,;
use strict;

use Apache2::RequestRec (); # for $r->content_type
use Apache2::RequestlO (); # for print
use Apache2::Const -compile =>":common’;

sub handler {

}

1

my $r = shift;

$r->content_type('text/plain’);
for (sort keys %ENV){

print "$_ => $ENV{$_}\n";
}

return Apache2::Const::OK;

This is the required configuration:

PerIModule MyApache2::PrintEnv1
<Location /print_env1>

SetHandler perl-script
PerlResponseHandler MyApache2::PrintEnv1

</Location>

15 Feb 2014 59

5.5 Server Life Cycle Handlers Directives

Now issue a request fottp://localhost/print_enyland you should see all the environment variables
printed out.

Here is the same response handler, adjusted to work withatiperl core handler:

file:MyApache2/PrintEnv2.pm

package MyApache2::PrintEnv2;
use strict;

use Apache2::RequestRec (); # for $r->content_type
use Apache2::RequestlO (); # for $r->print

use Apache2::Const -compile =>":common’;

sub handler {
my $r = shift;

$r->content_type('text/plain’);

$r->subprocess_env;

for (sort keys %ENV){
$r->print("$_ => SENV{$_hn");

}

return Apache2::Const::OK;
}

1
The configuration now will look as:

PerIModule MyApache2::PrintEnv2
<Location /print_env2>

SetHandler modperl

PerlResponseHandler MyApache2::PrintEnv2
</Location>

MyApache2::PrintEnv2 cannot useprint() and therefore use$r->print() to generate a
response. Under thmodperl core handle@6ENVis not populated by default, therefosebpro-
cess_env() is called in a void context. Alternatively we could configure this section to do:

PerlOptions +SetupEnv

If you issue a request [ftp://localhost/print_env2you should see all the environment variables printed
out as withhttp://localhost/print_enyl

5.5 Server Life Cycle Handlers Directives

Seq Server life cydle.

60 15 Feb 2014

http://localhost/print_env1
http://localhost/print_env2
http://localhost/print_env1

mod_perl 2.0 Server Configuration 5.6 Protocol Handlers Directives

5.5.1 Per | OpenLogsHandl er

SedPerlOpenLogsHandler |

5.5.2 Per | Post Conf i gHandl er

SedPerlPostConfigHandler |

5.5.3 Perl Chi | dI ni t Handl er

SedPerlChildInitHandler |

5.5.4 Per | Chi | dExi t Handl er

SedPerlChildExitHandler |

5.6 Protocol Handlers Directives

Seqd Protocol handlgrs.

5.6.1 Per| PreConnect i onHandl er

SedPerlPreConnectionHandler |

5.6.2 Per| ProcessConnecti onHandl er

SedPerlProcessConnectionHandler |

5.7 Filter Handlers Directives

mod_perl filters are described in the filter handlers tutoridlpache2::Filter and
Apache2::FilterRec manpages.

The following filter handler configuration directives are available:

5.7.1 Perl | nput Fi | t er Handl er

SedPerlInputFilterHandler |

15 Feb 2014 61

5.8 HTTP Protocol Handlers Directives

5.7.2 Per| Qut put Fi | t er Handl er

SedPerlOutputFilterHandler |

5.7.3Perl SetlnputFilter

SedPerlSetinputFilter |

5.74 Per|l SetQut putFil ter

SedPerlSetinputFilter |

5.8 HTTP Protocol Handlers Directives

Sed HTTP protocol handlérs.

5.8.1 Per | Post ReadRequest Handl er

SedPerlPostReadRequestHandler |

5.8.2 Per| TransHandl er

SedPerlTransHandler |

5.8.3 Per | MapToSt or ageHandl er

SedPerIMapToStorageHandler |

5.84 Perl | nitHandl er

SedPerlinitHandler |

5.8.5 Per | Header Par ser Handl er

SedPerlHeaderParserHandler |

5.8.6 Per | AccessHandl er

SedPerlAccessHandler |

62

15 Feb 2014

mod_perl 2.0 Server Configuration 5.9 Threads Mode Specific Directives

5.8.7 Per | Aut henHandl er

SedPerlAuthenHandler |

5.8.8 Per | Aut hzHandl er

SedPerlAuthzHandler |

5.8.9 Per | TypeHandl er

SedPerlTypeHandler |

5.8.10 Per | Fi xupHandl er

SedPerlFixupHandler |

5.8.11 Per | ResponseHandl er

SedPerlResponseHandler |

5.8.12 Per | LogHandlI er

SedPerlLogHandler |

5.8.13 Per | G eanupHandl er

SedPerlCleanupHandler |

5.9 Threads Mode Specific Directives

These directives are enabled only in a threaded mod_perl+Apache combo:

59.1PerlInterpStart

The number of interpreters to clone at startup time.

Default value: 3

See alsd: this directive argument types and allowed lo¢ation.

15 Feb 2014 63

5.9.2 PerlinterpMax

5.9.2 Per | | nt er pMax

If all running interpreters are in use, mod_perl will clone new interpreters to handle the request, up until
this number of interpreters is reached. wiiRsrlinterpMax is reached, mod_perl will block (via
COND_WAIT()) until one becomes available (signaled via COND_SIGNALY()).

Default value: 5

See alsd: this directive argument types and allowed lo¢ation.

5.9.3Perl I nterpM nSpare

The minimum number of available interpreters this parameter will clone interpreters Reglito
terpMax , before a request comes in.

Default value: 3

See alsd: this directive argument types and allowed lo¢ation.

5.9.4 Per | | nt er pMaxSpar e
mod_ perl will throttle down the number of interpreters to this number as those in use become available.

Default value: 3

5.9.5Per | | nt er pMaxRequest s

The maximum number of requests an interpreter should serve, the interpreter is destroyed when the
number is reached and replaced with a fresh clone.

Default value: 2000

See alsd: this directive argument types and allowed lo¢ation.

5.9.6 Per | | nt er pScope

As mentioned, when a request in a threaded mpm is handled by mod_perl, an interpreter must be pulled
from the interpreter pool. The interpreter is then only available to the thread that selected it, until it is
released back into the interpreter pool. By default, an interpreter will be held for the lifetime of the
request, equivalent to this configuration:

PerlinterpScope request

For example, if &PerlAccessHandler is configured, an interpreter will be selected before it is run
and not released until after the logging phase.

64 15 Feb 2014

mod_perl 2.0 Server Configuration 5.10 Debug Directives

Interpreters will be shared across sub-requests by default, however, it is possible to configure the inter-
preter scope to be per-sub-request on a per-directory basis:

PerlinterpScope subrequest

With this configuration, an autoindex generated page, for example, would select an interpreter for each
item in the listing that is configured with a Perl*Handler.

It is also possible to configure the scope to be per-handler:

PerlinterpScope handler

For example ifPerlAccessHandler is configured, an interpreter will be selected before running the
handler, and put back immediately afterwards, before Apache moves onto the next phRasdFika
upHandler is configured further down the chain, another interpreter will be selected and again put back
afterwards, beforPerlResponseHandler is run.

For protocol handlers, the interpreter is held for the lifetime of the connection. However, a C protocol
module might hook into mod_perl (e.g. mod_ftp) and providegaiest_rec record. In this case, the
default scope is that of the request. Should a mod_perl handler want to maintain state for the lifetime of an
ftp connection, it is possible to do so on a per-virtualhost basis:

PerlinterpScope connection

Default valuerequest

See alsd: this directive argument types and allowed lo¢ation.

5.10 Debug Directives
5.10.1 Per| Trace

ThePerlTrace is used for tracing the mod_perl execution. This directive is enabled when mod_perl is
compiled with theViP_TRACE=Dption.

To enable tracing, add tdtpd.conf

PerlTrace [level]

wherelevel is either:

all
which sets maximum logging and debugging levels;

a combination of one or more option letters from the following list:

15 Feb 2014 65

5.11 mod_perl Directives Argument Types and Allowed Location

a Apache API interaction

¢ configuration for directive handlers
d directive processing

f filters

e environment variables

g globals management

h handlers

i interpreter pool management
m memory allocations

ol/O

r Perl runtime interaction

s Perl sections

t benchmark-ish timings

Tracing options add to the previous setting and don't override it. So for example:
PerlTrace c

PerlTrace f

will set tracing level first to 'c’ and later to 'cf’. If you wish to override settings, unset any previous setting
by assigning 0 (zero), like so:

PerlTrace ¢

PerlTrace 0
PerlTrace f

now the tracing level is set only to 'f’. You can’t mix the number 0 with letters, it must be alone.

When PerlTrace is not specified, the tracing level will be set to the value of the
$ENV{MOD_PERL_TRACEgnvironment variable.

See alsd: this directive argument types and allowed lo¢ation.

5.11 mod_perl Directives Argument Types and Allowed
Location

The following table shows where in the configuration files mod_perl configuration directives are allowed
to appear, what kind and how many arguments they expect:

General directives:

Directive Arguments Scope
PerlSwitches ITERATE SRV
PerlRequire ITERATE SRV
PerlConfigRequire ITERATE SRV
PerlPostConfigRequire ITERATE SRC
PerlModule ITERATE SRV
PerlLoadModule RAW_ARGS SRV
PerlOptions ITERATE DIR

66 15 Feb 2014

mod_perl 2.0 Server Configuration

PerlSetVvar TAKE2 DIR
PerlAddVar ITERATE2 DIR
PerlSetEnv TAKE2 DIR
PerlPassEnv TAKE1 SRV
<Perl> Sections RAW_ARGS SRV
PerlTrace TAKE1 SRV

Handler assignment directives:

Directive Arguments Scope
PerlOpenLogsHandler ITERATE SRV
PerlPostConfigHandler ITERATE SRV
PerlChildInitHandler ITERATE SRV
PerlChildExitHandler ITERATE SRV

PerlPreConnectionHandler ITERATE SRV
PerlProcessConnectionHandler ITERATE SRV

PerlPostReadRequestHandler ITERATE SRV

PerlTransHandler ITERATE SRV
PerIMapToStorageHandler ITERATE SRV
PerlinitHandler ITERATE DIR
PerlHeaderParserHandler ITERATE DIR
PerlAccessHandler ITERATE DIR
PerlAuthenHandler ITERATE DIR
PerlAuthzHandler ITERATE DIR
PerlTypeHandler ITERATE DIR
PerlFixupHandler ITERATE DIR
PerlResponseHandler ITERATE DIR
PerlLogHandler ITERATE DIR
PerlCleanupHandler ITERATE DIR

PerlinputFilterHandler ITERATE DIR
PerlOutputFilterHandler ITERATE DIR
PerlSetinputFilter ITERATE DIR
PerlSetOutputFilter ITERATE DIR

Perl Interpreter management directives:

Directive Arguments Scope
PerlinterpStart TAKE1 SRV
PerlinterpMax TAKE1 SRV
PerlinterpMinSpare TAKE1 SRV
PerlinterpMaxSpare TAKE1 SRV
PerlinterpMaxRequests TAKE1 SRV
PerlinterpScope TAKE1 DIR

mod_perl 1.0 back-compatibility directives:

15 Feb 2014

5.11 mod_perl Directives Argument Types and Allowed Location

67

5.11 mod_perl Directives Argument Types and Allowed Location

Directive Arguments Scope
PerlHandler ITERATE DIR
PerlSendHeader FLAG DIR
PerlSetupEnv FLAG DIR
PerlTaintCheck FLAG SRV
PerlWarn FLAG SRV

The Argumentolumn represents the type of arguments directives accepts, where:

ITERATE

Expects a list of arguments.
ITERATEZ2

Expects one argument, followed by at least one or more arguments.
TAKE1l

Expects one argument only.
TAKE2

Expects two arguments only.

FLAG

One ofOnor Off (case insensitive).
RAW_ARGS

The function parses the command line by itself.

The Scopecolumn shows the location the directives are allowed to appear in:

68

SRV

Global configuration an&VirtualHost> (mnemonic:SeRVe)x. These directives are defined as
RSRC_CONI the source code.

DIR

<Directory> , <Location> , <Files> and all their regular expression variants (mnemonic:
DIRectory. These directives can also appear.hitaccessfiles. These directives are defined as
OR_ALLIn the source code.

These directives can also appear in the global server configuratietVanhtchlHost>

15 Feb 2014

mod_perl 2.0 Server Configuration 5.12 Server Startup Options Retrieval

Apache specifies other allowed location types which are currently not used by the core mod_perl direc-
tives and their definition can be foundimtiude/httpd_config.lthint: search foRSRC_CONF

Also seg¢ Stacked Handlprs.

5.12 Server Startup Options Retrieval

Inside httpd.confone can do conditional configuration based on the define options passed at the server
startup. For example:

<IfDefine PERLDB>
<Perl>
use Apache::DB ();
Apache::DB->init;
</Perl>

<Location />
PerlFixupHandler Apache::DB
</Location>
</IfDefine>

So only when the server is started as:

% httpd C<-DPERLDB> ...

The configuration insidéDefine will have an effect. If you want to have some configuration section
to have an effect if a certain define wasn’t defined!yder example here is the opposite of the previous
example:

<IfDefine IPERLDB>
#...
</IfDefine>

If you need to access any of the startup defines in the Perl code you use
Apache2::ServerUtil::exists_config_define() . For example in a startup file you can
say:

use Apache2::ServerUtil ();

if (Apache2::ServerUtil::exists_config_define("PERLDB")) {
require Apache::DB;
Apache::DB->init;

}

For example to check whether the server has been started in a single mode use:
if (Apache2::ServerUtil::exists_config_define("ONE_PROCESS")) {

print "Running in a single mode";

}

15 Feb 2014 69

5.13 Perl Interface to the Apache Configuration Tree

5.12.1 MODPERL2 Define Option

When running under mod_perl 2.0 a special configuration "define" symMO@PERL2s enabled inter-
nally, as if the server had been started WitMODPERL2For example this can be used to write a config-
uration file which needs to do something different whether it's running under mod_perl 1.0 or 2.0:
<IfDefine MODPERL2>
2.0 configuration
</IfDefine>
<IfDefine IMODPERL2>

else
</IfDefine>

From within Perl code this can be tested with
Apache2::ServerUtil::exists_config_define() , for example:

use Apache2::ServerUtil ();

if (Apache2::ServerUtil::exists_config_define("MODPERL2")) {
some 2.0 specific code

}

5.13 Perl Interface to the Apache Configuration Tree

For now refer to the Apache2::Directive manpage and the/tesponse/TestApache2/conftree.ionthe
mod_perl source distribution.

META: need help to write the tutorial section on this with examples.

5.14 Adjusting @ NC

You can always adjust contents@iNCbefore the server starts. There are several ways to do that.

® startup.pl

Inthe startup file you can use tlite pragma like so:

use lib gw(/homef/httpd/project1/lib /tmpl/lib);
use lib gw(/home/httpd/project2/lib);

e httpd.conf

In httpd.confyou can use thBerlSwitches directive to pass arguments to perl as you do from the
command line, e.g.:

PerlSwitches -I/lhome/httpd/project1/lib -1/tmp/lib
PerlSwitches -I/lhome/httpd/project2/lib

70 15 Feb 2014

mod_perl 2.0 Server Configuration 5.15 General Issues

5.14.1 PERL5LI B and PERLLI B Environment Variables

The effect of thePERL5LIB andPERLLIB environment variables o@INCis described in thperlrun
manpage. mod_perl 2.0 doesn’t do anything special about them.

It's important to remind that botRERL5LIB andPERLLIB are ignored when the taint modeefl-
Switches -T) is in effect. Since you want to make sure that your mod_per| server is running under the
taint mode, you can't use tiRERL5LIB andPERLLIB environment variables.

However there is thperl5lib module on CPAN, which, if loaded, bypasses perl's security and will affect
@INC Use it only if you know what you are doing.

5.14.2 Modifying@ NC on a Per-VirtualHost

If Perl used with mod_perl was built with ithreads support one can specify difi@h€values for
different VirtualHosts, using a combination [BerlOptions +Parent | and|PerlSwitches | For
example:

<VirtualHost ...>
ServerName devl
PerlOptions +Parent
PerlSwitches -I/lhome/devl/lib/perl
</VirtualHost>

<VirtualHost ...>
ServerName dev2
PerlOptions +Parent
PerlSwitches -I/lhome/dev2/lib/perl
</VirtualHost>

This technique works under any MPM with ithreads-enabled perl. It's just that under prefork your procs
will be huge, because you will build a pool of interpreters in each process. While the same happens under
threaded mpm, there you have many threads per process, so you need just 1 or 2 procs and therefore less
memory will be used.

5.15 General Issues

5.16 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

15 Feb 2014 71

http://stason.org/

5.17 Authors

5.17 Authors

® Doug MacEachern <dougm (at) covalent.net>

e Stas Bekmar [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

72 15 Feb 2014

http://stason.org/

Apache Server Configuration Customization in Perl 6 Apache Server Configuration Customization in Perl

6 Apache Server Configuration Customization in Perl

15 Feb 2014 73

6.1 Description

6.1 Description

This chapter explains how to create custom Apache configuration directives in Perl.

6.2 Incentives
mod_perl provides several ways to pass custom configuration information to the modules.

The simplest way to pass custom information from the configuration file to the Perl module is to use the
PerlSetvar andPerlAddVvar directives. For example:

PerlSetVar Secret "Matrix is us"

and in the mod_perl code this value can be retrieved as:

my $secret = $r->dir_config("Secret");

Another alternative is to add custom configuration directives. There are several reasons for choosing this
approach:

® \When the expected value is not a simple argument, but must be supplied using a certain syntax,
Apache can verify at startup time that this syntax is valid and abort the server start up if the syntax is
invalid.

e Custom configuration directives are faster because their values are parsed at the startup time, whereas
PerlSetvar andPerlAddVar values are parsed at the request time.

® |t's possible that some other modules have accidentally chosen to use the same key names but for
absolutely different needs. So the two now can’t be used together. Of course this collision can be
avoided if a unique to your module prefix is used in the key names. For example:

PerlSetVar ApacheFooSecret "Matrix is us"

Finally, modules can be configured in pure Perl usiRgrl> Sections or[a_startup file, by simply
modifying the global variables in the module’s package. This approach could be undesirable because it
requires a use of globals, which we all try to reduce. A bigger problem with this approach is that you can’t
have different settings for different sections of the site (since there is only one version of a global vari-
able), something that the previous two approaches easily achieve.

6.3 Creating and Using Custom Configuration Directives

In mod_perl 2.0, adding new configuration directives is a piece of cake, because it requires no XS code
andMakefile.PL needed in case of mod_perl 1.0. In mod_perl 2.0, custom directives are implemented in
pure Perl.

74 15 Feb 2014

Apache Server Configuration Customization in Perl 6.3 Creating and Using Custom Configuration Directives

Here is a very basic module that declares two new configuration direckily@arameter , which
accepts one or more arguments, Bty@therParameter which accepts a single argumeviyParam-
eter validates that its arguments are valid strings.

#file:MyApache2/MyParameters.pm
#

package MyApache2::MyParameters;

use strict;
use warnings FATAL =>"all’;

use Apache::Test;
use Apache::TestUtil;

use Apache2::Const -compile => qw(OR_ALL ITERATE);

use Apache2::CmdParms ();
use Apache2::Module ();
use Apache2::Directive ();

my @directives = (
{
name =>'MyParameter’,
func =>__ PACKAGE__ . ::MyParameter’,
req_override => Apache2::Const::OR_ALL,
args_how => Apache2::Const::ITERATE,
errmsg =>'MyParameter Entryl [Entry2 ... [EntryN]]’,

name =>'MyOtherParameter’,

)i
Apache2::Module::add(__PACKAGE__, \@directives);

sub MyParameter {
my ($self, $parms, @args) = @_;
$self->{MyParameter} = \@args;

validate that the arguments are strings
for (@args) {
unless (/M\w+$/) {
my $directive = $parms->directive;
die sprintf "error: MyParameter at %s:%d expects " .
"string arguments: ('$_" is not a string)\n",

$directive->filename, $directive->line_num;

}
}

}
1

And here is how to use it imtpd.conf

15 Feb 2014 75

6.3.1 @directives

first load the module so Apache will recognize the new directives
PerlLoadModule MyApache2::MyParameters

MyParameter one two three
MyOtherParameter Foo
<Location /perl>
MyParameter eleven twenty
MyOtherParameter Bar
</Location>

The following sections discuss this and more advanced modules in detalil.

A minimal configuration module is comprised of three groups of elements:

® An array |@li r ect i ves|for declaring the new directives and their behavior.
® A callto Apache2: : Mbdul e: : add() to register the new directives with apache.
® A subroutine per each new directive, which is called when the directive is seen

6.3.1 @li recti ves

@directives is an array of hash references. Each hash represents a separate new configuration direc-
tive. In our example we had:

my @directives = (
{
name =>'MyParameter’,
func =>__ PACKAGE__ . ::MyParameter’,
req_override => Apache2::Const::OR_ALL,
args_how => Apache2::Const::ITERATE,
errmsg =>'MyParameter Entryl [Entry2 ... [EntryN]]’,

name =>'MyOtherParameter’,

This structure declares two new directiviédyParameter and MyOtherParameter . You have to
declare at least the name of the new directive, which is how we have declavdtierParameter
directive. mod_perl will fill in the rest of the configuration using the defaults described next.

These are the attributes that can be used to define the directives bdhame@rifung |args how
[req overridganderrmsg They are discussed in the following sections.

It is worth noting that in previous versions of mod perl, it was necessary to call this variable
@APACHE_MODULE_COMMANDS. It is not the case anymore, and we consistently use the name
@directives in the documentation for clarity. It can be named anything at all.

76 15 Feb 2014

Apache Server Configuration Customization in Perl 6.3.1 @directives

6.3.1.1 nane

This is the only required attribute. And it declares the name of the new directive as it'll be used in
httpd.conf

6.3.1.2f unc

The func attribute expects a reference to a function or a function name. This function is called by httpd
every time it encounters the directive that is described by this entry while parsing the configuration file.
Therefore it's invoked once for every instance of the directive at the server startup, and once per request
per instance in théntaccesdile.

This function accepts two or more argumgnts, depending @ardsehowattribute’s value.

This attribute is optional. If not supplied, mod_perl will try to use a function in the current package whose
name is the same as of the directive in question. In our examplé/y@therParameter , mod_perl
will use:

_ PACKAGE__ . "::MyOtherParameter’

as a name of a subroutine and it anticipates that it exists in that package.

6.3.1.3req_override

The attribute defines the valid scope in which this directive can appear. Thiere are several|constants which
map onto the corresponding Apache macros. These constants should be imported from the
Apache2::Const package.

For example, to use t@R_ALL constant, which allows directives to be defined anywhere, first, it needs
to be imported:

use Apache2::Const -compile => qw(OR_ALL);
and then assigned to theq_overrideattribute:
req_override => Apache2::Const::OR_ALL,
It's possible to combine several options using the unary operators. For example, the following setting:

req_override => Apache2::Const::RSRC_CONF | Apache2::Const::ACCESS_CONF

will allow the directive to appear anywherehtipd.conf but forbid it from ever being used ihtaccess
files:

This attribute is optional. If not supplied, the default valyamdche2::Const::OR_ALL _ |is used.

15 Feb 2014 77

6.3.1 @directives

6.3.1.4ar gs_how

Directives can receive zero, one or many arguments. In order to help Apache validate that the number of
arguments is valid, thargs_howattribute should be set to the desired value. Similar tpetpeoverridé
attribute, theApache2::Const package provides a speciand_how constants group which maps to

the corresponding Apache macros. Therg are several constants to choose from.

In our example, the directivBlyParameter accepts one or more arguments, therefore we have the
[Apache?2::Const::ITERATE | constant:

args_how => Apache2::Const::ITERATE,

This attribute is optional. If not supplied, the default valydmdche2::Const:: TAKE1 |is used.

6.3.1.5errnsg

The errmsgattribute provides a short but succinct usage statement that summarizes the arguments that the
directive takes. It's used by Apache to generate a descriptive error message, when the directive is config-
ured with a wrong number of arguments.

In our example, the directidelyParameter accepts one or more arguments, therefore we have chosen
the following usage string:

errmsg => 'MyParameter Entryl [Entry2 ... [EntryN]]’,

This attribute is optional. If not supplied, the default value of will be a string based on the dirfpeté’s
andargs_hoyattributes.

6.3.1.6cnd_dat a

Sometimes it is useful to pass information back to the directive handler callback. For instance, if you use
thefunc parameter to specify the same callback for two different directives you might want to know which
directive is being called currently. To do this, you can usethe dataparameter, which allows you to

store arbitrary strings for later retrieval from your directive handler. For instance:

my @directives = (
{
name => '<Location’,
func defaults to Location()
req_override => Apache2::Const::RSRC_CONF,
args_how => Apache2::Const::RAW_ARGS,
3
{

name =>'<LocationMatch’,

func => Location,

req_override => Apache2::Const::RSRC_CONF,
args_how => Apache2::Const::RAW_ARGS,
cmd_data =>'1",

12

78 15 Feb 2014

Apache Server Configuration Customization in Perl 6.3.2 Registering the new directives

Here, we are using theocation() function to process both tHeocation andLocationMatch
directives. In the_ocation() callback we can check the data in ttmed_dataslot to see whether the
directive being processed lsocationMatch and alter our logic accordingly. How? Through the
info() method exposed by tiAgpache2::CmdParms class.

use Apache2::CmdParms ();
sub Location {
my ($cfg, $parms, $data) = @_;

see if we were called via LocationMatch
my $regex = $parms->info;

continue along

}

In case you are wonderingpcation andLocationMatch were chosen for a reason - this is exactly
how httpd core handles these two directives.

6.3.2 Registering the new directives

Once the|@directives | array is populated, it needs to be registered with apache using
Apache2::Module::add()

Apache2::Module::add(__PACKAGE__, \@directives);

6.3.3 Directive Scope Definition Constants

Thefreq_overridgattribute specifies the configuration scope in which it's valid to use a given configura-
tion directive. This attribute’s value can be any of or a combination of the following constants:

(these constants are declaredhtitpd-2.0/include/http_config.h
6.3.3.1 Apache2: : Const: : OR_NONE
The directive cannot be overridden by any ofAlewOverride options.

6.3.3.2Apache2:: Const::OR LIMT

The directive can appear within directory sections, but not outside them. It is also allowedhtaittess
files, provided that\llowOverride Limit is set for the current directory.

6.3.3.3 Apache?2: : Const: : OR_OPTI ONS

The directive can appear anywhere withittpd.conf as well as within.htaccessfiles provided that
AllowOverride Options is set for the current directory.

15 Feb 2014 79

6.3.3 Directive Scope Definition Constants

6.3.3.4 Apache?2: : Const: : OR_FI LEI NFO

The directive can appear anywhere withittpd.conf as well as within.htaccessfiles provided that
AllowOverride Filelnfo is set for the current directory.

6.3.3.5Apache?2: : Const: : OR_AUTHCFG

The directive can appear within directory sections, but not outside them. It is also allowedhtaitgess
files, provided thafllowOverride AuthConfig is set for the current directory.

6.3.3.6 Apache2: : Const : : OR_| NDEXES

The directive can appear anywhere withittpd.conf as well as within.htaccessfiles provided that
AllowOverride Indexes is set for the current directory.

6.3.3.7 Apache?2: : Const: : OR_UNSET

META: details? "unset a directive (in Allow)"

6.3.3.8 Apache?2: : Const : : ACCESS_CONF

The directive can appear within directory sections. The directive is not allowsddaesdiles.

6.3.3.9 Apache2: : Const : : RSRC_CONF

The directive can appear httpd.confoutside a directory sectiorxDirectory> , <Location> or
<Files> ; also<FilesMatch> and kin). The directive is not allowed.imtaccesdiles.

6.3.3.10Apache2: : Const : : EXEC_ON_READ

Force directive to execute a command which would modify the configuration (like including another file,
or IFModule).

Normally, Apache first parses the configuration tree and then executes the directives it has encountered
(e.g.,SetEnv). But there are directives that must be executed during the initial parsing, either because
they affect the configuration tree (e.¢nclude may load extra configuration) or because they tell
Apache about new directives (e.§Module orPerlLoadModule , may load a module, which installs
handlers for new directives). These directives must haveAplaehe2::Const::EXEC_ON_READ

turned on.

6.3.3.11 Apache2: : Const:: OR_ALL

The directive can appear anywhere. It is not limited in any way.

80 15 Feb 2014

Apache Server Configuration Customization in Perl 6.3.4 Directive Callback Subroutine

6.3.4 Directive Callback Subroutine

Depending on the value of taegs_hoattribute the callback subroutine, specified withfthed attribute,
will be called with two or more arguments. The first two arguments are albegls and$parms. A
typical callback function which expects a single valApache2::Const::TAKE1) might look like
the following:

sub MyParam {
my ($self, $parms, $arg) = @_;
$self->{MyParam} = $arg;

}

In this function we store the passed single value in the configuration object, using the directive’s name
(assuming that it waglyParam) as the key.

Let's look at the subroutine arguments in detail:
1. $self is the current container’s configuration object.

This configuration object is a reference to a hash, in which you can store arbitrary key/value pairs.
When the directive callback function is invoked it may already include several key/value pairs
inserted by other directive callbacks or during[fRVER_CREATENdDIR_CREATEfunctions,

which will be explained later.

Usually the callback function stores the passed argument(s), which later will be read by
[SERVER_MERGHIDIR_MERGEwhich will be explained later, and of course at request time.

The convention is use the name of the directive as the hash key, where the received values are stored.
The value can be a simple scalar, or a reference to a more complex structure. So for example you can
store a reference to an array, if there is more than one value to store.

This object can be later retrieved at request time via:
my $dir_cfg = $self->get_config($s, $r->per_dir_config);
You can retrieve the server configuration object via:
my $srv_cfg = $self->get_config($s);
if invoked inside the virtual host, the virtual host's configuration object will be returned.

2. $parms is anApache2::CmdParms object from which you can retrieve various other informa-
tion about the configuration. For example to retrieve the server object:

my $s = $parms->server;

SeeApache2::CmdParms for more information.

15 Feb 2014 81

6.3.5 Directive Syntax Definition Constants

3. The rest of the arguments whose number depends value are covered [n_the néxt
[section.

6.3.5 Directive Syntax Definition Constants

The following values of thlargs_hoWattribute define how many arguments and what kind of arguments
directives can accept. These values are constants that can be imported frdpadhe2::Const
package:€md_how constants group).

For example:

use Apache2::Const -compile => qw(TAKE1 TAKE23);

6.3.5.1 Apache2: : Const: : NO_ARGS

The directive takes no arguments. The callback will be invoked once each time the directive is encoun-
tered. For example:

sub MyParameter {
my ($self, $parms) = @_;
$self->{MyParameter}++;

}
6.3.5.2 Apache?2: : Const : : TAKEL

The directive takes a single argument. The callback will be invoked once each time the directive is
encountered, and its argument will be passed as the third argument. For example:

sub MyParameter {
my ($self, $parms, $arg) = @_;
$self->{MyParameter} = $arg;

}
6.3.5.3 Apache2: : Const : : TAKE2

The directive takes two arguments. They are passed to the callback as the third and fourth arguments. For
example:

sub MyParameter {
my ($self, $parms, $argl, $arg2) = @_;
$self->{MyParameter} = {$argl => $arg2};
}

6.3.5.4 Apache?2: : Const : : TAKES3

This is like|Apache2::Const:: TAKE1 | and|Apache2::Const::TAKE2 | but the directive takes
three mandatory arguments. For example:

82 15 Feb 2014

Apache Server Configuration Customization in Perl 6.3.5 Directive Syntax Definition Constants

sub MyParameter {
my ($self, $parms, @args) = @_;
$self->{MyParameter} = \@args;
}

6.3.5.5Apache2: : Const : : TAKEL2

This directive takes one mandatory argument, and a second optional one. This can be used when the
second argument has a default value that the user may want to override. For example:

sub MyParameter {
my ($self, $parms, $argl, $arg2) = @_;
$self->{MyParameter} = {$argl => $arg2||'default’};
}

6.3.5.6 Apache2: : Const : : TAKE23

[Apache?2::Const:: TAKE23 | is just like|]Apache2::Const::TAKE12 | except now there are two
mandatory arguments and an optional third one.

6.3.5.7 Apache?2: : Const: : TAKE123

In the Apache2::Const::TAKE123 variant, the first argument is mandatory and the other two are
optional. This is useful for providing defaults for two arguments.

6.3.5.8 Apache2: : Const: : | TERATE

Apache2::Const::ITERATE is used when a directive can take an unlimited number of arguments.
The callback is invoked repeatedly with a single argument, once for each argument in the list. It's done
this way for interoperability with the C API, which doesn’t have the flexible argument passing that Perl
provides. For example:

sub MyParameter {

my ($self, $parms, $args) = @ _;

push @{ $self->{MyParameter} }, $arg;
}

6.3.5.9 Apache2: : Const : : | TERATE2

Apache2::Const:.ITERATE2 is used for directives that take a mandatory first argument followed by
a list of arguments to be applied to the first. A familiar example iAtwType directive, in which a
series of file extensions are applied to a single MIME type:

AddType image/jpeg JPG JPEG JFIF jfif

Apache will invoke your callback once for each item in the list. Each time Apache runs your callback, it
passes the routine the constant first argunientge/jpeg"in the example above), and the current item in
the list (JPG" the first time around;JPEG" the second time, and so on). In the example above, the
configuration processing routine will be run a total of four times.

15 Feb 2014 83

6.3.5 Directive Syntax Definition Constants

For example:

sub MyParameter {

my ($self, $parms, $key, $val) = @_;

push @{ $self->{MyParameter{$key} }, $val;
}

6.3.5.10 Apache?2: : Const : : RAW ARGS

An [args_hoW of Apache2::Const::RAW_ARGS instructs Apache to turn off parsing altogether.
Instead it simply passes your callback function the line of text following the directive. Leading and trailing
whitespace is stripped from the text, but it is not otherwise processed. Your callback can then do whatever
processing it wishes to perform.

This callback receives three arguments (similghgache2::Const::TAKE1), the third of which is a
string-valued scalar containing the remaining text following the directive line.

sub MyParameter {
my ($self, $parms, $val) = @_;
process $val

}

If this mode is used to implement a custom "container" directive, the atfrémteverrideneeds to OR
[Apache2::Const::EXEC_ON READ | e.g.:

req_override => Apache2::Const::OR_ALL | Apache2::Const::EXEC_ON_READ,
META: complete the details, which are new to 2.0.

To retrieve the contents of a custom "container" directive, uséplehe2::Directive object’s
methodsas_hash oras_string

sub MyParameter {
my ($self, $parms, $val) = @_;
my $directive = $parms->directive;
my $content = $directive->as_string;

}

There is one other trick to making configuration containers work. In order to be recognized as a valid
directive, thgnamé attribute must contain the leadirg This token will be stripped by the code that
handles the custom directive callbacks to Apache. For example:

name =>'<MyContainer’,

One other trick that is not required, but can provide some more user friendliness is to provide a handler for
the container end token. In our example, the Apache configuration gears will never sédytGen-

tainer> token, as oyApache2::Const::RAW_ARGS |handler will read in that line and stop reading
when it is seen. However in order to catch cases in whick/MgContainer> text appears without a
preceding<MyContainer> opening section, we need to turn the end token into a directive that simply
reports an error and exits. For example:

84 15 Feb 2014

Apache Server Configuration Customization in Perl 6.3.6 Enabling the New Configuration Directives

{
name =>'</MyContainer>’,
func =>__ PACKAGE__ . ":MyContainer_END",
errmsg =>"end of MyContainer without beginning?’,

args_how => Apache2::Const::NO_ARGS,
req_override => Apache2::Const::OR_ALL,
h

my $EndToken = "</MyContainer>";
sub MyContainer_END {
die "$EndToken outside a <MyContainer> container\n";

}

Now, should the server administrator misplace the container end token, the server will not start, complain-
ing with this error message:

Syntax error on line 54 of httpd.conf:
</MyContainer> outside a <MyContainer> container

6.3.5.11 Apache2: : Const : : FLAG

WhenApache2::Const::FLAG is used, Apache will only allow the argument to be one of two values,
Onor Off . This string value will be converted into an intedeif the flag isOn, 0 if it is Off . If the
configuration argument is anything other tt@mor Off , Apache will complain:

Syntax error on line 73 of httpd.conf:
MyFlag must be On or Off

For example:
sub MyFlag {
my ($self, $parms, $arg) = @_;

$self->{MyFlag} = $arg; # 1 or 0
}

6.3.6 Enabling the New Configuration Directives

As seen in the first example, the module needs to be loaded before the new directives can be used. A
special directivd’erlLoadModule is used for this purpose. For example:

PerlLoadModule MyApache2::MyParameters

This directive is similar t&erlModule , but it require()’s the Perl module immediately, causing an early
mod_perl startup. After loading the module it let's Apache know of the new directives and installs the call-
backs to be called when the corresponding directives are encountered.

6.3.7 Creating and Merging Configuration Objects
By default mod_perl creates a simple hash to store each container’s configuration values, which are popu-

lated by directive callbacks, invoked when ttigod.confand the htaccesdiles are parsed and the corre-
sponding directive are encountered. It's possible to pre-populate the hash entries when the data structure is

15 Feb 2014 85

6.3.7 Creating and Merging Configuration Objects

created, e.g., to provide reasonable default values for cases where they weren't set in the configuration
file. To accomplish that the optiof@ERVER_CREATENdDIR_CREATHEfunctions can be supplied.

When a request is mapped to a container, Apache checks if that container has any ancestor containers. If
that’s the case, it allows mod_perl to call special merging functions, which decide whether configurations
in the parent containers should be inherited, appended or overridden in the child container. The custom
configuration module can supply custom merging funcfSBRVER _MERGENDIR_MERGE which

can override the default behavior. If these functions are not supplied the following default behavior takes
place: The child container inherits its parent configuration, unless it specifies its own and then it overrides
its parent configuration.

6.3.7.1 SERVER CREATE

SERVER_CREATEs called once for the main server, and once more for each virtual host defined in
httpd.conf It's called with two argument$&class , the package name it was created in $oarms the

already familiarApache2::CmdParms object. The object is expected to return a reference to a blessed
hash, which will be used by configuration directives callbacks to set the values assigned in the configura-
tion file. But it's possible to preset some values here:

For example, in the following example the object assigns a default value, which can be overridden during
merge if a the directive was used to assign a custom value:

package MyApache2::MyParameters;

use Apache2::Module ();

use Apache2::CmdParms ();

my @directives = (...);
Apache2::Module::add(__PACKAGE__, \@directives);

sub SERVER_CREATE {
my ($class, $parms) = @_;
return bless {
name => __ PACKAGE__,
}, $class;

}
To retrieve that value later, you can use:
use Apache2::Module ();

my $srv_cfg = Apache2::Module::get_config(MyApache2::MyParameters’, $s);
print $srv_cfg->{name};

If a request is made to a resource inside a virtual Best, cfg will contain the object of the virtual
host’s server. To reach the main server’s configuration object use:

86 15 Feb 2014

Apache Server Configuration Customization in Perl 6.3.7 Creating and Merging Configuration Objects

use Apache2::Module ();
use Apache2::ServerRec ();
use Apache2::ServerUtil ();

if ($s->is_virtual) {
my $base_srv_cfg = Apache2::Module::get_config(MyApache2::MyParameters’,
Apache2::ServerUtil->server);
print $base_srv_cfg->{name};

}

If the functionSERVER_CREATIS not supplied by the module, a function that returns a blessed into the
current package reference to a hash is used.

6.3.7.2 SERVER MERGE

During the configuration parsing virtual hosts are given a chance to inherit the configuration from the
main host, append to or override it. TSERVER_MERG&ubroutine can be supplied to override the
default behavior, which simply overrides the main server’s configuration.

The custom subroutine accepts two argumesiiase , a blessed reference to the main server configura-
tion object, andbadd, a blessed reference to a virtual host configuration object. It's expected to return a
blessed object after performing the merge of the two objects it has received. Here is the skeleton of a
merging function:

sub merge {
my ($base, $add) = @_;
my %mrg = ();
code to merge %$base and %$add
return bless \%mrg, ref($base);

}

The sectiop Merging at Wdrk provides an extensive example of a merging function.

6.3.7.3 Dl R_CREATE

Similarly to [SERVER_CREATEthis optional function, is used to create an object for the directory
resource. If the function is not supplied mod_perl will use an empty hash variable as an object.

Just likgSERVER CREATHt's called once for the main server and one more time for each virtual host.
In addition it'll be called once more for each resoukceotation> , <Directory> and others). All

this happens during the startup. At request time it might be called for each passedsdile and for

each resource defined in it.

The DIR_CREATEfunction’s skeleton is identical ®ERVER_CREATHere is an example:
package MyApache2::MyParameters;
Jse Apache2::Module ();
use Apache2::CmdParms ();

my @directives = (...);
Apache2::Module::add(__PACKAGE__, \@directives);

15 Feb 2014 87

6.4 Examples

sub DIR_CREATE {
my ($class, $parms) = @_;
return bless {
foo => 'bar’,
}, $class;

}
To retrieve that value later, you can use:
use Apache2::Module ();
my $dir_cfg = Apache2::Module::get_config(MyApache2::MyParameters’,
$s, $r->per_dir_config);
print $dir_cfg->{foo};

The only difference in the retrieving the directory configuration object. Here the third argument
$r->per_dir_config tellsApache2::Module to get the directory configuration object.

6.3.7.4 Dl R_MERGE

Similarly toSERVER_MERGEIR_MERGHNMerges the ancestor and the current node’s directory config-
uration objects. At the server startDfR_ MERGHSs called once for each virtual host. At request time, the
merging of the objects of resources, their sub-resources and the virtual host/main server merge happens.
Apache caches the products of merges, so you may see certain merges happening only once.

The sectiop Merging Order Consequepces discusses in detail the merging order.

The sectiop Merging at Wark provides an extensive example of a merging function.

6.4 Examples
6.4.1 Merging at Work

In the following example we are going to demonstrate in details how merging works, by showing various
merging techniques.

Here is an example Perl module, which, when loaded, installs four custom directives into Apache.

#file:MyApache2/CustomDirectives.pm
H

package MyApache2::CustomDirectives;

use strict;
use warnings FATAL =>"all’;

use Apache2::CmdParms ();
use Apache2::Module ();
use Apache2::ServerUtil ();

use Apache2::Const -compile => qw(OK);

88 15 Feb 2014

Apache Server Configuration Customization in Perl

my @directives = (
{ hame =>'MyPlus’ },
{ name =>'MyList' },
{ name =>'MyAppend’ },
{ nhame =>'MyOverride’ },
)i
Apache2::Module::add(__PACKAGE__, \@directives);

sub MyPlus {set_val(MyPlus’, @_)}
sub MyAppend {set_val('MyAppend’, @_)}
sub MyOverride { set_val('MyOverride’, @_) }
sub MyList { push_val('MyList, @_)}

sub DIR_MERGE {merge(@_)}
sub SERVER_MERGE { merge(@_) }

sub set_val {
my ($key, $self, $parms, $arg) = @_;
$self->{$key} = $arg;
unless ($parms->path) {
my $srv_cfg = Apache2::Module::get_config($self,
$parms->server);
$srv_cfg->{$key} = $arg;
}
}

sub push_val {

my ($key, $self, $parms, $arg) = @_;
push @{ $self->{$key} }, $arg;
unless ($parms->path) {
my $srv_cfg = Apache2::Module::get_config($self,
$parms->server);
push @{ $srv_cfg->{$Skey} }, $arg;
}
}

sub merge {
my ($base, $add) = @_;

my %mrg = ();

for my $key (keys %$base, keys %$add) {
next if exists $mrg{$key};
if ($key eq 'MyPlus’) {

$mrg{$Skey} = ($base->{$key}||0) + ($add->{$key}||0);

}
elsif ($key eq 'MyList’) {
push @{ $mrg{skey} },
@{ $hase->{$key}(|[] }, @{ $add->{$key}|[}

}
elsif ($key eq 'MyAppend’) {
$mrg{$key} = join " "

}
else {
override mode

$add->{Skey};

$mrg{$key} = $base->{$key} if exists $base->{$key};

15 Feb 2014

, grep defined, $hase->{$key},

6.4.1 Merging at Work

89

6.4.1 Merging at Work

$mrg{$Skey} = $add->{$key} if exists $add->{$key};

}

return bless \%mrg, ref($base);

}

1;
END__

It's probably a good idea to specify all the attributes forddirectives entries, but here for simplic-

ity we have only assigned to tjiamédirective, which is a must. Since all our directives take a single
argument[Apache2::Const:: TAKEL __ | the defaulfargs_hoW is what we need. We also allow the
directives to appear anywhere,[8pache2::Const::OR_ALL __ | the default fofreq_overrid¢ is good

for us as well.

We use the same callback for the directiygPlus , MyAppend and MyOverride , which simply
assigns the specified value to the hash entry with the key of the same name as the directive.

The MyList directive’s callback stores the value in the list, a reference to which is stored in the hash,
again using the name of the directive as the key. This approach is usually used when the directive is of
typelApache2::Const::ITERATE | so you may have more than one value of the same kind inside a
single container. But in our example we choose to have it of thiAp@ehe2::Const:: TAKE1 [

In both callbacks in addition to storing the value in the curdéeictory configuration, if the value is
configured in the main server or the virtual host (which is whmarms->path s false), we also store

the data in the same way in the server configuration object. This is done in order to be able to query the
values assigned at the server and virtual host levels, when the request is made to one of the sub-resources.
We will show how to access that information in a moment.

Finally we use the same merge function for merging directory and server configuration objects. For the
key MyPlus (remember we have used the same key name as the name of the directive), the merging func-
tion performs, the obvious, summation of the ancestor's merged value (base) and the current resource’s
value (add)MyAppend joins the values into a strinlylyList joins the lists and finallyylyOverride

(the default) overrides the value with the current one if any. Notice that all four merging methods take into
account that the values in the ancestor or the current configuration object might be unset, which is the case
when the directive wasn't used by all ancestors or for the current resource.

At the end of the merging, a blessed reference to the merged hash is returned. The reference is blessed into
the same class, as the base or the add objects, whidpAigache2::CustomDirectives in our

example. That hash is used as the merged ancestor’s object for a sub-resource of the resource that has just
undergone merging.

Next we supply the followingpttpd.confconfiguration section, so we can demonstrate the features of this
example:

PerlLoadModule MyApache2::CustomDirectives
MyPlus 5

MyList "MainServer"

MyAppend "MainServer"

90 15 Feb 2014

Apache Server Configuration Customization in Perl 6.4.1 Merging at Work

MyOverride "MainServer"
Listen 8081
<VirtualHost _default_:8081>
MyPlus 2
MyList "VHost"
MyAppend "VHost"
MyOverride "VHost"
<Location /custom_directives_test>
MyPlus 3
MyList "Dir"
MyAppend "Dir"
MyOverride "Dir"
SetHandler modperl
PerlResponseHandler MyApache2::CustomDirectivesTest
</Location>
<Location /custom_directives_test/subdir>
MyPlus 1
MyList "SubDir"
MyAppend "SubDir"
MyOverride "SubDir"
</Location>
</VirtualHost>
<Location /custom_directives_test>
SetHandler modperl
PerlResponseHandler MyApache2::CustomDirectivesTest
</Location>

PerlLoadModule loads the Perl modulMyApache2::CustomDirectives and then installs a

new Apache module namédyApache2::CustomDirectives , using the callbacks provided by the

Perl module. In our example functioERVER_CREATENd DIR_CREATE aren’t provided, so by
default an empty hash will be created to represent the configuration object for the merging functions. If we
don’t provide merging functions, Apache will simply skip the merging. Though you must provide a call-
back function for each directive you add.

After installing the new module, we add a virtual host container, containing two resources (which at other
times called locations, directories, sections, etc.), one being a sub-resource of the other, plus one another
resource which resides in the main server.

We assign different values in all four containers, but the last one. Here we refer to the four containers as
MainServer VHost Dir and SubDir, and use these names as values for all configuration directives, but
MyPlus , to make it easier understand the outcome of various merging methods and the merging order. In
the last container used ky.ocation /custom_directives_test> , we don’t specify any direc-

tives so we can verify that all the values are inherited from the main server.

For all three resources we are going to use the same response handler, which will dump the values of
configuration objects that in its reach. As we will see that different resources will see see certain things
identically, while others differently. So here it the handler:

#file:MyApache2/CustomDirectivesTest.pm
#.

T

package MyApache2::CustomDirectivesTest;

use strict;

15 Feb 2014 91

6.4.1 Merging at Work

use warnings FATAL =>"all’;

use Apache2::RequestRec ();
use Apache2::RequestlO ();
use Apache2::ServerRec ();
use Apache2::ServerUtil ();
use Apache2::Module ();

use Apache2::Const -compile => qw(OK);

sub get_config {
Apache2::Module::get_config(MyApache2::CustomDirectives’, @_);

}

sub handler {
my ($r) = @_;
my %secs = ();

$r->content_type(‘text/plain’);

my $s = $r->server;
my $dir_cfg = get_config($s, $r->per_dir_config);
my $srv_cfg = get_config($s);

if ($s->is_virtual) {
$secs{"1: Main Server"} = get_config(Apache2::ServerUtil->server);
$secs{"2: Virtual Host"} = $srv_cfg;
$secs{"3: Location"} = $dir_cfg;
}
else {
$secs{"1: Main Server"} = $srv_cfg;
$secs{"2: Location"} = $dir_cfg;
}

$r->printf("Processing by %s.\n",

$s->is_virtual ? "virtual host" : "main server");

for my $sec (sort keys %secs) {
$r->print("\nSection $sec\n");
for my $k (sort keys %{ $secs{$Ssec}||{} }) {
my $v = exists $secs{$sec}->{$k}
? $secs{$sec}->{$k}
'UNSET,
$v="T. (join", ", map {qa{"$_"}} @$v) . T
if ref($v) eq '"ARRAY’;
$r->printf("%-10s : %s\n", $k, $v);
}
}

return Apache2::Const::OK;
}

1;
END__

92 15 Feb 2014

Apache Server Configuration Customization in Perl 6.4.1 Merging at Work

The handler is relatively simple. It retrieves the current resource (directory) and the server’s configuration
objects. If the server is a virtual host, it also retrieves the main server’'s configuration object. Once these
objects are retrieved, we simply dump the contents of these objects, so we can verify that our merging
worked correctly. Of course we nicely format the data that we print, taking a special care of array refer-
ences, which we know is the case with the kgy.ist, but we use a generic code, since Perl tells us when

a reference is a list.

It's a show time. First we issue a request to a resource residing in the main server:
% GET http://localhost:8002/custom_directives_test/
Processing by main server.

Section 1: Main Server
MyAppend : MainServer
MyList : ['MainServer"]
MyOverride : MainServer
MyPlus :5

Section 2: Location
MyAppend : MainServer
MyList : ['MainServer"]
MyOverride : MainServer
MyPlus :5

Since we didn’t have any directives in that resource’s configuration, we confirm that our merge worked
correctly and the directory configuration object contains the same data as its ancestor, the main server. In
this case the merge has simply inherited the values from its ancestor.

The next request is for the resource residing in the virtual host:
% GET http://localhost:8081/custom_directives_test/
Processing by virtual host.

Section 1: Main Server
MyAppend : MainServer
MyList :['MainServer"]
MyOverride : MainServer
MyPlus :5

Section 2: Virtual Host

MyAppend : MainServer VHost
MyList :['"MainServer", "VHost"]
MyOverride : VHost

MyPlus :7

Section 3: Location

MyAppend : MainServer VHost Dir
MyList : ['MainServer", "VHost", "Dir"]
MyOverride : Dir

MyPlus :10

15 Feb 2014 93

6.4.1 Merging at Work

That's where the real fun starts. We can see that the merge worked correctly in the virtual host, and so it
did inside the<Location> resource. It's easy to see th&yAppend andMyList are correct, the same

for MyOverride . ForMyPlus , we have to work harder and perform some math. Inside the virtual host
we have main(5)+vhost(2)=7, and inside the first resource vhost_merged(7)+resource(3)=10.

So far so good, the last request is made to the sub-resource of the resource we have requested previously:
% GET http://localhost:8081/custom_directives_test/subdir/
Processing by virtual host.

Section 1: Main Server
MyAppend : MainServer
MyList : ['MainServer"]
MyOverride : MainServer
MyPlus :5

Section 2: Virtual Host

MyAppend : MainServer VHost
MyList :['"MainServer", "VHost"]
MyOverride : VHost

MyPlus :7

Section 3: Location

MyAppend : MainServer VHost Dir SubDir
MyList :['MainServer", "VHost", "Dir", "SubDir"]
MyOverride : SubDir

MyPlus :11

No surprises here. By comparing the configuration sections and the outcome, it's clear that the merging is
correct for most directives. The only harder verification isMgPlus , all we need to do is to add 1 to 10,

which was the result we saw in the previous request, or to do it from scratch, summing up all the ancestors
of this sub-resource: 5+2+3+1=11.

6.4.1.1 Merging Entries Whose Values Are References

When merging entries whose values are references and not scalars, it's important to make a deep copy and
not a shallow copy, when the references gets copied. In our example we merged two references to lists, by
explicitly extracting the values of each list:

push @{ $mrg{3key} },
@{ $base->{3key}|[] }, @{ $add->{Skey}|] };

While seemingly the following snippet is doing the same:

$mrg{$key} = $base->{$key};
push @{ $mrg{skey} }, @{ $add->{$key}||[] };

it won't do what you expect if the same merge (with the s@bsse and$add arguments) is called

more than once, which is the case in certain cases. What happens in the latter implementation, is that the
first line makes botBmrg{$key} and$base->{$key} point to the same reference. When the second

line expands the®{ $mrg{$key} } , it also affects@{ $base->{$key} } . Therefore when the

94 15 Feb 2014

Apache Server Configuration Customization in Perl 6.4.1 Merging at Work

same merge is called second time,3hase argument is not the same anymore.

Certainly we could workaround this problem in the mod_perl core, by freezing the arguments before the
merge call and restoring them afterwards, but this will incur a performance hit. One simply has to remem-
ber that the arguments and the references they point to, should stay unmodified through the function call,
and then the right code can be supplied.

6.4.1.2 Merging Order Consequences

Sometimes the merging logic can be influenced by the order of merging. It's desirable that the logic will
work properly regardless of the merging order.

In Apache 1.3 the merging was happening in the following order:

(((base_srv -> vhost) -> section) -> subsection)

Whereas as of this writing Apache 2.0 performs:

((base_srv -> vhost) -> (section -> subsection))

A product of subsections merge (which happen during the request) is merged with the product of the
server and virtual host merge (which happens at the startup time). This change was done to improve the
configuration merging performance.

So for example, if you implement a directivlyExp which performs the exponential:
$mrg=$base**$add , and let’s say there directive is used four timeastipd.conf

MyExp 5
<VirtualHost _default_:8001>
MyExp 4
<Location /section>
MyExp 3
</Location>
<Location /section/subsection>
MyExp 2
</Location>

The merged configuration for a requbtp://localhost:8001/section/subseciaill see:

(5** 4) ** (3**2) =1.45519152283669e+25

under Apache 2.0, whereas under Apache 1.3 the result would be:

((5** 4) ** 3) ** 2 = 5.96046447753906e+16
which is not quite the same.

Chances are that your merging rules work identically, regardless of the merging order. But you should be
aware of this behavior.

15 Feb 2014 95

http://localhost:8001/section/subsection

6.5 Maintainers

6.5 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

6.6 Authors

e Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

96

15 Feb 2014

http://stason.org/
http://stason.org/

Writing mod_perl Handlers and Scripts 7 Writing mod_perl Handlers and Scripts

7 Writing mod_ perl Handlers and Scripts

15 Feb 2014 97

7.1 Description

7.1 Description

This chapter covers the mod_perl coding specifics, different from normal Perl coding. Most other perl
coding issues are covered in the perl manpages and rich literature.

7.2 Prerequisites

7.3 Where the Methods Live

mod_perl 2.0 has all its methods spread across many modules. In order to use these methods the modules
containing them have to be loaded first. If you don’t do that mod_perl will complain that it can’t find the
methods in question. The modW&dPerl::MethodLookup can be used to find out which modules

need to be used.

7.4 Techniques
7.4.1 Method Handlers

In addition to function handlers method handlers can be used. Method handlers are useful when you want
to write code that takes advantage of inheritance. To make the handler act as a method under mod_perl 2,
use thanethod attribute.

See the Pedttributesmanpage for details on the attributes syngeexi@oc attributes).

For example:

package Bird::Eagle;
@ISA = gw(Bird);

sub handler : method {
my ($class_or_object, $r) = @_;

-

sub new { bless {}, _ PACKAGE__}

and then register it as:

PerlResponseHandler Bird::Eagle

When mod_perl sees that the handler has a method attribute, it passes two arguments to it: the calling
object or a class, depending on how it was called, and the request object, as shown above.

If Class->method syntax is used for Berl*Handler , e.g.:

98 15 Feb 2014

Writing mod_perl Handlers and Scripts 7.4.2 Cleaning up

PerlResponseHandler Bird::Eagle->handler;
the:method attribute is not required.
In the preceding configuration example, tandler() method will be called as a class (static) method.

Also, you can use objects created at startup to call methods. For example:

<Perl>

use Bird::Eagle;

$Bird::Global::object = Bird::Eagle->new();
</Perl>

PerlResponseHandler $Bird::Global::object->handler

In this example, thdandler() method will be called as an instance method on the global object
$Bird::Global::object

7.4.2 Cleaning up

It's possible to arrange for cleanups to happen at the end of various phases. One canExé&Mlooks
to do the job, since thepe don't get exeduted until the interpreter quits, with an exception to the Registry
handlers.

Module authors needing to run cleanups after each HTTP request, shdati@@BeanupHandler |

Module authors needing to run cleanups at other times can always register a cleanup callback via
cleanup_register on the pool object of choice. Here are some examples of its usage:

To run something at the server shutdown and restart use a cleanup handler registenest ashut-
down_cleanup_register() in startup.pl

#PerlPostConfigRequire startup.pl
use Apache2::ServerUtil ();
use APR::Pool ();

warn "parent pid is $$\n";
Apache2::ServerUtil::server_shutdown_cleanup_register((\&cleanup);
sub cleanup { warn "server cleanup in $$\n" }

This is usually useful when some server-wide cleanup should be performed when the server is stopped or
restarted.

To run a cleanup at the end of each connection phase, assign a cleanup callback to the connection pool
object:

use Apache2::Connection ();
use APR::Pool ();

my $pool = $c->pool;

$pool->cleanup_register(\&my_cleanup);
sub my_cleanup{...}

15 Feb 2014 99

7.5 Goodies Toolkit

You can also create your own pool object, register a cleanup callback and it'll be called when the object is
destroyed:

use APR::Pool ();

{
my @args = 1..3;
my $pool = APR::Pool->new;
$pool->cleanup_register(\&cleanup, \@args);

}

sub cleanup {
my @args = @{ +shift };
warn "cleanup was called with args: @args";

}

In this example the cleanup callback gets called, viipaol goes out of scope and gets destroyed. This
is very similar to OESTROYnethod.

7.5 Goodies Toolkit

7.5.1 Environment Variables
mod_perl sets the following environment variables:

o $ENV{MOD_PERL} is set to the mod_perl version the server is running under. e.g.:

mod_perl/2.000002

If SENV{MOD_PERL}doesn’t exist, most likely you are not running under mod_perl.

die "I refuse to work without mod_perl!" unless exists SENV{MOD_PERL};

However to check which version is used it's better to use the following technique:

use mod_perl;
use constant MP2 => (exists $ENV{MOD_PERL_API_VERSION} and
$ENV{MOD_PERL_API|_VERSION} >=2);

die "l want mod_perl 2.0!" unless MP2;
mod_perl passes (exports) the following shell environment variables (if they are set) :
e PATH- Executables search path.
® TZ-Time Zone.

Any of these environment variables can be accesseéd kMY

100 15 Feb 2014

Writing mod_perl Handlers and Scripts 7.6 Code Developing Nuances

7.5.2 Threaded MPM or not?

If the code needs to behave differently depending on whether it's running under one of the threaded
MPMs, or not, the class methédgbache2::MPM->is_threaded can be used. For example:

use Apache2::MPM ();

if (Apache2::MPM->is_threaded) {
require APR::0OS;
my $tid = APR::OS::current_thread_id();
print "current thread id: $tid (pid: $$)";

}

else {
print "current process id: $$";

}

This code prints the current thread id if running under a threaded MPM, otherwise it prints the process id.

7.5.3 Writing MPM-specific Code

If you write a CPAN module it's a bad idea to write code that won’t run under all MPMs, and developers
should strive to write a code that works with all mpms. However it's perfectly fine to perform different
things under different mpms.

If you don’t develop CPAN modules, it's perfectly fine to develop your project to be run under a specific
MPM.

use Apache2::MPM ();
my $mpm = Ic Apache2::MPM->show;
if (3mpm eq 'prefork’) {

prefork-specific code

elsif ($mpm eq 'worker’) {
worker-specific code

elsif ($mpm eq 'winnt’) {

winnt-specific code

}

else {
others...

}

7.6 Code Developing Nuances

7.6.1 Auto-Reloading Modified Modules with Apache2::Reload

META: need to port Apache2::Reload notes from the guide here. but the gist is:

15 Feb 2014 101

7.7 Integration with Apache Issues

PerlIModule Apache2::Reload

PerlinitHandler Apache2::Reload
#PerlPreConnectionHandler Apache2::Reload
PerlSetVar ReloadAll Off

PerlSetVar ReloadModules "ModPerl::* Apache2::*"

Use:
PerlinitHandler Apache2::Reload
if you need to debug HTTP protocol handlers. Use:

PerlPreConnectionHandler Apache2::Reload
for any handlers.
Though notice that we have started to practice the following style in our modules:

package Apache2::Whatever;

use strict;
use warnings FATAL =>"all’;

FATAL =>all escalates all warnings into fatal errors. So wApache2::Whatever is modi-
fied and reloaded bypache2::Reload the request is aborted. Therefore if you follow this very
healthy style and want to ugg@ache2::Reload |, flex the strictness by changing it to:

use warnings FATAL =>all’;
no warnings 'redefine’;

but you probably still want to get tliedefinewarnings, but downgrade them to be non-fatal. The follow-
ing will do the trick:

use warnings FATAL =>"all’;
no warnings 'redefine’;
use warnings 'redefine’;

Perl 5.8.0 allows to do all this in one line:

use warnings FATAL =>"all', NONFATAL => 'redefine’;

but if your code may be used with older perl versions, you probably don’'t want to use this new functional-
ity.

Refer to thegerllexwarnmanpage for more information.

7.7 Integration with Apache Issues

In the following sections we discuss the specifics of Apache behavior relevant to mod_perl developers.

102 15 Feb 2014

Writing mod_perl Handlers and Scripts 7.7.1 HTTP Response Headers

7.7.1 HTTP Response Headers
7.7.1.1 Generating HTTP Response Headers

The best approach for generating HTTP response headers is by using the mod_perl APl. Some common
headers have dedicated methods, others are set by manipulatiegdiees out table directly.

For example to set tHeontent-typéheader you should cat->content_type

use Apache2::RequestRec ();
$r->content_type(text/html’);

Toset a custom headély-Headeryou should call:

use Apache2::RequestRec ();
use APR::Table;
$r->headers_out->set(My-Header => "SomeValue");

If you are inside a registry script you can still acces\ftache2::RequestRec object.

Howerever you can choose a slower method of generating headers by just printing them out before print-
ing any response. This will work onlyHferlOptions +ParseHeaders is in effect. For example:

print "Content-type: text/htmi\n";
print "My-Header: SomeValue\n";
print "\n";

This method is slower since Apache needs to parse the text to identify certain headers it needs to know
about. It also has several limitations which we will now discuss.

When using this approach you must make sure tha&8 TIEOUTilehandle is not set to flush the data after
each print (which is set by the value of a special perl vartglbjeHere we assume that STDOUT is the
currentlyselect() ed filehandle an@| affects it.

For example this code won’t work:

local $| = 1;

print "Content-type: text/htmi\n";
print "My-Header: SomeValue\n";
print "\n";

Having a true$| causes the first print() call to flush its data immediately, which is sent to the internal
HTTP header parser, which will fail since it won't see the termindiimg" . One solution is to make
sure that STDOUT won't flush immediately, like so:

local $| = 0;

print "Content-type: text/htmi\n";
print "My-Header: SomeValue\n";
print "\n";

15 Feb 2014 103

7.7.2 Sending HTTP Response Body

Notice that wdocal() ize that change, so it won't affect any other code.

If you send headers line by line and their total length is bigger than 8k, you will have the header parser
problem again, since mod_perl will flush data when the 8k buffer gets full. In which case the solution is
not to print the headers one by one, but to buffer them all in a variable and then print the whole set at once.

Notice that you don’t have any of these problems with mod_cgi, because it ignores any of the flush
attempts by Perl. mod_cgi simply opens a pipe to the external process and reads any output sent from that
process at once.

If you use$r to set headers as explained at the beginning of this section, you won’t encounter any of these
problems.

Finally, if you don’'t want Apache to send its own headers and you want to send your own set of headers
(non-parsed headers handlers) use®thrassbackwards method. Notice that registry handlers will
do that for you if the script’'s name start with tigh- prefix.

7.7.1.2 Forcing HTTP Response Headers Out

Apache 2.0 doesn’t provide a method to force HTTP response headers sending (what used to be done by
send_http_header() in Apache 1.3). HTTP response headers are sent as soon as the first bits of the
response body are seen by the special core output filter that generates these headers. When the response
handler sends the first chunks of body it may be cached by the mod_perl internal buffer or even by some

of the output filters. The response handler needs to flush the output in order to tell all the components
participating in the sending of the response to pass the data out.

For example if the handler needs to perform a relatively long-running operation (e.g. a slow db lookup)
and the client may timeout if it receives nothing right away, you may want to start the handler by setting
the Content-Typdieader, following by an immediate flush:

sub handler {
my $r = shift;
$r->content_type(text/html’);
$r->rflush; # send the headers out

$r->print(long_operation());
return Apache2::Const::OK;
}

If this doesn’t work, check whether you have configured any third-party output filters for the resource in
guestion| Improperly written filter may ignore the command to flush the data.

7.7.2 Sending HTTP Response Body

In mod_perl 2.0 a response body can be sent only during the response phase. Any attempts to do that in
the earlier phases will fail with an appropriate explanation logged in&rttbe log file.

104 15 Feb 2014

Writing mod_perl Handlers and Scripts 7.7.3 Using Signal Handlers

This happens due to the Apache 2.0 HTTP architecture specifics. One of the issues is that the HTTP
response filters are not setup before the response phase.

7.7.3 Using Signal Handlers

3rd party Apache 2 modules should avoid using code relying on signals. This is because typical signal use
is not thread-safe and modules which rely on signals may not work portably. Certain signals may still
work for non-threaded mpms. For examalarm() can be used under prefork MPM, but it won't work

on any other MPM. Moreover the Apache developers don’tq guarantee that the signals that currently
happen to work will continue to do so in the future Apache releases. So use them at your own risk.

It should be possible to rework the code using signals to use an alternative solution, which works under
threads. For example if you were usalgrm() to trap potentially long running 1/O, you can modify the

I/O logic for select/poll usage (or if you use APR 1I/O then set timeouts on the apr pipes or sockets). For
example, Apache 1.3 on Unix made blocking 1/0O calls and relied on the parent process to send the
SIGALRM signal to break it out of the I/O after a timeout expired. With Apache 2.0, APR support for
timeouts on I/O operations is used so that signals or other thread-unsafe mechanisms are not necessary.

CPU timeout handling is another example. It can be accomplished by modifying the computation logic to
explicitly check for the timeout at intervals.

Talking aboutalarm() under prefork mpm, POSIX signals seem to work, but require Perl 5.8.x+. For
example:

use POSIX qw(SIGALRM);
my $mask = POSIX::SigSet->new(SIGALRM);
my $action = POSIX::SigAction->new(sub { die "alarm" }, $mask);
my $oldaction = POSIX::SigAction->new();
POSIX::sigaction(SIGALRM, $action, $oldaction);
eval {

alarm 2;

sleep 10 # some real code should be here

alarm O;
5
POSIX::sigaction(SIGALRM, $oldaction); # restore original
warn "got alarm” if $@ and $@ =~ /alarm/;

For more details seg: http://search.cpan.org/dist/perl/ext/POSIX/POSIX.pod#POSIX::SigAction.

One could use th8SIG{ALRM} technique, working for 5.6.x+, but it worksly under DSO modperl
build. Moreover starting from 5.8.0 Perl delays signal delivery, making signals safe. This change may
break previously working code. For more information please see:

[http://search.cpan.org/dist/perl/pod/perl58delta.pod#Safe Signals and
[http:/7search.cpan.org/dist/perl/pod/perlipc.pod#Deferred Signals %28Safe Sighals%29.

For example if you had the alarm code:

15 Feb 2014 105

http://search.cpan.org/dist/perl/ext/POSIX/POSIX.pod#POSIX::SigAction
http://search.cpan.org/dist/perl/pod/perl58delta.pod#Safe_Signals
http://search.cpan.org/dist/perl/pod/perlipc.pod#Deferred_Signals_%28Safe_Signals%29

7.8 Perl Specifics in the mod_perl Environment

eval {
local $SIG{ALRM} = sub { die "alarm" };
alarm 3;
sleep 10; # in reality some real code should be here
alarm O;
h

die "the operation was aborted" if $@ and $@ =~ /alarm/;

It may not work anymore. Starting from 5.8.1 it's possible to circumvent the safeness of signals, by
setting:
$ENV{PERL_SIGNALS} = "unsafe";

as soon as you start your program (e.g. in the case of mod_perl in startup.pl). As of this writing, this
workaround fails on MacOSX, POSIX signals must be used instead.

For more information please refer to:

[http://search.cpan.org/dist/perl/pod/perl581delta.pod#Unsafe_signals_again_gvailable and
[http:/7search.cpan.org/dist/peri/pod/perirun.pod#PERL SIGNALS.

Though if you use perl 5.8.x+ it's preferrable to use the POSIX API technique explained earlier in this
section.

7.8 Perl Specifics in the mod_perl Environment

In the following sections we discuss the specifics of Perl behavior under mod_perl.

7.8.1 BEA N Blocks

Perl executeBEGIN blocks as soon as possible, at the time of compiling the code. The same is true under
mod_perl. However, since mod_perl normally only compiles scripts and modules once, either in the parent
server (at the server startup) or once per-child (on the first request using a ni@EGEY,blocks in that

code will only be run once. As tipeerimod manpage explains, oncB&GIN block has run, it is imme-

diately undefined. In the mod_perl environment, this meanBtE&iN blocks will not be run during the

response to an incoming request unless that request happens to be the one that causes the compilation of

the code, i.e. if it wasn't loaded yet.
BEGIN blocks in modules and files pulled in vizquire() oruse() will be executed:
® Only once, if pulled in by the parent process at the server startup.
® Once per each child process or Perl interpreter if not pulled in by the parent process.

® An additional time, once per each child process or Perl interpreter if the module is reloaded off disk
again viaApache2::Reload

e Unpredictable if you fiddle wit86INCyourself.

106 15 Feb 2014

http://search.cpan.org/dist/perl/pod/perl581delta.pod#Unsafe_signals_again_available
http://search.cpan.org/dist/perl/pod/perlrun.pod#PERL_SIGNALS

Writing mod_perl Handlers and Scripts 7.8.2 CHECK and INIT Blocks

The BEGIN blocks behavior is different ifModPerl::Registry and ModPerl::PerlRun
handlers, and their subclasses.

7.8.2 CHECK and| NI T Blocks

CHECKand INIT blocks run when the source code compilation is complete, but before the program
starts.CHECKcan mean "checkpoint" or "double-check” or even just "std{IT stands for "initializa-

tion". The difference is subtl€&HECKblocks are run just after the compilation edtlT just before the
runtime begins. (Hence the command-line perl option rulf@HECKblocks but notNIT blocks.)

Perl only calls these blocks durirgerl_parse() which mod_perl calls once at startup time. Under
threaded mpm, these blocks will be called oncéppeent perl interpreter startup | There-

fore CHECKand INIT blocks don't work after the server is started, for the same reason these code
samples don’t work:

% perl -e 'eval qq(CHECK { print "ok\n" })’
% perl -e 'eval qq(INIT { print "ok\n" })’

7.8.3 END Blocks

As theperlmod manpage explains, &NDblock is executed as late as possible, that is, when the inter-
preter exits. So for example mod_cgi will run BsIDblocks on each invocation, since on every invoca-
tion it starts a new interpreter and then Kkills it when the request processing is done.

In the mod_perl environment, the interpreter does not exit after serving a single request (unless it is
configured to do so) and hence it will runEBIDblocks only when it exits, which usually happens during

the server shutdown, but may also happen earlier than that (e.g. a process exits because it has served a
MaxRequestsPerChild number of requests).

mod_perl does make a special case for scripts running MutHrerl::Registry and friends.

The[Cleaning Up section explains how to deal with cleanups for non-Registry handlers.

ModPerl::Global API: special_list_register , special_list_call and
special_list_clear , internally used by registry handlers, can be used t&NDblocks at arbitrary
times.

7.8.4 Request-localized Globals

mod_perl 2.0 provides two types $étHandler handlersmodperl andperl-script . Remember
that theSetHandler directive is only relevant for the response phase handlers, it neither needed nor
affects non-response phases.

Under the handler:

15 Feb 2014 107

7.9 ModPerl::Registry Handlers Family

SetHandler perl-script

several special global Perl variables are saved before the handler is called and restored afterwards. This
includes%ENY@ING $/ , STDOUS $| andENDblocks arrayRL_endav).

Under:

SetHandler modperl

nothing is restored, so you should be especially careful to remember localize all special Perl variables so
the local changes won't affect other handlers.

7.85exit

In the normal Perl code exit() is used to stop the program flow and exit the Perl interpreter. However under
mod_perl we only want the stop the program flow without killing the Perl interpreter.

You should take no action if your code includes exit() calls and it's OK to continue using them. mod_perl
worries to override the exit() function with its own version which stops the program flow, and performs all
the necessary cleanups, but doesn'’t kill the server. This is done by overriding:

*CORE::GLOBAL::exit = \&ModPerl::Util::exit;
so if you mess up withCORE::GLOBAL::exit yourself you better know what you are doing.
You can still callCORE::exit to kill the interpreter, again if you know what you are doing.

One caveat is wheexit is called insideeval -- the ModPerl::Util::exit documentation explains how to
deal with this situation.

7.9 ModPer | : : Regi st ry Handlers Family
7.9.1 A Look Behind the Scenes

If you have a CGI scrigest.pl

#!/usr/bin/perl
print "Content-type: text/plain\n\n";
print "Hello";

a typical registry family handler turns it into something like:

package foo_bar_baz;
sub handler {
local $0 = "/full/path/to/test.pl”;
#line 1 test.pl
#!/usr/bin/perl
print "Content-type: text/plain\n\n";
print "Hello";

}

108 15 Feb 2014

Writing mod_perl Handlers and Scripts 7.10 Threads Coding Issues Under mod_perl

Turning it into an almost full-fledged mod_perl handler. The only difference is that it handles the return
status for you. (META: more details on return status needed.)

It then executes it as:

foo_bar_baz::handler($r);
passing th&r object as the only argument to tmendler() function.

Depending on the used registry handler the package is made of the file path, the uri or anything else.
Check the handler's documentation to learn which method is used.

7.9.2 Getting thébr Object

As explained in A Look Behind the Scehes $ineobject is always passed to the registry script's special
functionhandler as the first and the only argument, so you can get this object by aca@ssaigce:

my $r = shift;
print "Content-type: text/plain\n\n";
print "Hello";

is turned into:
sub handler {
my $r = shift;
print "Content-type: text/plain\n\n";
print "Hello";
}
behind the scenes. Now you can #iseto call various mod_perl methods, e.g. rewriting the script as:
my $r = shift;
$r->content_type(‘text/plain’);
$r->print();

If you are deep inside some code and can’t get to the entry point to reah,fgitou can use
Apache2->request

7.10 Threads Coding Issues Under mod_perl

The following sections discuss threading issues when running mod_perl under a threaded MPM.

7.10.1 Thread-environment Issues

The "only" thing you have to worry about your code is that it's thread-safe and that you don’t use func-
tions that affect all threads in the same process.

15 Feb 2014 109

7.11 Maintainers

Perl 5.8.0 itself is thread-safe. That means that operationguét®) , map() , chomp() ,=,/, +=, etc.
are thread-safe. Operations that involve system calls, may or may not be thread-safe. It all depends on
whether the underlying C libraries used by the perl functions are thread-safe.

For example the functiolocaltime() is not thread-safe when the implementatioastitime(3) is
not thread-safe. Other usually problematic functions inctedddir() , srand() , etc.

Another important issue that shouldn’'t be missed is what some people refeéhteaaislocality Certain
functions executed in a single thread affect the whole process and therefore all other threads running inside
that process. For example if yoadir() in one thread, all other thread now see the current working
directory of that thread thahdir() ’'ed to that directory. Other functions with similar effects include
umask() , chroot() , etc. Currently there is no cure for this problem. You have to find these functions

in your code and replace them with alternative solutions which don’t incur this problem.

For more information refer to theerlthrtut (http://perldoc.perl.org/perlthrtut.htpimanpage.

7.10.2 Deploying Threads

This is actually quite unrelated to mod_perl 2.0. You don’t have to know much about Perl threads, other
than[Thread-environment Isslies, to have your code properly work under threaded MPM mod_perl.

If you want to spawn your own threads, first of all study how the new ithreads Perl model works, by
reading the perlthrtut, threads (http://search.cpan.org/search?query=threjpdand threads::shared
(nttp://search.cpan.org/search?query=threads%3A%3Asharethpages.

Artur Bergman wrote an article which explains how to port pure Perl modules to work properly with Perl
ithreads. Issues witlthdir() and other functions that rely on shared process’ datastructures are
discussedhttp://www.perl.com/Ipt/a/2002/06/11/threads.html

7.10.3 Shared Variables

Global variables are only global to the interpreter in which they are created. Other interpreters from other
threads can’'t access that variable. Though it's possible to make existing variables shared between several
threads running in the same process by using the furittieads::shared::share() . New vari-

ables can be shared by using #iraredattribute when creating them. This feature is documented in the
threads::sharedhttp://search.cpan.org/search?query=threads%3A%3AsHharethpage.

7.11 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

110 15 Feb 2014

http://perldoc.perl.org/perlthrtut.html
http://search.cpan.org/search?query=threads
http://search.cpan.org/search?query=threads%3A%3Ashared
http://www.perl.com/lpt/a/2002/06/11/threads.html
http://search.cpan.org/search?query=threads%3A%3Ashared

Writing mod_perl Handlers and Scripts 7.12 Authors

7.12 Authors

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 111

8 Cooking Recipes

8 Cooking Recipes

112 15 Feb 2014

Cooking Recipes 8.1 Description

8.1 Description
As the chapter’s title implies, here you will find ready-to-go mod_perl 2.0 recipes.

If you know a useful recipe, not yet listed here, please post it to the mod_perl mailing list and we will add
it here.

8.2 Sending Cookies in REDIRECT Response
(ModPerl::Reqistry)

use CGl::Cookie ();

use Apache2::RequestRec ();

use APR::Table ();

use Apache2::Const -compile => qw(REDIRECT);

my $location = "http://example.com/final_destination/";

sub handler {
my $r = shift;

my $cookie = CGl::Cookie->new(-name =>'mod_perl’,
-value =>'awesome’);

$r->err_headers_out->add('Set-Cookie’ => $cookie);
$r->headers_out->set(Location => $location);
$r->status(Apache2::Const::REDIRECT);

return Apache2::Const::REDIRECT;

=~

8.3 Sending Cookies in REDIRECT Response (handlers)

use CGl::Cookie ();

use Apache2::RequestRec ();

use APR::Table ();

use Apache2::Const -compile => qw(REDIRECT);

my $location = "http://example.com/final_destination/";

sub handler {
my $r = shift;

my $cookie = CGI::Cookie->new(-name =>'mod_perl,
-value =>'awesome’);

$r->err_headers_out->add('Set-Cookie’ => $cookie);
$r->headers_out->set(Location => $location);

15 Feb 2014 113

8.4 Sending Cookies Using libapreq2

return Apache2::Const::REDIRECT;
}
1;

note that this example differs from the Registry example only in that it does not attempt to fiddle with
$r->status() - ModPerl::Registry uses$r->status() as a hack, but handlers should never
manipulate the status field in the request record.

8.4 Sending Cookies Using libapreq2

use Apache2::Request ();
use Apache2::RequestRec ();
use Apache2::Const -compile => qw(OK);

use APR::Table ();
use APR::Request::Cookie ();

sub handler {
my $r = shift;
my $req = $r->pool();
my $cookie = APR::Request::Cookie->new($req, name => "foo", value => time(), path => '/cookie’);

$r->err_headers_out->add('Set-Cookie’ => $cookie->as_string);

$r->content_type("text/plain");
$r->print("Testing....");

return Apache2::Const::OK;

8.5 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

8.6 Authors

® Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

114 15 Feb 2014

http://stason.org/
http://stason.org/

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9 Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0

9 Porting Apache:: Perl Modules from mod_perl 1.0
to 2.0

15 Feb 2014 115

9.1 Description

9.1 Description

This document describes the various options for porting a mod_perl 1.0 Apache module so that it runs on a
Apache 2.0 / mod_perl 2.0 server. It's also helpful to those who start developing mod_perl 2.0 handlers.

Developers who need to port modules using XS code, should also read about porting Apache:: XS
modules.

There is also: Porting CPAN modules to mod_perl 2.0 Status.

9.2 Introduction

In the vast majority of cases, a perl Apache module that runs under mod_perl In@twilh under
mod_perl 2.0 without at least some degree of modification.

Even a very simple module that does not in itself need any changes will at least need the mod_perl 2.0
Apache modules loaded, because in mod_perl 2.0 basic functionality, such as access to the request object
and returning an HTTP status, is not found where, or implemented how it used to be in mod_perl 1.0.

Most real-life modules will in fact need to deal with the following changes:
® methods that have moved to a different (new) package
® methods that must be called differently (due to changed prototypes)
® methods that have ceased to exist (functionality provided in some other way)

Do not be alarmed!One way to deal with all of these issues is to load\theche2::compat compati-

bility layer bundled with mod_perl 2.0. This magic spell will make almost any 1.0 module run under 2.0
without further changes. It is by no means the solution for every case, however, so please read carefully
the following discussion of this and other options.

There are three basic options for porting. Let’s take a quick look at each one and then discuss each in more
detail.

1. Run the module on 2.0 undeApache?2: : conpat with no further changes

As we have said mod_perl 2.0 ships with a moddgche2::compat , that provides a complete
drop-in compatibility layer for 1.0 module&pache2::compat does the following:

® | oads all the mod_perl 2.0 Apache2:: modules
® Adjusts method calls where the prototype has changed

® Provides Perl implementation for methods that no longer exist in 2.0

116 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.3 Using Apache2::porting

The drawback to usingpache2::compat is the performance hit, which can be significant.

Authors of CPAN and other publicly distributed modules should noApsehe2::compat since
this forces its use in environments where the administrator may have chosen to optimize memory use
by making all code run natively under 2.0.

2. Modify the module to run only under 2.0

If you are not interested in providing backwards compatibility with mod_perl 1.0, or if you plan to
leave your 1.0 module in place and develop a new version compatible with 2.0, you will need to
make changes to your code. How significant or widespread the changes are depends largely of course
on your existing code.

Several sections of this document provide detailed information on how to rewrite your code for
mod_perl 2.0 Several tools are provided to help you, and it should be a relatively painless task and
one that you only have to do once.

3. Modify the module so that it runs under both 1.0 and 2.0

You need to do this if you want to keep the same version number for your module, or if you distribute
your module on CPAN and want to maintain and release just one codebase.

This is a relatively simple enhancement of option (2) above. The module tests to see which version of
mod_perl is in use and then executes the appropriate method call.

The following sections provide more detailed information and instructions for each of these three porting
strategies.

9.3 UsingApache?2: : porting

META: to be written. this is a new package which makes chunks of this doc simpler. for now see the
Apache2::porting manpage.

9.4 Using theApache?2: : conpat Layer

TheApache2::compat module tries to hide the changes in API prototypes between version 1.0 and 2.0
of mod_perl, and implements "virtual methods" for the methods and functions that actually no longer
exist.

Apache2::compat is extremely easy to use. Either add at the very beginning of startup.pl:

use Apache2::compat;

or add to httpd.conf:

15 Feb 2014 117

9.5 Porting a Perl Module to Run under mod_perl 2.0

PerIModule Apache2::compat
That'’s all there is to it. Now you can run your 1.0 module unchanged.

Remember, however, that usiAgache2::compat will make your module run slower. It can create a
larger memory footprint than you need and it implements functionality in pure Perl that is provided in
much faster XS in mod_perl 1.0 as well as in 2.0. This module was really designed to assist in the transi-
tion from 1.0 to 2.0. Generally you will be better off if you port your code to use the mod_perl 2.0 API.

It's also especially important to repeat ti@AN module developers are requested not
to use this module in their code , since this takes the control over performance away from
users.

9.5 Porting a Perl Module to Run under mod_perl 2.0

Note: API changes are listed in the mod perl 1.0 backward compatibility do¢ument.

The following sections will guide you through the steps of porting your modules to mod_perl 2.0.

9.5.1 UsingvbdPer | : : Met hodLookup to Discover Which
mod_perl 2.0 Modules Need to Be Loaded

It would certainly be nice to have our mod_perl 1.0 code run on the mod_perl 2.0 server unmodified. So
first of all, try your luck and test the code.

It's almost certain that your code won’t work when you try, however, because mod_perl 2.0 splits func-
tionality across many more modules than version 1.0 did, and you have to load these modules before the
methods that live in them can be used. So the first step is to figure out which these modules are and
use() them.

The ModPerl::MethodLookup module provided with mod_perl 2.0 allows you to find out which
module contains the functionality you are looking for. Simply provide it with the name of the mod_perl
1.0 method that has moved to a new module, and it will tell you what the module is.

For example, let's say we have a mod_perl 1.0 code snippet:

$r->content_type(text/plain’);
$r->print("Hello cruel world!");

If we run this, mod_perl 2.0 will complain that the metloodtent_type() can’t be found. So we use
ModPerl::MethodLookup to figure out which module provides this method. We can just run this
from the command line:

% perl -MModPerl::MethodLookup -e print_method content_type

118 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.1 Using ModPerl::MethodLookup to Discover Which mod_perl 2.0 Modules Need to Be Loaded

This prints:

to use method 'content_type’ add:
use Apache2::RequestRec ();

We do what it says and add thise() statement to our code, restart our server (unless we're using
Apache2::Reload), and mod_perl will no longer complain about this particular method.

Since you may need to use this technique quite often you may waefite an alias . Once
defined the last command line lookup can be accomplished with:

% lookup content_type

ModPerl::MethodLookup also provides helper functions for findinghich methods are
defined in a given module , or which methods can be invoked on a given
object

9.5.1.1 Handling Methods Existing In More Than One Package

Some methods exists in several classes. For example this is the case pnifithe method. We know
the drill:

% lookup print
This prints:

There is more than one class with method "print’
try one of:

use Apache2::RequestlO ();

use Apache2::Filter ();

So there is more than one package that has this method. Since we know that weiat(the method
with the$r object, it must be th&pache2::RequestlO module that we are after. Indeed, loading this
module solves the problem.

9.5.1.2 UsingvbdPer | : : Met hodLookup Programmatically

The issue of picking the right module, when more than one matches, can be resolved when using
ModPerl::MethodLookup programmatically -lookup_method accepts an object as an optional
second argument, which is used if there is more than one module that contains the method in question.
ModPerl::MethodLookup knows thatApache2::RequestlO and andApache2::Filter

expect an object of typgpache2::RequestRec and typeApache2::Filter respectively. So in a
program running under mod_perl we can call:

ModPerl::MethodLookup::lookup_method(print’, $r);

Now only one module will be matched.

15 Feb 2014 119

9.5.2 Handling Missing and Modified mod_perl 1.0 Methods and Functions

This functionality can be used AUTOLOADfor example, although most users will not have a need for
this robust of solution.

9.5.1.3 Pre-loading All mod_perl 2.0 Modules

Now if you use a wide range of methods and functions from the mod_perl 1.0 API, the process of finding
all the modules that need to be loaded can be quite frustrating. In this case you may find the function
preload_all_modules() to be the right tool for you. This function preloaalé mod_perl 2.0
modules, implementing their APl in XS.

While useful for testing and development, it is not recommended to use this function in production
systems. Before going into production you should remove the call to this function and load only the
modules that are used, in order to save memory.

CPAN module developers shouttbt be tempted to call this function from their modules, because it
prevents the user of their module from optimizing her system’s memory usage.

9.5.2 Handling Missing and Modified mod_perl 1.0 Methods and
Functions

The mod_perl 2.0 APl is modeled even more closely upon the Apache API than was mod_perl version 1.0.
Just as the Apache 2.0 API is substantially different from that of Apache 1.0, therefore, the mod_perl 2.0
API is quite different from that of mod_perl 1.0. Unfortunately, this means that certain method calls and
functions that were present in mod_perl version 1.0 are missing or modified in mod_perl 2.0.

If mod_perl 2.0 tells you that some method is missing and it can’'t be found|using ModPerl::Method-
[Cookug, it's most likely because the method doesn't exist in the mod_perl 2.0 API. It's also possible that
the method does still exist, but nevertheless it doesn’t work, since its usage has changed (e.g. its prototype
has changed, or it requires different arguments, etc.).

In either of these cases, refet to the backwards compatibility dogument for an exhaustive list of API calls
that have been modified or removed.

9.5.2.1 Methods that No Longer Exist

Some methods that existed in mod_perl 1.0 simply do not exist anywhere in version 2.0 and you must
therefore call a different method o methods to get the functionality you want.

For example, suppose we have a mod_perl 1.0 code snippet:

$r->log_reason("Couldn’t open the session file: $@");

If we try to run this under mod_perl 2.0 it will complain about the cdbbgoreason() . But when we
useModPerl::MethodLookup to see which module to load in order to call that method, nothing is
found:

120 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.3 Requiring a specific mod_perl version.

% perl -MModPerl::MethodLookup -le \
"print((ModPerl::MethodLookup::lookup_method(shift))[0])’ \
log_reason

This prints:

don’t know anything about method 'log_reason’

Looks like we are calling a non-existent method! Our next step is to refer to the backwards compatibility
[documerit, wherein we find that as we suspected, the mithoctason() no longer exists, and that
[instead we should use the other standard logging functions providedAyyablee2::Log module.

9.5.2.2 Methods Whose Usage Has Been Modified

Some methods still exist, but their usage has been modified, and your code must call them in the new
fashion or it will generate an error. Most often the method call requires new or different arguments.

For example, say our mod_perl 1.0 code said:
$parsed_uri = Apache2::URI->parse($r, $r->uri);

This code causes mod_perl 2.0 to complain first about not being able to load the paesle¢d via the
package Apache2::URI. We use the tools described above to discover that the package containing our
method has moved and change our code to load arsRReURI :

$parsed_uri = APR::URI->parse($r, $r->uri);
But we still get an error. It's a little cryptic, but it gets the point across:

p is not of type APR::Pool at /path/to/OurModule.pm line 9.

What this is telling us is that the methparse requires an APR::Pool object as its first argument. (Some
methods whose usage has changed emit more helpful error messages prefixed with "Usage: ...") So we
change our code to:

$parsed_uri = APR::URI->parse($r->pool, $r->uri);

and all is well in the world again.

9.5.3 Requiring a specific mod_perl version.

To require a module to run only under 2.0, simply add:

use mod_perl 2.0;

META: In fact, before 2.0 is released you really have to say:

use mod_perl 1.99;

15 Feb 2014 121

9.5.4 Should the Module Name Be Changed?

And you can even require a specific version (for example when a certain API has been added only starting
from that version). For example to require version 1.99_08, you can say:

use mod_perl 1.9908;

9.5.4 Should the Module Name Be Changed?

If it is not possible to make your code run under both mod_perl versions (see below), you will have to
maintain two separate versions of your own code. While you can change the name of the module for the
new version, it's best to try to preserve the name and use some workarounds.

META: need to discuss this more.

9.5.5 UsingApache?2: : conpat As a Tutorial

Even if you have followed the recommendation and eschewed use Apdlcbe2::compat module,

you may find it useful to learn how the API has been changed and how to modify your own code. Simply
look at theApache2::compat source code and see how the functionality should be implemented in
mod_perl 2.0.

For example, mod_perl 2.0 doesn't provide Apache->gensym method. As we can see if we look at

the Apache2/compat.pm source, the functionality is now available via the core Perl mdiriebol

and itsgensym() function. (Since mod_perl 2.0 works only with Perl versions 5.6 and higher, and
Symbol.pm is included in the core Perl distribution since version 5.6.0, there was no reason to keep
providingApache->gensym .)

So if the original code looked like:

my $fh = Apache->gensym;
open $fh, $file or die "Can’t open $file: $!";

in order to port it mod_perl 2.0 we can write:

my $fh = Symbol::gensym;
open $fh, $file or die "Can’t open $file: $!";

Or we can even skip loadirf@mbol.pm , since under Perl version 5.6 and higher we can just do:

open my $fh, $file or die "Can’t open $file: $!";

9.5.6 HowApache: : MP3 was Ported to mod_perl 2.0

Apache::MP3 is an elaborate application that uses a lot of mod_perl API. After porting it, | have real-
ized that if you go through the notes or even better try to do it by yourself, referring to the notes only when
in trouble, you will most likely be able to port any other mod_perl 1.0 module to run under mod_perl 2.0.
So here the log of what | have done while doing the porting.

122 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

Please notice that this tutorial should be considered as-is and I'm not claiming that | have got everything
polished, so if you still find problems, that's absolutely OK. What's important is to try to learn from the
process, so you can attack other modules on your own.

I've started to work withApache::MP3 version 3.03 which you can retrieve from Lincoln’s CPAN
directory: [http://search.cpan.org/CPAN/authors/id/L/LD/LDS/Apache-MP3-3.03]tar.gz Even though by
the time you'll read this there will be newer versions available it's important that you use the same version
as a starting point, since if you don’t, the notes below won’t make much sense.

9.5.6.1 Preparations

First of all, | scratched most of mimgtpd.confandstartup.plleaving the bare minimum to get mod_perl
started. This is needed to ensure that once I've completed the porting, the module will work correct on
other users systems. For example if Imitypd.confandstartup.plwere loading some other modules, which

in turn may load modules that a to-be-ported module may rely on, the ported module may work for me,
but once released, it may not work for others. It's the best to create atipeliconfwhen doing the
porting putting only the required bits of configuration into it.

9.5.6.1.1 httpd.conf

Next, | configure thé\pache2::Reload module, so we don't have to constantly restart the server after
we modifyApache::MP3 . In order to do that add tdtpd.conf

PerlIModule Apache2::Reload

PerlinitHandler Apache2::Reload

PerlSetVar ReloadAll Off

PerlSetVar ReloadModules "ModPerl::* Apache2::*"
PerlSetVar ReloadConstantRedefineWarnings Off

You can refer tdhe Apache2::Reload manpage for more information if you aren’t familiar with
this module. The part:

PerlSetVar ReloadAll Off
PerlSetVar ReloadModules "ModPerl::* Apache::*"

tells Apache2::Reload to monitor only modules in thdodPerl:: andApache:: namespaces. So
Apache::MP3 will be monitored. If your module is namé&ao::Bar , make sure to include the right
pattern for thdReloadModules directive. Alternatively simply have:

PerlSetVar ReloadAll On

which will monitor all modules i®INC but will be a bit slower, as it'll have &tat(3) many more
modules on each request.

Finally, Apache::MP3 uses constant subroutines. Because of that you will get lots of warnings every
time the module is modified, which | wanted to avoid. | can safely shut those warnings off, since I’'m not
going to change those constants. Therefore I've used the setting

15 Feb 2014 123

http://search.cpan.org/CPAN/authors/id/L/LD/LDS/Apache-MP3-3.03.tar.gz

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

PerlSetVar ReloadConstantRedefineWarnings Off

If you do change those constants, refer to the sectidtetmadConstantRedefineWarnings

Next | configuredApache::MP3 . In my case I've followed th&pache::MP3 documentation, created
a directorymp3/under the server document root and added the corresponding direchittesl twonf

Now my httpd.conflooked like this:
#file:httpd.conf

Listen 127.0.0.1:8002
#... standard Apache configuration bits omitted ...

LoadModule perl_module modules/mod_perl.so
PerlSwitches -wT

PerlRequire "/home/httpd/2.0/perl/startup.pl”
PerIModule Apache2::Reload

PerlinitHandler Apache2::Reload
PerlSetVar ReloadAll Off

PerlSetVar ReloadModules "ModPerl::* Apache::*"

PerlSetVar ReloadConstantRedefineWarnings Off

AddType audio/mpeg mp3 MP3
AddType audio/playlist m3u M3U
AddType audio/x-scpls pls PLS
AddType application/x-ogg ogg OGG
<Location /mp3>
SetHandler perl-script
PerlResponseHandler Apache::MP3
PerlSetVar Playlistimage playlist.gif
PerlSetVar StreamBase http://localhost:8002
PerlSetVar BaseDir /mp3
</Location>

9.5.6.1.2 startup.pl

Since chances are that no mod_perl 1.0 module will work out of box without at least preloading some

modules, I've enabled th&pache2::compat
#file:startup.pl

use lib gw(/homef/httpd/2.0/perl);
use Apache2::compat;

9.5.6.1.3 Apache/MP3.pm

module. Now mystartup.pllooked like this:

Before | even started portidgpache::MP3 , I've added the warnings pragmaApache/MP3.pnfwhich
wasn’t there because mod_perl 1.0 had to work with Perl versions prior to 5.6.0, which is when the

warnings pragma was added):

124

15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

#file:apache_mp3_prep.diff

--- Apache/MP3.pm.orig 2003-06-03 18:44:21.000000000 +1000
+++ Apache/MP3.pm 2003-06-03 18:44:47.000000000 +1000
@@ -42+450@@

use strict;

+use warnings;

+no warnings 'redefine’; # XXX: remove when done with porting
+

From now on, I'm going to use unified diffs which you can apply ugaigh(1) . Though you may
have to refer to its manpage on your platform since the usage flags may vary. On linux I'd apply the above
patch as:

% cd ~/perl/blead-ithread/lib/site_perl/5.9.0/
% patch -p0 < apache_mp3_prep.diff

(note: I've produced the above patch and one more belowdiffittul , to avoid the RCS Id tag geting
into this document. Normally | produce diffs wilff -u which uses the default context of 3.)

assuming thapache/MP3.pnis located in the directory/perl/blead-ithread/lib/site_perl/5.9.0/

I've enabled thevarnings pragma even though | did have warnings turned globatjpd.confwith:

PerlSwitches -wT

it's possible that some badly written module has done:
$"W = 0;

without localizing the change, affecting other code. Also notice thatathemode was enabled from
httpd.conf something that you shouldn’t forget to do.

| have also told thevarnings pragma not to complain about redefined subs via:

no warnings 'redefine’; # XXX: remove when done with porting
| will remove that code, once porting is completed.

At this point | was ready to start the porting process and | have started the server.

% hup2

I'm using the following aliases to save typing:

alias err2 "tail -f ~/httpd/prefork/logs/error_log"
alias acc2 "tail -f ~/httpd/prefork/logs/access_log"
alias stop2 "~/httpd/prefork/bin/apachect! stop”
alias start2 "~/httpd/prefork/bin/apachectl start"

alias restart2 "~/httpd/prefork/bin/apachectl restart"
alias graceful2 "~/httpd/prefork/bin/apachectl graceful”
alias hup2 "stop2; sleep 3; start2; err2"

15 Feb 2014 125

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

(I also have a similar set of aliases for mod_perl 1.0)

9.5.6.2 Porting withApache2: : conpat

| have configured my server to listen on port 8002, so | issue a réquest http://localhost:8002/mp3/ in one
console:

% lynx --dump http://localhost:8002/mp3/

keeping thesrror_log open in the other:

% err2

which expands to:

% tall -f ~/httpd/prefork/logs/error_log

When the request is issued, #reor_log file tells me:

[Thu Jun 05 15:29:45 2003] [error] [client 127.0.0.1]
Usage: Apache2::RequestRec::new(classname, c, base_pool=NULL)
at .../Apache/MP3.pm line 60.

Looking at the code:

58: sub handler ($$) {
59: my $class = shift;
60: my $obj = $class->new(@_) or die "Can’t create object: $!";

The problem is that handler wasn't invoked as method, butbhagassed to it (we can tell because
new() was invoked asApache2::RequestRec::new() , Whereas it should have been
Apache::MP3::new() . Why Apache::MP3wasn't passed as the first argument? | do to the modl_perl
[1.0 backward compatibility document and find that method handlers are now marked usimgthtbed
subroutine attribute. So | modify the code:

--- Apache/MP3.pm.0 2003-06-05 15:29:19.000000000 +1000
+++ Apache/MP3.pm 2003-06-05 15:38:41.000000000 +1000
@@ -55,7 +55,7 @@

my $NO = "A(nolfalse)$’; # regular expression

my $YES = "(yes|true)$’; # regular expression

-sub handler ($$) {

+sub handler : method {
my $class = shift;
my $obj = $class->new(@_) or die "Can’t create object: $!";
return $obj->run();

and issue the request again (no server restart needed).

This time we get a bunch of looping redirect responses, due to a bug in mod_dir which kicks in to handle
the existing dir and messing up wii->path_info keeping it empty at all times. | thought | could

work around this by not having the same directory and location setting, e.g. by moving the location to be
/songsiwhile keeping the physical directory with mp3 filest&ocumentRoot/mp3but Apache::MP3

126 15 Feb 2014

http://localhost:8002/mp3/

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

won't let you do that. So a solution suggested by Justin Erenkrantz is to simply shortcut that piece of code
with:

--- Apache/MP3.pm.1 2003-06-06 14:50:59.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 14:51:11.000000000 +1000
@@ -253,7 +253,7 @@

my $self = shift;

my $dir = shift;

- unless ($self->r->path_info){

+ unless ($self->r->path_info eq "){
#lssue an external redirect if the dir isn’t tailed with a '/’
my $uri = $self->r->uri;
my $query = $self->r->args;

which is equivalent to removing this code, until the bug is fixed (it was still there as of Apache 2.0.46).
But the module still works without this code, because if you issue a requegb3g¢w/o trailing slash)

mod_dir, will do the redirect for you, replacing the code that we just removed. In any case this got me past
this problem.

Since | have turned on the warnings pragma now | was getting loadsndfalized valuewarnings from
$r->dir_config() whose return value were used without checking whether they are defined or not.
But you'd get them with mod_perl 1.0 as well, so they are just an example of not-so clean code, not really
a relevant obstacle in my pursuit to port this module to mod_perl 2.0. Unfortunately they were cluttering
the log file so | had to fix them. I've defined several convenience functions:

sub get_config {
my $val = shift->r->dir_config(shift);
return defined $val ? $val : 7;

}

sub config_yes { shift->get_config(shift) !~ /$YES/oi; }
sub config_no { shift->get_config(shift) !~ /$NO/oi; }

and replaced them as you can see in this patcte/apache_mp3_2.diff

--- Apache/MP3.pm.2 2003-06-06 15:17:22.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 15:16:21.000000000 +1000
@@ -55,6 +55,14 @@

my $NO = "~(no|false)$’; # regular expression

my $YES = "?(yes|true)$’; # regular expression

+sub get_config {
+ my $val = shift->r->dir_config(shift);
+ return defined $val ? $val . ”;
+
+
+sub config_yes { shift->get_config(shift) !~ /$YES/oi; }
+sub config_no { shift->get_config(shift) !~ /$NO/oi; }
+
sub handler : method {
my $class = shift;
my $obj = $class->new(@_) or die "Can't create object: $!";
@@ -70,7 +78,7 @@

15 Feb 2014 127

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

my @lang_tags;
push @lang_tags,split /,\s+/,$r->header_in('Accept-language’)
if $r->header_in('Accept-language’);
- push @lang_tags,$r->dir_config('DefaultLanguage’) || 'en-US’;
+ push @lang_tags,$new->get_config('DefaultLanguage’) || 'en-US’;

$new->{Ih’} ||=
Apache::MP3::L10N->get_handle(@lang_tags)
@@ -343,7 +351,7 @@
my $file = $subr->filename;
my $type = $subr->content_type;
my $data = $self->fetch_info($file,$type);
- my $format = $self->r->dir_config('DescriptionFormat’);
+ my $format = $self->get_config('DescriptionFormat’);
if ($format) {
$r->printC#EXTINF:’ , $data->{seconds}, *");
(my $description = $format) =~ s{%([atfgincrdmsqS%])}
@@ -1204,7 +1212,7 @@
get fields to display in list of MP3 files
sub fields {
my $self = shift;
- my @f = split \W+/,$self->r->dir_config('Fields’);
+ my @f = split \W+/,$self->get_config('Fields’);
return map {Ic $_ } @f if @f; # lower case
return gw(title artist duration bitrate); # default

}

@@ -1340,7 +1348,7 @@

sub get_dir {
my $self = shift;
my ($config,$default) = @_;

- my $dir = $self->r->dir_config($config) || $default;

+ my $dir = $self->get_config($config) || $default;
return $dir if $dir =~ m!"/!; # looks like a path
return $dir if $dir =~ m!"™\w+://!; # looks like a URL
return $self->default_dir . '/’ . $dir;

@@ -1348,22 +1356,22 @@

return true if downloads are allowed from this directory
sub download_ok {

- shift->r->dir_config('AllowDownload’) !~ /$NO/oi;

+ shift->config_no('AllowDownload’);

}

return true if streaming is allowed from this directory
sub stream_ok {

- shift->r->dir_config(AllowStream’) !~ /$NO/oi;

+ shift->config_no('AllowStream’);

}

return true if playing locally is allowed

sub playlocal_ok {

- shift->r->dir_config('AllowPlayLocally’) =~ /$YES/oi;
+ shift->config_yes('AllowPlayLocally’);

}

return true if we should check that the client can accomodate streaming
sub check_stream_client {

128 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

- shift->r->dir_config('CheckStreamClient’) =~ /$YES/oi;
+ shift->config_yes('CheckStreamClient’);

}

return true if client can stream
@@ -1378,48 +1386,48 @@

whether to read info for each MP3 file (might take a long time)
sub read_mp3_info {

- shift->r->dir_config(ReadMP3Info’) !~ /$NO/oi;

+ shift->config_no(ReadMP3Info’);

}

whether to time out streams

sub stream_timeout {

- shift->r->dir_config('StreamTimeout’) || O;
+ shift->get_config('StreamTimeout’) || O;

}

how long an album list is considered so long we should put buttons
at the top as well as the bottom

-sub file_list_is_long { shift->r->dir_config('LongList’) || 10 }

+sub file_list_is_long { shift->get_config('LongList’) || 10 }

sub home_label {
my $self = shift;
- my $home = $self->r->dir_config(HomeLabel’) ||
+ my $home = $self->get_config(HomeLabel’) ||
$self->x('Home”);
return Ic($home) eq 'hostname’ ? $self->r->hostname : $home;

}

sub path_style { # style for the path to parent directories
- le(shift->r->dir_config('PathStyle")) || 'staircase’;

+ lIc(shift->get_config('PathStyle")) || 'staircase’;

}

where is our cache directory (if any)
sub cache_dir {
my $self = shift;
- return unless my $dir = $self->r->dir_config('CacheDir’);
+ return unless my $dir = $self->get_config('CacheDir’);
return $self->r->server_root_relative($dir);

}

columns to display

-sub subdir_columns {shift->r->dir_config('SubdirColumns’) || SUBDIRCOLUMNS }
-sub playlist_columns {shift->r->dir_config('PlaylistColumns’) || PLAYLISTCOLUMNS }
+sub subdir_columns {shift->get_config('SubdirColumns’) || SUBDIRCOLUMNS }
+sub playlist_columns {shift->get_config('PlaylistColumns’) || PLAYLISTCOLUMNS }

various configuration variables

-sub default_dir { shift->r->dir_config('BaseDir’) || BASE_DIR }
+sub default_dir { shift->get_config('BaseDir’) || BASE_DIR }
sub stylesheet { shift->get_dir('Stylesheet’, STYLESHEET) }
sub parent_icon { shift->get_dir(Parenticon’,PARENTICON) }
sub cd_list_icon {

15 Feb 2014 129

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

my $self = shift;
my $subdir = shift;
- my $image = $self->r->dir_config('CoverlmageSmall’) || COVERIMAGESMALL;
+ my $image = $self->get_config(CoverlimageSmall’) || COVERIMAGESMALL,;
my $directory_specific_icon = $self->r->filename."/$subdir/$image";
return -e $directory_specific_icon
? join ("/",$self->r->uri,escape($subdir),$image)
@@ -1427,7 +1435,7 @@
}
sub playlist_icon {
my $self = shift;
- my $image = $self->r->dir_config('Playlistimage’) || PLAYLISTIMAGE;
+ my $image = $self->get_config('Playlistimage’) || PLAYLISTIMAGE;
my $directory_specific_icon = $self->r->filename."/$image";
warn $directory_specific_icon;
return -e $directory_specific_icon
@@ -1444,7 +1452,7 @@
sub cd_icon {
my $self = shift;
my $dir = shift;
- my $coverimg = $self->r->dir_config(Coverimage’) || COVERIMAGE;
+ my $coverimg = $self->get_config('Coverlmage’) || COVERIMAGE;
if (-e "$dir/$coverimg”) {
$coverimg;
}else {
@@ -1453,7 +1461,7 @@
}
sub missing_comment {
my $self = shift;
- my $missing = $self->r->dir_config('MissingComment’);
+ my $missing = $self->get_config('MissingComment’);
return if $missing eq 'off’;
$missing = $self->lh->maketext('unknown’) unless $missing;

$missing;
@@ -1464,7 +1472,7 @@
my $self = shift;

my $data = shift;
my $description;
- my $format = $self->r->dir_config('DescriptionFormat’);
+ my $format = $self->get_config('DescriptionFormat’);
if ($format) {
($description = $format) =~ s{%([atfgincrdmsqS%])}
{$1eq ' ?'%
@@ -1495,7 +1503,7 @@
}
}

- if ((my $basename = $r->dir_config('StreamBase’)) && !$self->is_localnet()) {

+ if ((my $basename = $self->get_config('StreamBase’)) && !$self->is_localnet()) {
$basename =~ s!http://'http://$auth_info! if $auth_info;
return $basename;

}
@@ -1536,7 +1544,7 @@
sub is_localnet {
my $self = shift;
return 1 if $self->is_local; # d’'uh
- my @local = split As+/,$self->r->dir_config('LocalNet’) or return;

130 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

+ my @local = split \s+/,$self->get_config('LocalNet’) or return;

my $remote_ip = $self->r->connection->remote_ip . .’;
foreach (@local) {

, it was 194 lines long so | didn’t inline it here, but it was quick to create with a few regexes
search-n-replace manipulations in xemacs.

Now | have the browsing of the rohp3/directory and its sub-directories working. If | click &retch’
of a particular song it works too. However if | try’&tream’a song, | get a 500 response with error_log
telling me:

[Fri Jun 06 15:33:33 2003] [error] [client 127.0.0.1] Bad arg length
for Socket::unpack_sockaddr_in, length is 31, should be 16 at
.../5.9.0/i686-linux-thread-multi/Socket.pm line 370.

It would be certainly nice foBocket.pnto useCarp::carp() instead ofwarn() so we will know
where in theApache::MP3 code this problem was triggered. However readingSieket.prmanpage
reveals thasockaddr_in() in the list context is the same as calling an expliapack_sock-
addr_in() , and in the scalar context it's callimgck_sockaddr_in() . So | have foundock-
addr_in was the onlySocket.pnfunction used imApache::MP3 and | have found this code in the
functionis_local()

my $r = $self->r;

my ($serverport,$serveraddr) = sockaddr_in($r->connection->local_addr);

my ($remoteport,$remoteaddr) = sockaddr_in($r->connection->remote_addr);
return $serveraddr eq $remoteaddr;

Since something is wrong with function call$r->connection->local_addr and/or
$r->connection->remote_addr and | referred tp the mod perl 1.0 backward compatibility dlocu-

and foung the relevant eftry on these two functions. Indeed the API have changed. Instead of return-
ing a packedSOCKADDR_IMtring, Apache now returns &iPR::SockAddr object, which | can query

to get the bits of information I'm interested in. So | applied this patch:

--- Apache/MP3.pm.3 2003-06-06 15:36:15.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 15:56:32.000000000 +1000
@@ -1533,10 +1533,9 @@
allows the player to fast forward, pause, etc.
sub is_local {
my $self = shift;
- my $r = $self->r;
- my ($serverport,$serveraddr) = sockaddr_in($r->connection->local_addr);
my ($remoteport,$remoteaddr) = sockaddr_in($r->connection->remote_addr);
return $serveraddr eq $remoteaddr;
my $c¢ = $self->r->connection;
require APR::SockAddr;
return $c->local_addr->ip_get eq $c->remote_addr->ip_get;

—+ + +

Check if the requesting client is on the local network, as defined by

15 Feb 2014 131

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

And voila, the streaming option now works. | get a warninguse of uninitialized valuebn line 1516
though, but again this is unrelated to the porting issues, just a flow logic problem, which wasn't triggered
without the warnings mode turned on. | have fixed it with:

--- Apache/MP3.pm.4 2003-06-06 15:57:15.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 16:04:48.000
@@ -1492,7 +1492,7 @@

my $suppress_auth = shift;

my $r = $self->r;

- my $auth_info;
+ my $auth_info = ";
the check for auth_name() prevents an anno
the apache server log when authentication
if ($r->auth_name && !$suppress_auth) {
@@ -1509,10 +1509,9 @@
}

my $vhost = $r->hostname;
unless ($vhost) {
$vhost = $r->server->server_hostname;
- $vhost .= . $r->get_server_port unless
-}
+ $vhost = $r->server->server_hostname unless
+ $vhost .= . $r->get_server_port unless $
+
return "http://${auth_info}${vhost}";
}

This completes the first part of the porting. | have tried to use all the visible functions of the interface and
everything seemed to work and | haven’t got any warnings logged. Certainly | may have missed some
usage patterns which may be still problematic. But this is good enough for this tutorial.

9.5.6.3 Getting Rid of theApache?2: : conpat Dependency

The final stage is going to get rid Apache2::compat since this is a CPAN module, which must not
loadApache2::.compat on its own. I'm going to makapache::MP3 work with mod_perl 2.0 all by
itself.

The first step is to comment out the loading\piche2::compat in startup.pl
#file:startup.pl

use lib gw(/home/httpd/2.0/perl);
#use Apache2::compat ();

9.5.6.4 Ensuring thatApache?2: : conpat is not loaded

The second step is to make sure thpache2::compat doesn’t get loaded indirectly, through some
other module. So I've added this line of codé\pache/MP3.pm

132 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

--- Apache/MP3.pm.5 2003-06-06 16:17:50.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 16:21:14.000000000 +1000
@@-32+36 @@

+BEGIN {
+ die "Apache2::compat is loaded loaded" if $INC{'Apache2/compat.pm’};
+}

+
use strict;

and indeed, even though I've commented out the loadigpathe2::compat from startup.p| this
module was still getting loaded. | knew that because the requéstp®were failing with the error
message:

Apache2::compat is loaded loaded at ...

There are several ways to find the guilty party, yougrap(1) for it in the perl libraries, you can over-
ride CORE::GLOBAL.::require() in startup.pl

BEGIN {
use Carp;
*CORE::GLOBAL::require = sub {
Carp::cluck("Apache2::compat is loaded") if $_[0] =~ /compat/;
CORE::require(@_);
h
}

or you can modifyApache2/compat.prind make it print the calls trace when it gets compiled:

--- Apache2/compat.pm.orig 2003-06-03 16:11:07.000000000 +1000
+++ Apache2/compat.pm 2003-06-03 16:11:58.000000000 +1000
@@ -15+19 @@

package Apache2::compat;

+BEGIN {

+ use Carp;

+ Carp::cluck("Apache2::compat is loaded by");
+}

I've used this last technique, since it's the safest one to use. Remembé&pdbbe2::compat can
also be loaded with:

do "Apache2/compat.pm”;

in which case, neithagrep(1) ’ping for Apache2::compat , nor overridingrequire() will do the
job.

When I've restarted the server and tried toAigache::MP3 (I wasn't preloading it at the server startup
since | wanted the server to start normally and cope with problem when it's runnirgfyathéog had an
entry:

15 Feb 2014 133

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

Apache2::compat is loaded by at .../Apache2/compat.pm line 6
Apache2::compat::BEGIN() called at .../Apache2/compat.pm line 8
eval {...} called at .../Apache2/compat.pm line 8
require Apache2/compat.pm called at .../5.9.0/CGl.pm line 169
require CGl.pm called at .../site_perl/5.9.0/Apache/MP3.pm line 8
Apache::MP3::BEGIN() called at .../Apache2/compat.pm line 8

('ve trimmed the whole paths of the libraries and the trace itself, to make it easier to understand.)

We could have use@arp::carp() which would have told us only the fact tifgtache2::compat
was loaded bz GIl.pm, but by usingCarp::cluck() we’ve obtained the whole stack backtrace so we
also can learn which module has loa@8l.pm .

Here I've learned that | had an old version G6GlL.pm (2.89) which automatically loaded
Apache2::compat (which should be never done by CPAN modules). Once I've upgaGegm to
version 2.93 and restarted the serggrache2:.compat wasn'’t getting loaded any longer.

9.5.6.5 Installing theModPer | : : Met hodLookup Helper

Now thatApache2::compat is not loaded, | need to deal with two issues: modules that need to be
loaded and APIs that have changed.

For the second issue I'll have to refer to|the the mod perl 1.0 backward compatibility dpcument.

But the first issue can be easily worked out udiadPerl::MethodLookup . As explained in the
section UsingModPerl::MethodLookup Programmatically I've added th@UTOLOADzode to my
startup.plso it'll automatically lookup the packages that | need to load based on the request method and
the object type.

So now mystartup.pllooked like:
#file:startup.pl

use lib gw(/home/httpd/2.0/perl);

{
package ModPerl::MethodLookupAuto;

use ModPerl::MethodLookup;

use Carp;
sub handler {

look inside mod_perl:: Apache2:: APR:: ModPerl:: excluding DESTROY
my $skip = "(?!DESTROY$S’;
*UNIVERSAL::AUTOLOAD = sub {

my $method = $AUTOLOAD;

return if $method =~ /DESTROY/;

my ($hint, @modules) =

ModPerl::MethodLookup::lookup_method($method, @_);
$hint [|= "Can’t find method $AUTOLOAD";
croak $hint;

134 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

return O;

}
}
1

and | add to myttpd.conf

PerlChildInitHandler ModPerl::MethodLookupAuto

9.5.6.6 Adjusting the code to run under mod_perl 2
| restart the server and off | go to complete the second porting stage.

The first error that I've received was:

[Fri Jun 06 16:28:32 2003] [error] failed to resolve handler ‘Apache::MP3'’
[Fri Jun 06 16:28:32 2003] [error] [client 127.0.0.1] Can't locate

object method "boot" via package "mod_perl" at .../Apache/Constants.pm
line 8. Compilation failed in require at .../Apache/MP3.pm line 12.

I go to line 12 and find the following code:

use Apache::Constants gw(:common REDIRECT HTTP_NO_CONTENT
DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);

Notice that | did have mod_perl 1.0 installed, soAlpache::Constant module from mod_perl 1.0
couldn’t find theboot() method which doesn’t exist in mod_perl 2.0. If you don’t have mod_perl 1.0
installed the error would simply say, that it can’t fisdache/Constants.pm @INC In any case, we are
going to replace this code with mod_perl 2.0 equivalent:

--- Apache/MP3.pm.6 2003-06-06 16:33:05.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 17:03:43.000000000 +1000
@@ -9,7+99 @@

use warnings;

no warnings 'redefine’; # XXX: remove when done with porting

-use Apache::Constants gw(:common REDIRECT HTTP_NO_CONTENT DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);
+use Apache2::Const -compile => gw(:common REDIRECT HTTP_NO_CONTENT

+ DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);
+

use Apache::MP3::L10N;
use 10::File;
use Socket 'sockaddr_in’;

and | also had to adjust the constants, since what used new has to bépache2::Const::OK ,

mainly because in mod_perl 2.0 there is an enormous amount of constants (coming from Apache and
APR) and most of them are groupedApache2:: or APR:: namespaces. Th&pache2::Const
andAPR::Const manpage provide more information on available constants.

This search and replace accomplished the job:

15 Feb 2014 135

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

% perl -pi -e 's/return\s(OK|DECLINED|FORBIDDEN]| \
REDIRECT|HTTP_NO_CONTENT|DIR_MAGIC_TYPE|\
HTTP_NOT_MODIFIED)/return Apache2::$1/xg’ Apache/MP3.pm

As you can see the regex explicitly lists all constants that were ugguhthe::MP3
may vary. Here is the patctode/apache_mp3_7.diff

--- Apache/MP3.pm.7 2003-06-06 17:04:27.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 17:13:26.000000000 +1000
@@ -129,7 +129,7 @@

my $self = shift;

$self->r->send_http_header($self->html_content_type);
- return OK if $self->r->header_only;
+ return Apache::OK if $self->r->header_only;

print start_htmi(
-lang => $self->lh->language_tag,
@@ -246,20 +246,20 @@
$self->send_playlist(\@matches);
}

- return OK;
+ return Apache::OK;

}

this is called to generate a playlist for selected files
if (param('Play Selected’)) {
- return HTTP_NO_CONTENT unless my @files = param(’file’);
+ return Apache::HTTP_NO_CONTENT unless my @files = param(’file’);
my $uri = dirname($r->uri);
$self->send_playlist([map { "$uri/$_" } @files]);
- return OK;
+ return Apache::OK;

}

otherwise don’t know how to deal with this

$self->r->log_reason(’Invalid parameters -- possible attempt to circumvent checks.’);
- return FORBIDDEN;
+ return Apache::FORBIDDEN;

}

this generates the top-level directory listing
@@ -273,7 +273,7 @@
my $query = $self->r->args;
$query ="?" . $query if defined $query;
$self->r->header_out(Location => "$uri/$query");
- return REDIRECT;
+ return Apache::REDIRECT;

}

return $self->list_directory($dir);

@@ -289,9 +289,9 @@

if ($is_audio && !$self->download_ok) {
$self->r->log_reason(’File downloading is forbidden’);
- return FORBIDDEN,;
+ return Apache::FORBIDDEN;

136

. Your situation

15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

}else {

- return DECLINED; # allow Apache to do its standard thing

+ return Apache::DECLINED; # allow Apache to do its standard thing
}

}

@@ -302,17 +302,17 @@
my $self = shift;
my $r = $self->r;

- return DECLINED unless -e $r->filename; # should be $r->finfo
+ return Apache::DECLINED unless -e $r->filename; # should be $r->finfo

unless ($self->stream_ok) {
$r->log_reason('AllowStream forbidden’);
- return FORBIDDEN,;
+ return Apache::FORBIDDEN;

}

if ($self->check_stream_client and !$self->is_stream_client) {
my $useragent = $r->header_in('User-Agent’);
$r->log_reason("CheckStreamClient is true and $useragent is not a streaming client");
- return FORBIDDEN;
+ return Apache::FORBIDDEN;

}

return $self->send_stream($r->filename,$r->uri);
@@ -322,12 +322,12 @@
sub send_playlist {
my $self = shift;
my ($urls,$shuffle) = @_;
- return HTTP_NO_CONTENT unless @$urls;
+ return Apache::HTTP_NO_CONTENT unless @$urls;
my $r = $self->r;
my $base = $self->stream_base;

$r->send_http_header('audio/mpegurl’);
- return OK if $r->header_only;
+ return Apache::OK if $r->header_only;

local user
my $local = $self->playlocal_ok && $self->is_local;
@@ -377,7 +377,7 @@
$r->print ("$base$_?$stream_parms$CRLF");
}
}

- return OK;
+ return Apache::OK;

}
sub stream_parms {
@@ -468,7 +468,7 @@
my $self = shift;
my $dir = shift;

- return DECLINED unless -d $dir;
+ return Apache::DECLINED unless -d $dir;

my $last_modified = (stat(_))[9];

15 Feb 2014 137

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

@@ -478,15 +478,15 @@
my ($time, $ver) = $check =~ /*([a-f0-9]+)-([0-9.]+)$/;

if ($check eq ™ or (hex($time) == $last_modified and $ver == $VERSION)) {

- return HTTP_NOT_MODIFIED;
+ return Apache::HTTP_NOT_MODIFIED;
}
}

- return DECLINED unless my ($directories,$mp3s,$playlists, $txtfiles)
+ return Apache::DECLINED unless my ($directories,$mp3s,$playlists,$txtfiles)

= $self->read_directory($dir);

$self->r->send_http_header($self->html_content_type);
- return OK if $self->r->header_only;
+ return Apache::OK if $self->r->header_only;

$self->page_top($dir);
$self->directory_top($dir);
@@ -514,7 +514,7 @@

print hr unless %$mp3s;
print "\n\n";
$self->directory_bottom($dir);

- return OK;

+ return Apache::OK;

}

print the HTML at the top of the page
@@ -1268,8 +1268,8 @@

my $mime = $r->content_type;
my $info = $self->fetch_info($file, 5mime);
- return DECLINED unless $info; # not a legit mp3 file?
- my $fh = $self->open_file($file) || return DECLINED;
+ return Apache::DECLINED unless $info; # not a legit mp3 file?
+ my $fh = $self->open_file($file) || return Apache::DECLINED;
binmode($fh); # to prevent DOS text-mode foolishness

my $size = -s $file;

@@ -1317,7 +1317,7 @@
$r->print("Content-Length: $size$CRLF");
$r->print("Content-Type: $mime$CRLF");
$r->print("$CRLF");

- return OK if $r->header_only;

+ return Apache::OK if $r->header_only;

if (my $timeout = $self->stream_timeout) {
my $seconds = $info->{seconds};
@@ -1330,12 +1330,12 @@
$bytes -= $b;
$r->print($data);

- return OK;
+ return Apache::OK;

}

we get here for untimed transmits
$r->send_fd($fh);

138

15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

- return OK;
+ return Apache::OK;
}

called to open the MP3 file

| had to manually fix th®IR_MAGIC_TYPEconstant which didn't fit the regex pattern:

--- Apache/MP3.pm.8 2003-06-06 17:24:33.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 17:26:29.000000000 +1000
@@ -1055,7 +1055,7 @@

my $mime = $self->r->lookup_file("$dir/$d")->content_type;

- push(@directories,$d) if !$seen{$d}++ && $mime eq DIR_MAGIC_TYPE;
+ push(@directories,$d) if !$seen{$d}++ && $mime eq Apache2::Const::DIR_MAGIC_TYPE;

.m3u files should be configured as audio/playlist MIME types in your apache .conf file
push(@playlists,$d) if $mime =~ m!*audio/(playlist|x-mpegurl|mpegurl|x-scpls)$!;

And | move on, the next error is:
[Fri Jun 06 17:28:00 2003] [error] [client 127.0.0.1]

Can't locate object method "header_in" via package
"Apache2::RequestRec" at .../Apache2/MP3.pm line 85.

The[porting_ documeht quickly revelals me thaader_in() and its brotheryieader_out() and
err_header_out() are R.I.LP. and that | have to use the corresponding fundigaers_in() ,
headers_out() anderr_headers_out() which are available in mod_perl 1.0 API as well.

So | adjust the code to use the new API:

% perl -pi -e 's|header_in\((.*?)\)|headers_in->{$1}|g’ Apache/MP3.pm
% perl -pi -e 's|header_out\((.*?)\s*=>\s*(.*?)\);|headers_out->{$1} = $2;|g’ Apache/MP3.pm

which results in this patcleode/apache_mp3_9.diff

--- Apache/MP3.pm.9 2003-06-06 17:27:45.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 17:55:14.000000000 +1000
@@ -82,8+82,8 @@

$new->{r'} ||= $r if $r;

my @lang_tags;
- push @lang_tags,split /\s+/,$r->header_in("Accept-language’)
- if $r->header_in('Accept-language’);
+ push @lang_tags,split /,\s+/,$r->headers_in->{’Accept-language’}
+ if $r->headers_in->{’Accept-language’};
push @lang_tags,$new->get_config('DefaultLanguage’) || 'en-US’;

$new->{'In’} ||=
@@ -272,7 +272,7 @@
my $uri = $self->r->uri;
my $query = $self->r->args;
$query ="?" . $query if defined $query;
- $self->r->header_out(Location => "$uri/$query");

15 Feb 2014 139

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

+ $self->r->headers_out->{Location} = "$uri/$query";
return Apache::REDIRECT;
}

@@ -310,7 +310,7 @@
}

if ($self->check_stream_client and !$self->is_stream_client) {
- my $useragent = $r->header_in('User-Agent’);
+ my $useragent = $r->headers_in->{'User-Agent’};
$r->log_reason("CheckStreamClient is true and $useragent is not a streaming client");
return Apache::FORBIDDEN,;

}
@@ -472,9+4729 @@
my $last_maodified = (stat())[9];

- $self->r->header_out(ETag’ => sprintf("%Ix-%s", $last_modified, $VERSION));
+ $self->r->headers_out->{’ETag’} = sprintf("%Ix-%s", $last_modified, SVERSION);

- if (my $check = $self->r->header_in("If-None-Match")) {
+ if (my $check = $self->r->headers_in->{"If-None-Match"}) {
my ($time, $ver) = $check =~ /*([a-f0-9]+)-([0-9.]1+)$/;

if ($check eq "*" or (hex($time) == $last_modified and $ver == $VERSION)) {
@@ -1283,8 +1283,8 @@
my $genre = $info->{genre} || $self->Ih->maketext('unknown’);

my $range = 0;
- $r->header_in("Range")
- and $r->header_in("Range") =~ m/bytes=(\d+)/
+ $r->headers_in->{"Range"}
+ and $r->headers_in->{"Range"} =~ m/bytes=(\d+)/
and $range = $1
and seek($fh,$range,0);

@@ -1383,11 +1383,11 @@
return true if client can stream
sub is_stream_client {
my $r = shift->r;
- $r->header_in(Ilcy-MetaData’) # winamp/xmms
|| $r->header_in('Bandwidth’) # realplayer
|| $r->header_in("Accept’) =~ m!\baudio/mpeg\b! # mpg123 and others
|| $r->header_in('User-Agent’) =~ m!"NSPlayer/! # Microsoft media player
|| $r->header_in('User-Agent’) =~ m!"xmms/!;
$r->headers_in->{’Icy-MetaData’} # winamp/xmms
[| $r->headers_in->{'Bandwidth’} # realplayer
|| $r->headers_in->{'Accept’} =~ m!\baudio/mpeg\b! # mpg123 and others
|| $r->headers_in->{'User-Agent’} =~ m!I"NSPlayer/! # Microsoft media player
|| $r->headers_in->{'User-Agent’} =~ m!"xmms/!;

-~ + + + + + !

whether to read info for each MP3 file (might take a long time)

140 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

On the next erroModPerl::MethodLookup’s AUTOLOAD kicks in. Instead of complaining:

[Fri Jun 06 18:35:53 2003] [error] [client 127.0.0.1]
Can't locate object method "FETCH" via package "APR::Table"
at .../Apache/MP3.pm line 85.

| now get:

[Fri Jun 06 18:36:35 2003] [error] [client 127.0.0.1]
to use method 'FETCH’ add:

use APR::Table ();
at .../Apache/MP3.pm line 85

So | follow the suggestion and loA®PR::Table()

--- Apache/MP3.pm.10 2003-06-06 17:57:54.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 18:37:33.000000000 +1000
@@ -9,6 +9.8 @@

use warnings;

no warnings 'redefine’; # XXX: remove when done with porting

+use APR::Table ();

+

use Apache2::Const -compile => qw(:common REDIRECT HTTP_NO_CONTENT
DIR_MAGIC_TYPE HTTP_NOT_MODIFIED);

| continue issuing the request and adding the missing modules again and again till | get no more
complaints. During this process I've added the following modules:

--- Apache/MP3.pm.11 2003-06-06 18:38:47.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 18:39:10.000000000 +1000
@@ -9,6+9,14 @@

use warnings;

no warnings 'redefine’; # XXX: remove when done with porting

+use Apache2::Connection ();
+use Apache2::SubRequest ();
+use Apache2::Access ();
+use Apache2::RequestlO ();
+use Apache2::RequestUtil ();
+use Apache2::RequestRec ();
+use Apache2::ServerUtil ();
+use Apache2::Log;

use APR::Table ();

use Apache2::Const -compile => gw(:common REDIRECT HTTP_NO_CONTENT

The AUTOLOAD code helped me to trace the modules that contain the existing APIs, however | still have
to deal with APIs that no longer exist. Rightfully the helper code says that it doesn’t know which module
defines the methodend_http_header() because it no longer exists in Apache 2.0 vocabulary:

[Fri Jun 06 18:40:34 2003] [error] [client 127.0.0.1]

Don’t know anything about method 'send_http_header’
at .../Apache/MP3.pm line 498

15 Feb 2014 141

9.5.6 How Apache::MP3 was Ported to mod_perl 2.0

So | go back to thg porting docunient and find[the relevant] entry. In 2.0 lingo, we just need to set the
content_type()

--- Apache/MP3.pm.12 2003-06-06 18:43:42.000000000 +1000
+++ Apache/MP3.pm 2003-06-06 18:51:23.000000000 +1000
@@ -138,7 +138,7 @@
sub help_screen {

my $self = shift;

- $self->r->send_http_header($self->html|_content_type);
+ $self->r->content_type($self->html_content_type);
return Apache2::Const::OK if $self->r->header_only;

print start_html(

@@ -336,7 +336,7 @@
my $r = $self->r;
my $base = $self->stream_base;

- $r->send_http_header('audio/mpegurl’);
+ $r->content_type(‘audio/mpegurl’);
return Apache2::Const::OK if $r->header_only;

local user
@@ -495,7 +495,7 @@
return Apache2::Const::DECLINED unless my ($directories,$mp3s,$playlists, $txtfiles)
= $self->read_directory($dir);

- $self->r->send_http_header($self->html|_content_type);
+ $self->r->content_type($self->html_content_type);
return Apache2::Const::OK if $self->r->header_only;

$self->page_top($dir);
also I've noticed that there was this code:

return Apache2::Const::OK if $self->r->header_only;

This technique is no longer needed in 2.0, since Apache 2.0 automatically discards the body if the request
is of type HEAD -- the handler should still deliver the whole body, which helps to calculate the
content-length if this is relevant to play nicer with proxies. So you may decide not to make a special case
for HEADrequests.

At this point | was able to browse the directories and play files via most options without relying on
Apache2::compat

There were a few other APIs that | had to fix in the same way, while trying to use the application, looking
at theerror_log referring to thé¢ porting documént and applying the suggested fixes. I'll make sure to send
all these fixes to Lincoln Stein, so the new versions will work correctly with mod_perl 2.0. | also had to
fix other Apache::MP3:: files, which come as a part of tigache-MP3 distribution, pretty much

using the same techniques explained here. A few extra fixes of intefgsiche::MP3 were:

142 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.6 Porting a Module to Run under both mod_perl 2.0 and mod_perl 1.0

e send_fd()

As of this writing we don’t have this function in the core, because Apache 2.0 doesn’t have it (it's in
Apache2::compat but implemented in a slow way). However we may provide one in the future.
Currently one can use the functisendfile() which requires a filename as an argument and not
the file descriptor. So | have fixed the code:

if($r->request($r->uri)->content_type eq 'audio/x-scpls’{
open(FILE,$r->filename) || return 404;
$r->send_fd(*FILE);
close(FILE);
+

+ if($r->content_type eq 'audio/x-scpls’){
+ $r->sendfile($r->filename) || return Apache2::Const::NOT_FOUND;
® | 0g reason
log_reason is nowlog_error

- $self->r->log_reason(’Invalid parameters -- possible attempt to circumvent checks.’);
+ $r->log_error(’Invalid parameters -- possible attempt to circumvent checks.”)

| have found the porting process to be quite interesting, especially since | have found several bugs in
Apache 2.0 and documented a few undocumented API changes. It was also fun, because I've got to listen
to mp3 files when | did things right, and was getting silence in my headphones and a visual irritation in the
form of error_log messages when | didn't ;)

9.6 Porting a Module to Run under both mod_perl 2.0 and
mod_perl 1.0

Sometimes code needs to work with both mod_perl versions. For example this is the case with CPAN
module developers who wish to continue to maintain a single code base, rather than supplying two sepa-
rate implementations.

9.6.1 Making Code Conditional on Running mod_perl Version
In this case you can test for which version of mod_perl your code is running under and act appropriately.

To continue our example above, let's say we want to support opening a filehandle in both mod_perl 2.0
and mod perl 1.0. Our <code can make use of the environment Vvariable
$ENV{MOD_PERL_API_VERSION}

15 Feb 2014 143

9.6.1 Making Code Conditional on Running mod_perl Version

use mod_perl;

use constant MP2 => (exists $SENV{MOD_PERL_API_VERSION} and
$ENV{MOD_PERL_API_VERSION} >=2);

...

require Symbol if MP2;

...

my $fh = MP2 ? Symbol::gensym : Apache->gensym;
open $fh, $file or die "Can’t open $file: $!";

Some modules, lik€GIl.pm may work under mod_perl and without it, and will want to use the mod_perl
1.0 API if that’s available, or mod_perl 2.0 API otherwise. So the following idiom could be used for this
purpose.

use constant MP_GEN => $ENV{MOD_PERL}
? { (exists $ENV{MOD_PERL_API_VERSION} and
$ENV{MOD_PERL_API_VERSION}>=2)?2:1}
1 0;

It sets the constadiP_GENo 0 if mod_perl is not available, to 1 if running under mod_perl 1.0 and 2 for
mod_perl 2.0.

Here’s another way to find out the mod_perl version. In the server configuration file you can use a special
configuration "define" symboMODPERL2which is magically enabled internally, as if the server had
been started wittDPMODPERL2

in httpd.conf
<IfDefine MODPERL2>
2.0 configuration

</IfDefine>

<IfDefine IMODPERL2>
else

</IfDefine>

From within Perl code this can be tested witrache2::exists_config_define() . For example,
we can use this method to decide whether or not técalsend_http_header() , which no longer
exists in mod_perl 2.0:
sub handler {
my $r = shift;

$r->content_type(‘text/html’);
$r->send_http_header() unless Apache2::exists_config_define("MODPERL2");

,

Relevant links to other places in the porting documents:

® [mod perl 1.0 and 2.0 Constants Coexistence

144 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.6.2 Method Handlers

9.6.2 Method Handlers

Method handlers in mod_perl are decldred usingrtteghod’ attribut¢. However if you want to have the
same code base for mod_perl 1.0 and 2.0 applications, whose handler has to be a method, you will need to
do the following trick:

sub handler_mpl ($$) {...}
sub handler_mp2 : method { ... }
*handler = MP2 ? \&handler_mp2 : \&handler_mp1;

Note that this requires at least Perl 5.6.0, :thethodattribute is not supported by older Perl versions,
which will fail to compile such code.

Here are two complete examples. The first example implenMygpache2::Method which has a
single method that works for both mod_perl generations:

The configuration:

PerIModule MyApache2::Method
<Location /method>

SetHandler perl-script

PerlHandler MyApache2::Method->handler
</Location>

The code:

#file:MyApache2/Method.pm
package MyApache2::Method;

PerlModule MyApache2::Method

<Location /method>

SetHandler perl-script

PerlHandler MyApache2::Method->handler
</Location>

use strict;
use warnings;

use mod_perl;
use constant MP2 => (exists $ENV{MOD_PERL_API_VERSION} and
$ENV{MOD_PERL_API_VERSION >=2);

BEGIN {

if (MP2) {
require Apache2::RequestRec;
require Apache2::RequestlO;
require Apache2::Const;
Apache2::Const->import(-compile => 'OK’);

}

else {
require Apache;
require Apache::Constants;
Apache::Constants->import('OK’);

}

15 Feb 2014 145

9.6.2 Method Handlers

}

sub handler_mp1 ($$) {&run}
sub handler_mp2 : method { &run }
*handler = MP2 ? \&handler_mp2 : \&handler_mp1;

sub run {
my ($class, $r) = @_;
MP2 ? $r->content_type('text/plain’)
: $r->send_http_header('text/plain’);
print "$class was called\n";
return MP2 ? Apache2::Const::OK : Apache::Constants::OK;

}

Here are two complete examples. The second example impleMgAfsache2::Method2 , which is
very similar toMyApache2::Method , but uses separate methods for mod_perl 1.0 and 2.0 servers.

The configuration is the same:

PerIModule MyApache2::Method?2
<Location /method2>

SetHandler perl-script

PerlHandler MyApache2::Method2->handler
</Location>

The code:

#file:MyApache2/Method2.pm
package MyApache2::Method2;

PerIModule MyApache2::Method

<Location /method>

SetHandler perl-script

PerlHandler MyApache2::Method->handler
</Location>

use strict;
use warnings;

use mod_perl;
use constant MP2 => (exists $SENV{MOD_PERL_API_VERSION} and
$ENV{MOD_PERL_API_VERSION >=2);

BEGIN {
warn "running $ENV{MOD_PERL_API_VERSION}nN";
if (MP2) {
require Apache2::RequestRec;
require Apache2::RequestlO;
require Apache2::Const;
Apache2::Const->import(-compile =>'OK’);
}
else {
require Apache;
require Apache::Constants;
Apache::Constants->import('OK’);

146 15 Feb 2014

Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0 9.7 The Conflict of mp1 vs mp2 vs mp22 vs ... vs mpNN

}
}

sub handler_mp1 ($$) {&mpl}
sub handler_mp2 : method { &mp2 }

*handler = MP2 ? \&handler_mp2 : \&handler_mp1;

sub mp1{
my ($class, $r) = @_;
$r->send_http_header('text/plain’);
$r->print("mpl: $class was called\n");

return Apache::Constants::OK();

}

sub mp2 {
my ($class, $r) = @_;
$r->content_type('text/plain’);
$r->print("mp2: $class was called\n");
return Apache2::Const::OK();

}

Assuming that mod_perl 1.0 is listening on port 8001 and mod_perl 2.0 on 8002, we get the following
results:

% lynx --source http://localhost:8001/method
MyApache?2::Method was called

% lynx --source http://localhost:8001/method2
mpl: MyApache2::Method2 was called

% lynx --source http://localhost:8002/method
MyApache2::Method was called

% lynx --source http://localhost:8002/method2
mp2: MyApache2::Method2 was called

9.7 The Conflict of mpl vs mp2 vs mp22 vs ... vSs mpNN

META: should something be said here?

9.7.1 Distributors

Distributors should mark the different generations of mod_perl core as conflicting, so only one version can
be installed using the binary package. Users requiring more than one installation should do a manual
install.

In order to have any of the 3rd party modperl modules installed users need to have the correct modperl
package installed. So there is no need to mark the 3rd party modules as conflicting, since their most impor-
tant prerequisite (the modperl-core) is already handling that.

15 Feb 2014 147

9.8 Maintainers

Of course packagers can decide to make the two generation packages as non-conflicting, by building all
mp2 core and 3rd party modules itpache2kubdir, in which case the two will always co-exist. But this

is not the most logical approach since 99% of users will want only one generation of mod_perl core and
3rd party modules.

9.8 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekmarn [http://stason.qrg/]

9.9 Authors

® Nick Tonkin <nick (at) tonkinresolutions.com>

e Stas Bekmar [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

148 15 Feb 2014

http://stason.org/
http://stason.org/

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10 A Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

10 A Reference to mod_perl 1.0 to mod_perl 2.0
Migration.

15 Feb 2014 149

10.1 Description

10.1 Description

This chapter is a reference for porting code and configuration files from mod_perl 1.0 to mod_perl 2.0.

To learn about the porting process you should first read @bout porting Perl modules (and may be about
porting XS modules).

As it will be explained in details later, loadidgpache2::compat at the server startup, should make

the code running properly under 1.0 work under mod_perl 2.0. If you want to port your code to mod_perl
2.0 or writing from scratch and not concerned about backwards compatibility, this document explains what
has changed compared to mod_perl 1.0.

Several configuration directives were changed, renamed or removed. Several APIs have changed,
renamed, removed, or moved to new packages. Certain functions while staying exactly the same as in
mod_perl 1.0, now reside in different packages. Before using them you need to find out those packages
and load them.

You should be able to find the destiny of the functions that you cannot find any more or which behave
differently now under the package names the functions belong in mod_perl 1.0.

10.2 Configuration Files Porting

To migrate the configuration files to the mod_perl 2.0 syntax, you may need to do certain adjustments.
Several configuration directives are deprecated in 2.0, but still available for backwards compatibility with
mod_perl 1.0 unless 2.0 was built witP_COMPAT _1X=0f you don’'t need the backwards compatibil-

ity consider using the directives that have replaced them.

10.2.1 Per | Handl er

PerlHandler was replaced wifPerlResponseHandler |

10.2.2 Per | Scri pt

PerlScript was replaced witfPerlRequire | PerlRequire is available in mod_perl 1.0, since
1997.

10.2.3 Per | SendHeader

PerlSendHeader was replaced witRPerlOptions +/-ParseHeaders directive.

PerlSendHeader On => PerlOptions +ParseHeaders
PerlSendHeader Off => PerlOptions -ParseHeaders

150 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.2.4 PerlSetupEnv

10.2.4 Per | Set upEnv

PerlSetupEnv was replaced witRerlOptions +/-SetupEnv directive.

PerlSetupEnv On => PerlOptions +SetupEnv
PerlSetupEnv Off => PerlOptions -SetupEnv

10.2.5 Per | Tai nt Check

The taint mode now can be turned on \JRdrISwitches |

PerlSwitches -T

As with standard Perl, by default the taint mode is disabled and once enabled cannot be turned off inside
the code.

10.2.6 Per | WAr n

Warnings now can be enabled globally ii@riSwitches |

PerlSwitches -w

10.2.7 Per | FreshRest art

PerlFreshRestart is a mod_perl 1.0 legacy and doesn't exist in mod_perl 2.0. A full teardown and
startup of interpreters is done on restart.

If you need to use the sarhtpd.conffor 1.0 and 2.0, use:

<|fDefine IMODPERL2>
PerlFreshRestart
</IfDefine>

10.2.8 $Apache: : Server:: StrictPerl Secti ons
In mod_perl 2.0<Perl> sections errors are now always fatal. Any error in them will cause an

immediate server startup abort, dumping the error to STDERR. To avoigvhls]} can be used to
trap errors and ignore them. In mod_perl $tfict was somewhat of a misnomer.

10.2.9 $Apache: : Server:: SaveConfi g

$Apache::Server::SaveConfig has been renamed ®Apache2::PerlSections::Save
see<Perl> sections for more information on this global variable.

15 Feb 2014 151

10.3 Server Startup

10.2.10 Apache Configuration Customization

mod_perl 2.0 has slightly changed the mechanism _for adding custom configuration djrectives and now
also makes it easy to access an Apache parsed configuration tree’s values.

META: add to the config tree access when it'll be written.

10.2.11 @ NC Manipulation
® Directories Added Automatically to @ NC

Only if mod_perl was built wittMP_COMPAT_1Xs1two directories:$ServerRootand $Server-
Root/lib/perl are pushed ont@INC $ServerRoois as defined by th&erverRoot directive in
httpd.conf

e PERL5LI BandPERLLI B Environment Variables

mod_perl 2.0 doesn’t do anything special ad®aRL5LIB andPERLLIB Environment Variables.
If -T is in effect these variables are ignored by Perl. There are several other ways t@#d{Tist

10.3 Server Startup

mod_perl 1.0 was always running its startup code as soon as it was encountered. In mod_perl 2.0, it is not
always the case. Refer to the mod perl 2.0 startup process|section for details.

10.4 Code Porting

mod_perl 2.0 is trying hard to be back compatible with mod_perl 1.0. However some things (mostly APIs)
have been changed. In order to gain a complete compatibilty with 1.0 while running under 2.0, you should
load the compatibility module as early as possible:

use Apache2::compat;

at the server startup. And unless there are forgotten things or bugs, your code should work without any
changes under 2.0 series.

However, unless you want to keep the 1.0 compatibility, you should try to remove the compatibility layer
and adjust your code to work under 2.0 without it. You want to do it mainly for the performance improve-
ment.

This document explains what APIs have changed and what new APIs should be used instead.

Finally, mod_perl 2.0 has all its methods spread across many modules. In order to use these methods the
modules containing them have to be loaded first. The mddatPerl::MethodLookup can be used

to find out which modules need to be wused. This module also provides a function
preload_all_modules() that will load all mod_perl 2.0 modules, implementing their APl in XS,
which is useful when one starts to port their mod_perl 1.0 code, though preferrably avoided in the produc-

152 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.5 Apache::Registry, Apache::PerlRun and Friends

tion environment if you want to save memory.

10.5 Apache: : Regi stry, Apache: : Per| Run and
Friends

Apache::Registry , Apache::PerlRun and other modules from the registry family now live in the
ModPerl:: namespace. In mod_perl 2.0 we put mod_perl specific functionality intelad®erl::
namespace, similar ®PR:: andApache2:: which are used for libapr and Apache, respectively.

ModPerl::Registry (and others) doesndhdir() into the script’s dir likeApache::Registry
does, becausehdir() affects the whole process under threads. If you need this functionality use

ModPerl::RegistryPrefork or ModPerl::PerlRunPrefork

OtherwiseModPerl::Registry modules are configured and used similarhApache::Registry
modules. Refer to one of the following manpages for more information:
ModPerl::RegistryCooker , ModPerl::Registry , ModPerl::RegistryBB and

ModPerl::PerlRun

10.5.1 ModPer | : : Regi stryLoader

In mod_perl 1.0 it was only possible to preload script®\pache::Registry handlers. In 2.0 the
loader can use any of the registry classes to preload into. The old APl works as before, but new options
can be passed. See tledPerl::RegistryLoader manpage for more information.

10.6 Apache: : Const ant s

Apache:.Constants has been replaced by three classes:
® Apache2: : Const
Apache constants
® APR : Const
Apache Portable Runtime constants
e MbdPerl : : Const
mod_ perl specific constants
See the manpages of the respective modules to figure out which constants they provide.

META: add the info how to perform the transition. XXX: may be write a script, which can tell you how to
port the constants to 2.0? Currerlpache2::compat doesn’t provide a complete back compatibility
layer.

15 Feb 2014 153

10.6.1 mod_perl 1.0 and 2.0 Constants Coexistence

10.6.1 mod_perl 1.0 and 2.0 Constants Coexistence

If the same codebase is used for both mod_perl generations, the following technique can be used for using
constants:

package MyApache2::Foo;

use strict;
use warnings;

use mod_perl;
use constant MP2 => (exists $ENV{MOD_PERL_API_VERSION} and
$ENV{MOD_PERL_API_VERSION} >= 2);

BEGIN {
if (MP2) {
require Apache2::Const;
Apache2::Const->import(-compile => qw(OK DECLINED));
}

else {
require Apache::Constants;
Apache::Constants->import(qw(OK DECLINED));

}
}

sub handler {
...
return MP2 ? Apache2::Const::OK : Apache::Constants::OK;
}
1
Notice that if you don’t use the idiom:

return MP2 ? Apache2::Const::OK : Apache::Constants::OK;

but something like the following:
sub handlerl {
.r.éturn Apache::Constants::OK();
}sub handler2 {

return Apache2::Const::OK();
}

You need to adq) . If you don't do that, let's say that you run under mod_perl 2.0, perl will complain
about mod_perl 1.0 constant:

Bareword "Apache::Constants::OK" not allowed while "strict subs" ...

154 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.7 Issues with Environment Variables

Adding () prevents this warning.

10.6.2 Deprecated Constants

REDIRECTand similar constants have been deprecated in Apache for years, in favorH¥fTtRe*
names (they no longer exist Apache 2.0). mod_perl 2.0 API performs the following aliasing behind the
scenes:

NOT_FOUND =>'HTTP_NOT_FOUND’,

FORBIDDEN =>'HTTP_FORBIDDEN,

AUTH_REQUIRED =>"HTTP_UNAUTHORIZED’,
SERVER_ERROR =>'HTTP_INTERNAL_SERVER_ERROR’,
REDIRECT =>'HTTP_MOVED_TEMPORARILY’,

but we suggest moving to use tH&TP_* names. For example if running in mod_perl 1.0 compatibility
mode, change:

use Apache::Constants gw(REDIRECT);

to:

use Apache::Constants qw(HTTP_MOVED_TEMPORARILY);

This will work in both mod_perl generations.

10.6.3 SERVER VERSI O\()

Apache::Constants::SERVER_VERSION() has been replaced with
Apache2::ServerUtil::get_server_version()

10.6.4 export ()

Apache::Constants::export() has no replacement in 2.0 as it's not needed.

10.7 Issues with Environment Variables

There are several thread-safety issues with setting environment variables.

Environment variables set during request time won't be seen by C code. $ee the DBD::Oracle issue for
possible workarounds.

Forked processes (including backticks) won't see CGIl emulation environment variables. (META: This
will hopefully be resolved in the future, it's documented in modperl_env.c:modperl_env_magic_set_all.)

15 Feb 2014 155

10.8 Special Environment Variables

10.8 Special Environment Variables

10.8.1 $ENV{ GATEVWAY_| NTERFACE}

The environment variablBENV{GATEWAY_INTERFACEIis not special in mod_perl 2.0, but the same
as any other CGI environment variables, i.e. it'll be enabled onBeifOptions +SetupEnv is
enabled and its value would be the default:

CGlNn.1

or anything else Apache decides to set it to, but not:

CGl-Perl/1.1

Instead us&ENV{MOD_PERL}(available in both mod_perl generations), which is set to the mod_perl
version, like so:

mod_perl/2.000002

Therefore in order to check whether you are running under mod_perl, you'd say:
if SENV{MOD_PERL}){ ... }

To check for a specific version it's better to 8&NV{MOD_PERL_API_VERSION}
use mod_perl;

use constant MP2 => (exists $ENV{MOD_PERL_API_VERSION} and
$ENV{MOD_PERL_API_VERSION} >= 2);

10.9 Apache: : Methods
10.9.1 Apache- >r equest

Apache->request has been replaced wiipache?2::RequestUtil::request()

Apache2::RequestUtil->request usage should be avoided under mod_perl&.0should be

passed around as an argument instead (or in the worst case maintain your own global variable). Since your
application may run under threaded mpm, Apache2::RequestUtil->request usage involves

storage and retrieval from the thread local storage, which is expensive.

It's possible to usér even in CGI scripts running und®egistry modules, without breaking the
mod_cgi compatibility. Registry modules convert a script like:

print "Content-type: text/plain”;
print "Hello";

156 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.9.1 Apache->request

into something like:

package Foo;

sub handler {
print "Content-type: text/plain\n\n";
print "Hello";
return Apache2::Const::OK;

}

where thehandler() function always receiver as an argument, so if you change your script to be:

my $r;
$r = shift if SENV{MOD_PERL};
if (Br) {
$r->content_type('text/plain’);
}
else {
print "Content-type: text/plain\n\n";
}

print "Hello"

it'll really be converted into something like:

package Foo;
sub handler {

my $r;
$r = shift if SENV{MOD_PERL};
if ($r) {
$r->content_type(‘text/plain’);
}
else {
print "Content-type: text/plain\n\n";
}
print "Hello"
return Apache2::Const::OK;

}

The script works under both mod_perl and mod_cgi.

For example CGl.pm 2.93 or higher accefts as an argument to iteew() function. So does

CGl::Cookie::fetch from the same distribution.

Moreover, user's configuration may preclude frowpache2::RequestUtil->request being
available at run time. For any location that u#gmche2::RequestUtil->request and uses
SetHandler modperl , the configuration should either explicitly enable this feature:

<Location ...>
SetHandler modperl
PerlOptions +GlobalRequest

</Location>

15 Feb 2014 157

10.9.2 Apache->define

It's already enabled fdBetHandler perl-script

<Location ...>
SetHandler perl-script

</Location>

This configuration makeépache2::RequestUtil->request availableonly during the response
phase [PerlResponseHandler). Other phases can makgache2::RequestUtil->request
available, by explicitly setting it in the handler that has an acce®s. tBor example the following skele-
ton for anauthenphase handler makes tg@ache2::RequestUtil->request available in the
calls made from it:

package MyApache2::Auth;
PerlAuthenHandler MyApache2::Auth
use Apache2::RequestUtil ();
#..
sub handler {
my $r = shift;
Apache2::RequestUtil->request($r);

do some calls that rely on Apache2::RequestUtil->request being available
#...

}

10.9.2 Apache- >defi ne

Apache->define has been replaced with
Apache2::ServerUtil::exists_config_define()

10.9.3 Apache->can_stack _handl ers

Apache->can_stack_handlers is no longer needed, as mod_perl 2.0 can always stack handlers.

10.9.4 Apache- >unt ai nt

Apache->untaint has moved t&\pache2::ModPerl::Util::untaint() and now is a func-
tion, rather a class method. It'll will untaint all its arguments. You shouldn’t be using this function unless
you know what you are doing. Refer to fhexrlsecmanpage for more information.

Apache2::compat provides the backward compatible with mod_perl 1.0 implementation.

10.9.5 Apache- >get _handl ers

To get handlers for the server level, mod_perl 2.0 code should use
Apache2::ServerUtil::get_handlers() :

158 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration.

$s->get_handlers(...);

or:

Apache2::ServerUtil->server->get_handlers(...);
Apache->get_handlers is avalable viApache2::compat

See als@®\pache2::RequestUtil::get_handlers()

10.9.6 Apache->push_handl ers

To push handlers at the server level, mod_perl 2.0 code should use
Apache2::ServerUtil::push_handlers()

$s->push_handlers(...);

or:

Apache2::ServerUtil->server->push_handlers(...);
Apache->push_handlers is avalable vigApache2::compat

See als®pache2::RequestUtil::push_handlers()

10.9.7 Apache->set _handl ers

To set handlers at the server level, mod_perl 2.0 code should use
Apache2::ServerUtil::set_handlers() :

$s->set_handlers(...);

or:

Apache2::ServerUtil->server->set_handlers(...);
Apache->set_handlers is avalable vigApache2::compat

To reset the list of handlers, instead of doing:

$r->set_handlers(PerlAuthenHandler => [\&OK]);

do:

$r->set_handlers(PerlAuthenHandler => []);

or

15 Feb 2014

10.9.6 Apache->push_handlers

159

10.9.8 Apache->httpd_conf

$r->set_handlers(PerlAuthenHandler => undef);

See als@®pache2::RequestUtil::set_handlers()

10.9.8 Apache->htt pd_conf

Apache->httpd_conf is now$s->add_config

require Apache2::ServerUtil;
Apache2::ServerUtil->server->add_config(['require valid-user’]);

Apache->httpd_conf is avalable vigApache2::compat

See als@Apache2::RequestUtil::add_config()

10.9.9 Apache- >unescape _url _info

Apache->unescape_url_info is not available in mod_perl 2.0 API. CS&:Util::unescape
instead|(http://search.cpan.org/dist/CGl.pm/CGI/Uti|.pm).

It is also available vidpache2::.compat for backwards compatibility.

10.9.10 Apache: : exi t ()

Apache::exit() has been replaced wikftodPerl::Util::exit()

10.9.11 Apache: : gensym()

Since Perl 5.6.1 filehandlers are autovivified and there is no neetpémhe::gensym() function,
since now it can be done with:

open my $fh, "foo" or die $!;

Though the C functiomodperl_perl_gensym() is available for XS/C extensions writers.

10.9.12 Apache: : 1 og_error ()

Apache::log_error() is not available in mod_perl 2.0 API. You can use
Apache?2::Log::log_error()

Apache2::ServerUtil->server->log_error

instead. See th&pache2::Log manpage.

160 15 Feb 2014

http://search.cpan.org/dist/CGI.pm/CGI/Util.pm

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.10 Apache: Variables

10.9.13 Apache->war n

$Apache->warn has been removed and exists only Apache2::compat . Choose another
Apache2::Log method.

10.9.14 Apache: : war n

$Apache::warn has been removed and exists only Apache2::compat . Choose another
Apache2::Log method.

10.9.15Apache: : nodul e()

Apache::module() has been replaced with the functidpache2::Module::loaded() , Which
now accepts a single argument: the module name.

10.10 Apache: : Variables
10.10.1$Apache:: T

$Apache::__T is deprecated in mod_perl 2.0. ({éTAINT} instead.

10.11 Apache: : Modul e: : Methods
10.11.1 Apache: : Modul e- >t op_nodul e

Apache::Module->top_module has been replaced with the function
Apache2::Module::top_module()

10.11.2 Apache: : Modul e- >get _confi g

Apache::Module->get_config has been replaced with the function
Apache2::Module::get_config()

10.12 Apache: : Modul eConfi g: : Methods
10.12.1 Apache: : Modul eConfi g- >get

Apache::ModuleConfig->get has been replaced with the function
Apache2::Module::get_config()

15 Feb 2014 161

10.13 Apache::Server:: Methods and Variables

10.13 Apache: : Ser ver: . Methods and Variables
10.13.1 $Apache: : Server:: C\D

$Apache::Server::CWD is deprecated and exists onlyApache2::compat

10.13.2%Apache: : Server: : AddPer | Ver si on

$Apache::Server::AddPerlVersion is deprecated and exists onlyApache2::compat

10.13.3%Apache: : Server:: Starti ng and
$Apache: : Server::ReStarting

$Apache::Server::Starting and $Apache::Server::ReStarting were replaced by
Apache2::ServerUtil::restart_count() . Though both exist iApache2::compat

10.13.4 Apache: : Server ->warn

Apache::Server->warn has been removed and exists onlApache2::compat . Choose another
Apache2::Log method.

10.14 Server Object Methods

10.14.1$s- >reqgi st er _cl eanup

$s->reqister_cleanup has been replaced withPR::Pool::cleanup_register() which

accepts the pool object as the first argument instead of the server object, a callback function as a second
and data variable as the optional third argument. If that data argument was provided it is then passed to the
callback function when the time comes for the pool object to get destroyed.

use Apache2::ServerUtil ();
sub cleanup_callback {

my $data = shift;

your code comes here

return Apache2::Const::OK;
}

$s->pool->cleanup_register(\&cleanup_callback, $data);

See alsPerlChildExitHandler |

In order to register a cleanup handler to be run only once when the main server (not each child process)
shuts down, you can register a cleanup handlerseither_shutdown_cleanup_register()

162 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.15 Request Object Methods

10.14.2%s->ui d

See the next entry.

10.14.3$s- >gi d

apache-1.3 had server_rec records for server_uid and server_gid. httpd-2.0 doesn’t have them, because in
httpd-2.0 the directives User and Group are platform specific. And only UNIX supports it
|http://httpd.apache.org/docs-2.0/mod/mpm common.htmlfuser

It's possible to emulate mod_perl 1.0 API doing:

sub Apache2::Server::uid { $< }
sub Apache2::Server::gid { $(}

but the problem is that if the server is startedoas but its child processes are run under a different user-
name, e.gnobody at the startup the above function will report the& andgid values ofroot and not
nobody i.e. at startup it won’t be possible to know what the User and Group setting$tpel ioonf

META: though we can probably access the parsed config tree and try to fish these values from there. The
real problem is that these values won't be available on all platforms and therefore we should probably not
support them and let developers figure out how to code around it (e.g. bybaisamgi$().

10.15 Request Object Methods
10.15.1%r - >pri nt

$r->print($foo);
or
print $foo;

no longer accepts a reference to a scalar as it did in mod_perl 1.0. This optimisation is not needed in the
mod_perl 2.0’s implementation pfint

10.15.2%r->cgi _env

See the next item

10.15.3%r->cqgi _var

$r->cgi_env and $r->cgi_var should be replaced witir->subprocess_env , which works
identically in both mod_perl generations.

15 Feb 2014 163

http://httpd.apache.org/docs-2.0/mod/mpm_common.html#user

10.15.4 $r->current_callback

10.15.4%r - >current _cal | back

$r->current_callback is now simply aModPerl::Util::current_callback and can be
called for any of the phases, including those wersimply doesn’t exist.

Apache2::compat implementsbr->current_callback for backwards compatibility.

10.15.5%r - >cl eanup_f or _exec

$r->cleanup_for_exec wasn't a part of the mpl core API, but lived in a 3rd party module
Apache2::SubProcess . That module’s functionality is now a part of mod_perl 2.0 API. But Apache
2.0 doesn’t need this function any longer.

Apache2::compat implementsbr->cleanup_for_exec for backwards compatibility as a NOOP.

See also thépache2::SubProcess manpage.

10.15.6 $r - >get _r enot e_host

get_remote_host() is now invoked on theonnection object

use Apache2::Connection;
$r->connection->get_remote_host();

$r->get_remote_host is available througpache2::compat

10.15.7 $r - >cont ent

See the next item.

10.15.8 $r - >ar gs in an Array Context

$r->args in 2.0 returns the query string without parsing and splitting it into an array. You can also set
the query string by passing a string to this method.

$r->content and$r->args in an array context were mistakes that never should have been part of the
mod_perl 1.0 API. There are multiple reason for that, among others:

e does not handle multi-value keys
e does not handle multi-part content types
e does not handle chunked encoding

® slurps$r->headers_in->{'content-length’} into a single buffer (bad for performance,
memory bloat, possible dos attack, etc.)

164 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.15.9 $r->chdir_file

® in general duplicates functionality (and does so poorly) that is done befeadhe2::Request

e if one wishes to simply read POST data, there is the more modern filter API, along with continued
support foread(STDIN, ...) and$r->read($buf,
$r->headers_in->{’content-length’})

You could useCGl.pm or the code ipache2::compat (it's slower).

However, now tha\pache2::Request has been ported to mod_perl 2.0 you can use it instead and
reap the benefits of the fast C implementations of these functions. For documentation on its uses, please
see:

[http://httpd.apache.org/apieq

10.15.9%r->chdir _file

chdir() cannot be used in the threaded environment, therdiorehdir_file is not in the
mod_perl 2.0 API.

For more information refer tp: Threads Coding Issues Under mofl_perl.

10.15.10%r->i s_mai n
$r->is_main is not part of the mod_perl 2.0 API. U$e->main instead.

Refer to theApache2::RequestRec manpage.

10.15.11%r->fi | enane

When a newsr->filename is assigned Apache 2.0 doesn’t update the finfo structure like it did in
Apache 1.3. If the old behavior is desired Apache2::compat’s overriding can be used. Otherwise one
should explicitly update the finfo struct when desired as explained fildhame API entry.

10.15.12%r->finfo

As Apache 2.0 doesn’t provide an access to the stat structure, but hides it in the opaque object
$r->finfo now returns amAPR::Finfo object. You can then invoke th&PR::Finfo accessor
methods on it.

It's also possible to adjust the mod_perl 1.0 code using Apache2::compat’s overriding. For example:

use Apache2::compat;
Apache2::compat::override_mp2_api('Apache2::RequestRec::finfo’);
my $is_writable = -w $r->finfo;
Apache2::compat::restore_mp2_api('Apache2::RequestRec::finfo’);

15 Feb 2014 165

http://httpd.apache.org/apreq

10.15.13 $r->notes

which internally does just the following:

stat $r->filename and return *_;

So may be it's easier to just change the code to use this directly, so the above example can be adjusted to
be:

my $is_writable = -w $r->filename;

with the performance penalty of an exttat() system call. If you don’t want this extra call, you'd
have to write:

use APR::Finfo;
use Apache2::RequestRec;

use APR::Const -compile => qw(WWRITE);
my $is_writable = $r->finfo->protection & APR::WWRITE,

See theAPR::Finfo manpage for more information.

10.15.13%r - >not es

Similar to headers_in() , headers_out() and err_headers_out() in mod_perl 2.0,
$r->notes() returns aPAPR::Table object, which can be used as a tied hash or callingei(3 /
set()/ add()/ unset()methods.

It's also possible to adjust the mod_perl 1.0 code uspaghe2::compat 's overriding:
use Apache2::compat;
Apache2::compat::override_mp2_api(Apache2::RequestRec::notes’);
$r->notes($key => $val);
$val = $r->notes($key);
Apache2::compat::restore_mp2_api('Apache2::RequestRec::notes’);

See théApache2::RequestRec = manpage.

10.15.14%r - >header _i n

Seq$r->err header out |

10.15.15%r - >header _out

Seqg$r->err header out |

10.15.16%r - >err _header _out

header_in() , header_out() and err_header_out() are not available in 2.0. Use
headers_in() , headers_out() anderr_headers_out() instead (which should be used in 1.0
as well). For example you need to replace:

166 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.15.17 $r->register_cleanup

$r->err_header_out("Pragma" => "no-cache");
with:
$r->err_headers_out->{"Pragma’} = "no-cache";

See the Apache2::RequestRec manpage.

10.15.17%r - >r egi st er _cl eanup

Similarly to $s->register_cleanup , $r->register_cleanup has been replaced with
APR::Pool::cleanup_register() which accepts the pool object as the first argument instead of
the request object. e.g.:

sub cleanup_callback { my $data = shift; ... }
$r->pool->cleanup_register(\&cleanup_callback, $data);

where the last argumefitiata is optional, and if supplied will be passed as the first argument to the call-
back function.

See théAPR::Pool manpage.

10.15.18%r - >post _connecti on

$r->post_connection has been replaced with:

$r->connection->pool->cleanup_register();

See theAPR::Pool manpage.

10.15.19%r - >r equest

UseApache2::RequestUtil->request

10.15.20%r - >send_fd

mod_perl 2.0 provides a new metteehdfile() instead okend_fd , so if your code used to do:
open my $fh, "<$file" or die "$!";
$r->send_fd($fh);
close $fh;
now all you need is:
$r->sendfile($file);

There is also a compatibility implementation of send_fd in pure pé&gpache2::compat

15 Feb 2014 167

10.15.21 $r->send_http_header

XXX: later we may provide a direct access to the real send_fd. That will be possible if we figure out how
to portably convert PerllO/FILE into apr_file_t (with help of apr_os_file_put, which expects a native file-
handle, so I'm not sure whether this will work on win32).

10.15.21%r - >send_ht t p_header

This method is not needed in 2.0, though availabkpache2::compat . 2.0 handlers only need to set
the Content-typevia $r->content_type($type)

10.15.22%r - >server _root _relative

This method was replaced witkpache2::ServerUtil::server_root_relative() function
and its first argument is@ool object. For example:

during request
$conf_dir = Apache2::server_root_relative($r->pool, 'conf’);
during startup
$conf_dir = Apache2::server_root_relative($s->pool, 'conf’);

Note that the old form

my $conf_dir = Apache->server_root_relative('conf’);
is no longer valid server_root_relative() must be explicitly passed a pool.

The old functionality is available witApache2::compat

10.15.23%r - >hard_ti neout

Sed$r->kill timeout |

10.15.24%r - >reset _ti meout

Sedg$r->kill timeout |

10.15.25%r - >sof t _ti neout

Sedg$r->kill timeout |

10.15.26%r - >ki | | _ti meout

The functions $r->hard_timeout , $r->reset_timeout , $r->soft_timeout and
$r->kill_timeout aren’t needed in mod_perl 2Bpache2::compat implements these functions
for backwards compatibility as NOOPs.

168 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.16 Apache::Connection

10.15.27%r - >set byt er ange

Sed$r->each byterange |

10.15.28%r - >each_byt er ange

The functions$r->set_byterange and$r->each_byterange aren’t in the Apache 2.0 API, and
therefore don’t exist in mod_perl 2.0. The byterange serving functionality is now implemented in the
ap_byterange_filter, which is a part of the core http module, meaning that it's automatically taking care of
serving the requested ranges off the normal complete response. There is no need to configure it. It's
executed only if the appropriate request headers are set. These headers aren't listed here, since there are
several combinations of them, including the older ones which are still supported. For a complete info on
these seenodules/http/http_protocol.c

10.16 Apache: : Connecti on

10.16.1$connect i on- >aut h_t ype

The recordauth_typedoesn’t exist in the Apache 2.0’'s connection struct. It exists only in the request
record struct. The new accessor in 2.0 ABrisap_auth_type

Apache2::compat provides a back compatibility method, though it relies on the availability of the
globalApache->request , which requires the configuration to have:

PerlOptions +GlobalRequest

to set it up for earlier stages than response handler.

10.16.2%connect i on- >user

This method is deprecated in mod_perl 1.0 &ncdtuser should be used instead for both mod_perl
generations$r->user() method is available since mod_perl version 1.24_01.

10.16.3%connecti on- >l ocal _addr

Sed$connection->remote addr |

10.16.4$%connect i on- >r enot e_addr

$c->local_addr and$c->remote_addr return anAPR::SockAddr object and you can use this
object’'s methods to retrieve the wanted bits of information, so if you had a code like:

use Socket 'sockaddr_in’;

my $c = $r->connection;

my ($serverport, $serverip) = sockaddr_in($c->local_addr);

my ($remoteport, $remoteip) = sockaddr_in($c->remote_addr);

15 Feb 2014 169

10.17 Apache::File

now it'll be written as:

require APR::SockAddr;

my $c = $r->connection;

my $serverport = $c->local_addr->port;

my $serverip = $c->local_addr->ip_get;
my $remoteport = $c->remote_addr->port;
my $remoteip = $c->remote_addr->ip_get;

It's also possible to adjust the code using Apache2::compat’s overriding:

use Socket 'sockaddr_in’;
use Apache2::compat;

Apache2::compat::override_mp2_api(’Apache2::Connection::local_addr’);
my ($serverport, $serverip) = sockaddr_in($r->connection->local_addr);
Apache2::compat::restore_mp2_api('Apache2::Connection::local_addr’);
Apache2::compat::override_mp2_api(’Apache::Connection::remote_addr’);

my ($remoteport, $remoteip) = sockaddr_in($r->connection->remote_addr);
Apache2::compat::restore_mp2_api('Apache::Connection::remote_addr’);

10.17 Apache: : Fil e

The methods from mod_perl 1.0’'s modiélpache::File have been either moved to other packages or
removed.

10.17.1new(), open() andcl ose()

The methodsew() , open() andclose() were removed. See the back compatibility implementation
in the moduleéApache2::compat

Because of that some of the idioms have changes too. If previously you were writing:
my $fh = Apache::File->new($r->filename)
or return Apache::DECLINED;
Slurp the file (hopefully it's not too big).
my $content = do { local $/; <$fh> };
close $fh;
Now, you would write that usingpache2::RequestUtil::slurp_filename()

use Apache2::RequestUtil ();
my $content = ${ $r->slurp_filename() };

10.17.2t nmpfil e()

The methodmpfile() was removed since Apache 2.0 doesn’t have the API for this method anymore.

170 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.18 Apache::Util

SeeFile::Temp , or the back compatibility implementation in the modiache2::compat

With Perl v5.8.0 you can create anonymous temporary files:

open $fh, "+>", undef or die $!;

That is a literalindef , not an undefined value.

10.18 Apache: : Ut i |

A few Apache2:: Util functions have changed their interface.

10.18.1 Apache: : Util::size_string()

Apache::Util::size_string() has been replaced withPR::String::format_size()
which returns formatted strings of only 4 characters long.

10.18.2 Apache: : Util::escape_uri ()

Apache::Util::escape_uri() has been replaced witpache?2::Util::escape_path()
and requires a pool object as a second argument. For example:

$escaped_path = Apache2::Util::escape_path($path, $r->pool);

10.18.3 Apache: : Uti |l : : unescape_uri ()

Apache::Util::unescape_uri() has been replaced with
Apache2::URI::unescape_url()

10.18.4 Apache: : Uti |l ::escape_htm ()

Apache::Util::escape_html is not available in mod_perl 2.0. UsE'ML::Entities
(http://search.cpan.org/dist/HTML-Parser/lib/HTML/Entities|pm).

It's also available vi\pache2::compat for backwards compatibility.

10.18.5Apache: : Uti | :: parsedat e()

Apache::Util::parsedate() has been replaced wikPR::Date::parse_http()

10.18.6 Apache: : Util::ht _tine()

Apache2::Util::ht_time() now requires @ool object as a first argument.

15 Feb 2014

instead

171

http://search.cpan.org/dist/HTML-Parser/lib/HTML/Entities.pm

10.19 Apache:URI

For example:
use Apache2::Util ();
$fmt = "%a, %d %b %Y %H:%M:%S %Z’;
$gmt = 1;
$fmt_time = Apache2::Util::ht_time($r->pool, time(), $fmt, $gmt);
See the Apache2::Util manpage.
It's also possible to adjust the mod_perl 1.0 code using Apache2:.compat’s overriding.

For example:
use Apache2::compat;
Apache2::compat::override_mp2_api(’Apache2::Util::ht_time’);

$fmt_time = Apache2::Util::ht_time(time(), $fmt, $gmt);
Apache2::compat::restore_mp2_api('Apache2::Util::ht_time’);

10.18.7 Apache: : Uti | ::val i date_password()

Apache::Util::validate _password() has been replaced withAPR::Util::pass-
word_validate() . For example:

my $ok = Apache2::Util::password_validate("stas", "ZeO.RAc3iYvpA");

10.19 Apache: : URI
10.19.1 Apache: : URI - >parse($r, [$uri])

parse() and its associated methods have moved intédBiR::URI package. For example:

my $curl = $r->construct_url;
APR::URI->parse($r->pool, $curl);

See thaAPR::URI manpage.

10.19.2unpar se()

Other than moving to the packag®R::URI , unparse is now protocol-agnostic. Apache won't use
http as the default protocol ifosthameavas set, buschemavasn’t not. So the following code:

request http://localhost.localdomain:8529/TestAPI::uri
my $parsed = $r->parsed_uri;
$parsed->hostname($r->get_server_name);
$parsed->port($r->get_server_port);

print $parsed->unparse;

172 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.20 Miscellaneous

prints:
/llocalhost.localdomain:8529/TestAPI::uri

forcing you to make sure that the scheme is explicitly set. This will do the right thing:

request http://localhost.localdomain:8529/TestAPI::uri
my $parsed = $r->parsed_uri;
$parsed->hostname($r->get_server_name);
$parsed->port($r->get_server_port);
$parsed->scheme(http’);

print $parsed->unparse;

prints:

http://localhost.localdomain:8529/TestAPI::uri
See theAPR::URI manpage for more information.

It's also possible to adjust the behavior to be mod_perl 1.0 compatible using Apache2::compat’s overrid-
ing, in which caseinparse() will transparently seschemeo http.

request http://localhost.localdomain:8529/TestAPI::uri
Apache2::compat::override_mp2_api(APR::URI::unparse’);
my $parsed = $r->parsed_uri;

set hostname, but not the scheme
$parsed->hostname($r->get_server_name);
$parsed->port($r->get_server_port);

print $parsed->unparse;
Apache2::compat::restore_mp2_api('APR::URI::unparse’);

prints:

http://localhost.localdomain:8529/TestAPI::uri

10.20 Miscellaneous

10.20.1 Method Handlers

In mod_perl 1.0 the method handlers could be specified by usiri§je prototype:

package Bird;
@ISA = qw(Eagle);

sub handler ($$) {
my ($class, $r =@ _;

eey

}

mod_perl 2.0 doesn’'t handle callbacks wi#$) prototypes differently than other callbacks (as it did in
mod_perl 1.0), mainly because several callbacks in 2.0 have more arguments than gosthe($$)
prototype doesn’'t make sense anymore. Therefore if you want your code to work with both mod_perl

15 Feb 2014 173

10.21 Apache::src

generations and you can allow the luxury of:

require 5.6.0;

or if you need the code to run only on mod_perl 2.0, usendteodsubroutine attribute. (The subroutine
attributes are supported in Perl since version 5.6.0.)

Here is the same example rewritten usingniie¢hodsubroutine attribute:

package Bird;
@ISA = qw(Eagle);

sub handler : method {
my ($class, $r) = @_;

}

See thattributesmanpage.
If Class->method syntax is used for Berl*Handler , the:method attribute is not required.

The porting tutorial provides examples on how to use the same code base under both mod_perl generations
when the handler has to be a method.

10.20.2 Stacked Handlers

Both mod_perl 1.0 and 2.0 support the ability to register more than one handler in each runtime phase, a
feature known as stacked handlers. For example,

PerlAuthenHandler My::First My::Second

The behavior of stacked Perl handlers differs between mod_perl 1.0 and 2.0. In 2.0, mod_perl respects the
run-type of the underlying hook - it does not run all configured Perl handlers for each phase but instead
behaves in the same way as Apache does when multiple handlers are configured, respecting (or ignoring)
the return value of each handler as it is called.

Sed Stacked Handlgrs for a complete description of each hook and its run-type.

10.21 Apache: : src

For those who write 3rd party modules using XS, this module was used to supply mod_perl specific
include paths, defines and other things, needed for building the extensions. mod_perl 2.0 makes things
transparent wittModPerl::MM .

Here is how to write a simpldakefile.PLfor modules wanting to build XS code against mod_perl 2.0:

174 15 Feb 2014

A Reference to mod_perl 1.0 to mod_perl 2.0 Migration. 10.22 Apache::Table

use mod_perl 2.0;
use ModPerl::MM ();

ModPerl::MM::WriteMakefile(
NAME => "Foo",

)i

and everything will be done for you.

META: we probably will have a compat layer at some point.

META: move this section to the devel/porting and link there instead

10.22 Apache: : Tabl e

Apache::Table has been renamedAd®R::Table

10.23 Apache: : SI G

Apache::SIG currently exists onlApache2::compat and it does nothing.

10.24 Apache: : St at | NC

Apache::StatINC has been replaced Byache2::Reload , which works for both mod_perl gener-
ations. To migrate tpache2::Reload simply replace:

PerlinitHandler Apache::StatINC
with:
PerlinitHandler Apache2::Reload

HoweverApache2::Reload provides an extra functionality, covered in the module’s manpage.

10.25 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

10.26 Authors

e Stas Bekmar) [http://stason.qrg/]

15 Feb 2014 175

http://stason.org/
http://stason.org/

10.26 Authors

Only the major authors are listed above. For contributors see the Changes file.

176 15 Feb 2014

Introducing mod_perl Handlers 11 Introducing mod_perl Handlers

11 Introducing mod_perl Handlers

15 Feb 2014 177

11.1 Description

11.1 Description

This chapter provides an introduction into mod_perl handlers.

11.2 What are Handlers?

Apache distinguishes between numerous phases for which it provides hooks (because the C functions are
calledap_hook_<phase_namégwhere modules can plug various callbacks to extend and alter the default
behavior of the webserver. mod_perl provides a Perl interface for most of the available hooks, so
mod_perl modules writers can change the Apache behavior in Perl. These callbacks are usually referred to
as handlers and therefore the configuration directives for the mod_perl handlers look Péak:
FooHandler , whereFoo is one of the handler names. For exanif@eResponseHandler config-

ures the response callback.

A typical handler is simply a perl package withandlersubroutine. For example:

file:MyApache2/CurrentTime.pm

package MyApache2::CurrentTime;

use strict;
use warnings;

use Apache2::RequestRec ();
use Apache2::RequestlO ();

use Apache2::Const -compile => qw(OK);

sub handler {
my $r = shift;

$r->content_type('text/plain’);
$r->print("Now is: " . scalar(localtime) . "\n");

return Apache2::Const::OK;
}
1
This handler simply returns the current date and time as a response.
Since this is a response handler, we configure it as a shtfpéhconf

PerlResponseHandler MyApache2::CurrentTime

Since the response handler should be configured for a specific location, let's write a complete configura-
tion section:

PerlIModule MyApache2::CurrentTime
<Location /time>

SetHandler modperl

PerlResponseHandler MyApache2::CurrentTime
</Location>

178 15 Feb 2014

Introducing mod_perl Handlers 11.3 Handler Return Values

Now when a request is issuedhtitp://localhost/timghis response handler is executed and a response that
includes the current time is returned to the client.

11.3 Handler Return Values
Different handler groups are supposed to return different values.

Make sure that yoalways explicitly return a wanted value and don’t rely on the result of last expression
to be used as the return value -- things will change in the future and you won’t know why things aren’t
working anymore.

The only value that can be returned by all handlefAgpache2::Const:;:OK , which tells Apache that
the handler has successfully finished its execution.

Apache2::Const::DECLINED is another return value that indicates success, but it's only relevant for

of tyofRUN_FIRS

HTTP handles may also retudpache2::Const::DONE which tells Apache to stop the normal
HTTP re§uest czcle and fast forward to [FerlLogHandler | followed by[PerlCleanupHandler |

[HTTP handleds may return any HTTP status, which similarlxgache2::Const::DONE will cause

an abort of the request cycle, by also will be interpreted as an error. Therefore you don’t want to return
Apache2::Const::HTTP_OK from your HTTP response handler, Bygache2::Const::OK and
Apache will send th@00 OK status by itself.

returApache2::Const::OK to indicate that the filter has successfully finished. If the
return value isApache2::Const::DECLINED , mod_perl will read and forward the data on behalf of

the filter. Please notice that this feature is specific to mod_perl. If there is some problem with obtaining or
sending the bucket brigades, or the buckets in it, filters need to return the error returned by the method that
tried to manipulate the bucket brigade or the bucket. Normally it'd BP&h: constant.

[Protocol handlg¢r return values aren’t really handled by Apache, the handler is supposed to take care of any

errors by itself. The only special case is[HelPreConnectionHandler [handler, which, if return-
ing anything butApache2::Const::OK or Apache2::Const::DONE , will prevent fromPerl-_]
[ConnectionHandler | to be run]PerlPreConnectionHandler | handlers should always return

Apache2::Const::OK

11.4 mod_perl Handlers Categories

The mod_perl handlers can be divided by their application scope in several categories:

® [Server life cyclg
O |Per | OpenLogsHandl er|
O |Per 1 Post Confi gHandl er|
O [Perl Chil dl nitHandl er]
O [Perl Chi | dExi t Handl er]
e [Protocols

15 Feb 2014 179

http://localhost/time

11.5 Stacked Handlers

O |Per| PreConnecti onHandl er|
O |Per| ProcessConnect i onHandl er|
J
O |Perl | nput Fi |l t er Handl er|
O [Per| CQut put Fi | t er Handl er|
e [HTTP Protocoll
|Per | Post ReadRequest Handl er|
|Per| Tr ansHandl er |
[Per| MapToSt or ageHand! er |
[Per 11 nitHandl er|
|Per | Header Par ser Handl er |
[Per | AccessHandl er|
[Per | Aut henHandl er]
|Per | Aut hzHandl er |
[Per | TypeHandl er|
[Per | Fi xupHandl er|
|Per | ResponseHandl er |
|Per | LogHandl er|
[Per | A eanupHandl er |

o

O OO0 O0OO0OO0OO0OO0OO0OO0OOoOOo

11.5 Stacked Handlers

For each phase there can be more than one handler assigned (also khooksdsecause the C func-

tions are callecip_hook_<phase_namég>Phases’ behavior varies when there is more then one handler
registered to run for the same phase. The following table specifies each handler's behavior in this situa-
tion:

Directive Type

PerlOpenLogsHandler RUN_ALL
PerlPostConfigHandler RUN_ALL
PerlChildInitHandler VOID
PerlChildExitHandler VOID

PerlPreConnectionHandler RUN_ALL
PerlProcessConnectionHandler RUN_FIRST

PerlPostReadRequestHandler RUN_ALL

PerlTransHandler RUN_FIRST
PerIMapToStorageHandler ~ RUN_FIRST
PerlinitHandler RUN_ALL
PerlHeaderParserHandler = RUN_ALL
PerlAccessHandler RUN_ALL
PerlAuthenHandler RUN_FIRST
PerlAuthzHandler RUN_FIRST
PerlTypeHandler RUN_FIRST
PerlFixupHandler RUN_ALL
PerlResponseHandler RUN_FIRST
PerlLogHandler RUN_ALL

180 15 Feb 2014

Introducing mod_perl Handlers 11.6 Hook Ordering (Position)

PerlCleanupHandler RUN_ALL

PerlinputFilterHandler VOID
PerlOutputFilterHandler VOID

Note: [PerlChildExitHandler | and|PerlCleanupHandler | are not real Apache hooks, but to
mod_perl users they behave as all other hooks.

And here is the description of the possible types:

11.5.1VvA D

Handlers of the typ&OID will be all executed in the order they have been registered disregarding their
return values. Though in mod_perl they are expected to rApache2::Const::OK

11.5.2 RUN_FI RST

Handlers of the typ®UN_FIRST will be executed in the order they have been registered until the first
handler that returns something other thapache2::Const::DECLINED . If the return value is
Apache2::Const::DECLINED , the next handler in the chain will be run. If the return value is
Apache2::Const::OK the next phase will start. In all other cases the execution will be aborted.

11.5.3RUN_ALL

Handlers of the typ&@UN_ALL will be executed in the order they have been registered until the first
handler that returns something other thgache2::Const::OK or
Apache2::Const::DECLINED

For C API declarations sdaclude/ap_config.hwhich includes other types which aren’t exposed by
mod_perl handlers.

Also se¢ mod perl Directives Argument Types and Allowed Lodation

11.6 Hook Ordering (Position)

The following constants specify how the new hooks (handlers) are inserted into the list of hooks when
there is at least one hook already registered for the same phase.

META: Not working yet.
META: need to verify the following:
® APR : Const:: HOOK REALLY_FI RST

run this hook first, before ANYTHING.

15 Feb 2014 181

11.7 Bucket Brigades

® APR : Const:: HOOK _FI RST
run this hook first.
® APR: : Const:: HOOK M DDLE
run this hook somewhere.
® APR: : Const:: HOOK LAST
run this hook after every other hook which is defined.
® APR: : Const:: HOOK _REALLY_LAST
run this hook last, after EVERYTHING.

META: more information in mod_example.c talking about position/predecessors, etc.

11.7 Bucket Brigades

Apache 2.0 allows multiple modules to filter both the request and the response. Now one module can pipe
its output as an input to another module as if another module was receiving the data directly from the TCP
stream. The same mechanism works with the generated response.

With /O filtering in place, simple filters, like data compression and decompression, can be easily imple-
mented and complex filters, like SSL, are now possible without needing to modify the the server code
which was the case with Apache 1.3.

In order to make the filtering mechanism efficient and avoid unnecessary copying, while keeping the data
abstracted, thBucket Brigadesechnology was introduced. It's also usefd in protocol hampdlers.

A bucket represents a chunk of data. Buckets linked together comprise a brigade. Each bucket in a brigade
can be modified, removed and replaced with another bucket. The goal is to minimize the data copying
where possible. Buckets come in different types, such as files, data blocks, end of stream indicators, pools,
etc. To manipulate a bucket one doesn’t need to know its internal representation.

The stream of data is represented by bucket brigades. When a filter is called it gets passed the brigade that
was the output of the previous filter. This brigade is then manipulated by the filter (e.g., by modifying
some buckets) and passed to the next filter in the stack.

The following figure depicts an imaginary bucket brigade:
bucket brigades

The figure tries to show that after the presented bucket brigade has passed through several filters some
buckets were removed, some modified and some added. Of course the handler that gets the brigade cannot
tell the history of the brigade, it can only see the existing buckets in the brigade.

182 15 Feb 2014

Introducing mod_perl Handlers 11.8 Maintainers

Bucket brigades are discussed in detail if the protocol handlgrs and 1/O filtering chapters.

11.8 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

11.9 Authors

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 183

http://stason.org/

12 Server Life Cycle Handlers

12 Server Life Cycle Handlers

184 15 Feb 2014

Server Life Cycle Handlers 12.1 Description

12.1 Description

This chapter discusses server life cycle and the mod_perl handlers participating in it.

12.2 Server Life Cycle

The following diagram depicts the Apache 2.0 server life cycle and highlights which handlers are available
to mod_perl 2.0:

server life cycle

Apache 2.0 starts by parsing the configuration file. After the configuration file is pars&kripen-
LogsHandler handlers are executed if any. After that it's a turnPeflPostConfigHandler

handlers to be run. When tpest_configphase is finished the server immediately restarts, to make sure
that it can survive graceful restarts after starting to serve the clients.

When the restart is completed, Apache 2.0 spawns the workers that will do the actual work. Depending on
the used MPM, these can be threads, processes or a mixture of both. For exammeehd1PM

spawns a number of processes, each running a number of threads. When each child process is started
PerlChildInitHandler handlers are executed. Notice that they are run for each starting process, not

a thread.

From that moment on each working thread processes connections until it's killed by the server or the
server is shutdown.

12.2.1 Startup Phases Demonstration Module

Let's look at the following example that demonstrates all the startup phases:

#file:MyApache2/StartupLog.pm

#H

package MyApache2::StartupLog;

use strict;
use warnings;

use Apache2::Log ();
use Apache2::ServerUtil ();

use Fentl gw(:flock);
use File::Spec::Functions;

use Apache2::Const -compile =>'OK’;
my $log_path = catfile Apache2::ServerUtil::server_root,
"logs", "startup_log";

my $log_fh;

sub open_logs {
my ($conf_pool, $log_pool, $temp_pool, $s) = @_;

15 Feb 2014 185

12.2.1 Startup Phases Demonstration Module

$s->warn("opening the log file: $log_path");
open $log_fh, ">>%$log_path" or die "can’t open $log_path: $!";
my $oldfh = select($log_fh); $| = 1; select($oldfh);

say("process $3 is born to reproduce");
return Apache2::Const::OK;

}

sub post_config {
my ($conf_pool, $log_pool, $temp_pool, $s) = @_;
say("configuration is completed");
return Apache2::Const::OK;

}

sub child_init {
my ($child_pool, $s) = @_;
say("process $$ is born to serve");
return Apache2::Const::OK;

}

sub child_exit {
my ($child_pool, $s) = @_;
say("process $$ now exits");
return Apache2::Const::OK;
}

sub say {
my ($caller) = (caller(1))[3] =~ /(["]+)$/;
if (defined $log_fh) {
flock $log_fh, LOCK_EX;
printf $log_fh "[%s] - %-11s: %s\n",
scalar(localtime), $caller, $_[O];
flock $log_fh, LOCK_UN;
}
else {
when the log file is not open
warn __PACKAGE__ . "says: $_[0]\n";
}
}

my $parent_pid = $$;

END {
my $msg = "process $$ is shutdown";
$msg .= "\n". "-" x 20 if $$ == $parent_pid;
say($msg);

1
And thehttpd.confconfiguration section:
<IfModule prefork.c>
StartServers 4

MinSpareServers 4
MaxSpareServers 4

186 15 Feb 2014

Server Life Cycle Handlers 12.2.1 Startup Phases Demonstration Module

MaxClients 10
MaxRequestsPerChild 0

</IfModule>

PerlModule MyApache?2::StartupLog

PerlOpenLogsHandler MyApache2::StartupLog::open_logs
PerlPostConfigHandler MyApache2::StartuplLog::post_config
PerlChildInitHandler MyApache?2::StartupLog::child_init
PerlChildExitHandler MyApache2::StartupLog::child_exit

When we perform a server startup followed by a shutdowrpgséstartup_logs created if it didn’t exist
already (it shares the same directory véittor_log and other standard log files), and each stage appends
to that file its log information. So when we perform:

% bin/apachectl start && bin/apachectl stop

the following is getting logged togs/startup_log

[Sun Jun 6 01:50:06 2004] - open_logs : process 24189 is born to reproduce
[Sun Jun 6 01:50:06 2004] - post_config: configuration is completed

[Sun Jun 6 01:50:07 2004] - END : process 24189 is shutdown

[Sun Jun 6 01:50:08 2004] - open_logs : process 24190 is born to reproduce
[Sun Jun 6 01:50:08 2004] - post_config: configuration is completed

[Sun Jun 6 01:50:09 2004] - child_init : process 24192 is born to serve

[Sun Jun 6 01:50:09 2004] - child_init : process 24193 is born to serve

[Sun Jun 6 01:50:09 2004] - child_init : process 24194 is born to serve

[Sun Jun 6 01:50:09 2004] - child_init : process 24195 is born to serve

[Sun Jun 6 01:50:10 2004] - child_exit : process 24193 now exits

[Sun Jun 6 01:50:10 2004] - END : process 24193 is shutdown

[Sun Jun 6 01:50:10 2004] - child_exit : process 24194 now exits

[Sun Jun 6 01:50:10 2004] - END : process 24194 is shutdown

[Sun Jun 6 01:50:10 2004] - child_exit : process 24195 now exits

[Sun Jun 6 01:50:10 2004] - child_exit : process 24192 now exits

[Sun Jun 6 01:50:10 2004] - END : process 24192 is shutdown

[Sun Jun 6 01:50:10 2004] - END : process 24195 is shutdown

[Sun Jun 6 01:50:10 2004] - END : process 24190 is shutdown

First of all, we can clearly see that Apache always restart itself after thpd#tstconfigphase is over.
The logs show that thpost_configphase is preceded by topen_logsphase. Only after Apache has
restarted itself and has completed tipen_logsand post_configphase again, thehild_init phase is run
for each child process. In our example we have had the sStiangpervers=4 |, therefore you can see
four child processes were started.

Finally you can see that on server shutdowncttilel_exitphase is run for each child process and2N®
{} block is executed by the parent process and each of the child processes. This is bedaNBblibekt
was inherited from the parent on fork.

However the presented behavior varies from MPM to MPM. This demonstration was performed using
prefork mpm. Other MPMs like winnt, may rapen_logsandpost_confignore than once. Also the END

blocks may be run more times, when threads are involved. You should be very careful when designing
features relying on the phases covered in this chapter if you plan support multiple MPMs. The only thing

15 Feb 2014 187

12.2.2 PerlOpenLogsHandler

that’s sure is that you will have each of these phases run at least once.

Apache also specifies th@e_configphase, which is executed before the configuration files are parsed,
but this is of no use to mod_perl, because mod_perl is loaded only during the configuration phase.

Now let's discuss each of the mentioned startup handlers and their implementation in the
MyApache?2::StartupLog module in detail.

12.2.2 Per | OpenLogsHandl er

Theopen_loggphase happens just before gust_configphase.

Handlers registered yerlOpenLogsHandler are usually used for opening module-specific log files
(e.g., httpd core and mod_ssl open their log files during this phase).

At this stage th6&sTDERRstream is not yet redirected éoror_log, and therefore any messages to that
stream will be printed to the console the server is starting from (if such exists).

This phase is of typeUN_ALL
The handler’s configuration scopdSRY
Arguments

The open_logshandler is passed four arguments: the configuration pool, the logging stream pool, the
temporary pool and the main server object.

The pool arguments are:

® $conf_pool is the main process sub-pool, therefore its life-span is the same as the main process’s
one. The main process is a sub-pool of the global pool.

® $log_pool is a global pool's sub-pool, therefore its life-span is the same as the Apache program’s
one.

META: what is it good for if it lives the same life as conf pool?

e $temp_pool is a $conf _pool subpool, created before the config phase, lives through the
open_logs phase and get destroyed after the post_config phase. So you will want to use that pool for
doing anything that can be discarded before the requests processing starts.

All three pool arguments are instance®\&R::Pool
$s is the base server object (an instancApsdche2::ServerRec).

Return

188 15 Feb 2014

Server Life Cycle Handlers 12.2.3 PerlPostConfigHandler

The handler should retusypache2::Const::OK if it completes successfully.

Examples

sub open_logs {
my ($conf_pool, $log_pool, $temp_pool, $s) = @_;

$s->warn("opening the log file: $log_path");
open $log_fh, ">>$log_path" or die "can’t open $log_path: $!";
my $oldfh = select($log_fh); $| = 1; select($oldfh);

say("process $$ is born to reproduce");
return Apache2::Const::OK;

}

In our example the handler opens a log file for appending and sets the filehandle to unbuffered mode. It
then logs the fact that it's running in the parent process.

As you've seen in the example this handler is configured by adding to the top lbttpbodonf
PerlOpenLogsHandler MyApache2::StartupLog::open_logs

This handler can be executed only by the main server. If you want to traverse the configured virtual hosts,
you can accomplish that using a simple loop. For example to print out the configured port numbers do:

use Apache2::ServerRec ();
...
sub open_logs {
my ($conf_pool, $log_pool, $temp_pool, $s) = @_;

my $port = $s->port;

warn "base port: $port\n";

for (my $vs = $s->next; $vs; $vs = $vs->next) {
my $port = $vs->port;
warn "vhost port: $port\n”;

}
return Apache2::Const::OK;

12.2.3 Per | Post Conf i gHandl er

The post_configphase happens right after Apache has processed the configuration files, before any child
processes were spawned (which happens atile init phase).

This phase can be used for initializing things to be shared between all child processes. You can do the
same in the startup file, but in tpest_configphase you have an access to a complete configuration tree
(via Apache2::Directive).

This phase is of typUN_ALL

15 Feb 2014 189

12.2.4 PerlChildInitHandler

The handler’s configuration scopdSRY

Arguments

Arguments are exactly as {BerlOpenLogsHandler |

Return
If the handler completes successfully it should reApache2::Const::OK

Examples

In our[MyApache?2::StartupLog __|example we used thpost_config(handler:

sub post_config {
my ($conf_pool, $log_pool, $temp_pool, $s) = @_;
say("configuration is completed");
return Apache2::Const::OK;

}

As you can see, its arguments are identical togen _logsphase’s handler. In this example handler we
don’t do much, but logging that the configuration was completed and returning right away.

As you've seen in the example this handler is configured by addHitpthconf

PerlPostConfigHandler MyApache2::StartupLog::post_config

Everything that applies f@erlOpenLogsHandler _[identically applies to this handler.

Theadd_version_component() includes another useful example.

12.2.4 Per| Chi | dI ni t Handl er

The child_init phase happens immediately after the child process is spawned. Each child process (not a
thread!) will run the hooks of this phase only once in their life-time.

In the prefork MPM this phase is useful for initializing any data structures which should be private to each
process. For exampléApache::DBI pre-opens database connections during this phase and
Apache2::Resource sets the process’ resources limits.

This phase is of typ€OID.
The handler’s configuration scopdIRV
Arguments

The child_init() handler is passed two arguments: the child process p&&t:(Pool) and the server
object @pache2::ServerRec).

190 15 Feb 2014

Server Life Cycle Handlers 12.2.5 PerlChildExitHandler

Return
If the handler completes successfully it should reApache?2::Const::OK

Examples

In ourMyApache?2::StartupLog | example we used thedild_init() handler:

sub child_init {
my ($child_pool, $s) = @_;
say("process $$ is born to serve");
return Apache2::Const::OK;

}

The example handler logs the pid of the child process it's run in and returns.

As you've seen in the example this handler is configured by addHitpthconf

PerlChildInitHandler MyApache?2::StartupLog::child_init

12.2.5Per | Chi | dExi t Handl er

Opposite to thehild_init phase, thehild_exitphase is executed before the child process exits. Notice that
it happens only when the process exits, not the thread (assuming that you are using a threaded mpm).

This phase is of typRUN_ALL
The handler’s configuration scopdIRV
Arguments

The child_exit() handler accepts two arguments: the child process pd@R:(Pool) and the server
object @pache2::ServerRec).

Return
If the handler completes successfully it should reApache2::Const::OK

Examples

In ourfMyApache?::StartuplLog |example we used thehild_exit()handler:

sub child_exit {
my ($child_pool, $s) = @_;
say("process $$ now exits");
return Apache2::Const::OK;

}

The example handler logs the pid of the child process it's run in and returns.

15 Feb 2014 191

12.3 Apache Command-line Commands

As you've seen in the example this handler is configured by addHtpthconf

PerlChildExitHandler MyApache2::StartuplLog::child_exit

12.3 Apache Command-line Commands
Some notes on how Apache start/restart Apache commands affect mod_perl.
META: not sure this is the best place for this section, but start some notes here.

Apache re-parsastpd.confat least once fagachof the following commands (and will run any mod_perl
code found in it).

e httpd -k start
No special issues here.
Apache start and immediately restarts itself.
® httpd -k restart
This will abort any processed requests and restart the server.

All kind of problems could be encountered here, including segfaults and other kind of crashes. This is
because when tH&IGTERMsignal is sent, things in process will be aborted.

Avoid using this method.
Alternativelyhttpd -k restart can be executddll -HUP HTTPD_PID
e httpd -k graceful

No issues here. Apache starts and restarts itself just likestath , but it waits for the existing
requests to finish before killing them.

Alternativelyhttpd -k graceful can be executedll -USR1 HTTPD_PID
e httpd -k stop

Similarly to httpd -k restart you may encounter all kind of issues here, due t&tBIERM
signal.

12.4 mod_perl Startup

The following sections discuss the specifics of the mod_perl startup.

192 15 Feb 2014

Server Life Cycle Handlers 12.4.1 Start Immediately Restarts

12.4.1 Start Immediately Restarts

As explained in th¢ Server Life Cycle secfion, on start Apache normally runs the server configuration
phase, followed bjPerlOpenLogsHandler | andPerlPostConfigHandler | phases, then immedi-

ately restarts itself. Therefore everything running at the server startup is executed twice. During the restart,
Perl is completely destroyed and started again.

12.4.2 When Does perl Start To Run

If Apache is started a#ttpd -t’ (equivalent to'apachectl configtest’) or as’httpd
-S’ , it will run only the configuration phase and exit. Depending on your configuration file, it may or
may not start perl. See the details below.

During the normal startup, mod_perl 2.0 postpones the startup of perl until after the configuration phase is
over, to allow the usage of RerlSwitches | directive, which can’t be used after Perl is started.

After the configuration phase is over, as the very first thing duringdke config phase [, mod_perl
starts perl and runs any registgRefiRequire__]andPerlModule] entries.

At the very end of thpost config phase | any registrerefPerlPostConfigRequire | entries are
run.

When any of the following configuration directives is encountered (during the configuration phase)
mod_perl 2.0 is forced to start as soon as they are encountered (as these options require a running perl):

o |PerlLoadModule |

® <Perl> section

e |PerlConfigRequire |

Therefore if you want to trigger an early Perl startup, you could add an erpt}> section in
httpd.conf

<Perl>
trigger an early Perl startup
</Perl>

right after loading the mod_perl module, if you are using DSO, or just before your mod_perl configuration
section, if you're using a static mod_perl build. But most likely you want to u§eei€onfigRe- |

[quire]instead.
12.4.3 Startup File

A startup file with Perl code to be executed at the server startup can be loadg@enktogtConfi- |

gRequire | For example:

15 Feb 2014 193

12.4.3 Startup File

PerlPostConfigRequire /home/httpd/perl/lib/startup.pl

It's used to adjust Perl modules search path@ING pre-load commonly used modules, pre-compile
constants, etc. Here is a typissrtup.plfor mod_perl 2.0:

#file:startup.pl

use lib gw(/home/httpd/perl);

enable if the mod_perl 1.0 compatibility is needed
use Apache2::compat ();

preload all mp2 modules

use ModPerl::MethodLookup;

ModPerl::MethodLookup::preload_all_modules();
use ModPerl::Util (); #for CORE::GLOBAL ::exit
use Apache2::RequestRec ();

use Apache2::RequestlO ();

use Apache2::RequestUtil ();

use Apache2::ServerRec ();

use Apache2::ServerUtil ();

use Apache2::Connection ();

use Apache2::Log ();

use APR::Table ();

use ModPerl::Registry ();

use Apache2::Const -compile =>":common’;
use APR::Const -compile => ":common’;

1
In this file @INCin adjusted to include non-standard directories with Perl modules:

use lib qw(/home/httpd/perl);

If you need to use the backwards compatibility layer load:

use Apache2::compat ();
Next we preload the commonly used mod_perl 2.0 modules and precompile common constants.

Finally as usual thetartup.plfile must be terminated witk; .

194 15 Feb 2014

Server Life Cycle Handlers 12.5 Maintainers

12.4.4 Dealing with Restarts

Ideally the code running at the server startup shouldn’t be affecjed by the apache restart. If however this is
not the case, you can udpache?2::ServerUltil::restart_count

12.5 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar) [http://stason.qrg/]

12.6 Authors

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 195

http://stason.org/

13 Protocol Handlers

13 Protocol Handlers

196 15 Feb 2014

Protocol Handlers 13.1 Description

13.1 Description

This chapter explains how to implement Protocol (Connection) Handlers in mod_perl.

13.2 Connection Cycle Phases

As we saw earlier, each child server (be it a thread or a process) is engaged in processing connections.
Each connection may be served by different connection protocols, e.g., HTTP, POP3, SMTP, etc. Each
connection may include more than one request, e.g., several HTTP requests can be served over a single
connection, when several images are requested for the same webpage.

The following diagram depicts the connection life cycle and highlights which handlers are available to
mod_perl 2.0:

connection cycle

When a connection is issued by a client, it's first run thrdegtiPreConnectionHandler and then

passed to theerlProcessConnectionHandler , which generates the response. WRenPro-
cessConnectionHandler is reading data from the client, it can be filtered by connection input
filters. The generated response can be also filtered though connection output filters. Filters are usually
used for modifying the data flowing though them, but can be used for other purposes as well (e.g., logging
interesting information). For example the following diagram shows the connection cycle mapped to the
time scale:

connection cycle timing

The arrows show the program control. In addition, the black-headed arrows also show the data flow. This
diagram matches an interactive protocol, where a client send something to the server, the server filters the
input, processes it and send it out through output filters. This cycle is repeated till the client or the server
don't tell each other to go away or abort the connection. Before the cycle starts any registered pre_connec-
tion handlers are run.

Now let’'s discuss each of tHeerlPreConnectionHandler and PerlProcessConnection-
Handler handlers in detail.

13.2.1 PerlPreConnectionHandler

The pre_connectiorphase happens just after the server accepts the connection, but before it is handed off
to a protocol module to be served. It gives modules an opportunity to modify the connection as soon as
possible and insert filters if needed. The core server uses this phase to setup the connection record based
on the type of connection that is being used. mod_perl itself uses this phase to register the connection
input and output filters.

In mod_perl 1.0 during code developm@mpiache::Reload was used to automatically reload modified
since the last request Perl modules. It was invoked dyow) read_request , the first HTTP
request’s phase. In mod_perl 2@ _connections the earliest phase, so if we want to make sure that all

15 Feb 2014 197

13.2.1 PerlPreConnectionHandler

modified Perl modules are reloaded for any protocols and its phases, it's the best to set the scope of the
Perl interpreter to the lifetime of the connection via:

PerlinterpScope connection

and invoke theApache2::Reload handler during thgre_connectiorphase. However this develop-
ment-time advantage can become a disadvantage in production--for example if a connection, handled by
HTTP protocol, is configured dseepAlive and there are several requests coming on the same connec-
tion and only one handled by mod_perl and the others by the default images handler, the Perl interpreter
won'’t be available to other threads while the images are being served.

This phase is of typeUN_ALL

The handler's configuration scopdS®Y because it's not known yet which resource the request will be
mapped to.

Arguments

A pre_connectiornandler is passedc@nnection record as its argument:
sub handler {
my $c = shift;
#...
return Apache2::Const::OK;
}

[META: There is another argument passed (the actual client socket), but it is currently an undef]
Return

The handler should return Apache2::Const::OK if it completes successfully or
Apache2::Const::FORBIDDEN if the request is forbidden.

Examples

Here is a usefupre_connectiorphase example: provide a facility to block remote clients by their IP,
before too many resources were consumed. This is almost as good as a firewall blocking, as it's executed
before Apache has started to do any work at all.

MyApache2::BlocklP2 retrieves client’s remote IP and looks it up in the black list (which should
certainly live outside the code, e.g. dbm file, but a hardcoded list is good enough for our example).

#file:MyApache2/BlockIP2.pm
H

package MyApache2::BlocklIP2;

use strict;
use warnings;

use Apache2::Connection ();

use Apache2::Const -compile => qw(FORBIDDEN OK);

198 15 Feb 2014

Protocol Handlers 13.2.2 PerlProcessConnectionHandler

my %bad_ips = map {$_ => 1} qw(127.0.0.1 10.0.0.4);

sub handler {
my Apache2::Connection $c = shift;

my $ip = $c->remote_ip;
if (exists $bad_ips{$ip}) {

warn "IP $ip is blocked\n";
return Apache2::Const::FORBIDDEN;

}

return Apache2::Const::OK;
}

1
This all happens during there_connectiophase:
PerlPreConnectionHandler MyApache2::BlocklP2

If a client connects from a blacklisted IP, Apache will simply abort the connection without sending any
reply to the client, and move on to serving the next request.

13.2.2 PerlProcessConnectionHandler

The process_connectiophase is used to process incoming connections. Only protocol modules should
assign handlers for this phase, as it gives them an opportunity to replace the standard HTTP processing
with processing for some other protocols (e.g., POP3, FTP, etc.).

This phase is of typeUN_FIRST.

The handler’s configuration scope]SR\ Therefore the only way to run protocol servers different than
the core HTTP is inside dedicated virtual hosts.

Arguments

A process_connectiomandler is passedcnnection record object as its only argument.
A socket object can be retrieved from the connection record object.

Return

The handler should retudpache2::Const::OK if it completes successfully.

Examples

Here is a simplified handler skeleton:

15 Feb 2014 199

13.2.2 PerlProcessConnectionHandler

sub handler {
my ($c) = @_;
my $sock = $c->client_socket;
$sock->opt_set(APR::Const::SO_NONBLOCK, 0);
#...
return Apache2::Const::OK;

}

Most likely you'll need to set the socket to perform blocking 0. On some platforms (e.g. Linux) Apache
gives us a socket which is set for blocking, on other platforms (.e.g. Solaris) it doesn’t. Unless you know
which platforms your application will be running on, always explicitly set it to the blocking IO mode as in
the example above. Alternatively, you could query whether the socket is already set to a blocking 10 mode
with help ofthe opt_get() method

Now let’'s look at the following two examples of connection handlers. The first using the connection
socket to read and write the data and the second using bucket brigades to accomplish the same and allow
for connection filters to do their work.

13.2.2.1 Socket-based Protocol Module

To demonstrate the workings of a protocol module, we'll take a look dMyApache2::EchoSocket
module, which simply echoes the data read back to the client. In this module we will use the implementa-
tion that works directly with the connection socket and therefore bypasses connection filters if any.

A protocol handler is configured using tRerlProcessConnectionHandler directive and we will
use thelisten and<VirtualHost> directives to bind to the non-standard @91Q

Listen 8010
<VirtualHost _default_:8010>
PerlModule MyApache2::EchoSocket

PerlProcessConnectionHandler MyApache2::EchoSocket
</VirtualHost>

MyApache2::EchoSocket is then enabled when starting Apache:
panic% httpd
And we give it a whirl:
panic% telnet localhost 8010
Trying 127.0.0.1...
Connected to localhost (127.0.0.1).
Escape character is "]'.
Hello
Hello

fOo BaR
fOo BaR

Connection closed by foreign host.

200 15 Feb 2014

Protocol Handlers 13.2.2 PerlProcessConnectionHandler

Here is the code:

#file:MyApache2/EchoSocket.pm
#H

package MyApache2::EchoSocket;

use strict;
use warnings FATAL =>"all’;

use Apache2::Connection ();
use APR::Socket ();

use Apache2::Const -compile =>'OK’;
use APR::Const -compile =>'SO_NONBLOCK’;

use constant BUFF_LEN => 1024,

sub handler {
my $c = shift;
my $sock = $c->client_socket;

set the socket to the blocking mode
$sock->opt_set(APR::Const::SO_NONBLOCK => 0);

while ($sock->recv(my $buff, BUFF_LEN)) {
last if $buff =~ /A\\n]+$/;
$sock->send($buff);

}

Apache2::Const::OK;

}
1
The example handler starts with the stangeckagedeclaration and of coursese strict; . As with

all Perl*Handler s, the subroutine name defaults htandler However, in the case of a protocol
handler, the first argument is not eequest_ rec , but a conn_rec blessed into the
Apache2::Connection class. We have direct access to the client sockeapaézhe2::Connec-

tion ’s client_sockemethod. This returns an object, blessed intoARR::Socket class. Before using

the socket, we make sure that it's set to perform blocking 10, by wusing the
APR::Const::SO_NONBLOCK constant, compiled earlier.

Inside the recv/send loop, the handler attempts to BéHeF LENDbytes from the client socket into the
$buff buffer. The handler breaks the loop if nothing was read (EOF) or if the buffer contains nothing but
new line character(s), which is how we know to abort the connection in the interactive mode.

If the handler receives some data, it sends it unmodified back to the client with the
APR::Socket::send() method. When the loop is finished the handler returns
Apache2::Const::OK | telling Apache to terminate the connection. As mentioned earlier since this
handler is working directly with the connection socket, no filters can be applied.

15 Feb 2014 201

13.2.2 PerlProcessConnectionHandler

13.2.2.2 Bucket Brigades-based Protocol Module

Now let’s look at the same module, but this time implemented by manipulating bucket brigades, and
which runs its output through a connection output filter that turns all uppercase characters into their lower-
case equivalents.

The following configuration defines a virtual host listening on port 8011 and which enables the
MyApache2::EchoBB connection handler, which will run its output through
MyApache2::EchoBB::lowercase_filter filter:

Listen 8011

<VirtualHost _default_:8011>
PerlModule MyApache2::EchoBB
PerlProcessConnectionHandler MyApache2::EchoBB
PerlOutputFilterHandler ~ MyApache2::EchoBB::lowercase_filter

</VirtualHost>

As before we start the httpd server:
panic% httpd
And try the new connection handler in action:
panic% telnet localhost 8011
Trying 127.0.0.1...
Connected to localhost (127.0.0.1).
Escape character is "]
Hello
hello

fOo BaR
foo bar

Connection closed by foreign host.
As you can see the response part this time was all in lower case, because of the output filter.
And here is the implementation of the connection and the filter handlers.

#file:MyApache2/EchoBB.pm
#.

package MyApache2::EchoBB;

use strict;
use warnings FATAL =>"all’;

use Apache2::Connection ();
use APR::Socket ();

use APR::Bucket ();

use APR::Brigade ();

use APR::Error ();

use APR::Status ();

use APR::Const -compile => qw(SUCCESS SO_NONBLOCK);

202 15 Feb 2014

Protocol Handlers 13.2.2 PerlProcessConnectionHandler

use Apache2::Const -compile => qw(OK MODE_GETLINE);

sub handler {
my $c = shift;

$c->client_socket->opt_set(APR::Const::SO_NONBLOCK => 0);

my $bb_in = APR::Brigade->new($c->pool, $c->bucket_alloc);
my $bb_out = APR::Brigade->new($c->pool, $c->bucket_alloc);

my $last = 0;
while (1) {
my $rc = $c->input_filters->get_brigade($bb_in,
Apache2::Const::MODE_GETLINE);
last if APR::Status::is_ EOF($rc);
die APR::Error::strerror($rc) unless $rc == APR::Const::SUCCESS;

while (1$bb_in->is_empty) {
my $b = $bb_in->first;

$b->remove;

if ($b->is_eos) {
$bb_out->insert_tail($b);
last;

}

if ($b->read(my $data)) {

$last++ if $data =~ /[\r\n]+$/;

could do some transformation on data here

$b = APR::Bucket->new($bb_out->bucket_alloc, $data);
}

$bb_out->insert_tail($b);
}

my $fb = APR::Bucket::flush_create($c->bucket_alloc);
$bb_out->insert_tail($fb);
$c->output_filters->pass_brigade($bb_out);

last if $last;

}

$bb_in->destroy;
$bb_out->destroy;

Apache2::Const::OK;
}

use base gqw(Apache2::Filter);
use constant BUFF_LEN => 1024,

sub lowercase_filter : FilterConnectionHandler {
my $filter = shift;

while ($filter->read(my $buffer, BUFF_LEN)) {
$filter->print(Ic $buffer);

15 Feb 2014 203

13.2.2 PerlProcessConnectionHandler

}

return Apache2::Const::OK;
}

1

For the purpose of explaining how this connection handler works, we are going to simplify the handler.
The whole handler can be represented by the following pseudo-code:

while ($bb_in = get_brigade()) {
while ($b_in = $bb_in->get_bucket()) {
$b_in->read(my $data);
do something with data
$b_out = new_bucket($data);

$bb_out->insert_tail($b_out);
}
$bb_out->insert_tail($flush_bucket);
pass_brigade($bb_out);
}

The handler receives the incoming data via bucket bridges, one at a time in a loop. It then process each
bridge, by retrieving the buckets contained in it, reading the data in, then creating new buckets using the
received data, and attaching them to the outgoing brigade. When all the buckets from the incoming bucket
brigade were transformed and attached to the outgoing bucket brigade, a flush bucket is created and added
as the last bucket, so when the outgoing bucket brigade is passed out to the outgoing connection filters, it
won't be buffered but sent to the client right away.

It's possible to make the flushing code simpler, by using a dedicated nfétrstd) that does just
that -- flushing of the bucket brigade. It replaces 3 lines of code:

my $fb = APR::Bucket::flush_create($c->bucket_alloc);
$bb_out->insert_tail($fb);
$c->output_filters->pass_brigade($bb_out);

with just one line:

$c->output_filters->fflush($bb_out);

If you look at the complete handler, the loop is terminated when one of the following conditions occurs: an
error happens, the end of stream status ca@#j(has been received (no more input at the connection) or
when the received data contains nothing but new line characters which we used to to tell the server to
terminate the connection.

Now that you've learned how to move buckets from one brigade to another, let's see how the presented
handler can be reimplemented using a single bucket brigade. Here is the modified code:

sub handler {
my $c¢ = shift;

$c->client_socket->opt_set(APR::Const::SO_NONBLOCK, 0);

204 15 Feb 2014

Protocol Handlers 13.2.2 PerlProcessConnectionHandler

my $bb = APR::Brigade->new($c->pool, $c->bucket_alloc);

while (1) {
my $rc = $c->input_filters->get_brigade($bb,
Apache2::Const::MODE_GETLINE);
last if APR::Status::is_ EOF($rc);
die APR::Error::strerror($rc) unless $rc == APR::Const::SUCCESS;

for (my $b = $bb->first; $b; $b = $bb->next($b)) {
last if $b->is_eos;

if ($b->read(my $data)) {
last if $data =~ /"\r\n]+$/;
my $nb = APR::Bucket->new($bb->bucket_alloc, $data);
head->...->$nb->$b ->...->tall
$b->insert_before($nb);
$b->remove;

}
}

$c->output_filters->fflush($bb);
}

$bb->destroy;

Apache2::Const::OK;
}

This code is shorter and simpler. Since it sends out the same bucket brigade it got from the incoming
filters, it only needs to replace buckets that get modified, which is probably the only tricky part here. The
code:

head->...->$nb->$b ->...->tail
$h->insert_before($nb);
$b->remove;

inserts a new bucket in front of the currently processed bucket, so that when the latter removed the former
takes place of the latter.

Notice that this handler could be much simpler, since we don’t modify the data. We could simply pass the
whole brigade unmodified without even looking at the buckets. But from this example you can see how to
write a connection handler where you actually want to read and/or modify the data. To accomplish that
modification simply add a code that transforms the data which has been read from the bucket before it's
inserted to the outgoing brigade.

We will skip the filter discussion here, since we are going to talk in depth about filters in the dedjcated to
ilters tutorial. But all you need to know at this stage is that the data sent from the connection handler is
filtered by the outgoing filter and which transforms it to be all lowercase.

And here is the simplified version of this handler, which doesn’t attempt to do any transformation, but
simply passes the data though:

15 Feb 2014 205

13.2.2 PerlProcessConnectionHandler

sub handler {
my $c = shift;

$c->client_socket->opt_set(APR::Const::SO_NONBLOCK => 0);
my $bb = APR::Brigade->new($c->pool, $c->bucket_alloc);
while (1) {
my $rc = $c->input_filters->get_brigade($bb,
Apache2::Const::MODE_GETLINE);
last if APR::Status::is_ EOF($rc);
die APR::Error::strerror($rc) unless $rc == APR::Const::SUCCESS;

$c->output_filters->fflush($bb);
}

$bb->destroy;

Apache2::Const::OK;
}

Since the simplified handler no longer has the condition:

$last++ if $data =~ /[\r\n]+$/;

which was used to know when to break from the extewhde(1) loop, it will not work in the interac-
tive mode, because when telnet is used we always end the lin4\mih , which will always send
data back to the protocol handler and the condition:

last if $bb->is_empty;

will never be true. However, this latter version works fine when the client is a script and when it stops
sending data, our shorter handler breaks out of the loop.

So let's do one more tweak and make the last version work in the interactive telnet mode without manipu-
lating each bucket separately. This time we will flesten() to slurp all the data from all the buckets,
which saves us the explicit loop over the buckets in the brigade. The handler now becomes:

sub handler {
my $c = shift;

$c->client_socket->opt_set(APR::Const::SO_NONBLOCK => 0);
my $bb = APR::Brigade->new($c->pool, $c->bucket_alloc);

while (1) {
my $rc = $c->input_filters->get_brigade($hb,
Apache2::Const::MODE_GETLINE);
last if APR::Status::is_EOF($rc);
die APR::Error::strerror($rc) unless $rc == APR::Const::SUCCESS;

next unless $bhb->flatten(my $data);

$bb->cleanup;
last if $data =~ /[\r\n]+$/;

206 15 Feb 2014

Protocol Handlers 13.3 Examples

could transform data here
my $b = APR::Bucket->new($bb->bucket_alloc, $data);
$bb->insert_tail($b);

$c->output_filters->fflush($bb);
}

$bb->destroy;

Apache2::Const::OK;
}

Notice, that once we slurped the data in the buckets, we had to strip the brigade of its buckets, since we
re-used the same brigade to send the data out. Welesedip() to get rid of the buckets.

13.3 Examples
Following are some practical examples.

META: If you have written an interesting, but not too complicated module, which others can learn from,
please submit a pod to the mailing list so we can include it here.

13.3.1 Command Server

The MyApache2::CommandServer example is based on the example in the "TCP Servers with
10::Socket" section of thperlipc manpage. Of course, we don’t ndé€d:Socket since Apache takes

care of those details for us. The rest of that example can still be used to illustrate implementing a simple
text protocol. In this case, one where a command is sent by the client to be executed on the server side,
with results sent back to the client.

The MyApache2::CommandServer handler will support four commandsiotd, date , who and

quit . These are probably not commands which can be exploited, but should we add such commands,
we’ll want to limit access based on ip address/hostname, authentication and authorization. Protocol
handlers need to take care of these tasks themselves, since we bypass the HTTP protocol handler.

Here is the whole module:
package MyApache2::CommandServer;

use strict;
use warnings FATAL =>"all’;

use Apache2::Connection ();
use Apache2::RequestRec ();
use Apache2::RequestUtil ();
use Apache2::HookRun ();
use Apache2::Access ();

use APR::Socket ();

use Apache2::Const -compile => qw(OK DONE DECLINED);

15 Feb 2014 207

13.3.1 Command Server

my @cmds = qw(motd date who quit);
my %commands = map { $_, \&{$_} } @cmds;

sub handler {
my $c = shift;
my $socket = $c->client_socket;

if ((my $rc = login($c)) != Apache2::Const::OK) {
$socket->send("Access Denied\n");
return $rc;

}

$socket->send("Welcome to " . _ PACKAGE__ .
"\nAvailable commands: @cmds\n");

while (1) {
my $cmd;
next unless $cmd = getline($socket);

if (my $sub = $commands{$cmd}) {
last unless $sub->($socket) == Apache2::Const::OK;

}
else {
$socket->send("Commands: @cmds\n™);

}
}

return Apache2::Const::OK;
}

sub login {
my $c = shift;

my $r = Apache2::RequestRec->new($c);
$r->location_merge(_ PACKAGE_);

for my $method (qw(run_access_checker run_check_user_id
run_auth_checker)) {
my $rc = $r->$method();

if ($rc = Apache2::Const::OK and $rc != Apache2::Const::DECLINED) {
return $rc;

}

last unless $r->some_auth_required;

unless ($r->user) {
my $socket = $c->client_socket;
my $username = prompt($socket, "Login");
my $password = prompt($socket, "Password");

$r->set_basic_credentials($username, $password);

}
}

return Apache2::Const::OK;

208 15 Feb 2014

Protocol Handlers 13.3.1 Command Server

}

sub getline {
my $socket = shift;

my $line;
$socket->recv($line, 1024);
return unless $line;

$line =~ s/\n\n]*$//;

return $line;

}

sub prompt {
my ($socket, $msg) = @_;

$socket->send("$msg: ");
getline($socket);
}

sub motd {
my $socket = shift;

open my $fh, '/etc/motd’ or return;
local $/;

$socket->send(scalar <$fth>);
close $fh;

return Apache2::Const::OK;
}

sub date {
my $socket = shift;

$socket->send(scalar(localtime) . "\n");

return Apache2::Const::OK;
}

sub who {
my $socket = shift;

make -T happy
local $SENV{PATH} = "/bin:/usr/bin";

$socket->send(scalar ‘who’);

return Apache2::Const::OK;
}

sub quit { Apache2::Const::DONE }

1
END__

15 Feb 2014 209

13.3.1 Command Server

Next, let's explain what this module does in details.

As with all PerlProcessConnectionHandlers , we are passed afipache2::Connection

object as the first argument. Again, we will be directly accessing the client socket cigethesocket
method. Thdogin subroutine is called to check if access by this client should be allowed. This routine
makes up for what we lost with the core HTTP protocol handler bypassed.

First we call theApache2::RequestRec new() method, which returnsr@quest_rembiject, just like
that, which is passed at request timg to HTTP prdteedtHandlers and returned by the subrequest
API methodsJookup_uriandlookup_file However, this “fake request” does not run handlers for any of
the phases, it simply returns an object which we can use to do that ourselves.

Thelocation_merge() method is passed tlhecation for this request, it will look up theLoca-
tion> section that matches the given name and merge it with the default server configuration. For
example, should we only wish to allow access to this server from certain locations:

<Location MyApache2::CommandServer>
Order Deny,Allow
Deny from all
Allow from 10.*

</Location>

Thelocation_merge() method only looks up and merges the configuration, we still need to apply it.
This is done in for loop, iterating over three methodsrun_access_checker() :
run_check_user_id() and run_auth_checker() . These methods will call directly into the

Apache functions that invoke module handlers for these phases and will return an integer status code, such
as Apache2::Const::OK , Apache2::Const::DECLINED or Apache2::Const::FORBID-

DEN If run_access check returns something other thanApache2::Const::OK or
Apache2::Const::DECLINED , that status will be propagated up to the handler routine and then back

up to Apache. Otherwise, the access check passed and the loop will break unless
some_auth_required() returns true. This would be false given the previous configuration example,

but would be true in the presence gtgquire directive, such as:

<Location MyApache2::CommandServer>
Order Deny,Allow
Deny from all
Allow from 10.*
Require user dougm
</Location>

Given this configurationsome_auth_required() will return true. Theuser() method is then

called, which will return false if we have not yet authenticategrédpt() utility is called to read the
username and password, which are then injected into hemders_in() table using the
set_basic_credentials() method. TheAuthenticatefield in this table is set to lsase64encoded

value of the username:password pair, exactly the same format a browser would 8asicfauthentica-

tion. Next time through the looun_check_user_i called, which will in turn invoke any authentication
handlers, such awod_auth Whenmod_authcalls theap_get_basic_auth_pw() API function (as

all Basic auth modules do), it will get back the username and password we injected. If we fail authenti-
cation a401 status code is returned which we propagate up. Otherwise, authorization handlers are run via
run_auth_checker() . Authorization handlers normally need theer field of therequest_rec

210 15 Feb 2014

Protocol Handlers 13.3.1 Command Server

for its checks and that field was filled in whexod_authcalledap_get_basic_auth_pw()

Provided login is a success, a welcome message is printed and main request loop entered. Inside the loop
the getline() function returns just one line of data, with newline characters stripped. If the string sent

by the client is in our command table, the command is then invoked, otherwise a usage message is sent. If
the command does not retukpache2::Const::OK |, we break out of the loop.

Let’s use this configuration:

Listen 8085
<VirtualHost _default_:8085>
PerlProcessConnectionHandler MyApache2::CommandServer

<Location MyApache2::CommandServer>
Order Deny,Allow
Allow from 127.0.0.1
Require user dougm
Satisfy any
AuthUserFile /tmp/basic-auth
</Location>
</VirtualHost>

Since we are usinmod_auth directives here, you need to make sure that it's available and loaded for
this example to work as explained.

The auth file can be created with the helghtfasswd utility coming bundled with the Apache server.
For example to create a filtmp/basic-authand add a password entry for useugmwith password
foobarwe do:

% htpasswd -bc /tmp/basic-auth dougm foobar

Now we are ready to try the command server:

% telnet localhost 8085

Trying 127.0.0.1...

Connected to localhost (127.0.0.1).
Escape character is "]

Login: dougm

Password: foobar

Welcome to MyApache2::CommandServer
Available commands: motd date who quit
motd

Have a lot of fun...

date

Mon Mar 12 19:20:10 PST 2001

who

dougm ttyl Mar 12 00:49

dougm pts/0 Mar 12 11:23

dougm pts/1 Mar 12 14:08

dougm pts/2 Mar 12 17:09

quit

Connection closed by foreign host.

15 Feb 2014 211

13.4 CPAN Modules

13.4 CPAN Modules

Some of the CPAN modules that implement mod_perl 2.0 protocols:

® Apache: : SMIP - An SMTP server

|http://search.cpan.org/dist/Apache-SMTP/

13.5 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar) [http://stason.qrg/]

13.6 Authors

Only the major authors are listed above. For contributors see the Changes file.

212 15 Feb 2014

http://search.cpan.org/dist/Apache-SMTP/
http://stason.org/

HTTP Handlers 14 HTTP Handlers

14 HTTP Handlers

15 Feb 2014 213

14.1 Description

14.1 Description

This chapter explains how to implement the HTTP protocol handlers in mod_perl.

14.2 HTTP Request Handler Skeleton

All HTTP Request handlers have the following structure:
package MyApache2::MyHandlerName;

load modules that are going to be used
use ...;

compile (or import) constants
use Apache2::Const -compile => qw(OK);

sub handler {
my $r = shift;

handler code comes here
return Apache2::Const::OK; # or another status constant

}
1

First, the package is declared. Next, the modules that are going to be used are loaded and constants
compiled.

The handler itself coming next and usually it receives the only argume{paohe2::RequestRec
object. If the handler is declared as a method handler :

sub handler : method {
my ($class, $r) = @_;

the handler receives two arguments: the class name aAgdlobe2::RequestRec object.

The handler ends wifh a return cbde and the file is endedlwith return true when it gets loaded.

14.3 HTTP Request Cycle Phases

Those familiar with mod_perl 1.0 will find the HTTP request cycle in mod_perl 2.0 to be almost identical
to the mod_perl 1.0’s model. The different things are:

® a new directive |PerIMapToStorageHandler | was added to match the new phase
map_to_storagadded by Apache 2.0.

e the PerlHandler directive has been renamedRerIResponseHandler to better match the
corresponding Apache phase namesionsg

214 15 Feb 2014

HTTP Handlers 14.3.1 PerlPostReadRequestHandler

® theresponsghase now includes filtering.

The following diagram depicts the HTTP request life cycle and highlights which handlers are available to
mod_perl 2.0:

HTTP cycle

From the diagram it can be seen that an HTTP request is processed by 12 phases, executed in the follow-
ing order:

=

PerlPostReadRequestHandler (PerlinitHandler)
PerlTransHandler
PerlMapToStorageHandler
PerlHeaderParserHandler (PerlinitHandler)
PerlAccessHandler

PerlAuthenHandler

PerlAuthzHandler

PerlTypeHandler

PerlFixupHandler

PerlResponseHandler

. PerlLogHandler

. PerICleanupHandler

© NGOk ®WDN

e
N PO

It's possible that the cycle will not be completed if any of the phases terminates it, usually when an error
happens. In that case Apache skips to the logging phase (mod_perl executes all régigtaygHan-
dler handlers) and finally the cleanup phase happens.

Notice that when the response handler is reading the input data it can be filtered through request input
filters, which are preceded by connection input filters if any. Similarly the generated response is first run
through request output filters and eventually through connection output filters before it's sent to the client.
We will talk about filters in detail later |n the dedicated to filters chppter.

Before discussing each handler in detail remember that if yqu use the stacked handlgrs feature all handlers
in the chain wil be run as long as they returd\pache2::Const::OK or
Apache2::Const::DECLINED . Because stacked handlers is a special case. So don't be surprised if
you've returnedApache2::Const::OK and the next handler was still executed. This is a feature, not a
bug.

Now let’s discuss each of the mentioned handlers in detail.

14.3.1 PerlPostReadRequestHandler

Thepost_read_requegthase is the first request phase and happens immediately after the request has been
read and HTTP headers were parsed.

15 Feb 2014 215

14.3.1 PerlPostReadRequestHandler

This phase is usually used to do processing that must happen once per request. For example
Apache2::Reload is usually invoked at this phase to reload modified Perl modules.

This phase is of typRUN_ALL

The handler’s configuration scopefSR\ because at this phase the request has not yet been associated
with a particular filename or directory.

Arguments
See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seqd Stacked Handlgrs for a description of handler return codes.

Examples

Now, let’s look at an example. Consider the following registry script:
#file:touch.pl

use strict;
use warnings;

use Apache2::ServerUtil ();
use Apache2::RequestlO ();
use File::Spec::Functions qw(catfile);

my $r = shift;
$r->content_type(text/plain’);

my $conf_file = catfile Apache2::ServerUstil::server_root,
"conf", "httpd.conf";

printf "$conf_file is %0.2f minutes old\n", 60*24*(-M $conf_file);

This registry script is supposed to print when the last hittprl.confhas been modified, compared to the

start of the request process time. If you run this script several times you might be surprised that it reports
the same value all the time. Unless the request happens to be served by a recently started child process
which will then report a different value. But most of the time the value won't be reported correctly.

This happens because tHd operator reports the difference between file’s modification time and the
value of a special Perl varial#8T . When we run scripts from the command line, this variable is always

set to the time when the script gets invoked. Under mod_perl this variable is getting preset once when the
child process starts and doesn’t change since then, so all requests see the same time, when operators like
-M, -C and-A are used.

Armed with this knowledge, in order to make our code behave similarly to the command line programs we

need to reseéd"T to the request’s start time, befoM is used. We can change the script itself, but what if
we need to do the same change for several other scripts and handlers? APsripdstRead-

216 15 Feb 2014

HTTP Handlers 14.3.2 PerlTransHandler

RequestHandler handler, which will be executed as the very first thing of each requests, comes handy
here:

#file:MyApache2/TimeReset.pm
#

package MyApache2::TimeReset;

use strict;
use warnings;

use Apache2::RequestRec ();
use Apache2::Const -compile =>'OK’;
sub handler {
my $r = shift;
$°T = $r->request_time;
return Apache2::Const::OK;
}
1
We could do:
$T = time();

But to make things more efficient we u$e>request_time since the request objeft already
stores the request’s start time, so we get it without performing an additional system call.

To enable it just add tiottpd.conf

PerlPostReadRequestHandler MyApache2::TimeReset

either to the global section, or to th¥irtualHost> section if you want this handler to be run only for
a specific virtual host.

14.3.2 PerlTransHandler

The translate phase is used to perform the manipulation of a request's URI. If no custom handler is
provided, the server’s standard translation rules (&ligs directives, mod_rewrite, etc.) will be used. A
PerlTransHandler handler can alter the default translation mechanism or completely override it. This
is also a good place to register new handlers for the following phases based on tfreRip- |
[ToStorageHandler |is to be used to override the URI to filename translation.

This phase is of typUN_FIRST.

The handler’s configuration scopefSR\ because at this phase the request has not yet been associated
with a particular filename or directory.

Arguments

15 Feb 2014 217

14.3.2 PerlTransHandler

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seq Stacked Handlgrs for a description of handler return codes.

Examples

There are many useful things that can be performed at this stage. Let's look at the example handler that
rewrites request URIs, similar to what mod_rewrite does. For example, if your web-site was originally
made of static pages, and now you have moved to a dynamic page generation chances are that you don't
want to change the old URIs, because you don’t want to break links for those who link to your site. If the
URI:

http://example.com/news/20021031/09/index.html
is now handled by:

http://example.com/perl/news.pl?date=20021031;id=09;page=index.html

the following handler can do the rewriting work transparemetes.pl so you can still use the former URI
mapping:
#file:MyApache2/RewriteURI.pm

#

package MyApache2::RewriteURI,

use strict;
use warnings;

use Apache2::RequestRec ();
use Apache2::Const -compile => qw(DECLINED);

sub handler {
my $r = shift;

my ($date, $id, $page) = $r->uri =~ m|news/(\d+)/(\d+)/(.*)|;
$r->uri("/perl/news.pl");
$r->args("date=$date;id=$id;page=$page");
return Apache2::Const::DECLINED;
}
1
The handler matches the URI and assigns a new URI$Si#auri() and the query string via

$r->args() . It then return®\pache2::Const::DECLINED , so the next translation handler will get
invoked, if more rewrites and translations are needed.

Of course if you need to do a more complicated rewriting, this handler can be easily adjusted to do so.

218 15 Feb 2014

HTTP Handlers 14.3.3 PerlMapToStorageHandler

To configure this module simply add tittpd.conf

PerlTransHandler +MyApache2::RewriteURI

14.3.3 PerlMapToStorageHandler

Themap_to_storag@hase is used to perform the translation of a request’s URI into a corresponding file-
name. If no custom handler is provided, the server will try to walk the filesystem trying to find what file or
directory corresponds to the request’s URI. Since usually mod_perl handler don’t have corresponding files
on the filesystem, you will want to shortcut this phase and save quite a few CPU cycles.

This phase is of typUN_FIRST.

The handler’s configuration scopefSR\ because at this phase the request has not yet been associated
with a particular filename or directory.

Arguments
See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seq Stacked Handlgrs for a description of handler return codes.

Examples

For example if you don’'t want Apache to try to attempt to translate URI into a filename, just add a
handler:

PerlIMapToStorageHandler MyApache2::NoTranslation
using the following code:
#file:MyApache2/NoTranslation.pm

#.
package MyApache2::NoTranslation;

use strict;
use warnings FATAL =>"all’;

use Apache2::Const -compile => qw(OK);

sub handler {
my $r = shift;

skip ap_directory_walk stat() calls
return Apache2::Const::OK;

}
1

15 Feb 2014 219

14.3.4 PerlHeaderParserHandler

But this can be done frohttpd.conftoo!

PerlIMapToStorageHandler Apache2::Const::OK

If you haven't already compilefipache?2::Const::OK elsewhere, you should add:

<Perl>
use Apache2::Const -compile => qw(OK);
</Perl>

Apache also uses this phase to hadRACErequests. So if you shortcut TRACEcalls will be not
handled. In case you need to handle such, you may rewrite it as:

#file:MyApache2/NoTranslation2.pm

#

package MyApache2::NoTranslation2;

use strict;
use warnings FATAL =>"all’;

use Apache2::RequestRec ();
use Apache2::Const -compile => qw(DECLINED OK M_TRACE);

sub handler {
my $r = shift;

return Apache2::Const::DECLINED
if $r->method_number == Apache2::Const::M_TRACE;

skip ap_directory_walk stat() calls
return Apache2::Const::OK;

}
1

BTW, the HTTP TRACE method asks a web server to echo the contents of the request back to the client
for debugging purposes. i.e., the complete request, including HTTP headers, is returned in the entity-body
of a TRACE response. Attackers may abuse HTTP TRACE functionality to gain access to information in
HTTP headers such as cookies and authentication data. In the presence of other cross-domain vulnerabili-
ties in web browsers, sensitive header information could be read from any domains that support the HTTP
TRACE method.

Another way to prevent the core translation is tdpsetfilename() to some value, which can also be
done in th¢PerlTransHandler |} if you are already using it.

14.3.4 PerlHeaderParserHandler

The header_parsephase is the first phase to happen after the request has been mappet doaits

tion> (or an equivalent container). At this phase the handler can examine the request headers and to take
a special action based on these. For example this phase can be used to block evil clients targeting certain
resources, while little resources were wasted so far.

220 15 Feb 2014

HTTP Handlers 14.3.4 PerlHeaderParserHandler

This phase is of typeUN_ALL

The handler’s configuration scopdD#R]

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seq Stacked Handlgrs for a description of handler return codes.

Examples

This phase is very similar fi@erlPostReadRequestHandler | with the only difference that it's run

after the request has been mapped to the resource. Both phases are useful for doing something once per
request, as early as possible. And usually you can takgParyostReadRequestHandler | and

turn it into[PerlHeaderParserHandler | by simply changing the directive name httpd.confand

moving it inside the container where it should be executed. Moreover, because of this similarity mod_perl
provides a special directiyeerlinitHandler | which if found outside resource containers behaves as
[PerlPostReadRequestHandler | otherwise aPerlHeaderParserHandler }

You already know that Apache handles HieAD GET, POSTand several other HTTP methods. But did

you know that you can invent your own HTTP method as long as there is a client that supports it. If you
think of emails, they are very similar to HTTP messages: they have a set of headers and a body, sometimes
a multi-part body. Therefore we can develop a handler that extends HTTP by adding a support for the
EMAIL method. We can enable this protocol extension and push the real content handler during the
|PerlHeaderParserHandler |phase:

<Location /email>
PerlHeaderParserHandler MyApache2::SendEmail
</Location>

and here is th¥lyApache2::SendEmail handler:

#file:MyApache2/SendEmail.pm
#.

package MyApache2::SendEmail;

use strict;
use warnings;

use Apache2::RequestRec ();
use Apache2::RequestlO ();
use Apache2::RequestUtil ();
use Apache2::ServerUtil ();
use Apache2::ServerRec ();
use Apache2::Process ();
use APR::Table ();

use Apache2::Const -compile => qw(DECLINED OK);

15 Feb 2014 221

14.3.4 PerlHeaderParserHandler

use constant METHOD =>"EMAIL’;
use constant SMTP_HOSTNAME => "localhost";

Su

}

Su

}

Su

}

b handler {
my $r = shift;

return Apache2::Const::DECLINED unless $r->method eq METHOD;

$r->server->method_register(METHOD);
$r->handler("perl-script");

$r->push_handlers(PerlResponseHandler => \&send_email_handler);

return Apache2::Const::OK;
b send_email_handler {
my $r = shift;

my %headers = map {$_ => $r->headers_in->get($_)}
gw(To From Subject);

my $content = content($r);
my $status = send_email(\%headers, \$content);
$r->content_type(’text/plain’);

$r->print($status ? "ACK" : "NACK");
return Apache2::Const::OK;

b send_email {
my ($rh_headers, $r_body) = @_;

require MIME::Lite;
MIME::Lite->send("smtp", SMTP_HOSTNAME, Timeout => 60);

my $msg = MIME::Lite->new(%%$rh_headers, Data => $$r_body);
#warn $msg->as_string;
$msg->send;

use APR::Brigade ();
use APR::Bucket ();

use Apache2::Const -compile => qw(MODE_READBYTES);
use APR:Const -compile => qw(SUCCESS BLOCK_READ);

use constant IOBUFSIZE => 8192,

sub content {

222

my $r = shift;

my $bb = APR::Brigade->new($r->pool, $r->connection->bucket_alloc);

my $data = ’;
my $seen_eos = 0;
do {

15 Feb 2014

HTTP Handlers 14.3.4 PerlHeaderParserHandler

$r->input_filters->get_brigade($bb,
Apache2::Const::MODE_READBYTES,
APR::Const::BLOCK_READ, IOBUFSIZE);

for (my $b = $bb->first; $b; $b = $bb->next($b)) {
if ($b->is_eos) {

$seen_eos++;

last;

}

if ($b->read(my $buf)) {
$data .= $buf;

}

$b->remove; # optimization to reuse memory
} while (I$seen_eos);
$bb->destroy;

return $data;

}
1

Let's get the less interesting code out of the way. The function content() grabs the request body. The func-
tion send_email() sends the email over SMTP. You should adjust the cdigfiRt HOSTNAME point

to your outgoing SMTP server. You can replace this function with your own if you prefer to use a different
method to send email.

Now to the more interesting functions. The functlandler() returns immediately and passes the
control to the next handler if the request method is not eqiEMBIL (set in theMETHORonstant):

return Apache2::Const::DECLINED unless $r->method eq METHOD;

Next it tells Apache that this new method is a valid one and thatetthescript handler will do the
processing.

$r->server->method_register(METHOD);
$r->handler("perl-script");

Finally it pushes the functiosend_email_handler() to the PerlResponseHandler list of
handlers:

$r->push_handlers(PerlResponseHandler => \&send_email_handler);

The function terminates the header_parser phase by:

return Apache2::Const::OK;

15 Feb 2014 223

14.3.4 PerlHeaderParserHandler

All other phases run as usual, so you can reuse any HTTP protocol hooks, such as authentication and fixup
phases.

When the response phase stagsd_email_handler() is invoked, assuming that no other response
handlers were inserted before it. The response handler consists of three parts. Retrieve the email headers
To, From andSubject , and the body of the message:

my %headers = map {$_ => $r->headers_in->get($)}

gqw(To From Subject);
my $content = $r->content;

Then send the email:

my $status = send_email(\%headers, \$content);

Finally return to the client a simple response acknowledging that email has been sent and finish the
response phase by returnidgache2::Const::OK

$r->content_type(‘text/plain’);
$r->print($status ? "ACK" : "NACK");
return Apache2::Const::OK;

Of course you will want to add extra validations if you want to use this code in production. This is just a
proof of concept implementation.

As already mentioned when you extend an HTTP protocol you need to have a client that knows how to use
the extension. So here is a simple client that L¥¢B::UserAgent to issue afEMAIL method request
over HTTP protocol:

#file:send_http_email.pl
H.

#!/usr/bin/perl

use strict;
use warnings;

require LWP::UserAgent;
my $url = "http://localhost:8000/email/";

my %headers = (
From =>’example@example.com’,
To =>'example@example.com’,
Subject => '3 weeks in Tibet’,

);

my $content = <<EOI,

| didn’'t have an email software,

but could use HTTP so I'm sending it over HTTP
EOI

224 15 Feb 2014

HTTP Handlers 14.3.5 PerlInitHandler

my $headers = HTTP::Headers->new(%headers);

my $req = HTTP::Request->new("EMAIL", $url, $headers, $content);
my $res = LWP::UserAgent->new->request($req);

print $res->is_success ? $res->content : "failed"”;

most of the code is just a custom data. The code that does something consists of four lines at the very end.
CreateHTTP::Headers andHTTP::Request object. Issue the request and get the response. Finally
print the response’s content if it was successful or'jaged" if not.

Now save the client code in the fidlend_http_email.pladjust theTo field, make the file executable and
execute it, after you have restarted the server. You should receive an email shortly to the address set in the
Tofield.

14.3.5 PerlinitHandler

When configured inside any container directive, exe@fittualHost> , this handler is an alias for
|PerlHeaderParserHandler | described earlier. Otherwise it acts as an aliafP@tPostRead- |
|IRequestHandler |described earlier.

It is the first handler to be invoked when serving a request.

This phase is of typeUN_ALL

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seq Stacked Handlgrs for a description of handler return codes.

Examples

The best example here would be to Agmche2::Reload which takes the benefit of this directive.
UsuallyApache2::Reload s configured as:

PerlinitHandler Apache2::Reload
PerlSetVar ReloadAll Off
PerlSetVar ReloadModules "MyApache2::*"

which during the current HTTP request will monitor and reloadMgi\pache2::* modules that have
been modified since the last HTTP request. However if we move the global configuratiorirttcaa
tion> container:

15 Feb 2014 225

14.3.6 PerlAccessHandler

<Location /devel>
PerlinitHandler Apache2::Reload
PerlSetVar ReloadAll Off
PerlSetVar ReloadModules "MyApache2::*"
SetHandler perl-script
PerlResponseHandler ModPerl::Registry
Options +ExecCGl

</Location>

Apache2::Reload will reload the modified modules, only when a request tddbgelnamespace is
issued, becaugeerlinitHandler | plays the role dPerl[HeaderParserHandler | here.

14.3.6 PerlAccessHandler

The access_checkephase is the first of three handlers that are involved in what's known as AAA:
Authentication, Authorization, and Access control.

This phase can be used to restrict access from a certain IP address, time of the day or any other rule not
connected to the user’s identity.

This phase is of typUN_ALL

The handler’s configuration scopdD$R]

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seq Stacked Handlgrs for a description of handler return codes.

Examples

The concept behind access checker handler is very simple, Agiache2:.Const::FORBIDDEN if
the access is not allowed, otherwise refyache2::Const::OK

The following example handler denies requests made from IPs on the blacklist.

#file:MyApache2/BlockByIP.pm
#.

package MyApache2::BlockBylIP;

use strict;
use warnings;

use Apache2::RequestRec ();
use Apache2::Connection ();

use Apache2::Const -compile => qw(FORBIDDEN OK);

my %bad_ips = map {$_ => 1} qw(127.0.0.1 10.0.0.4);

226 15 Feb 2014

HTTP Handlers 14.3.7 PerlAuthenHandler

sub handler {
my $r = shift;

return exists $bad_ips{$r->connection->remote_ip}
? Apache2::Const::FORBIDDEN
: Apache2::Const::OK;
}

1

The handler retrieves the connection’s IP address, looks it up in the hash of blacklisted IPs and forbids the
access if found. If the IP is not blacklisted, the handler returns control to the next access checker handler,
which may still block the access based on a different rule.

To enable the handler simply add it to the container that needs to be protected. For example to protect an
access to the registry scripts executed from the base lofa¢idadd:

<Location /perl/>
SetHandler perl-script
PerlResponseHandler ModPerl::Registry
PerlAccessHandler MyApache?2::BlockByIP
Options +ExecCGl

</Location>

It's important to notice thaPerlAccessHandler can be configured for any subsection of the site, no
matter whether it's served by a mod_perl response handler or not. For example to run the handler from our
example for all requests to the server simply adutfd.conf

<Location />
PerlAccessHandler MyApache2::BlockByIP
</Location>

14.3.7 PerlAuthenHandler

Thecheck _user_idauthen phase is called whenever the requested file or directory is password protected.
This, in turn, requires that the directory be associated MitthName, AuthType and at least one
require directive.

This phase is usually used to verify a user’s identification credentials. If the credentials are verified to be
correct, the handler should returApache2::Const::OK . Otherwise the handler returns
Apache2::Const::HTTP_UNAUTHORIZED to indicate that the user has not authenticated success-
fully. When Apache sends the HTTP header with this code, the browser will normally pop up a dialog box
that prompts the user for login information.

This phase is of typUN_FIRST.

The handler’s configuration scopdD$R]

15 Feb 2014 227

14.3.7 PerlAuthenHandler

Arguments
See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Sed Stacked Handlgrs for a description of handler return codes.

Examples

The following handler authenticates users by asking for a username and a password and lets them in only
if the length of a string made from the supplied username and password and a single space equals to the
secret length, specified by the constaBRCRET _LENGTH

#file:MyApache2/SecretLengthAuth.pm

#.

package MyApache2::SecretLengthAuth;

use strict;
use warnings;

use Apache2::Access ();
use Apache2::RequestUtil ();

use Apache2::Const -compile => qw(OK DECLINED HTTP_UNAUTHORIZED);
use constant SECRET_LENGTH => 14;

sub handler {
my $r = shift;

my ($status, $password) = $r->get_basic_auth_pw;
return $status unless $status == Apache2::Const::OK;

return Apache2::Const::OK
if SECRET_LENGTH == length join " ", $r->user, $password;

$r->note_basic_auth_failure;
return Apache2::Const::HTTP_UNAUTHORIZED;
}

1

First the handler retrieves the status of the authentication and the password in plain text. The status will be
set toApache2::Const::OK only when the user has supplied the username and the password creden-
tials. If the status is different, we just let Apache handle this situation for us, which will usually challenge
the client so it'll supply the credentials.

Note thatget_basic_auth_pw() does a few things behind the scenes, which are important to under-
stand if you plan on implementing your own authentication mechanism that does not use
get_basic_auth_pw() . First, is checks the value of the configurkdthType for the request,

making sure it iBBasic . Then it makes sure that the Authorization (or Proxy-Authorization) header is
formatted forBasic authentication. Finally, after isolating the user and password from the header, it

228 15 Feb 2014

HTTP Handlers 14.3.7 PerlAuthenHandler

populates theap_auth_typeslot in the request record witBasic . For the first and last parts of this
process, mod_perl offers an ARr->auth_type returns the configured authentication type for the
current request - whatever was set via AwthType configuration directive$r->ap_auth_type

populates thep_auth_typeslot in the request record, which should be done after it has been confirmed
that the request is indeed usinBasic authentication. (Note:$r->ap_auth_type was
$r->connection->auth_type in the mod_perl 1.0 APL.)

Once we know that we have the username and the password supplied by the client, we can proceed with
the authentication. Our authentication algorithm is unusual. Instead of validating the username/password
pair against a password file, we simply check that the string built from these two items plus a single space
is SECRET_LENGTHbNng (14 in our example). So for example the pagd_perl/rulesauthenticates
correctly, whereasecret/passwordoes not, because the latter pair will make a string of 15 characters. Of
course this is not a strong authentication scheme and you shouldn’t use it for serious things, but it’s fun to
play with. Most authentication validations simply verify the username/password against a database of
valid pairs, usually this requires the password to be encrypted first, since storing passwords in clear is a
bad idea.

Finally if our authentication fails the handler calls note_basic_auth_failure() and returns
Apache2::Const::HTTP_UNAUTHORIZED , which sets the proper HTTP response headers that tell
the client that its user that the authentication has failed and the credentials should be supplied again.

It's not enough to enable this handler for the authentication to work. You have to tell Apache what authen-
tication scheme to usdésic or Digest), which is specified by thé&uthType directive, and you

should also supply th&uthName -- the authentication realm, which is really just a string that the client
usually uses as a title in the pop-up box, where the username and the password are inserted. Finally the
Require directive is needed to specify which usernames are allowed to authenticate. If you set it to
valid-user any username will do.

Here is the whole configuration section that requires users to authenticate before they are allowed to run
the registry scripts frorperl/:

<Location /perl/>
SetHandler perl-script
PerlResponseHandler ModPerl::Registry
PerlAuthenHandler MyApache2::SecretLengthAuth
Options +ExecCGl

AuthType Basic

AuthName "The Gate"

Require valid-user
</Location>

Just likePerlAccessHandler and other mod_perl handleRerlAuthenHandler can be config-

ured for any subsection of the site, no matter whether it's served by a mod_perl response handler or not.
For example to use the authentication handler from the last example for any requests to the site, simply
use:

15 Feb 2014 229

14.3.8 PerlAuthzHandler

<Location />
PerlAuthenHandler MyApache2::SecretLengthAuth
AuthType Basic
AuthName "The Gate"
Require valid-user
</Location>

14.3.8 PerlAuthzHandler

The auth_checkefauth? phase is used for authorization control. This phase requires a successful authen-
tication from the previous phase, because a username is needed in order to decide whether a user is autho-
rized to access the requested resource.

As this phase is tightly connected to the authentication phase, the handlers registered for this phase are
only called when the requested resource is password protected, similar to the auth phase. The handler is
expected to returApache2::Const::DECLINED to defer the decisiomypache2::Const::OK to

indicate its acceptance of the user’s authorizatio®parche2::Const::HTTP_UNAUTHORIZED to

indicate that the user is not authorized to access the requested document.

This phase is of typUN_FIRST.

The handler’s configuration scopdD#R]

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seq Stacked Handlgrs for a description of handler return codes.

Examples

Here is theMyApache2::SecretResourceAuthz handler which grants access to certain resources
only to certain users who have already properly authenticated:

#file:MyApache2/SecretResourceAuthz.pm
H.

H

package MyApache2::SecretResourceAuthz;

use strict;
use warnings;

use Apache2::Access ();
use Apache2::RequestUtil ();

use Apache2::Const -compile => qw(OK HTTP_UNAUTHORIZED);
my %protected = (
'admin’ => ['stas’],

‘report’ => [qw(stas boss)],

);

230 15 Feb 2014

HTTP Handlers 14.3.8 PerlAuthzHandler

sub handler {
my $r = shift;

my $user = $r->user;
if (Buser) {
my ($section) = $r->uri =~ m|company/(\w+)/|;
if (defined $section && exists $protected{$section}) {
my $users = $protected{$section};
return Apache2::Const::OK if grep { $_ eq $user } @S$users;
}
else {
return Apache2::Const::OK;
}

}

$r->note_basic_auth_failure;
return Apache2::Const::HTTP_UNAUTHORIZED;

}

1

This authorization handler is very similar to the authentication hgndler from the previoug section. Here we
rely on the previous phase to get users authenticated, and now as we have the username we can make deci-
sions whether to let the user access the resource it has asked for or not. In our example we have a simple
hash which maps which users are allowed to access what resources. So for example anything under
/company/admintan be accessed only by the usts /company/reportcan be accessed by usstas

andboss whereas any other resources urldempanyktan be accessed by everybody who has reached so

far. If for some reason we don't get the username, we or the user is not authorized to access the resource
the handler does the same thing as it does when the authentication fails, i.e, calls:

$r->note_basic_auth_failure;
return Apache2::Const::HTTP_UNAUTHORIZED;

The configuration is similar to the one [in_the previous sdction, this time we just adRertidel-
thzHandler setting. The rest doesn’t change.

Alias /company/ /home/httpd/httpd-2.0/perl/

<Location /company/>
SetHandler perl-script
PerlResponseHandler ModPerl::Registry
PerlAuthenHandler MyApache2::SecretLengthAuth
PerlAuthzHandler MyApache2::SecretResourceAuthz
Options +ExecCGl

AuthType Basic
AuthName "The Secret Gate"

Require valid-user
</Location>

And if you want to run the authentication and authorization for the whole site, simply add:

15 Feb 2014 231

14.3.9 PerlTypeHandler

<Location />
PerlAuthenHandler MyApache2::SecretLengthAuth
PerlAuthzHandler MyApache2::SecretResourceAuthz
AuthType Basic
AuthName "The Secret Gate"
Require valid-user

</Location>

14.3.9 PerlTypeHandler

Thetype_checkephase is used to set the response MIME tgimn{ent-type) and sometimes other
bits of document type information like the document language.

For examplanod_autoindex , which performs automatic directory indexing, uses this phase to map the
filename extensions to the corresponding icons which will be later used in the listing of files.

Of course later phases may override the mime type set in this phase.

This phase is of typRUN_FIRST.

The handler’s configuration scopdD$R]

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seq Stacked Handlgrs for a description of handler return codes.

Examples

The most important thing to remember when overriding the defgdt checkehandler, which is usually

the mod_mime handler, is that you have to set the handler that will take care of the response phase and the
response callback function or the code won’'t work. mod_mime does that basstHandler and
AddHandler directives, and file extensions. So if you want the content handler to be run by mod_perl,
set either:

$r->handler(’perl-script’);
$r->set_handlers(PerlResponseHandler => \&handler);

or:

$r->handler('modperl’);
$r->set_handlers(PerlResponseHandler => \&handler);

depending on which type of response handler is wanted.

232 15 Feb 2014

HTTP Handlers 14.3.10 PerlFixupHandler

Writing a PerlTypeHandler handler which sets the content-type value and returns
Apache2::Const::DECLINED so that the default handler will do the rest of the work, is not a good
idea, because mod_mime will probably override this and other settings.

Therefore it's the easiest to leave this stage alone and do any desired settin{jsipgpbase.

14.3.10 PerlFixupHandler

Thefixupsphase is happening just before the content handling phase. It gives the last chance to do things
before the response is generated. For example in this pl@beenv populates the environment with
variables configured witBetEnvandPassEnwudirectives.

This phase is of typUN_ALL

The handler’s configuration scopdD#R]

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seq Stacked Handlgrs for a description of handler return codes.

Examples

The following fixup handler example tells Apache at run time which handler and callback should be used
to process the request based on the file extension of the request’'s URI.

#file:MyApache2/FileExtDispatch.pm
H.

package MyApache2::FileExtDispatch;

use strict;
use warnings;

use Apache2::RequestlO ();
use Apache2::RequestRec ();
use Apache2::RequestUtil ();

use Apache2::Const -compile =>'OK’;

use constant HANDLER => 0O;
use constant CALLBACK => 1;

my %exts = (
cgi => ['perl-script’, \&cgi_handler],
pl =>['modperl’, \&pl_handler],
tt => ['perl-script’, \&tt_handler],
txt => ['default-handler’, undef 1,

15 Feb 2014 233

14.3.10 PerlFixupHandler

sub handler {
my $r = shift;

my ($ext) = $r->uri =~ N\.(\w+)$/;
$ext = "txt’ unless defined $ext and exists $exts{$ext};

$r->handler($exts{$ext}->[HANDLERY]);

if (defined $exts{$ext}->[CALLBACK]) {
$r->set_handlers(PerlResponseHandler => $exts{$ext}->[CALLBACK]);

}

return Apache2::Const::OK;
}

sub cgi_handler { content_handler($_[0], 'cgi’) }
sub pl_handler { content_handler($_[0], 'pI") }

sub tt_handler {content_handler($_[0], 'tt’) }

sub content_handler {
my ($r, $type) = @_;

$r->content_type(‘text/plain’);
$r->print("A handler of type "$type’ was called");

return Apache2::Const::OK;
}

1
In the example we have used the following mapping.

my %exts = (
cgi => ['perl-script’, \&cgi_handler],
pl =>['modperl’, \&pl_handler],
tt => ['perl-script’, \&tt_handler],
txt => ['default-handler’, undef 1,

)i

So that.cgi requests will be handled by tperl-script handler and thegi_handler() callback,
.pl requests bymodperl and pl_handler() , .tt (template toolkit) byperl-script and the
tt_handler() , finally .txt request by thdefault-handler handler, which requires no callback.

Moreover the handler assumes that if the request’'s URI has no file extension or it does, but it's not in its
mapping, thelefault-handler will be used, as if thixt extension was used.

After doing the mapping, the handler assigns the handler:

$r->handler($exts{$ext}->[HANDLERY]);

and the callback if needed:

234 15 Feb 2014

HTTP Handlers 14.3.11 PerlResponseHandler

if (defined $exts{$ext}->[CALLBACK]) {
$r->set_handlers(
PerlResponseHandler => $exts{$ext}->[CALLBACK]);

}

In this simple example the callback functions don’t do much but calling the same content handler which
simply prints the name of the extension if handled by mod_perl, otherwise Apache will serve the other
files using the default handler. In real world you will use callbacks to real content handlers that do real
things.

Here is how this handler is configured:

Alias /dispatch/ /home/httpd/httpd-2.0/htdocs/
<Location /dispatch/>

PerlFixupHandler MyApache2::FileExtDispatch
</Location>

Notice that there is no need to specify anything, but the fixup handler. It applies the rest of the settings
dynamically at run-time.

14.3.11 PerlResponseHandler

The handler (responsg phase is used for generating the response. This is arguably the most important
phase and most of the existing Apache modules do most of their work at this phase.

This is the only phase that requires two directives under mod_perl. For example:

<Location /perl>

SetHandler perl-script

PerlResponseHandler MyApache2::WorldDomination
</Location>

SetHandler set toperl-script or modperl tells Apache that mod_perl is going to handle the
response generatioRerlResponseHandler tells mod_perl which callback is going to do the job.

This phase is of typUN_FIRST.

The handler’s configuration scopdD#R]

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seq Stacked Handlgrs for a description of handler return codes.

Examples

15 Feb 2014 235

14.3.11 PerlResponseHandler

Most of theApache:: modules on CPAN are dealing with this phase. In fact most of the developers
spend the majority of their time working on handlers that generate response content.

Let's write a simple response handler, that just generates some content. This time let's do something more
interesting than printingHello world". Let’s write a handler that prints itself:

#file:MyApache2/Deparse.pm
H

package MyApache2::Deparse;

use strict;
use warnings;

use Apache2::RequestRec ();
use Apache2::RequestlO ();
use B::Deparse ();

use Apache2::Const -compile =>'OK’;

sub handler {
my $r = shift;

$r->content_type('text/plain’);
$r->print('sub handler ’, B::Deparse->new->coderef2text(\&handler));

return Apache2::Const::OK;
}
1
To enable this handler addhtipd.conf
<Location /deparse>
SetHandler modperl

PerlResponseHandler MyApache2::Deparse
</Location>

Now when the server is restarted and we issue a reqUetpidlocalhost/depargeve get the following
response:

sub handler {
package MyApache2::Deparse;
use warnings;
use strict 'refs’;
my $r = shift @_;
$r->content_type('text/plain’);
$r->print('sub handler ', 'B::Deparse’->new->coderef2text(\&handler));
return O;

}

If you compare it to the source code, it's pretty much the same BoBeparse is fun to play with!

236 15 Feb 2014

http://localhost/deparse

HTTP Handlers 14.3.12 PerlLogHandler

14.3.12 PerlLogHandler

Thelog_transactionphase happens no matter how the previous phases have ended up. If one of the earlier
phases has aborted a request, e.g., failed authentication or 404 (file not found) errors, the rest of the phases
up to and including the response phases are skipped. But this phase is always executed.

By this phase all the information about the request and the response is known, therefore the logging
handlers usually record this information in various ways (e.g., logging to a flat file or a database).

This phase is of typeUN_ALL

The handler’s configuration scopdD$R]

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seq Stacked Handlgrs for a description of handler return codes.

Examples

Imagine a situation where you have to log requests into individual files, one per user. Assuming that all
requests start with-username/so it's easy to categorize requests by the username. Here is the log handler
that does that:

#file:MyApache2/LogPerUser.pm

#

package MyApache2::LogPerUser;

use strict;
use warnings;

use Apache2::RequestRec ();
use Apache2::Connection ();

use Fentl gw(:flock);
use File::Spec::Functions qw(catfile);

use Apache2::Const -compile => qw(OK DECLINED);

sub handler {
my $r = shift;

my ($username) = $r->uri =~ m|~(["M]+)|;
return Apache2::Const::DECLINED unless defined $username;

my $entry = sprintf qq(%s [%s] "%s" %d %d\n),
$r->connection->remote_ip, scalar(localtime),
$r->uri, $r->status, $r->bytes_sent;

my $log_path = catfile Apache2::ServerUtil::server_root,

15 Feb 2014 237

14.3.12 PerlLogHandler

"logs", "$username.log";
open my $fh, ">>$log_path" or die "can't open $log_path: $!";
flock $fh, LOCK_EX;
print $fh $entry;
close $fh;

return Apache2::Const::OK;
}
1;

First the handler tries to figure out what username the request is issued for, if it fails to match the URI, it
simply returnsApache2::Const::DECLINED , letting other log handlers to do the logging. Though it
could returnApache2::Const::OK since all other log handlers will be run anyway.

Next it builds the log entry, similar to the defaaticess_logntry. It's comprised of remote IP, the current
time, the uri, the return status and how many bytes were sent to the client as a response body.

Finally the handler appends this entry to the log file for the user the request was issued for. Usually it's
safe to append short strings to the file without being afraid of messing up the file, when two files attempt
to write at the same time, but just to be on the safe side the handler exclusively locks the file before
performing the writing.

To configure the handler simply enable the module withHPdxl_ogHandler directive, for the desired
URI namespace (starting wittt~ in our example):

<LocationMatch "*/~">
SetHandler perl-script
PerlResponseHandler ModPerl::Registry
PerlLogHandler MyApache2::LogPerUser
Options +ExecCGl

</LocationMatch>

After restarting the server and issuing requests to the following URIs:
http://localhost/~stas/test.pl

http://localhost/~eric/test.pl
http://localhost/~stas/date.pl

TheMyApache2::LogPerUser handler will append timgs/stas.log

127.0.0.1 [Sat Aug 31 01:50:38 2002] "/~stas/test.pl" 200 8
127.0.0.1 [Sat Aug 31 01:50:40 2002] "/~stas/date.pl" 200 44

and tologs/eric.log

127.0.0.1 [Sat Aug 31 01:50:39 2002] "/~eric/test.pl" 200 8

It's important to notice thaPerlLogHandler can be configured for any subsection of the site, no
matter whether it's served by a mod_perl response handler or not. For example to run the handler from our
example for all requests to the server, simply addtpml.conf

238 15 Feb 2014

HTTP Handlers 14.3.13 PerlCleanupHandler

<Location />
PerlLogHandler MyApache2::LogPerUser
</Location>

Since thePerlLogHandler phase is of typ&RUN_ALL all other logging handlers will be called as
well.

14.3.13 PerlCleanupHandler

There is naleanupApache phase, it exists only inside mod_perl. It is used to execute some code immedi-
ately after the request has been served (the client went away) and before the request object is destroyed.

There are several usages for this use phase. The obvious one is to run a cleanup code, for example remov-
ing temporarily created files. The less obvious is to use this phase insfeadlaigHandler | if the

logging operation is time consuming. This approach allows to free the client as soon as the response is
sent.

This phase is of typUN_ALL

The handler’s configuration scopdD$R]

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

Seq Stacked Handlgrs for a description of handler return codes.

Examples
There are two ways to register and run cleanup handlers:

1. Using thePer | d eanupHandl| er phase

PerlCleanupHandler MyApache2::Cleanup

or:

$r->push_handlers(PerlCleanupHandler => \&cleanup);
This method is identical to all other handlers.
In this technique theleanup() callback accept$r as its only argument.
2. Usingcl eanup_r egi st er () acting on the request object’s pool

Since a request object pool is destroyed at the end of each request, we daanuge regis-
ter to register a cleanup callback which will be executed just before the pool is destroyed. For
example:

15 Feb 2014 239

14.3.13 PerlCleanupHandler

$r->pool->cleanup_register(\&cleanup, $arg);

The important difference from using tRerlCleanupHandler handler, is that here you can pass
an optional arbitrary argument to the callback function, an@rmargument is passed by default.
Therefore if you need to pass any data other $inayou may want to use this technique.

Here is an example where the cleanup handler is used to delete a temporary file. The response handler is
runningls -l and stores the output in temporary file, which is then useft-gendfile to send

the file’'s contents. We ugaush_handlers() to pushPerlCleanupHandler to unlink the file at

the end of the request.

#file:MyApache2/Cleanupl.pm

#

H

package MyApache2::Cleanupl,;

use strict;
use warnings FATAL =>"all’;

use File::Spec::Functions qw(catfile);
use Apache2::RequestRec ();

use Apache2::RequestlO ();

use Apache2::RequestUtil ();

use Apache2::Const -compile => qw(OK DECLINED);
use APR:Const -compile =>'SUCCESS’;

my $file = catfile "/tmp", "data";

sub handler {
my $r = shift;

$r->content_type('text/plain’);

local @ENV{qw(PATH BASH_ENV)};
gx(/bin/ls -1 > $file);

my $status = $r->sendfile($file);
die "sendfile has failed" unless $status == APR::Const::SUCCESS;

$r->push_handlers(PerlCleanupHandler => \&cleanup);

return Apache2::Const::OK;
}

sub cleanup {
my $r = shift;

die "Can't find file: $file" unless -e $file;
unlink $file or die "failed to unlink $file";

return Apache2::Const::OK;

}
1

240 15 Feb 2014

HTTP Handlers 14.3.13 PerlCleanupHandler

Next we add the following configuration:

<Location /cleanup1>

SetHandler modperl

PerlResponseHandler MyApache2::Cleanupl
</Location>

Now when a request tzleanuplis made, the contents of the current directory will be printed and once
the request is over the temporary file is deleted.

This response handler has a problem of running in a multi-process environment, since it uses the same file,
and several processes may try to read/write/delete that file at the same time, wrecking havoc. We could
have appended the proces$#lto the file’s name, but remember that mod_perl 2.0 code may run in the
threaded environment, meaning that there will be many threads running in the same proces$%nd the
trick won’t work any longer. Therefore one really has to use this code to create unique, but predictable,
file names across threads and processes:

sub unique_id {
require Apache2::MPM;
require APR::0S;
return Apache2::MPM->is_threaded
?"3." . ${ APR::OS::current_thread_id() }
. $$;
}

In the threaded environment it will return a string containing the process ID, followed by a thread ID. In
the non-threaded environment only the process ID will be returned. However since it gives us a
predictable string, they may still be a non-satisfactory solution. Therefore we need to use a random string.
We can either either Perlfand , some CPAN module or the APRAPR::UUID :

sub unique_id {
require APR::UUID;
return APR::UUID->new->format;

}

Now the problem is how do we tell the cleanup handler what file should be cleaned up? We could have
stored it in the$r->notes table in the response handler and then retrieve it in the cleanup handler.
However there is a better way - as mentioned earlier, we can register a callback for request pool cleanup,
and when using this method we can pass an arbitrary argument to it. Therefore in our case we choose to
pass the file name, based on random string. Here is a better version of the response and cleanup handlers,
that uses this technique:

#file: MyApache2/Cleanup2.pm

#H.

package MyApache2::Cleanup?2;

use strict;
use warnings FATAL =>"all’;

use File::Spec::Functions gw(catfile);

use Apache2::RequestRec ();
use Apache2::RequestlO ();

15 Feb 2014 241

14.3.13 PerlCleanupHandler

use Apache2::RequestUtil ();
use APR::UUID ();
use APR::Pool ();

use Apache2::Const -compile => qw(OK DECLINED);
use APR::Const -compile =>'SUCCESS’;

my $file_base = catfile "/tmp", "data-";

sub handler {
my $r = shift;

$r->content_type(‘text/plain’);
my $file = $file_base . APR::UUID->new->format;

local @ENV{qw(PATH BASH_ENV)};
gx(/bin/ls -1 > $file);

my $status = $r->sendfile(Sfile);
die "sendfile has failed" unless $status == APR::Const::SUCCESS;

$r->pool->cleanup_register(\&cleanup, $file);

return Apache2::Const::OK;
}

sub cleanup {
my $file = shift;

die "Can't find file: $file" unless -e $file;
unlink $file or die "failed to unlink $file";

return Apache2::Const::OK;
}
1;
Similarly to the first handler, we add the configuration:

<Location /cleanup2>

SetHandler modperl

PerlResponseHandler MyApache2::Cleanup2
</Location>

And now when requestinfgleanup2we still get the same output -- the listing of the current directory --
but this time this code will work correctly in the multi-processes/multi-threaded environment and tempo-
rary files get cleaned up as well.

14.3.13.1 Possible Caveats

PerlCleanupHandler may fail to be completed on server shutdown/graceful restart since Apache will
kill the registered handlers via SIGTERM, before they had a chance to run or even in the middle of its
execution. See:|_http://marc.theaimsgroup.com/?t=106387845200003&r=1&w=2 _http://marc.theaims-
[group.com/?I=apache-modperl-dev&m=106427616108596&w=2

242 15 Feb 2014

http://marc.theaimsgroup.com/?t=106387845200003&r=1&w=2
http://marc.theaimsgroup.com/?l=apache-modperl-dev&m=106427616108596&w=2
http://marc.theaimsgroup.com/?l=apache-modperl-dev&m=106427616108596&w=2

HTTP Handlers 14.4 Miscellaneous Issues

14.4 Miscellaneous Issues

14.4.1 Handling HEAD Requests

In order to avoid the overhead of sending the data to the client when the request is of type HEAD in
mod_perl 1.0 we used to return early from the handler:

return Apache2::Const::OK if $r->header_only;

This logic should not be used in mod_perl 2.0, because Apache 2.0 automatically discards the response
body for HEAD requests. It expects the full body to generate the correct set of response headers, if you
don’t send the body you may encounter problems.

(You can also read the comment in &u_http_header_filter() in modules/http/http_protocol.c
in the Apache 2.0 source.)

14.4.2 Cont ent - Lengt h Response Header

You may encounter some issues with the Gbrtent-Length) header. Some of them are discussed
here.

® The special case ofont ent - Lengt h: 0

Since Apache proclaims itself governor of the C-L header via the C-L filter (ap_content_length_filter
at httpd-2.0/server/protocol)cfor the most parGETandHEADbehave exactly the same. However,
when Apache seesHEADrequest with a C-L header of zero it takes special action and removes the
C-L header. This is done to protect against handlers that Gateldeader_only (which was 0o

[n 1.3 but is not in 2|0). ThereforGET and HEADbehave identically, except when the content
handler (and/or filters) end up sending no content. For more details refer to the lengthy comments in
ap_http_header _filter() in httpd-2.0/modules/http/http_protocql.c

For more discussion on why it is important to get HEAD requests right, see these threads from the
mod_perl list:

http://marc.theaimsgroup.com/?l=apache-modperl&m=108647669726915&w=2
http://marc.theaimsgroup.com/?t=109122984600001&r=1&w=2

as well as this bug report from mozilla, which shows kEADrequests are used in the wild:
http://bugzilla.mozilla.org/show_bug.cgi?id=245447

e Not getting Cont ent - Lengt h header with HEAD requests

Even though the spec says that content handlers should send an identical response for GET and
HEAD requests, some folks try|to avoid the overhead of generating the resporjse body, which Apache
is going to discard anyway for HEAD requests. The following discussion assumes that we deal with a
HEAD request.

15 Feb 2014 243

14.5 Misc Notes

When Apache sees EOS and no headers and no response body were sent,
ap_content_length_filter() (httpd-2.0/server/protocol)c sets C-L to 0. Later on
ap_http_header_filter() (httpd-2.0/modules/http/http_protocgl.cemoves the C-L header

for the HEAD requests.

The workaround is to force the sending of the response headers, b@fwas sent (which happens
when the response handler returns). The simplest solution is to use rflush():

if ($r->header_only) { # HEAD
$body_len = calculate_body_len();
$r->set_content_length($body_len);
$r->rflush;

}
else { # GET

generate and send the body

}

now if the handler sets the C-L header it'll be delivered to the client unmodified.

14.5 Misc Notes

These items will need to be extended and integrated in this or other HTTP related documents:
e front-end back-end setup: mod_proxy+X-Forwarded-For

apache-1.3:

frontend: mod_proxy_add_forwgrd http://develooper.com/code/mpaf/

backend: mod_rpaf (reverse proxy add forwgrd): http://stderr.net/apache/rpaf/

apache-2.x:

frontend: mod_proxy

backend: mod_rpdf: http://stderr.net/apache/rpaf/

14.6 Extending HTTP Protocol

Extending HTTP under mod_perl is a trivial task. Look at the example of adding a new rabtAdd
for detalils.

14.7 HTTP Status Codes

The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative,
hypermedia information systems. It is a generic, stateless, protocol which can be used for many tasks
beyond its use for hypertext, such as name servers and distributed object management systems, through
extension of its request methods, error codes and headers. A feature of HTTP is the typing and negotiation

244 15 Feb 2014

http://develooper.com/code/mpaf/
http://stderr.net/apache/rpaf/
http://stderr.net/apache/rpaf/

HTTP Handlers 14.7.1 HTTP 1.0 Status Codes

of data representation, allowing systems to be built independently of the data being transferred.

HTTP 1.0 is described in Requests For Comments (RFC) 1945. HTTP 1.1 is the latest version of the speci-
fications and as of this writing HTTP 1.1 is covered in RFC 2616.

When writing mod_perl applications, usually only a small subset of HTTP response codes is used, but
sometimes you need to know others as well. We will give a short description of each code and you will
find the extended explanation in the appropriate RFC. (Section 9 in RFC 1945 and section 10 in RFC
2616). You can always find the latest link to these RFCs at the Web Consortium site,
|http://www.w3.org/Protocols/

While HTTP 1.1 is widely supported, HTTP 1.0 still remains the mainstream standard. Therefore we will
supply a summary of the both versions including the corresponding Apache constants.

In mod_perl these constants can be accessedphehe::Constants package (e.g., to access the
HTTP_OK constant useApache::Constants::HTTP_OK). See the Apache::Constants
manpage for more information.

In mod_perl2 these constants can be accessed\phehe2::Const package (e.g., to access the
HTTP_OK constant usé&pache2::Const::HTTP_OK). See theApache2::Const manpage for
more information.

14.7.1 HTTP 1.0 Status Codes

® Successful 2xx:

200 HTTP_OK OK

201 HTTP_CREATED Created

202 HTTP_ACCEPTED Accepted
204 HTTP_NO_CONTENT No Content

® Redirection 3xx:

301 HTTP_MOVED_PERMANENTLY Multiple Choices
302 HTTP_MOVED_TEMPORARILY Moved Permanently
303 HTTP_SEE_OTHER Moved Temporarily

304 HTTP_NOT_MODIFIED Not Modified

® Client Error 4xx:

400 HTTP_BAD_REQUEST Bad Request
401 HTTP_UNAUTHORIZED Unauthorized
403 HTTP_FORBIDDEN Forbidden

404 HTTP_NOT_FOUND Not Found

® Server Error 5xx:

500 HTTP_INTERNAL_SERVER_ERROR Internal Server Error

501 HTTP_NOT_IMPLEMENTED Not Implemented

502 HTTP_BAD_GATEWAY Bad Gateway

503 HTTP_SERVICE_UNAVAILABLE Service UnavailableStatus Codes

15 Feb 2014 245

http://www.w3.org/Protocols/

14.7.2 HTTP 1.1 Status Codes

14.7.2 HTTP 1.1 Status Codes

246

Informational 1xx:

100 HTTP_CONTINUE Continue
101 HTTP_SWITCHING_PROTOCOLS Switching Protocols

Successful 2xx:

200 HTTP_OK OK

201 HTTP_CREATED Created

202 HTTP_ACCEPTED Accepted

203 HTTP_NON_AUTHORITATIVE Non-Authoritative Information
204 HTTP_NO_CONTENT No Content

205 HTTP_RESET_CONTENT Reset Content

206 HTTP_PARTIAL_CONTENT Partial Content

Redirection 3xx:

300 HTTP_MULTIPLE_CHOICES Multiple Choices

301 HTTP_MOVED_PERMANENTLY Moved Permanently
302 HTTP_MOVED_TEMPORARILY Found

303 HTTP_SEE_OTHER See Other

304 HTTP_NOT_MODIFIED Not Modified

305 HTTP_USE_PROXY Use Proxy

306 (Unused)

307 HTTP_TEMPORARY_REDIRECT Temporary Redirect

Client Error 4xx:

400 HTTP_BAD_REQUEST Bad Request

401 HTTP_UNAUTHORIZED Unauthorized

402 HTTP_PAYMENT_REQUIRED Payment Required

403 HTTP_FORBIDDEN Forbidden

404 HTTP_NOT_FOUND Not Found

405 HTTP_METHOD_NOT_ALLOWED Method Not Allowed

406 HTTP_NOT_ACCEPTABLE Not Acceptable

407 HTTP_PROXY_AUTHENTICATION_REQUIRED Proxy Authentication Required
408 HTTP_REQUEST_TIMEOUT Request Timeout

409 HTTP_CONFLICT Conflict

410 HTTP_GONE Gone

411 HTTP_LENGTH REQUIRED Length Required

412 HTTP_PRECONDITION_FAILED Precondition Failed

413 HTTP_REQUEST_ENTITY_TOO_LARGE Request Entity Too Large
414 HTTP_REQUEST_URI_TOO_LARGE Request-URI Too Long

415 HTTP_UNSUPPORTED_MEDIA_TYPE Unsupported Media Type

416 HTTP_RANGE_NOT_SATISFIABLE Requested Range Not Satisfiable
417 HTTP_EXPECTATION_FAILED Expectation Failed

Server Error 5xx:

15 Feb 2014

HTTP Handlers 14.8 Maintainers

500 HTTP_INTERNAL_SERVER_ERROR Internal Server Error

501 HTTP_NOT IMPLEMENTED Not Implemented

502 HTTP_BAD_GATEWAY Bad Gateway

503 HTTP_SERVICE_UNAVAILABLE Service Unavailable

504 HTTP_GATEWAY_TIME_OUT Gateway Timeout

505 HTTP_VERSION_NOT_SUPPORTED HTTP Version Not Supported

14.7.3 References

All the information related to web protocols can be found at the World Wide Web Consortium site,
|http://www.w3.org/Protocolls/

There are many mirrors of the RFCs all around the world. One of the good starting points might be
|http://www.rfc-editor.ord/

The Eagle Book provided much of the HTTP constants material shown here
|http://www.modperl.com/book/chapters/ch9.html#The Apache Constant$ Class

14.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

e The mod_perl development team and numerous contributors.

14.9 Authors

e Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 247

http://www.w3.org/Protocols/
http://www.rfc-editor.org/
http://www.modperl.com/book/chapters/ch9.html#The_Apache_Constants_Class
http://stason.org/

15 Input and Output Filters

15 Input and Output Filters

248 15 Feb 2014

Input and Output Filters 15.1 Description

15.1 Description

This chapter discusses mod_perl’s input and output filter handlers.

If all you need is to lookup the filtering APl proceed directly to theache2::Filter and
Apache2::FilterRec manpages.

15.2 Introducing Filters

You certainly already know how filters work, because you encounter filters so often in real life. If you are
unfortunate to live in smog-filled cities like Saigon or Bangkok you are probably used to wear a dust filter
mask:

dust mask

If you are smoker, chances are that you smoke cigarettes with filters:
cigarrette filter

If you are a coffee gourmand, you have certainly tried a filter coffee:
coffee machine

The shower that you use, may have a water filter:

shower filter

When the sun is too bright, you protect your eyes by wearing sun goggles with UV filter:
sun goggles

If are a photographer you can’'t go a step without using filter lenses:
photo camera

If you love music, you might be unaware of it, but your super-modern audio system is literally loaded with
various electronic filters:

LP player

There are many more places in our lives where filters are used. The purpose of all filters is to apply some
transformation to what's coming into the filter, letting something different out of the filter. Certainly in
some cases it's possible to modify the source itself, but that makes things unflexible, and but most of the
time we have no control over the source. The advantage of using filters to modify something is that they
can be replaced when requirements change Filters also can be stacked, which allows us to make each filter
do simple transformations. For example by combining several different filters, we can apply multiple
transformations. In certain situations combining several filters of the same kind let's us achieve a better
quality output.

15 Feb 2014 249

15.2 Introducing Filters

The mod_perl filters are not any different, they receive some data, modify it and send it out. In the case of
filtering the output of the response handler, we could certainly change the response handler’s logic to do
something different, since we control the response handler. But this may make the code unnecessary
complex. If we can apply transformations to the response handler’s output, it certainly gives us more flexi-
bility and simplifies things. For example if a response needs to be compressed before sent out, it'd be very
inconvenient and inefficient to code in the response handler itself. Using a filter for that purpose is a
perfect solution. Similarly, in certain cases, using an input filter to transform the incoming request data is
the most wise solution. Think of the same example of having the incoming data coming compressed.

Just like with real life filters, you can pipe several filters to modify each other’s output. You can also
customize a selection of different filters at run time.

Without much further ado, let’s write a simple but useful obfuscation filter for our HTML documents.

We are going to use a very simple obfuscation -- turn an HTML document into a one liner, which will
make it harder to read its source without a special processing. To accomplish that we are going to remove
characters \012r{) and \015), which depending on the platform alone or as a combination represent
the end of line and a carriage return.

And here is the filter handler code:

#file:MyApache2/FilterObfuscate.pm

#

package MyApache2::FilterObfuscate;

use strict;
use warnings;

use Apache2::Filter ();
use Apache2::RequestRec ();
use APR::Table ();

use Apache2::Const -compile => qw(OK);
use constant BUFF_LEN => 1024,

sub handler {
my $f = shift;

unless ($f->ctx) {
$f->r->headers_out->unset('Content-Length’);
$f->ctx(1);

}

while ($f->read(my $buffer, BUFF_LEN)) {
$buffer =~ s/[\r\n}//g;
$f->print($buffer);

}

return Apache2::Const::OK;

=~

250 15 Feb 2014

Input and Output Filters 15.2 Introducing Filters

The directives below configure Apache to apply MgApache2::FilterObfuscate filter to all
requests that get mapped to files with'datmlI" extension:

<Files ~ "\.html">
PerlOutputFilterHandler MyApache?2::FilterObfuscate
</Files>

Filters are expected to returApache2::Const::OK or Apache2::Const::DECLINED . But
instead of receivingr (the request object) as the first argument, they re&fivéhe filter object). The
filter object is described later in this chapter.

The filter starts by unsetting thgontent-Length response header, because it modifies the length of
the response body (shrinks it). If the response handler se@otiient-Length header and the filter
doesn’t unset it, the client may have problems receiving the response since it will expect more data than it
was sentSetting the Content-Length Headerlow describes how to set the Content-Length header if you
need to.

The core of this filter is a read-modify-print expression in a while loop. The logic is very simple: read at
mostBUFF_LENcharacters of data infbuffer , apply the regex to remove any occurences oand

\r init, and print the resulting data out. The input data may come from a response handler, or from an
upstream filter. The output data goes to the next filter in the output chain. Even though in this example we
haven't configured any more filters, internally Apache itself uses several core filters to manipulate the data
and send it out to the client.

As we are going to explain in detail in the following sections, the same filter may be called many times
during a single request, every time receiving a subsequent chunk of data. For example if the POSTed
request data is 64k long, an input filter could be invoked 8 times, each time receiving 8k of data. The same
may happen during the response phase, where an upstream filter may split 64k of output in 8, 8k chunks.
The while loop that we just saw is going to read each of these 8k in 8 calls, since it requests 1k on every
read() call

Since it's enough to unset ti@®ntent-Length header when the filter is called the first time, we need
to have some flag telling us whether we have done the job. The nutkifpd provides this functionality:

unless ($f->ctx) {
$f->r->headers_out->unset(’Content-Length’);
$f->ctx(1);

}

Theunset() call will be made only on the first filter call for each request. You can store any kind of a
Perl data structure ifif->ctx and retrieve it later in subsequent filter invocations of the same request.
There are several examples using this method in the following sections.

To be truly useful, thtMyApache2::FilterObfuscate filter logic should take into account situa-
tions where removing new line characters will make the document render incorrectly in the browser. As
we mentioned above, this is the case if there are mult<lme> ...</pre> entries. Since this increases

the complexity of the filter, we will disregard this requirement for now.

15 Feb 2014 251

15.3 1/O Filtering Concepts

A positive side-effect of this obfuscation algorithm is that it reduces the amount of the data sent to the
client. TheApache::Clean module, available from the CPAN, provides a production-ready implemen-
tation of this technique which takes into account the HTML markup specifics.

mod_perl I/O filtering follows the Perl principle of making simple things easy and difficult things possi-
ble. You have seen that it's trivial to write simple filters. As you read through this chapter you will see that
much more difficult things are possible, and that the code is more elaborate.

15.3 1/O Filtering Concepts

Before introducing the APIs, mod_perl provides for Apache Filtering, there are several important concepts
to understand.

15.3.1 Two Methods for Manipulating Data

mod_perl provides two interfaces to filtering: a direct bucket brigades manipulation interface and a
simpler, stream-oriented interface. Apache 2.0 considers all incoming and outgoing data as chunks of
information, disregarding their kind and source or storage methods. These data chunks are stored in
buckets which form bucket brigades. Input and output filters massage the data irbtivkse¢ brigades

Response and protocol handlers also receive and send data using bucket brigades, though in most cases
this is hidden behind wrappers, suchemd() andprint()

mod_perl 2.0 filters can directly manipulate the bucket brigades or use the simplified streaming interface
where the filter object acts similar to a filehandle, which can be read from and printed to.

Even though you don’t use bucket brigades directly when you use the streaming filter interface (which
works on bucket brigades behind the scenes), it's still important to understand bucket brigades. For
example you need to know that an output filter will be invoked as many times as the number of bucket
brigades sent from an upstream filter or a content handler. Or you need to know that the end of stream
indicator (EOS) is sometimes sent in a separate bucket brigade, so it shouldn’t be a surprise that the filter
was invoked even though no real data went through. As we delve into the filter details you will see that
understanding bucket brigades, will help to understand how filters work.

Moreover you will need to understand bucket brigades if you plan to implement protocol nodules.

15.3.2 HTTP Request Versus Connection Filters

HTTP request filters are applied when Apache serves an HTTP request. HTTP request input filters get
invoked on the body of the HTTP request only if the body is consumed by the content handler. HTTP
request headers are not passed through the HTTP request input filters. HTTP response output filters get
invoked on the body of the HTTP response if the content handler has generated one. HTTP response
headers are not passed through the HTTP response output filters.

It is also possible to apply filters at the connection level. A connection may be configured to serve one or
more HTTP requests, or handle other protocols. Connection filters see all the incoming and outgoing data.
If an HTTP request is served, connection filters can modify the HTTP headers and the body of request and

252 15 Feb 2014

Input and Output Filters 15.3.3 Multiple Invocations of Filter Handlers

response. If a different protocol is served over the connection (e.g., IMAP), the data could have a
completely different pattern than the HTTP protocol (headers + body). Thus, the only difference between
connection filters and request filters is that connection filters see everything from the request, i.e., the
headers and the body, whereas request filters see only the body.

mod_perl 2.0 may support several other Apache filter types in the future.

15.3.3 Multiple Invocations of Filter Handlers

Unlike other Apache handlers, filter handlers may get invoked more than once during the same request.
Filters get invoked as many times as the number of bucket brigades sent from an upstream filter or a
content provider.

For example, a content generation handler may send a string, then force a flush, and then send more data:

assuming buffered STDOUT ($|==0)
$r->print("foo");

$r->rflush;

$r->print("bar");

In this case, Apache will generate one bucket brigade with two buckets. There are several types of buckets
which contain data; in this example, the data typrarssient

bucket type data

1st transient foo
2nd flush

Apache sends this bucket brigade to the filter chain. Then, assuming no more data is sent after
print("bar") , it will create a last bucket brigade, with one bucket, containing data:

bucket type data

1st transient bar

and send it to the filter chain. Finally it will send yet another bucket brigade with the EOS bucket indicat-
ing that there will be no more data sent:

bucket type data

EOS buckets are valid for request filters. For connection filters, you will get one only in the response
filters and only at the end of the connection. You can see a sample workaround for this situation in the
moduleApache2::Filter::HTTPHeadersFixup available on the CPAN.

Note that the EOS bucket may come attached to the last bucket brigade with data, instead of coming in its
own bucket brigade. The location depends on the other Apache modules manipulating the buckets and can
vary. Filters should never assume that the EOS bucket is arriving alone in a bucket brigade. Therefore the
first output filter will be invoked two or three times (three times if EOS is coming in its own brigade),
depending on the number of bucket brigades sent by the response handler.

15 Feb 2014 253

15.3.3 Multiple Invocations of Filter Handlers

An upstream filter can modify the bucket brigades, by inserting extra bucket brigades or even by collect-
ing the data from multiple bucket brigades and sending it along in just one brigade. Therefore, when
coding a filter, never assume that the filter is always going to be invoked once, or any fixed number of
times. Neither can you assume how the data is going to come in. To accommodate these situations, a
typical filter handler may need to split its logic in three parts.

To illustrate, below is some pseudo-code that represents all three parts, i.e., initialization, processing, and
finalization. This is a typical stream-oriented filter handler.

sub handler {
my $f = shift;

runs on first invocation
unless ($f->ctx) {
init($f);
$f->ctx(1);
}

runs on all invocations
process($f);

runs on the last invocation

if ($f->seen_eos) {
finalize($f);

}

return Apache2::Const::OK;

}

subinit {..}
sub process { ...}
sub finalize { ... }

The following diagram depicts all three parts:

filter flow logic

Let's explain each part using this pseudo-filter.
1. Initialization

During initialization, the filter runs code that you want executed only once, even if there are multiple
invocations of the filter (this is during a single request). The filter context ($f->ctx) is used as a flag
to accomplish this task. For each new request the filter context is created before the filter is called for
the first time, and it is destroyed at the end of the request.

unless ($f->ctx) {
init($f);
$f->ctx(1);

}

254 15 Feb 2014

Input and Output Filters 15.3.3 Multiple Invocations of Filter Handlers

When the filter is invoked for the first tin®f->ctx returnsundef and the custom function init()
is called. This function could, for example, retrieve some configuration data kétpthconfor
initialize some data structure to a default value.

To make sure that init() won't be called on the following invocations, we must set the filter context
before the first invocation is completed:

$f->ctx(1);

In practice, the context is not just used as a flag, but to store real data. You can use it to hold any data
structure and pass it between successive filter invocations. For example, the following filter handler
counts the number of times it was invoked during a single request:

sub handler {
my $f = shift;

my $ctx = $f->ctx;

$ctx->{invoked}++;

$f->ctx($etx);

warn "filter was invoked $ctx->{invoked} times\n";

return Apache2::Const::DECLINED;
}

Since this filter handler doesn’'t consume the data from the upstream filter, it's important that this
handler returmApache2::Const::DECLINED , in which case mod_perl passes the current bucket
brigade to the next filter. If this handler retuysache2::Const::OK | the data will be lost, and

if that data included a special EOS token, this may cause problems.

Unsetting theContent-Length header for filters that modify the response body length is a good
example of code to run in the initialization phase:
unless ($f->ctx) {
$f->r->headers_out->unset('Content-Length’);
$f->ctx(1);
}

We will see more initialization examples later in this chapter.
2. Processing

The next part:

process($f);

is unconditionally invoked on every filter invocation. That's where the incoming data is read, modi-
fied and sent out to the next filter in the filter chain. Here is an example that lowers the case of the
characters passing through:

15 Feb 2014 255

15.3.3 Multiple Invocations of Filter Handlers

use constant READ_SIZE => 1024;
sub process {
my $f = shift;
while ($f->read(my $data, READ_SIZE)) {
$f->print(lc $data);
}
}

Here the filter operates only on a single bucket brigade. Since it manipulates every character sepa-
rately the logic is simple.

In more complicated situations, a filter may need to buffer data before the transformation can be
applied. For example, if the filter operates on HTML tokens (e.g., '"), it's possi-
ble that one brigade will include the beginning of the token ('<img ’) and the remainder of the token
('src="me.jpg">") will come in the next bucket brigade (on the next filter invocation). To operate on
the token as a whole, you would need to capture each piece over several invocations. To do so, you
can store the unprocessed data in the filter context and then access it again on the next invocation.

Another good example of the need to buffer data is a filter that performs data compression, because
compression is usually effective only when applied to relatively big chunks of data. If a single bucket
brigade doesn’t contain enough data, the filter may need to buffer the data in the filter context until it
collects enough to compress it.

3. Finalization

Finally, some filters need to know when they are invoked for the last time, in order to perform
various cleanups and/or flush any remaining data. As mentioned earlier, Apache indicates this event
by a special end of stream "token", represented by a bucket oE®Belf the filter is using the
streaming interface, rather than manipulating the bucket brigades directly, and it wageatli)g

in a while loop, it can check for the EOS token usingbfheseen_eos method:

if ($f->seen_eos) {
finalize($f);
}

This check should be done at the end of the filter handler because the EOS token can come attached
to the tail of some data or all alone such that the last invocation gets only the EOS token. If this test is
performed at the beginning of the handler and the EOS bucket was sent in together with the data, the
EOS event may be missed and the filter won’t function properly.

Filters that directly manipulate bucket brigades must manually look for a bucket whose E{p® is
There are examples of this method later in the chapter.

While not all filters need to perform all of these steps, this is a good model to keep in mind while working
on your filter handlers. Since filters are called multiple times per request, you will likely use these steps,
with initialization, processing, and finishing, on all but the simplest filters.

256 15 Feb 2014

Input and Output Filters 15.3.4 Blocking Calls

15.3.4 Blocking Calls

All filters (excluding the core filter that reads from the network and the core filter that writes to it) block at
least once when invoked. Depending on whether this is an input or an output filter, the blocking happens
when the bucket brigade is requested from the upstream filter or when the bucket brigade is passed to the
downstream filter.

Input and output filters differ in the ways they acquire the bucket brigades, and thus in how blocking is
handled. Each type is described separately below. Although you can't see the difference when using the
streaming API, it's important to understand how things work underneath. Therefore the examples below
are transparent filters, passing data through them unmodified. Instead of reading the data in and printing it
out, the bucket brigades are passed as is. This makes it easier to observe the blocking behavior.

The first example is a transparent input filter:

#file:MyApache2/FilterTransparent.pm (first part)

#

es

package MyApache2::FilterTransparent;

use Apache2::Filter ();

use Apache2::Const -compile => qw(OK);
use APR:Const -compile =>":common’;

subin {
my ($f, $bb, $mode, $block, $readbytes) = @_;

my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
return $rv unless $rv == APR::Const::SUCCESS;

return Apache2::Const::OK;
}

When the input filtein() is invoked, it first asks the upstream filter for the next bucket brigade (using the
get_brigade() call). That upstream filter is in turn going to ask for the bucket brigade from the next
upstream filter and so on up the chain, until the last filter (calbee in), the one that reads from the
network, is reached. Thaore_in filter reads, using a socket, a portion of the incoming data from the
network, processes it, and sends it to its downstream filter. That filter processes the data and send it to its
downstream filter, etc., until it reaches the first filter that requested the data. (In reality some other handler
triggers the request for the bucket brigade, such as an HTTP response handler or a protocol module, but
for this discussion it's sufficient to assume that it's the first filter that issuegethbrigade() call.)

The following diagram depicts a typical input filter data flow in addition to the program control flow.
input filter data flow

The black- and white-headed arrows show when the control is passed from one filter to another. In addi-
tion, the black-headed arrows show the actual data flow. The diagram includes some pseudo-code, in Perl
for the mod_perl filters and in C for the internal Apache filters. You don’t have to understand C to under-
stand this diagram. What's important to understand is that when input filters are invoked, they first call
each other via thget_brigade() call and then block (notice the brick wall on the diagram), waiting

15 Feb 2014 257

15.3.4 Blocking Calls

for the call to return. When this call returns, all upstream filters have already completed their filtering task
on the bucket brigade.

As mentioned earlier, the streaming interface hides the details, but ti&f-firstad() call will block
as the layer under it performs thet_brigade() call.

The diagram shows only part of the actual input filter chain for an HTTP request. Thadicates that
there are more filters in between the mod_perl filterlztty in

Now let’s look at what happens in the output filters chain. Here the first filter acquires the bucket brigades
containing the response data from the content handler (or another protocol handler if we aren’t talking
HTTP). It may then make some modification and pass the data to the next filter (using the
pass_brigade() call), which in turn applies its modifications and sends the bucket brigade to the next
filter, etc. This continues all the way down to the last filter (catleck) which writes the data to the
network via the socket the client is listening to.

Even though the output filters don’t have to wait to acquire the bucket brigade (since the upstream filter
passes it to them as an argument), they still block in a similar fashion to input filters, since they have to
wait for thepass_brigade() call to return. In this case, they are waiting to pass the data along rather
than waiting to receive it.

Here is an example of a transparent output filter:

#file:MyApache2/FilterTransparent.pm (continued)
#H.

sub out {
my ($f, $bb) = @_;

my $rv = $f->next->pass_brigade($bb);
return $rv unless $rv == APR::Const::SUCCESS;

return Apache2::Const::OK;
}
3
The out() filter passestbb to the downstream filter unmodified. If you add print statements before and

after thepass_brigade() call and configure the same filter twice, the print will show the blocking
call.

The following diagram depicts a typical output filter data flow in addition to the program control flow:
output filter data flow

Similar to the input filters chain diagram, the arrows show the program control flow and in addition the
black-headed arrows show the data flow. Again, it uses Perl pseudo-code for the mod_perl filter and C
pseudo-code for the Apache filters and the brick walls represent the waiting. The diagram shows only part
of the real HTTP response filters chain, where stands for the omitted filters.

258 15 Feb 2014

Input and Output Filters 15.4 mod_perl Filters Declaration and Configuration

15.4 mod_perl Filters Declaration and Configuration

Now that we have laid out some basic concepts involved in filter use, we can look at how mod_perl filters
are declared and configured.

15.4.1 Filter Priority Types

When Apache filters are configured they are inserted into the filters chain according to their priority type.
In most cases when using one or two filters things will just work, however if you find that the order of
filter invocation is wrong, you should consider the filter priority type. Unfortunately this information is
available only in the Apache source code, unless it's documented in the module man pages. Numerical
definitions of priority types, such a&P_FTYPE_CONTENT_SEandAP_FTYPE_RESOURCIEan be

found in the Apache source distributionmelude/util_filter.h

As of this writing Apache comes with two core filteBEFLATEand INCLUDES Regardless of your
configuration directives, e.g.,:

SetOutputFilter DEFLATE
SetOutputFilter INCLUDES

the INCLUDES ilter will be inserted in the filters chain before tB&FLATEfilter, even though it was
configured after it. This is because tBEFLATE filter is of type AP_FTYPE_CONTENT_SET20),
whereas théNCLUDESilter is of typeAP_FTYPE_RESOURCHO).

As of this writing mod_perl provides two kind of filters with fixed priority type (the type is defingd py the
[filter handler’s attribute):

Handler’s Attribute Priority Value

FilterRequestHandler AP_FTYPE_RESOURCE 10
FilterConnectionHandler AP_FTYPE_PROTOCOL 30

ThereforeFilterRequestHandler filters (10) will always be invoked before tHREFLATE filter

(20), whereagilterConnectionHandler filters (30) will be invoked after it. When two filters have

the same priority (e.g., thelCLUDESfilter (10) has the same priority &fterRequestHandler

filters (10)), they are run in the order they are configured. Therefore filters are inserted according to the
configuration order wheRerlSetOutputFilter | or|PerlSetinputFilter |are used.

15.4.2 Per| | nput Fi | t er Handl er

The PerlinputFilterHandler directive registers a filter, and inserts it into[the relgvant input filters
chain.

This handler is of typ¥OID.

The handler’s configuration scopdD$R]

15 Feb 2014 259

15.4.3 PerlOutputFilterHandler

Arguments

PerlinputFilterHander handlers are passed two argumentsApache2::Filter object; and
anAPR::Brigade object;

See the examples that follow in this chapter for further explanation.
Return

Filters are expected to retuikpache2::Const::OK or Apache2::Const::DECLINED . See the
examples that follow in this chapter for further explanation.

Examples

PerlinputFilterHandler handlers are automaticallAutoLoad ed, since they need to be
compiled beforg the filter attribufes can be accessed. Therefore if the filter handler subroutine is not called
handler , you must preload the module containing the filter subroutine at server startup. A filter handler
can be configured not to BaitoLoad ed, using the prefix. For example:

PerlinputFilterHandler -MyApache2::FilterTest::lc

The following sections include several examples that useeHmputFilterHandler handler.

15.4.3Per | Qut put Fi | t er Handl er

The PerlOutputFilterHandler directive registers a filter, and inserts it into fhe relgvant output
filters chain.

This handler is of typ¥OID.

The handler’s configuration scopdD¢R]

Arguments
PerlOutputFilterHander handlers are passed five argumentsApache?2::Filter object; an
APR::Brigade object; an Apache2::Const :input_mode constant; an APR::Const

:read_type constant; and the number of bytes to read.

See the examples that follow in this chapter for further explanation.

Return

Examples

The following sections include several examples that useg¢H®utputFilterHandler handler.
Similar to[PerlInputFilterHandler | PerlOutputFilterHandler handlers are automatically

AutoLoad ed.

260 15 Feb 2014

Input and Output Filters 15.4.4 PerlSetInputFilter

15.4.4Perl SetlnputFilter

The SetInputFilter directive, documented at
[http://httpd.apache.org/docs-2.0/mod/core.html#setinputfikets the filter or filters which will process

client requests and POST input when they are received by the server (in addition to any filters configured
earlier).

To mix mod_perl and non-mod_perl input filters of fthe_same prjority nothing special should be done. For
example if we have an imaginary Apache filteFILTER_FOO and mod_perl filter
MyApache2::FilterinputFoo , this configuration:

SetlnputFilter FILTER_FOO
PerlinputFilterHandler MyApache2::FilterinputFoo

will add both filters. However the order of their invocation might not be as you expect. To make the invo-
cation order the same as the insertion order, redataputFilter with PerlSetinputFilter :
like so:

PerlSetinputFilter FILTER_FOO
PerlinputFilterHandler MyApache2::FilterinputFoo

Now the FILTER_FOO filter will always be executed before tihd#yApache2::FilterinputFoo

filter, since it was configured befoMyApache2::FilterinputFoo (i.e., it'll apply its transforma-

tions on the incoming data last). The diagram below shows the input filters chain and the data flow from
the network to the response handler for the presented configuration:

response handler

N
|

FILTER_FOO
N
|

MyApache2::FilterinputFoo

N
|

core input filters
N
|

network

As explained in the sectign Filter Priority Types this directive won't affect filters of different priority. For
example assuming thdyApache2::FilterinputFoo is aFilterRequestHandler filter, the
configurations:

PerlinputFilterHandler MyApache2::FilterinputFoo
PerlSetinputFilter DEFLATE

and

15 Feb 2014 261

http://httpd.apache.org/docs-2.0/mod/core.html#setinputfilter

15.4.5 PerlSetOutputFilter

PerlSetinputFilter DEFLATE
PerlinputFilterHandler MyApache2::FilterinputFoo

are equivalent, because mod_deflate’ PEFLATE filter has a higher priority than
MyApache2::FilterinputFoo . Thefore, it will always be inserted into the filter chain after
MyApache2::FilterinputFoo , (i.e. the DEFLATE filter will apply its transformations on the
incoming data first). The diagram below shows the input filters chain and the data flow from the network
to the response handler for the presented configuration:

response handler
N

I
MyApache2::FilterinputFoo

N

I
DEFLATE

A
I

core input filters
A

network

SetlnputFilter 's; semantics are supported as well. For example, in the following configuration:

PerlinputFilterHandler MyApache?2::FilterinputFoo
PerlSetinputFilter FILTER_FOO;FILTER_BAR

MyApache2::FilterOutputFoo will be executed first, followed bFILTER_FOO and finally by
FILTER_BAR (again, assuming that all three filters have the same priority).

15.45Per| Set Qut put Fi l ter

The SetOutputFilter directive, documented at
[http://httpd.apache.org/docs-2.0/mod/core.html#setoutpulfilsmts the filters which will process
responses from the server before they are sent to the client (in addition to any filters configured earlier).

To mix mod_perl and non-mod_perl output filters of [the_same pfiority nothing special should be done.
This configuration:

SetOutputFilter INCLUDES
PerlOutputFilterHandler MyApache2::FilterOutputFoo

As with input filters, to preserve the insertion order repetOutputFilter with PerlSetOut-
putFilter , like so:

PerlSetOutputFilter INCLUDES
PerlOutputFilterHandler MyApache2::FilterOutputFoo

262 15 Feb 2014

http://httpd.apache.org/docs-2.0/mod/core.html#setoutputfilter

Input and Output Filters 15.4.5 PerlSetOutputFilter

Now mod_include’dNCLUDESfilter will always be executed before tMyApache2::FilterOut-
putFoo filter. The diagram below shows the output filters chain and the data flow from the response
handler to the network for the presented configuration:

response handler
|
V
INCLUDES
|
V
MyApache2::FilterOutputFoo
|
V
core output filters
|
V
network

SetOutputFilter 's; semantics are supported as well. For example, in the following configuration:

PerlOutputFilterHandler MyApache2::FilterOutputFoo
PerlSetOutputFilter INCLUDES;FILTER_FOO

MyApache2::FilterOutputFoo will be executed first, followed byNCLUDES and finally by
FILTER_FOO (again, assuming that all three filters have the same priority).

As explained in th¢PerlSetinputFilter | section, if filters have different priorities, the insertion
order might be different. For example in the following configuration:

PerlSetOutputFilter DEFLATE
PerlSetOutputFilter INCLUDES
PerlOutputFilterHandler MyApache2::FilterOutputFoo

mod_include’sINCLUDESfilter will be always executed before tiMyApache?2::FilterOutput-

Foo filter. The latter will be followed by mod_deflateBEFLATEfilter, even though it was configured
before the other two filters. This is because it has a higher plriority. And the corresponding diagram looks
like so:

response handler
|
v
INCLUDES
|
v
MyApache2::FilterOutputFoo
|
v
DEFLATE
|
v
core output filters
|
v
network

15 Feb 2014 263

15.4.6 Adding OutputFilters Dynamically

15.4.6 Adding OutputFilters Dynamically

If you have the need to add output filters dymically during the request, mod_perl 2.0 offers you the possi-
bility to push filter callbacks at request time. For example here is how to add an output filter during the
Fixup phase:

<Files *\.html >

PerlFixupHandler MyApache2::AddFilterDyn
</Files>

And the corresponding module is:

#file:MyApache2/AddFilterDyn.pm
#.

package MyApache2::AddFilterDyn;

use Apache2::Filter;
use MyApache2::FilterObfuscate;

use Apache2::Const -compile => qw(OK);

sub handler {
my $r = shift;

$r->add_output_filter(\&MyApache?2::FilterObfuscate::handler);

return Apache2::Const::OK;
}

1

You can also add connection filters dynamically. For more information refer fgptinehe2::Filter
manpagesdd_input_filter andadd_output_filter

15.4.7 HTTP Request vs. Connection Filters

mod_perl 2.0 supports connection and HTTP request filtering. mod_ perl filter handlers specify the type of
the filter using the method attributes.

HTTP request filter handlers are declared usingFiterRequestHandler attribute. Consider the
following request input and output filters skeleton:

package MyApache2::FilterRequestFoo;
use base gw(Apache2::Filter);

sub input : FilterRequestHandler {
my ($f, $bb, $mode, $block, $readbytes) = @_;
#...

}

sub output : FilterRequestHandler {
my ($f, $bb) = @_;

264 15 Feb 2014

Input and Output Filters 15.4.7 HTTP Request vs. Connection Filters

#...
}

1

If the attribute is not specified, the defakilterRequestHandler attribute is assumed. Filters spec-
ifying subroutine attributes must subcl@gsache2::Filter , others only need to:

use Apache2::Filter ();

Request filters are usually configured in #iecation> or equivalent sections:

PerIModule MyApache2::FilterRequestFoo
PerIModule MyApache2::NiceResponse
<Location ffilter_foo>
SetHandler modperl
PerlResponseHandler MyApache2::NiceResponse
PerlinputFilterHandler MyApache?2::FilterRequestFoo::input
PerlOutputFilterHandler MyApache?2::FilterRequestFoo::output
</Location>

Now we have the request input and output filters configured.

The connection filter handler uses tRdterConnectionHandler attribute. Here is a similar
example for the connection input and output filters.

package MyApache2::FilterConnectionBar;
use base gw(Apache2::Filter);

sub input : FilterConnectionHandler {
my ($f, $bb, $mode, $block, $readbytes) = @_;
#...

}

sub output : FilterConnectionHandler {
my ($f, $bb) = @_;
#...

}
1

With connection filters, unlike the request flters, the configuration must be done outsideotte
tion> or equivalent sections, usually within th€irtualHost> or the global server configuration:

Listen 8005

<VirtualHost _default_:8005>
PerlModule MyApache2::FilterConnectionBar
PerlModule MyApache?2::NiceResponse

PerlinputFilterHandler MyApache2::FilterConnectionBar::input
PerlOutputFilterHandler MyApache2::FilterConnectionBar::output
<Location />

SetHandler modperl

15 Feb 2014 265

15.4.8 Filter Initialization Phase

PerlResponseHandler MyApache2::NiceResponse
</Location>

</VirtualHost>
This configures the connection input and output filters.

As can be seen from the above examples, the only difference between connection filters and request filters
is that that connection filters see everything from the request, i.e., the headers and the body, whereas
request filters see only the body.

15.4.8 Filter Initialization Phase

There is one more callback in the filter framework. And thailterinitHandler . Thisinit callback
runs immediately after the filter handler is inserted into the filter chain, before it is invoked for the first
time. Here is a skeleton of an init handler:

sub init : FilterInitHandler {
my $f = shift;
#...
return Apache2::Const::OK;
}

The attributeFilterinitHandler marks the Perl function as suitable to be used as a filter initializa-
tion callback.

For example you may decide to dynamically remove a filter before it had a chance to run, if some condi-
tion is true:

sub init : FilterInitHandler {
my $f = shift;
$f->remove() if should_remove_filter();
return Apache2::Const::OK;

}

Not all Apache2::Filter methods can be used in the init handler, because it's not a filter. Hence you
can use methods that operate on the filter itself, sucbnagve() andctx() or retrieve request infor-
mation, such as() andc() . You cannot use methods that operate on data, suckad§) and

print()

In order to hook an init filter handler, the real filter has to assign this callback usirfgltdre

HaslnitHandler function which accepts a reference to the callback function, similar to
push_handlers() . The callback function referred to must haveRh&rinitHandler attribute.
For example:

266 15 Feb 2014

Input and Output Filters 15.5 All-in-One Filter

package MyApache2::FilterBar;

use base gw(Apache2::Filter);

sub init : FilterInitHandler { ... }

sub filter : FilterRequestHandler FilterHasInitHandler(\&init) {
my ($f, $bb) = @_;
#...
return Apache2::Const::OK;

}

While attributes are parsed during compilation (it's really a sort of source filter), the argument to the
FilterHasInitHandler() attribute is compiled at a later stage once the module is compiled.

The argument t&ilterHasInitHandler() can be any Perl code which whewval() ’ed returns a
code reference. For example:

package MyApache2::OtherFilter;
use base qw(Apache2::Filter);
sub init : FilterInitHandler { ... }

package MyApache2::FilterBar;

use MyApache2::OtherFilter;

use base qw(Apache2::Filter);

sub get_pre_handler { \&MyApache2::OtherFilter::init }
sub filter : FilterHasInitHandler(get_pre_handler()) { ... }

Here the MyApache2::FilterBar::filter handler is configured to run the
MyApache2::OtherFilter::init init handler.
Notice that the argument felterHasInitHandler() is alwayseval() ’ed in the package of the

real filter handler (not the init handler). So the above code leads to the following evaluation:
$init_sub = eval "package MyApache2::FilterBar; get_pre_handler()";
This part is actually done in C, using #neal_pv() C call.

Currently only one initialization callback can be registered per filter handler.

15.5 All-in-One Filter

Before we delve into the details of how to write filters that do something with the data, lets first write a
simple filter that does nothing but snooping on the data that goes through it. We are going to develop the
MyApache2::FilterSnoop handler which can snoop on request and connection filters, in input and
output modes.

First we create a simple response handler that dumps the requgstisdcontentas strings:
#file:MyApache2/Dump.pm
package MyApache2::Dump;

use strict;
use warnings;

15 Feb 2014 267

15.5 All-in-One Filter

use Apache2::RequestRec ();
use Apache2::RequestlO ();
use Apache2::Filter ();

use APR::Brigade ();

use APR::Bucket ();

use Apache2::Const -compile => qw(OK M_POST);

sub handler {
my $r = shift;
$r->content_type(‘text/plain’);

$r->print(“args:\n", $r->args, "\n");

if ($r->method_number == Apache2::Const::M_POST) {
my $data = content($r);
$r->print("content:\n$data\n");

}

return Apache2::Const::OK;
}

use Apache2::Connection ();

use Apache2::Const -compile => qw(MODE_READBYTES);
use APR::Const -compile => qw(SUCCESS BLOCK_READ);

use constant IOBUFSIZE => 8192,

sub content {
my $r = shift;

my $bb = APR::Brigade->new($r->pool, $r->connection->bucket_alloc);

my $data = ’;
my $seen_eos = 0;
do {
$r->input_filters->get_brigade($bb, Apache2::Const::MODE_READBYTES,
APR::Const::BLOCK_READ, IOBUFSIZE);

for (my $b = $bb->first; $b; $b = $bb->next($b)) {
if ($b->is_eos) {
$seen_eos++;

last;

}

if ($b->read(my $buf)) {
$data .= $buf;

}

$b->remove; # optimization to reuse memory
} while (I$seen_eos);

$bb->destroy;

268 15 Feb 2014

Input and Output Filters

return $data;

}
'y
which is configured as:
PerlIModule MyApache2::Dump
<Location /dump>
SetHandler modperl

PerlResponseHandler MyApache2::Dump
</Location>

If we issue the following request:

% echo "mod_perl rules" | POST ’http://localhost:8002/dump?foo=1&bar=2’

the response will be:

args:
foo=1&bar=2
content:
mod_perl rules

As you can see it simply dumped the query string and the posted data.

Now let’s write the snooping filter:

#file:MyApache?2/FilterSnoop.pm

#

es

package MyApache2::FilterSnoop;

use strict;
use warnings;

use base gqw(Apache2::Filter);
use Apache2::FilterRec ();
use APR::Brigade ();

use APR::Bucket ();

use APR::BucketType ();

use Apache2::Const -compile => qw(OK DECLINED);
use APR:Const -compile =>":common’;

sub connection : FilterConnectionHandler { snoop("connection”, @_) }
sub request : FilterRequestHandler { snoop('request’, @_)}

sub snoop {
my $type = shift;
my ($f, $bb, $mode, $block, $readbytes) = @_; # filter args

$mode, $block, $readbytes are passed only for input filters
my $stream = defined $mode ? "input" : "output";

read the data and pass-through the bucket brigades unchanged

15 Feb 2014

15.5 All-in-One Filter

269

15.5 All-in-One Filter

if (defined $mode) {
input filter
my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
return $rv unless $rv == APR::Const::SUCCESS;
bb_dump($type, $stream, $bb);
}
else {
output filter
bb_dump($type, $stream, $bb);
my $rv = $f->next->pass_brigade($bb);
return $rv unless $rv == APR::Const::SUCCESS;
}

return Apache2::Const::OK;
}

sub bb_dump {
my ($type, $stream, $hb) = @_;

my @data;

for (my $b = $bb->first; $b; $b = $bb->next($b)) {
$b->read(my $bdata);
push @data, $b->type->name, $bdata;

}

send the sniffed info to STDERR so not to interfere with normal
output

my $direction = $stream eq 'output’ ? ">>>" : "<<<";

print STDERR "\n$direction $type $stream filter\n";

my $c = 1;

while (my ($btype, $data) = splice @data, 0, 2) {
print STDERR " 0 bucket $c: $btype\n";
print STDERR "[$data]\n";
$c++;

}
}
1
Recall that there are two types of two filter handlers, one for connection and another for request filtering:

sub connection : FilterConnectionHandler { snoop("connection”, @_) }
sub request : FilterRequestHandler { snoop('request’, @_)}

Both handlers forward their arguments to #m@op() function, which does the real work. These two
subroutines are added in order to assign the two different attributes. In addition, the functions pass the
filter type tosnoop() as the first argument, which gets shifted @ The rest of@_are the arguments

that were originally passed to the filter handler.

It's easy to know whether a filter handler is running in the input or the output mode. Although the argu-
ments$f and$bb are always passed, the argume$ntsode, $block , and$readbytes are passed
only to input filter handlers.

270 15 Feb 2014

Input and Output Filters 15.5 All-in-One Filter

If we are in input mode, in the same call we retrieve the bucket brigade from the previous filter on the
input filters stack and immediately link it to tBbb variable which makes the bucket brigade available to
the next input filter when the filter handler returns. If we forget to perform this linking our filter will
become a black hole into which data simply disappears. Next wiebcalump() which dumps the type

of the filter and the contents of the bucket brigad@T®@ERRwithout influencing the normal data flow.

If we are in output mode, tikbb variable already points to the current bucket brigade. Therefore we can
read the contents of the brigade right away, and then we pass the brigade to the next filter.

Let’'s snoop on connection and request filter levels in both directions by applying the following configura-
tion:

Listen 8008

<VirtualHost _default_:8008>
PerlModule MyApache2::FilterSnoop
PerlModule MyApache2::Dump

Connection filters
PerlinputFilterHandler MyApache2::FilterSnoop::connection
PerlOutputFilterHandler MyApache?2::FilterSnoop::connection

<Location /dump>
SetHandler modperl
PerlResponseHandler MyApache2::Dump
Request filters
PerlinputFilterHandler MyApache2::FilterSnoop::request
PerlOutputFilterHandler MyApache2::FilterSnoop::request
</Location>

</VirtualHost>
Notice that we use a virtual host because we want to install connection filters.

If we issue the following request:

% echo "mod_perl rules" | POST ’http://localhost:8008/dump?foo=1&bar=2’

we get the same response as before we instislig®pache?2::FilterSnoop because our snooping
filter didn’t change anything. The output didn’t change, but there was some new information printed to the
error_log. We present it all here, in order to understand how filters work.

First we can see the connection input filter at work, as it processes the HTTP headers. We can see that for
this request each header is put into a separate brigade with a single bucket. The data is conveniently
enclosed by] so you can see the new line characters as well.

<<< connection input filter
o0 bucket 1: HEAP
[POST /dump?foo=1&bar=2 HTTP/1.1

]

<<< connection input filter
o0 bucket 1: HEAP
[TE: deflate,gzip;q=0.3

15 Feb 2014 271

15.5 All-in-One Filter

]

<<< connection input filter
o bucket 1: HEAP
[Connection: TE, close

]

<<< connection input filter
o bucket 1: HEAP
[Host: localhost:8008

]

<<< connection input filter
o bucket 1: HEAP
[User-Agent: lwp-request/2.01

]

<<< connection input filter
o bucket 1: HEAP
[Content-Length: 14

]

<<< connection input filter
o bucket 1: HEAP
[Content-Type: application/x-www-form-urlencoded

]

<<< connection input filter
o bucket 1: HEAP

[
]

Here the HTTP header has been terminated by a double new line. So far all the buckets wétEAPthe

type, meaning that they were allocated from the heap memory. Notice that the HTTP request input filters
will never see the bucket brigades with HTTP headers because they are consumed by the last core connec-
tion filter.

The following two entries are generated whdgApache2::Dump::handler reads the POSTed
content:

<<< connection input filter
0 bucket 1: HEAP
[mod_perl rules]

<<< request input filter
o0 bucket 1: HEAP
[mod_perl rules]
o0 bucket 2: EOS

I

As shown earlier, the connection input filter is run before the request input filter. Since our connection
input filter was passing the data through unmodified and no other custom connection input filter was
configured, the request input filter sees the same data. The last bucket in the brigade received by the
request input filter is of typ&OS meaning that all the input data from the current request has been

272 15 Feb 2014

Input and Output Filters 15.5 All-in-One Filter

received.

Next we can see thddyApache2::Dump::handler has generated its response. However we can see
that only the request output filter gets run at this point:

>>> request output filter
0 bucket 1: TRANSIENT
[args:
foo=1&bar=2
content:
mod_perl rules

]

This happens because Apache hasn't yet sent the response HTTP headers to the client. The request filter
sees a bucket brigade with a single bucket of FRANSIENTwhich is allocated from the stack memory.

The moment the first bucket brigade of the response body has entered the connection output filters,
Apache injects a bucket brigade with the HTTP headers. Therefore we can see that the connection output
filter is filtering the brigade with HTTP headers (notice that the request output filters don't see it):

>>> connection output filter
o bucket 1: HEAP
[HTTP/1.1 200 OK
Date: Tue, 07 Mar 2006 10:59:08 GMT
Server: Apache/2.0.55 (Unix) mod_perl/2.000002
Perl/v5.8.4 mod_ssl/2.0.55 OpenSSL/0.9.7c DAV/2
Connection: close
Transfer-Encoding: chunked
Content-Type: text/plain; charset=IS0O-8859-1

]
This is followed by the first response body’s brigade:

>>> connection output filter
0 bucket 1: TRANSIENT
[2b
]
0 bucket 2: TRANSIENT
[args:
foo=1&bar=2
content:
mod_perl rules

|
o bucket 3: IMMORTAL

[
]

If the response is large, the request and connection filters will filter chunks of the response one by one.
These chunks are typically 8k in size, but this size can vary.

15 Feb 2014 273

15.6 Input Filters

Finally, Apache sends a series of bucket brigades to finish off the response, including the end of stream
meta-bucket to tell filters that they shouldn’t expect any more data, and flush buckets to flush the data, to
make sure that any buffered output is sent to the client:

>>> connection output filter
o bucket 1: IMMORTAL
[0

|
o bucket 2: EOS

I

>>> connection output filter
o bucket 1: FLUSH

I

>>> connection output filter
o bucket 1: FLUSH

I

This module helps to illustrate that each filter handler can be called many times during each request and
connection. It is called for each bucket brigade. Also it is important to mention that HTTP request input
filters are invoked only if there is some POSTed data to read and it's consumed by a content handler.

15.6 Input Filters

mod_perl supports Connectjon gnd HTTP Request input filters. In the following sections we will look at
each of these in turn.

15.6.1 Connection Input Filters

Let's say that we want to test how our handlers behave when they are requétEDasquests, rather
thanGETrequests. We can alter the request headers at the incoming connection level with the alteration
transparent to all handlers.

This example’s filter handler looks for data like:
GET /perlitest.pl HTTP/1.1
and turns it into:
HEAD /perlitest.pl HTTP/1.1
The following input filter handler does that by directly manipulating the bucket brigades:

#file:MyApache2/InputFilterGET2HEAD.pm
H

package MyApache2::InputFilterGET2HEAD;

use strict;
use warnings;

274 15 Feb 2014

Input and Output Filters 15.6.1 Connection Input Filters

use base gw(Apache2::Filter);

use APR::Brigade ();
use APR::Bucket ();

use Apache2::Const -compile => qw(OK DECLINED);
use APR::Const -compile =>".common’;

sub handler : FilterConnectionHandler {
my ($f, $bb, $mode, $block, $readbytes) = @_;

return Apache2::Const::DECLINED if $f->ctx;

my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
return $rv unless $rv == APR::Const::SUCCESS;

for (my $b = $bb->first; $b; $b = $bb->next($b)) {

}

$b->read(my $data);
warn("data: $data\n");

if ($data and $data =~ s|*"GET|HEAD|) {
my $nb = APR::Bucket->new($bb->bucket_alloc, $data);
$b->insert_after($nb);
$b->remove; # no longer needed
$f->ctx(1); # flag that that we have done the job
last;

}

return Apache2::Const::OK;

}
1

The filter handler is called for each bucket brigade, which then includes buckets with data. The gist of any
input filter handler is to request the bucket brigade from the upstream filter, and return it to the down-
stream filter using the second argum@pb . It's important to remember that you can call methods on this
argument, but you shouldn’t assign to this argument, or the chain will be broken.

There are two techniques to choose from to retrieve-modify-return bucket brigades:

1.

Create a new empty bucket brigetetx_bb , pass it to the upstream filter wigt_brigade()

and wait for this call to return. When it retur@stx_bb will be populated with buckets. Now the

filter should move the bucket froctx_bb to $bb, on the way modifying the buckets if needed.
Once the buckets are moved, and the filter returns, the downstream filter will receive the populated
bucket brigade.

. Pass$bb to the upstream filter usinget_brigade() so it will be populated with buckets. Once

get_brigade() returns, the filter can go through the buckets and modify them in place, or it can
do nothing and just return (in which case, the downstream filter will receive the bucket brigade
unmodified).

15 Feb 2014 275

15.6.1 Connection Input Filters

Both techniques allow addition and removal of buckets. Though the second technique is more efficient
since it doesn’t have the overhead of create the new brigade and moving the bucket from one brigade to
another. In this example we have chosen to use the second technique, in the next example we will see the
first technique.

Ouir filter has to perform the substitution of only one HTTP header (which normally resides in one bucket),
so we have to make sure that no other data gets mangled (e.g. there could be POSTED data and it may
match/*"GET/ in one of the buckets). We u$é>ctx as a flag here. When it's undefined the filter

knows that it hasn’t done the required substitution, though once it completes the job it sets the context to 1.

Using the information stored in the context, the filter can immediately return
Apache2::Const::DECLINED when it's invoked after the substitution job has been done:

return Apache2::Const::DECLINED if $f->ctx;

In that case mod_perl will cafjet_brigade() internally which will pass the bucket brigade to the
downstream filter. Alternatively the filter could do:

my $rv = $f->next->get_brigade($bb, $mode, $block, $readbytes);
return $rv unless $rv == APR::Const::SUCCESS;
return Apache2::Const::OK if $f->ctx;

but this is a bit less efficient.

[META: the most efficient thing to do is to remove the filter itself once the job is done, so it won’t be even
invoked after the job has been done.

if ($f->ctx) {
$f->remove;
return Apache2::Const::DECLINED;

}

However, this can’'t be used with Apache 2.0.49 and lower, since it has a bug when trying to remove the
edge connection filter (it doesn’t remove it). Most likely that problem will be not fixed in the 2.0 series
due to design flows. | don’t know if it's going to be fixed in 2.1 series.]

If the job wasn’'t done yet, the filter calijet _brigade , which populates thbb bucket brigade. Next,

the filter steps through the buckets looking for the bucket that matches the/A&jJeX! . If a match is

found, a new bucket is created with the modified dataGET/HEAD/ . Now it has to be inserted in

place of the old bucket. In our example we insert the new bucket after the bucket that we have just modi-
fied and immediately remove that bucket that we don’t need anymore:

$b->insert_after($nb);
$b->remove; # no longer needed

Finally we set the context to 1, so we know not to apply the substitution on the following data, and break
from thefor loop.

276 15 Feb 2014

Input and Output Filters 15.6.1 Connection Input Filters

The handler return8pache2::Const::OK indicating that everything was fine. The downstream filter
will receive the bucket brigade with one bucket modified.

Now let's check that the handler works properly. For example, consider the following response handler:

#file:MyApache2/RequestType.pm
H

package MyApache2::RequestType;

use strict;
use warnings;

use Apache2::RequestlO ();
use Apache2::RequestRec ();
use Apache2::Response ();

use Apache2::Const -compile =>'OK’;

sub handler {
my $r = shift;

$r->content_type('text/plain’);

my $response = "the request type was " . $r->method,
$r->set_content_length(length $response);
$r->print($response);

return Apache2::Const::OK;
}

1

This handler returns to the client the request type it has issued.HEARrequest Apache will discard
the response body, but it will still set the corr€cintent-Length header, which will be 24 for GET
request and 25 forldEADrequest. Therefore, if this response handler is configured as:

Listen 8005
<VirtualHost _default_:8005>
<Location />
SetHandler modperl
PerlResponseHandler +MyApache2::RequestType
</Location>
</VirtualHost>

and aGETrequest is issued to
panic% perl -MLWP::UserAgent -le \
'$r = LWP::UserAgent->new()->get("http://localhost:8005/"); \

print $r->headers->content_length . ": . $r->content’
24: the request type was GET

the response body will be:

15 Feb 2014 277

15.6.2 HTTP Request Input Filters

the request type was GET

and theContent-Length header will be set to 24. This is what we would expect since the request was
processed normally. However, if we enableNhgpache2::InputFilterGET2HEAD input connec-
tion filter:
Listen 8005
<VirtualHost _default_:8005>
PerlinputFilterHandler +MyApache2::InputFilterGET2HEAD
<Location />
SetHandler modperl
PerlResponseHandler +MyApache2::RequestType

</Location>
</VirtualHost>

and issue the san@&ETrequest, we get only:

25:

This means the body was discarded by Apache, because our filter turngéfThequest into alEAD
request. If Apache wasn't discarding the bodyH&AD the response would be:

the request type was HEAD

That's why the content length is reported as 25 and not 24 as in the real GET request. So the content
length of 25 and lack of body text in the response confirm that our filter is acting as we expected.

15.6.2 HTTP Request Input Filters

Request filters are really non-different from connection filters, other than that they are working on request
and response bodies and have an access to a request object.

15.6.3 Bucket Brigade-based Input Filters

As we have seen, filters can be either bucket brigade based, or stream oriented. Here we look at a request
input filter that lowercases the request's body by directly manipulating the bucket brigade:
MyApache2::InputRequestFilterLC

#file:MyApache2/InputRequestFilterLC.pm

#

package MyApache2::InputRequestFilterLC;

use strict;
use warnings;

use base gw(Apache2::Filter);
use Apache2::Connection ();

use APR::Brigade ();
use APR::Bucket ();

278 15 Feb 2014

Input and Output Filters 15.6.3 Bucket Brigade-based Input Filters

use Apache2::Const -compile =>'OK’;
use APR::Const -compile =>".common’;

sub handler : FilterRequestHandler {
my ($f, $bb, $mode, $block, $readbytes) = @_;

my $c = $f->c;
my $bb_ctx = APR::Brigade->new($c->pool, $c->bucket_alloc);

my $rv = $f->next->get_brigade($bb_ctx, $mode, $block, $readbytes);
return $rv unless $rv == APR::Const::SUCCESS;

while (!$bb_ctx->is_empty) {
my $b = $bb_ctx->first;

if ($b->is_eos) {

$bb->insert_tail($b);
last;
}

my $len = $b->read(my $data);
$b = APR::Bucket->new($bb->bucket_alloc, Ic $data) if $len;
$b->remove;

$bb->insert_tail($b);
}

return Apache2::Const::OK;
}
1;

As promised, in this filter handler we have used the first technique of bucket brigade modification. The
handler creates a temporary bucket brigadte pb), populates it with data usinget_brigade() ,

and then moves buckets from it to the bucket brigétmte. This bucket brigade is then retrieved by the
downstream filter when our handler returns.

This filter doesn’t need to know whether it was invoked for the first time or whether it has already done
something. It's a stateless handler, since it has to lower case everything that passes through it. Notice that
this filter can’t be used as the connection filter for HTTP requests, since it will invalidate the incoming
request headers. For example the first header line:

GET /perl/TEST.pl HTTP/1.1

becomes:

get /perl/test.pl http/1.1
which invalidates the request method, the URL and the protocol.

To test, we can use tiMyApache2::Dump response handler, presented earlier, which dumps the query
string and the content body as a response. Configure the server as follows:

15 Feb 2014 279

15.6.4 Stream-oriented Input Filters

<Location /Ic_input>
SetHandler modperl
PerlResponseHandler +MyApache2::Dump
PerlinputFilterHandler +MyApache2::InputRequestFilterLC
</Location>

Now when issuing a POST request:

% echo "mOd_pErl RuLeS" | POST ’http://localhost:8002/Ic_input?FoO=1&BAR=2’

we get a response:

args:
FoO=1&BAR=2
content:
mod_perl rules

We can see that our filter has lowercased the POSTed body before the content handler received it. And
you can see that the query string wasn’t changed.

We have devoted so much attention to bucket brigade filters, even though they are simple to manipulate,
because it is important to understand how the filters work underneath. This understanding is essential
when you need to debug filters or to optimize them. There are cases when a bucket brigade filter may be
more efficient than the stream-oriented version. For example if the filter applies a transformation to
selected buckets, certain buckets may contain open filehandles or pipes, rather than real data. When you
call read() , as shown above, the buckets will be forced to read that data in. But if you didn't want to
modify these buckets you could pass them as they are and let Apache perform faster techniques for
sending data from the file handles or pipes.

The call to $b->read(), or any other operation that internally forces the bucket to read the information into
the memory (like the length() op), makes the data handling less efficient because it creates more work.
Therefore care should be taken so not to read the data in unless it's really necessary, and sometimes you
can gain this efficiency only by working with the bucket brigades.

15.6.4 Stream-oriented Input Filters

Let’'s now look at the same filter implemented using the stream-oriented API.

#file:MyApache2/InputRequestFilterLC2.pm
#

package MyApache2::InputRequestFilterLC2;

use strict;
use warnings;

use base gw(Apache2::Filter);
use Apache2::Const -compile =>'OK’;
use constant BUFF_LEN => 1024,

sub handler : FilterRequestHandler {

280 15 Feb 2014

Input and Output Filters 15.6.4 Stream-oriented Input Filters

my $f = shift;

while ($f->read(my $buffer, BUFF_LEN)) {
$f->print(lc $buffer);
}

Apache2::Const::OK;
}
1;

The logic is very simple here. The filter reads in a loop and prints the modified data, which at some point
will be sent to the next filter. The data transmission is triggered every time the internal mod_perl buffer is
filled or when the filter returns.

read() populatespbuffer to a maximum oBUFF_LENcharacters (1024 in our example). Assuming

that the current bucket brigade contains 2050 cheasl() will get the first 1024 characters, then 1024
characters more and finally the remaining 2 characters. Note that even though the response handler may
have sent more than 2050 characters, every filter invocation operates on a single bucket brigade so you
have to wait for the next invocation to get more input. Earlier we showed that you can force the generation
of several bucket brigades in the content handler by vBus() . For example:

$r->print("string");
$r->rflush();
$r->print("another string");

It's only possible to get more than one bucket brigade from the same filter handler invocation if the filter
is not using the streaming interface. In that case you cageatalbrigade() as many times as needed
or until EOS is received.

The configuration section is nearly identical for the two types of filters:

<Location /lc_input2>
SetHandler modperl
PerlResponseHandler +MyApache2::Dump
PerlinputFilterHandler +MyApache2::InputRequestFilterLC2
</Location>

When issuing a POST request:

% echo "mOd_pErl RuLeS" | POST ’http://localhost:8002/Ic_input2?FoO=1&BAR=2’
we get the response:

args:

FoO=1&BAR=2

content:
mod_perl rules

As before, we see that our filter has lowercased the POSTed body before the content handler received it
and the query string wasn't changed.

15 Feb 2014 281

15.7 Output Filters

15.7 Output Filters

As discussed above in the secfion HTTP Request vs. Connection Filters, mod_perl fupports Gonnection
and HTTP Requgst output filters. In the following sections we will look at each of these in turn.

mod_perl supportf_Connectjon ahd HTTP Reduest output filters. The differences between connection
filters and HTTP request filters are described above in the section HTTP Request vs. Connectfon Filters.

15.7.1 Connection Output Filters

Connection filters filterall the data that is going through the server. Therefore if the connection is of the
HTTP request type, connection output filters see the headers and the body of the response, whereas request
output filters see only the response body.

META: for now see the request output filter explanations and examples, connection output filter examples
will be added soon. Interesting ideas for such filters are welcome (possible ideas: mangling output headers
for HTTP requests, pretty much anything for protocol modules).

15.7.2 HTTP Request Output Filters

As mentioned earlier, output filters can be written using the bucket brigades manipulation or the simplified
stream-oriented interface. This section will show examples of both.

In order to generate output that can be manipulated by the two types of output filters, we will first develop
a response handler that sends two lines of output: numerals 1234567890 and the English alphabet in a
single string:

#file:MyApache2/SendAlphaNum.pm
H.

package MyApache2::SendAlphaNum;

use strict;
use warnings;

use Apache2::RequestRec ();
use Apache2::RequestlO ();

use Apache2::Const -compile => qw(OK);

sub handler {
my $r = shift;

$r->content_type('text/plain’);

$r->print(1..9, "0\n");
$r->print(a’..’z’, "\n");

return Apache2::Const::OK;

=

282 15 Feb 2014

Input and Output Filters 15.7.2 HTTP Request Output Filters

In the examples below, we'll create a filter handler to reverse every line of the response body, preserving
the new line characters in their places. Since we want to reverse characters only in the response body,
without breaking the HTTP headers, we will use the HTTP request output filter rather than a connection
output filter.

15.7.2.1 Stream-oriented Output Filters

The first filter implementation uses the stream-oriented filtering API:

#file:MyApache2/FilterReversel.pm

#

H

package MyApache2::FilterReversel;

use strict;
use warnings;

use base qw(Apache2::Filter);
use Apache2::Const -compile => qw(OK);
use constant BUFF_LEN => 1024,

sub handler : FilterRequestHandler {
my $f = shift;

while ($f->read(my $buffer, BUFF_LEN)) {
for (split "\n", $buffer) {
$f->print(scalar reverse $_);
$f->print("\n");
}
}

return Apache2::Const::OK;
}
1
Next, we add the following configuration ittpd.conf

PerlIModule MyApache2::FilterReversel
PerlModule MyApache2::SendAlphaNum
<Location /reversel>
SetHandler modperl
PerlResponseHandler MyApache2::SendAlphaNum
PerlOutputFilterHandler MyApache2::FilterReversel
</Location>

Now when a request toreversel is sent, the response handlélyApache2::SendAl-
phaNum::handler() sends:

1234567890
abcdefghijkimnopgrstuvwxyz

15 Feb 2014 283

15.7.2 HTTP Request Output Filters

as a response. The output filter handgrApache?2::FilterReversel::handler reverses the
lines, so the client gets:

0987654321
zyxwvutsrgponmlkjihgfedcba

The Apache2::Filter module loads theead() and print() methods which encapsulate the
stream-oriented filtering interface.

The reversing filter is quite simple: in the loop it reads the data iredwdine() mode in chunks up to the
buffer length (1024 in our example), and then prints each line reversed while preserving the new line
control characters at the end of each line. Behind the sépesad() retrieves the incoming brigade

and gets the data from it, aféi>print() appends to the new brigade which is then sent to the next
filter in the stackread() breaks thewhile loop when the brigade is emptied or the end of stream is
received.

While this code is simple and easy to explain, there are cases it won't handle correctly. For example, it
will have problems if the input lines are longer than 1,024 characters. It also doesn’t account for the differ-
ent line terminators on different platforms (e.g., "\n", "\r", or "\r\n"). Moreover a single line may be split
across two or even more bucket brigades, so we have to store the unprocessed string in the filter context so
it can be used on the following invocations. Below is an example of a more complete handler, which takes
care of these issues:

sub handler {
my $f = shift;

my $leftover = $f->ctx;
while ($f->read(my $buffer, BUFF_LEN)) {
$buffer = $leftover . $buffer if defined $leftover;
$leftover = undef;
while ($buffer =~ /(["\\n]*)(\r\n]*)/g) {
$leftover = $1, last unless $2;
$f->print(scalar(reverse $1), $2);
}
}

if ($f->seen_eos) {
$f->print(scalar reverse $leftover) if defined $leftover;

}

else {
$f->ctx($leftover) if defined $leftover;

}

return Apache2::Const::OK;
}

The handler uses thHieftover variable to store unprocessed data as long as it fails to assemble a
complete line or there is an incomplete line following the new line token. On the next handler invocation
this data is then prepended to the next chunk that is read. When the filter is invoked for the last time,
signaled by th&f->seen_eos method, it unconditionally reverses and sends the data down the stream,
which is then flushed down to the client.

284 15 Feb 2014

Input and Output Filters 15.7.2 HTTP Request Output Filters

15.7.2.2 Bucket Brigade-based Output Filters

The following filter implementation uses the bucket brigades API to accomplish exactly the same task as
the first filter.

#file:MyApache2/FilterReverse2.pm
H

package MyApache2::FilterReverse2;

use strict;
use warnings;

use base qw(Apache2::Filter);

use APR::Brigade ();
use APR::Bucket ();

use Apache2::Const -compile =>'OK’;
use APR::Const -compile =>":common’;

sub handler : FilterRequestHandler {
my ($f, $bb) = @_;

my $bb_ctx = APR::Brigade->new($f->c->pool, $f->c->bucket_alloc);

while (!$bb->is_empty) {
my $b = $bb->first;

$b->remove;

if ($b->is_eos) {
$bb_ctx->insert_tail($b);

last;
}
if ($b->read(my $data)) {
$data = join ",
map {scalar(reverse $_), "\n"} split "\n", $data;
$b = APR::Bucket->new($bb->bucket_alloc, $data);
}
$bb_ctx->insert_tail($b);

}
my $rv = $f->next->pass_brigade($bb_ctx);
return $rv unless $rv == APR::Const::SUCCESS;
return Apache2::Const::OK;

}

1;

Below is the corresponding configuration fdtpd.conf

15 Feb 2014 285

15.8 Filter Applications

PerIModule MyApache2::FilterReverse2
PerIModule MyApache2::SendAlphaNum
<Location /reverse2>
SetHandler modperl
PerlResponseHandler MyApache2::SendAlphaNum
PerlOutputFilterHandler MyApache2::FilterReverse2
</Location>

Now when a request foeverseds made, the client gets:

0987654321
zyxwvutsrgponmlkjihgfedcba

as expected.

The bucket brigades output filter version is just a bit more complicated than the stream-oriented one. The
handler receives the incoming bucket brig&é as its second argument. When the handler finishes it
must pass a brigade to the next filter in the stack, so we create a new bucket brigade into which we put the
modified buckets and which eventually we pass to the next filter.

The core of the handler removes buckets from the head of the bucket I$adehile buckets are
available, reads the data from the buckets, then reverses and puts the data into a newly created bucket. The
new bucket is then inserted on the end of the new bucket brigade usingettetail() method. If

we see a bucket which designates the end of stream, we insert that bucket on the tail of the new bucket
brigade and break the loop. Finally we pass the created brigade with modified data to the next filter and
return.

Similar to the original version dflyApache?2::FilterReversel::handler , this filter is not smart
enough to handle incomplete lines. The filter could be made more foolproof by building a better matching
rule, and using th&leftover buffer as demonstrated in the previous section. This left as an exercise for
the reader.

15.8 Filter Applications

The following sections provide various filter applications and their implementation.

15.8.1 Handling Data Underruns

Sometimes filters need to read at least N bytes before they can apply their transformation. It's quite possi-
ble that reading one bucket brigade is not enough, but that two or more are needed. This situation is some-
times referred to as amderrun

Let's take an input filter as an example. When the filter realizes that it doesn’t have enough data in the
current bucket brigade, it can store the read data in the filter context, and wait for the next invocation of
itself, which may or may not satisfy its needs. While it is gathering the data from the bucket brigades, it
must return an empty bucket brigade to the upstream input filter. However, this is not the most efficient
technique to resolve underruns.

286 15 Feb 2014

Input and Output Filters 15.8.1 Handling Data Underruns

Instead of returning an empty bucket brigade, the input filter can request extra bucket brigades until the
underrun condition gets resolved. Note that this solution is transparent to any filters before or after the
current filter.

Consider this HTTP request:

% perl -MLWP::UserAgent -le "\
$r = LWP::UserAgent->new()->post("http://localhost:8011/", \
[content => "x" x (40 * 1024 + 7)]); \
print $r->is_success ? $r->content : "failed: " . $r->code’
read 40975 chars

This client POSTs just a little bit more than 40kb of data to the server. Normally Apache splits incoming
POSTed data into 8kb chunks, putting each chunk into a separate bucket brigade. Therefore we expect to
get 5 brigades of 8kb, and one brigade with just a few bytes (a total of 6 bucket brigades).

Now let's assume our example filter needs to have 1024*16 + 5 bytes to have a complete token before it
can start its processing. The extra 5 bytes are just so we don't perfectly fit into 8kb bucket brigades,
making the example closer to real situations. Having 40,975 bytes of input and a token size of 16,389
bytes, we will have 2 full tokens and a remainder of 8,197 bytes.

Before showing any code, let’'s look at the filter debug output to better explain what we expect to happen:

filter called

asking for a bb

asking for a bb

asking for a bb

storing the remainder: 7611 bytes

filter called

asking for a bb

asking for a bb

storing the remainder: 7222 bytes

filter called
asking for a bb
seen eos, flushing the remaining: 8197 bytes

We can see that the filter was invoked three times. The first time it has consumed three bucket brigades,
collecting one full token of 16,389 bytes with a remainder of 7,611 bytes to be processed on the next invo-
cation. The second time it needed only two more bucket brigades and this time, after completing the
second token, 7,222 bytes remained. Finally on the third invocation it consumed the last bucket brigade for
a total of six, just as we expected. However, it didn’'t have enough for the third token and since EOS has
been seen (no more data expected), it has flushed the remaining 8,197 bytes as we calculated earlier.

It is clear from the debugging output that the filter was invoked only three times, instead of six times
(there were six bucket brigades). Notice that the upstream input filter, if there is one, isn’t aware that there
were six bucket brigades, since it saw only three. Our example filter didn’t do much with those tokens, so
it has only repackaged data from 8kb per bucket brigade, to 16,389 bytes per bucket brigade. But of course
in a real implementation some transformation would be applied on these tokens.

15 Feb 2014 287

15.8.1 Handling Data Underruns

Now let’s look at the implementation details. First let’'s look atrdsponse()

first part of the module:

#file:MyApache2/Underrun.pm
#

package MyApache2::Underrun;

use strict;
use warnings;

use constant IOBUFSIZE => 8192,

use Apache2::Const -compile => qw(MODE_READBYTES OK M_POST);
use APR:Const -compile => qw(SUCCESS BLOCK_READ);

sub response {

}

my $r = shift;
$r->content_type('text/plain’);

if ($r->method_number == Apache2::Const::M_POST) {
my $data = read_post($r);
#warn "HANDLER READ: $data\n";
my $length = length $data;
$r->print("read $length chars");
}

return Apache2::Const::OK;

sub read_post {

288

my $r = shift;
my $bb = APR::Brigade->new($r->pool, $r->connection->bucket_alloc);

my $data = ’;
my $seen_eos = 0;
do {
$r->input_filters->get_brigade($bb, Apache2::Const::MODE_READBYTES,
APR::Const::BLOCK_READ, IOBUFSIZE);

for (my $b = $bb->first; $b; $b = $bb->next($b)) {
if ($b->is_eos) {

$seen_eos++;

last;

}

if ($b->read(my $buf)) {
$data .= $buf;

}

$b->remove; # optimization to reuse memory

} while (I$seen_eos);

handler, which is the

15 Feb 2014

Input and Output Filters 15.8.1 Handling Data Underruns

$bb->destroy;

return $data;

}

Theresponse() handler is trivial -- it reads the POSTed data and prints how many bytes it has read.
read_post() sucksin all POSTed data without parsing it.

Now comes the filter (which lives in the same package):

#file:MyApache2/Underrun.pm (continued)
H.

use Apache2::Filter ();
use Apache2::Const -compile => qw(OK M_POST);
use constant TOKEN_SIZE => 1024*16 + 5; # ~16k

sub filter {
my ($f, $bb, $mode, $block, $readbytes) = @_;
my $ba = $f->r->connection->bucket_alloc;
my $ctx = $f->ctx;
my $buffer = defined $ctx ? $ctx : ”;
$ctx ="; # reset
my $seen_eos = 0;
my $data;
warn "\nfilter called\n";

fetch and consume bucket brigades until we have at least TOKEN_SIZE
bytes to work with
do {
my $tbb = APR::Brigade->new($f->r->pool, $ba);
my $rv = $f->next->get_brigade($tbb, $mode, $block, $readbytes);
warn "asking for a bb\n";
($data, $seen_eos) = flatten_bb($tbb);
$thb->destroy;
$buffer .= $data;
} while (I$seen_eos && length($buffer) < TOKEN_SIZE);

now create a bucket per chunk of TOKEN_SIZE size and put the remainder
#in ctx
for (split_buffer($buffer)) {
if (length($_) == TOKEN_SIZE) {
$bb->insert_tail(APR::Bucket->new($ba, $));
}
else {
$ctx = $_;
}
}

my $len = length($ctx);

if ($seen_eos) {
flush the remainder
$bb->insert_tail(APR::Bucket->new($ba, $ctx));
$bb->insert_tail(APR::Bucket::eos_create($ba));
warn "seen eos, flushing the remaining: $len bytes\n";

15 Feb 2014 289

15.8.1 Handling Data Underruns

}

else {
will re-use the remainder on the next invocation
$f->ctx($etx);
warn "storing the remainder: $len bytes\n";

}

return Apache2::Const::OK;
}

split a string into tokens of TOKEN_SIZE bytes and a remainder
sub split_buffer {
my $buffer = shift;
if ($] < 5.007) {
my @tokens = $buffer =~ /({@{[TOKEN_SIZE]}}|.+)/g;
return @tokens;
}
else {
available only since 5.7.x+
return unpack "(A" . TOKEN_SIZE . ")*", $buffer;
}
}

sub flatten_bb {
my ($bb) = shift;

my $seen_eos = 0;

my @data;

for (my $b = $bb->first; $b; $b = $bb->next($h)) {
$seen_eos++, last if $b->is_eos;
$b->read(my $bdata);
push @data, $bdata;

}
return (join(’, @data), $seen_eos);
}
1
The filter callsget_brigade() in a do-while loop until it reads enough data or sees EOS. Notice that it

may get underruns several times, and then suddenly receive a lot of data at once, which will be enough for
more than one minimal size token, so we have to take this into an account. Once the underrun condition is
satisfied (we have at least one complete token) the tokens are put into a bucket brigade and returned to the
upstream filter for processing, keeping any remainders in the filter context for the next invocations or
flushing all the remaining data if EOS is seen.

Note that this example cannot be implemented with streaming filters because each invocation gives the
filter exactly one bucket brigade to work with. The streaming interface does not currently provide a facil-
ity to fetch extra brigades.

Here is the Apache configuration for this example:

290 15 Feb 2014

Input and Output Filters 15.8.2 Setting the Content-Length Header in Request Output Filters

PerIModule MyApache2::Underrun
<Location />
PerlinputFilterHandler MyApache2::Underrun:filter
SetHandler modperl
PerlResponseHandler MyApache2::Underrun::response
</Location>

15.8.2 Setting the Content-Length Header in Request Output Filters

Earlier we have stated that a filter that modifies the content’s length must unset the Content-Length HTTP
header. However sometimes it's desirable to have this header set, for example when dealing with proxies.

Since the headers are sent before the data, all the data must first be buffered and processed. You cannot
accomplish this task with the streaming filter API since it passes FLUSH buckets through. As soon as the
FLUSH bucket is received by the core filter that sends the headers, it generates the headers and sends
those out. Therefore the bucket brigade API must be used here to have a complete control over what's
going through. Here is a possible implementation:

#file:MyApache2/FilterChangeLength.pm
#

package MyApache2::FilterChangeLength;

use strict;
use warnings FATAL =>"all’;

use Apache2::RequestRec ();

use APR::Table ();
use APR::Bucket ();
use APR::Brigade ();

use base gw(Apache2::Filter);

use Apache2::Const -compile => qw(OK);
use APR::Const -compile =>":common’;

sub handler {
my ($filter, $bb) = @_;

my $ctx = $filter->ctx;

no need to unset the C-L header, since this filter makes sure to
correct it before any headers go out.

#unless ($ctx) {

S$filter->r->headers_out->unset('Content-Length’);

#}

my $data = exists $ctx->{data} ? $ctx->{data} : ";
$ctx->{invoked}++;

my ($bdata, $seen_eos) = flatten_bb($bb);
$hdata =~ s/-//g;

$data .= $bdata if $bdata;

if ($seen_eos) {

15 Feb 2014 291

15.9 Filter Tips and Tricks

my $len = length $data;
$filter->r->headers_out->set('Content-Length’, $len);
$filter->print($data) if $data;

}

else {
store context for all but the last invocation

$ctx->{data} = $data;
$filter->ctx($ctx);

}

return Apache2::Const::OK;
}

sub flatten_bb {
my ($bb) = shift;

my $seen_eos = 0;

my @data;

for (my $b = $bb->first; $b; $b = $bb->next($b)) {
$seen_eos++, last if $b->is_eos;
$b->read(my $hdata);
push @data, $bdata;

return (join(’, @data), $seen_eos);

}

1

In this module we use flatten_bb() to read the data from the buckets and signal when the EOS is received.
The filter simply collects the data, storing it in the filter context. When it receives EOS it sets the
Content-Length header and sends the data out.

The configuration is straightforward:

PerlOutputFilterHandler MyApache?2::FilterChangeLength

15.9 Filter Tips and Tricks

Various tips to use in filters.

15.9.1 Altering the Content-Type Response Header

Let's say that you want to modify tli@ontent-Type header in the request output filter:

sub handler : FilterRequestHandler {
my $f = shift;

$f->r->content_type("text/html; charset=$charset");

292 15 Feb 2014

Input and Output Filters 15.10 Writing Well-Behaving Filters

Request filters have an access to the request object, so we simply modify it.

15.10 Writing Well-Behaving Filters

Filter writers must follow the following rules:

15.10.1 Connection Filters over KeepAlive Connections

Whenever a new HTTP request is processed, request filters get their citetk() reset. This is also

true for the connection filter context, as long as the connection iskespalive) connection. When

the connection is kept alive, there could be many requests processed during a single connection and the
same filter context will persist through all of them, until the maximum number of KeepAlive requests over
the same connection is reached or until the client breaks the connection.

Sometimes it's desirable to reset the whole context or parts of it before a HTTP request is processed. For
exampleApache2::Filter::HTTPHeadersFixup needs to know when it should start and stop
processing HTTP headers. It keeps the state in the filter's context. The problem is that whenever a new
HTTP request is coming in, it needs to be able to reset the state machine. If it doesn't, it will process the
HTTP headers of the first request and miss the rest of the requests.

So let's say we have a hypothetical moduigApache2::Filter::StateMachine which imple-
ments an input connection filter and it processes incoming data as longsteg¢fag is down. Once that
flag goes up, the filter switches to the pass-through-unmodified mode. Here is a skeleton of the module:

#file:MyApache?2/Filter/StateMachine.pm
H.

package MyApache2::Filter::StateMachine;

use base qw(Apache2::Filter);
use Apache2::Connection ();

use Apache2::Const -compile => qw(OK DECLINED CONN_KEEPALIVE);

sub handler : FilterConnectionHandler {
my ($f, $bb, $mode, $block, $readbytes) = @_;

my $ctx = context($f);

pass through unmodified
return Apache2::Const::DECLINED if $ctx->{state};

get data, do some processing, send it out
process(); # your code comes here

change the state if some condition is reached
$ctx->{state}++ if $done_condition;

return Apache2::Const::OK;
}

sub context {

15 Feb 2014 293

15.10.1 Connection Filters over KeepAlive Connections

my ($f) = shift;

my $ctx = $f->ctx;
unless ($ctx) {
$etx = {
state => 0,

h

$f->ctx($etx);
}

return $ctx;

}
1

To make this module work properly over KeepAlive connections, we want to ressttaéag at the
very beginning of the new request. To accomplish this, all we need to do is to chamgatéx
wrapper to be:

sub context {
my ($f) = shift;

my $ctx = $f->ctx;
unless ($ctx) {
$etx = {
state => 0,
keepalives => $f->c->keepalives,

h

$f->ctx($ctx);
return $ctx;

}

my $c¢ = $f->c;
if ($c->keepalive == Apache2::Const::CONN_KEEPALIVE &&
$cix->{state} && $c->keepalives > $ctx->{keepalives}) {

$ctx->{state} =0;
$ctx->{keepalives} = $c->keepalives;

}

return $ctx;

}

The only difference from the previous implementation is that we maintain one more state, which stores the
number of requests served over the current connection. When Apache reports more served requests than
we have in the context that means that we have a new request coming in. So we statifthg and

store the new value of the served connections.

For a more complete real-world implementation, $ee: http://search.cpan.org/dist/Apache-Filtgr-HTTP-

HeadersFixup/

294 15 Feb 2014

http://search.cpan.org/dist/Apache-Filter-HTTPHeadersFixup/
http://search.cpan.org/dist/Apache-Filter-HTTPHeadersFixup/

Input and Output Filters 15.10.2 Adjusting HTTP Headers

15.10.2 Adjusting HTTP Headers

The following information is relevant for HTTP filters
® Unsetting the Content-Length header

HTTP response filters modifying the length of the body they process must unset the
Content-Length header. For example, a compression filter modifies the body length, whereas a
lowercasing filter doesn’t; therefore the former has to unset the header, and the latter doesn’t have to.

The header must be unset before any output is sent from the filter. If this rule is not followed, an
HTTP response header with incorr€xintent-Length value might be sent.

Since you want to run this code once during the multiple filter invocations, usxfhe method to
set the flag:
unless ($f->ctx) {
$f->r->headers_out->unset('Content-Length’);
$f->ctx(1);
}

e META: Same goes for last-modified/etags, which may need to be unset, "vary" might need to be
added if you want caching to work properly (depending on what your filter does.

15.10.3 Other issues

META: to be written. Meanwhile collecting important inputs from various sources.

[

If a filter desires to store the incoming buckets for post processing. It must check whether the bucket type
is transient. If it is -- the data must be copied away. If not -- the buckets may contain corrupted data when
used later. The right thing is accomplished transparently by apr_bucket_setaside, for which we need to
provide a perl glue.

]
[

This one will be expanded by Geoff at some point:

HTTP output filter developers are ought to handle conditional GETs properly... (mostly for the reason of
efficiency?)

]
[

15 Feb 2014 295

15.11 Writing Efficient Filters

talk about issues like not losing meta-buckets. e.g. if the filter runs a switch statement and propagates
buckets types that were known at the time of writing, it may drop buckets of new types which may be
added later, so it's important to ensure that there is a default cause where the bucket is passed as is.

of course mention the fact where things like EOS buckets must be passed, or the whole chain will be
broken. Or if some filter decides to inject an EOS bucket by itself, it should probably consume and destroy
the rest of the incoming bb. need to check on this issue.

]
[

Need to document somewhere (concepts?) that the buckets should never be modified directly, because the
filter can't know ho else could be referencing it at the same time. (shared mem/cache/memory mapped
files are examples on where you don’t want to modify the data). Instead the data should be moved into a
new bucket.

Also it looks like we need to $b->destroy (need to add the API) in addition to $b->remove. Which can be
done in one stroke using $b->delete (need to add the API).

]
[

Mention mod_bucketeer as filter debugging tool (in addition to FilterSnoop)

]

15.11 Writing Efficient Filters

As of this writing, the Apache network input filter reads in 8000B chunks (not 8192B) and makes each
bucket 8000B in size. Based on this, the most efficient reading technique is:

use constant BUFF_LEN => 8000;

while ($f->read(my $buffer, BUFF_LEN)) {
manip $buffer
$f->print($buffer);

}

however if there is some filter in between, it may change the size of the buckets. Also this humber may
change in the future.

Hmm, I've also seen it read in 7819 chunks. | suppose this is not very reliable. But it's probably a good
idea to ask at least 8k, so if a bucket brigade has < 8k, nothing will need to be stored in the internal buffer.
i.e.read() will return less than asked for.

]

296 15 Feb 2014

Input and Output Filters 15.12 CPAN Modules

[

Bucket Brigades are used to make the data flow between filters and handlers more efficient. e.g. a file
handle can be put in a bucket and the read from the file can be postponed to the very moment when the
data is sent to the client, thus saving a lot of memory and CPU cycles. though filters writers should be
aware that if they call $b->read(), or any other operation that internally forces the bucket to read the infor-
mation into the memory (like the length() op) and thus making the data handling inefficient. therefore a
care should be taken so not to read the data in, unless it's really necessary.

]
15.12 CPAN Modules

Several modules are available on the CPAN that implement mod_perl 2.0 filters. As with all code on the
CPAN, the source code is fully available, so you can download these modules and see exactly how they
work.

® Apache: : d ean - Interface into HTML::Clean for mod_perl 2.0

|http://search.cpan.org/dist/Apache-Cl¢an/

® Apache:: Filter::HITPHeader sFi xup - Manipulate Apache 2 HTTP Headers

[http://search.cpan.org/dist/Apache-Filter-HT T PHeadersHixup/

15.13 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

15.14 Authors

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 297

http://search.cpan.org/dist/Apache-Clean/
http://search.cpan.org/dist/Apache-Filter-HTTPHeadersFixup/
http://stason.org/

16 General Handlers Issues

16 General Handlers Issues

298 15 Feb 2014

General Handlers Issues 16.1 Description

16.1 Description

This chapter discusses issues relevant too any kind of handlers.

16.2 Handlers Communication

Apache handlers can communicate between themselves by writing and reading notes. It doesn’t matter in
what language the handlers were implemented as long as they can access the notes table.

For example inside a request handler we can say:
my $r = shift;

my $c = $r->connection;
$c->notes->set(mod_perl => 'rules’);

and then later in a mod_perl filter handler this note can be retrieved with:
my $f = shift;
my $c = $f->c;

my $is = $c->notes->get("mod_perl");
$f->print("mod_perl $is");

16.3 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

16.4 Authors

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 299

http://stason.org/

17 Preventive Measures for Performance Enhancement

17 Preventive Measures for Performance Enhance-
ment

300 15 Feb 2014

Preventive Measures for Performance Enhancement 17.1 Description

17.1 Description

This chapter explains what should or should not be done in order to keep the performance high

17.2 Memory Leakage

Memory leakage in 1.0 docs.

17.2.1 Proper Memory Pools Usage

Several mod_perl 2.0 APIs are using Apache memory pools for memory management. Mainly because the
underlying C API requires that. So every time Apache needs to allocate memory it allocates it using the
pool object that is passed as an argument. Apache doesn’t frees allocated memory, this happens automati-
cally when a pool ends its life.

Different pools have different life lengths. Request popis>pool) are destroyed at the end of each
request. Connection pool$d->pool) are destroyed when the connection is closed. Server pools
$s->pool) and the global pools (accessible in the server startup phasePRelik&penLogsHan-

dler handlers) are destroyed only when the server exits.

Therefore always use the pool of the shortest possible life if you can. Never use server pools during
request, when you can use a request pool. For example inside an HTTP handler, don't call:

my $dir = Apache2::ServerUstil::server_root_relative($s->process->pool, 'conf’);
when you should call:
my $dir = Apache2::ServerUtil::server_root_relative($r->pool, 'conf’);

Of course on special occasions, you may want to have something allocated off the server pool if you want
the allocated memory to survive through several subsequent requests or connections. But this is normally
doesn’t apply to the core mod_perl 2.0, but rather for 3rd party extensions.

17.3 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar) [http://stason.qrg/]

17.4 Authors

e Stas Bekmar [http://stason.qrg/]

15 Feb 2014 301

http://stason.org/
http://stason.org/

17.4 Authors

Only the major authors are listed above. For contributors see the Changes file.

302 15 Feb 2014

Performance Considerations Under Different MPMs 18 Performance Considerations Under Different MPMs

18 Performance Considerations Under Different
MPMs

15 Feb 2014 303

18.1 Description

18.1 Description

This chapter discusses how to choose the right MPM to use (on platforms that have such a choice), and
how to get the best performance out of it.

Certain kind of applications may show a better performance when running under one mpm, but not the
other. Results also may vary from platform to platform.

CPAN module developers have to strive making their modules function correctly regardless the mpm they
are being deployed under. However they may choose to indentify what MPM the code is running under
and do better decisions better on this information, as long as it doesn’t break the functionality for other
platforms. For examples if a developer provides thread-unsafe code, the module will work correctly under
the prefork mpm, but may malfunction under threaded mpms.

18.2 Memory Requirements

Since the very beginning mod_perl users have enjoyed the tremendous speed boost mod_perl was provid-
ing, but there is no free lunch -- mod_perl has quite big memory requirements, since it has to store the
compiled code in the memory to avoid the code loading and recompilation overhead for each request.

18.2.1 Memory Requirements in Prefork MPM

For those familiar with mod_perl 1.0, mod_perl 2.0 has not much new to offer. We still rely on shared
memory, try to preload as many things as possible at the server startup and limit the amount of used
memory using specially designed for that purpose tools.

The new thing is that the core API has been spread across multiply modules, which can be loaded only
when needed (this of course works only when mod_perl is built as DSO). This allows us to save some
memory. However the savings are not big, since all these modules are writen in C, making them into the
text segments of the memory, which is perfectly shared. The savings are more significant at the startup
speed, since the startup time, when DSO modules are loaded, is growing almost quadratically as the
number of loaded DSO modules grows (because of symbol relocations).

18.2.2 Memory Requirements in Threaded MPM

The threaded MPM is a totally new beast for mod_perl users. If you run several processes, the same
memory sharing techniques apply, but usually you want to run as few processes as possible and to have as
many threads as possible. Remember that mod_perl 2.0 allows you to have just a few Perl interpreters in
the process which otherwise runs multiple threads. So using more threads doesn’t mean using significantly
more memory, if the maximum number of available Perl interpreters is limited.

Even though memory sharing is not applicable inside the same process, mod_perl gets a significant
memory saving, because Perl interpreters have a shared opcode tree. Similar to the preforked model, all
the code that was loaded at the server startup, before Perl interpreters are cloned, will be shared. But there
is a significant difference between the two. In the prefork case, the normal memory sharing applies: if a
single byte of the memory page gets unshared, the whole page is unshared, meaning that with time less

304 15 Feb 2014

Performance Considerations Under Different MPMs 18.3 Work with DataBases

and less memory is shared. In the threaded mpm case, the opcode tree is shared and this doesn’t change as
the code runs.

Moreover, since Perl Interpreter pools are used, and the FIFO model is used, if the pool contains three Perl
interpreters, but only one is used at any given time, only that interpreter will be ever used, making the
other two interpreters consuming very little memory. So if with prefork MPM, you'd think twice before
loading mod_perl if all you need is trans handler, with threaded mpm you can do that without paying the
price of the significanly increased memory demands. You can have 256 light Apache threads serving static
requests, and let's say three Perl interpreters running quick trans handlers, or even heavy but infrequest
dynamic requests, when needed.

It's not clear yet, how one will be able to control the amount of running Perl interepreters, based on the

memory consumption, because it's not possible to get the memory usage information per thread. However
we are thinking about running a garbage collection thread which will cleanup Perl interpreters and occa-

sionaly kill off the unused ones to free up used memory.

18.3 Work with DataBases
18.3.1 Work with DataBases under Prefork MPM

Apache::DBI works as with mod_perl 1.0, to share database connections.

18.3.2 Work with DataBases under Threaded MPM

The currentApache::DBI should be usable under threaded mpm, though it doesn’t share connections
across threads. Each Perl interpreter has its own cache, just like in the prefork mpm.

DBI::Pool is a work in progress, which should bring the sharing of database connections across threads
of the same process. Watch the mod_perl and dbi-dev lists for updates on this worlRBOri@ol is
completed it'll either replacApache::DBI or will be used by it.

18.4 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar) [http://stason.qrg/]

18.5 Authors

e Stas Bekmar [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 305

http://stason.org/
http://stason.org/

19 Troubleshooting mod_perl problems

19 Troubleshooting mod_perl problems

306 15 Feb 2014

Troubleshooting mod_perl problems 19.1 Description

19.1 Description

Frequently encountered problems (warnings and fatal errors) and their troubleshooting.

19.2 Building and Installation

19.2.1 Cannot find -Igdbm / libgdbm.s0.3: open failed: No such file or
directory

Please see: Missing or Misconfigured libgdbm.so.

Also it seems that on Solaris this exact issue doesn’t show up at compile time, but at run time, so you may
see the errors like:

.../mod_perl-1.99_17/blib/arch/auto/APR/APR.so’ for module APR:
Id.s0.1: /usr/local/ActivePerl-5.8/bin/perl: fatal:

libgdbm.so.3: open failed: No such file or directory at
...5.8.3/sun4-solaris-thread-multi/DynaLoader.pm line 229.

the solution is the same, make sure that you have the libgdbm shared library and it's properly symlinked.

19.3 Configuration and Startup

19.3.1 Can't locate TestFilter/in_str_consume.pm@ NC...

Sometimes you get a problem of perl not being able to locate a certain Perl module. This can happen in the
mod_perl test suite or in the normal mod_perl setup. One of the possible reasons is a low limit on the

number of files that can be opened by a single process. To check whether this is the problem run the
process undestrace(l) or an equivalent utility.

For example on OpenBSD 3.5 the default setting for a maximum number of files opened by a single
process seems to be 64, so when you try to run the mod_perl test suite, which opens a few hundreds of
files, you will have a problem. e.g. the test suite may fail as:

[Wed Aug 25 09:49:40 2004] [info] 26 Apache2:: modules loaded
[Wed Aug 25 09:49:40 2004] [info] 7 APR:: modules loaded

[Wed Aug 25 09:49:40 2004] [info] base server + 20 vhosts ready
to run tests

[Wed Aug 25 09:49:40 2004] [error] Can't locate
TestFilter/in_str_consume.pm in @INC (@INC contains: ...

Running the system calls tracing progradrgce(l) on OpenBSDstrace(l) on Linux):

% sudo ktrace -d /usr/local/apache/bin/httpd -d /tmp/mod_perl-2.0/t \
-f tmp/mod_perl-2.0/t/conf/httpd.conf -DAPACHE?2 -X

15 Feb 2014 307

19.3.2 "mod_perl.c" is not compatible with this version of Apache (found 20020628, need 20020903)

looking at the ktrace dump reveals:
16641 httpd NAMI "/tmp/mod_perl-2.0/t/lib/TestFilter/in_str_consume.pmc"
16641 httpd RET stat -1 errno 2 No such file or directory

16641 httpd CALL open(0x3cdae100,0,0)
16641 httpd RET open -1 errno 24 Too many open files

It's clear that Perl can’t loa@estFilter/in_str_consume.pbecause it can’t open the file.

This problem can be resolved by increasing the open file limit to 128 (or higher):

$ ulimit -n 128

19.3.2 "mod_perl.c" is not compatible with this version of Apache
(found 20020628, need 20020903)

That error message means that mod_perl was built against Apache released on or post-20020628, but you
are trying to load it against one released on or post-20020903. You will see the same error message for any
other Apache module -- this is an error coming from Apache, not mod_perl.

Apache bumps up a special magic number every time it does a binary incompatible change, and then it
makes sure that all modules that it loads were compiled against the same compatibility generation (which
may include only one or quite a few Apache releases).

You may encounter this situation when you upgrade to a newer Apache, without rebuilding mod_perl. Or
when you have several versions of Apache installed on the same system. Or when you install prepackaged
binary versions which aren’t coming from the source and aren’t made against the same Apache version.

The solution is to have mod_perl built against the same Apache installed on your system. So either build
from source or contact your binary version supplier and get a proper package(s) from them.

19.3.3 Server Hanging at the Startup

First you need to figure out where it hangs. strace(1) or an equivalent utility can be used to discover which
call the server hangs on. You need to start the process in the single server mode so you will have only one
process to monitor.

For example if the server hangs during 'make test’, you should run:

% cd modperl-2.0
% strace /path/to/httpd -d t -f t/conf/httpd.conf \
-DAPACHEZ2 -DONE_PROCESS -DNO_DETATCH

(and may beDPERL_USEITHREADSH it was in the original output ahake test .)

If the trace ends with:

308 15 Feb 2014

Troubleshooting mod_perl problems 19.3.4 (28)No space left on device

open("/dev/random”, O_RDONLY) =3
read(3, <unfinished ...>

then you have a problem with your OS/dav/randomdoesn’t have enough entropy to give the required
random data, and therefore it hangs. This may happempmuuid_get() C call or Perl
APR::UUID->new .

The solution in this case is either to fix the problem with your OS, so that

% perl -le 'open I, "/dev/random”; read I, $d, 10; print $d’

will print some random data and not block. Or you can use an even simpler test:

% cat /dev/random
which should print some random data and not block.

If you can't fix the OS problem, you can rebuild Apache 2.0 withvith-devran-
dom=/dev/urandom - however, that is not secure for certain needs. Alternatively setup EGD and
rebuild Apache 2.0 with-with-egd . Apache 2.1/apr-1.1 will have a self-contained PRNG generator
built-in, which won’t rely on'dev/random

19.3.4 (28)No space left on device

httpd-2.0 is not very helpful at telling which device has run out of precious space. Most of the time when
you get an error like:

(28)No space left on device:
mod_rewrite: could not create rewrite_log_lock

it means that your system have run out of semaphore arrays. Sometimes it's full with legitimate
semaphores at other times it's because some application has leaked semaphores and haven't cleaned them
up during the shutdown (which is usually the case when an application segfaults).

Use the relevant application to list the ipc facilities usage. On most Unix platforms this is usually an
ipcs(1) utility. For example linux to list the semaphore arrays you should execute:

% ipcs -s

------ Semaphore Arrays --------

key semid owner perms nsems
0x00000000 2686976 stas 600 1
0x00000000 2719745 stas 600 1
0x00000000 2752514 stas 600 1

Next you have to figure out what are the dead ones and remove them. For example to remove the semid
2719745 execute:

% ipcrm -s 2719745

15 Feb 2014 309

19.4 Shutdown and Restart

Instead of manually removing each (and sometimes there can be many of them), and if you know that
none of listed the semaphores is really used (all leaked), you can try to remove them all:

% ipcs -s | perl -ane "ipcrm -s $F[1]"

httpd-2.0 seems to use the K&y00000000 for its semaphores on Linux, so to remove only those that
match that key you can use:

% ipcs -s | perl -ane '/*0x00000000/ && ‘ipcrm -s $F[1]”

Notice that on other platforms the outputipés -s might be different, so you may need to apply a
different Perl one-liner.

19.3.5 Segmentation Fault when Using DBI

Update DBI to at least version 1.31.

19.3.6 <Perl> directive missing closing >’

See the Apache2::PerlSections manpage.

19.3.7 ’Invalid per-unknown PerlOption: ParseHeaders’ on HP-UX
11 for PA-RISC

When building mod_perl 2.0 on HP-UX 11 for PA-RISC architecture, using the HP ANSI C compiler,
please make sure you have installed patches PHSS_29484 and PHSS_29485. Once installed the issue
should go away.

19.4 Shutdown and Restart

Issues happening during server shutdown and restart, or during specific interpreter shutdown at runtime
with threaded mpm.

19.4.1 Subroutines in <perl> sections under threaded mpm

If you have defined a subroutine inside a <perl> section, under threaded mpm (or under perl with enabled
ithreads which spawn its own ithreads), like so:

<Perl>
sub foo {}
</Perl>

At the server shutdown, or when any interpreter quits you will see the following erroreindghdog:

310 15 Feb 2014

Troubleshooting mod_perl problems 19.5 Code Parsing and Compilation

Attempt to free temp prematurely: SV 0x91b8e74,
Perl interpreter: 0x8547698 during global destruction.
Scalars leaked: 1

This is a bug in Perl and as of Perl 5.8.4 it’s not resolved. For more information see:

|http://rt.perl.org:80/rt3/Ticket/Display.html?id=29018

19.4.2 Modules usinécal ar: : Uil :: weaken under threaded
mpm
Modules usindscalar::Util::weaken under threaded mpm may get:

Attempt to free unreferenced scalar SV 0x8154f74.
when each interprter exits.

This is a bug in Perl and as of Perl 5.8.4 it's not resolved. For more information see:

|http://rt.perl.org:80/rt3/Ticket/Display.html?id=24460

19.5 Code Parsing and Compilation

19.5.1 Segfault with __read_nocancel Backtrace

If your application segfaults and you get a similar to the following backtrace:

(gdb) bt
#0 0x4030d4d1l in __read_nocancel () from /lib/tls/libpthread.so.0
#1 0x00000000 in ?? ()

that usually means that you've build your non-mod_perl modules with ithreads enabled perl. Then you
have built a new pervithout ithreads. But you didn’t nuke/rebuild the old non-mod_perl modules. Now
when you try to run those, you get the above segfault. To solve the problem recompile all the modules.
The easiest way to accomplish that is to either remove all the modules completely, build the new perl and
then install the new modules. You could also try to create a bundle of the existing modules using
CPAN.pm prior to deleting the old modules, so you can easily reinstall all the modules you previously
had.

19.5.2 Registry scripts fail to load with: Unrecognized character \xEF
at ...

Certain editors (in particular on win32) may add a UTF-8 Byte Order Marker (BOM:
[http://www.unicode.org/fag/utf_bom.html#BOM) at the beginning of the file. Since
ModPerl::RegistryCooker adds extra code in front of the original script, before compiling it, it
creates a situation where BOM appears past the beginning of the file, which is why the error:

15 Feb 2014 311

http://rt.perl.org:80/rt3/Ticket/Display.html?id=29018
http://rt.perl.org:80/rt3/Ticket/Display.html?id=24660
http://www.unicode.org/faq/utf_bom.html#BOM

19.6 Runtime

Unrecognized character \xEF at ...
is thrown by Perl.

The simplest solution is to configure your editor to not add BOMs (or switch to another editor which
allows you to do that).

You could also subclagslodPerl::RegistryCooker or its existing subclasses to try to remove
BOM in ModPerl::RegistryCooker::read_script():

remove BOM
${$self->{CODE}} =~ s/™(?:
\xef\xbb\xbf |
\xfe\xff |
\xff\xfe |
\x00\x00\xfe\xff |
\xff\xfe\x00\x00
)IX;

but do you really want to add an overhead of this operation multiple times, when you could just change the
source file once? Probably not. It was also reported that on win32 the above s/// doesn’t work.

19.6 Runtime

19.6.1 error_log is Full of Escaped \n, \t, etc.

It's an Apache "feature", seBAP_UNSAFE_ERROR_LOG_UNESCAPED

19.6.2 Problems with Catching Signals

See Using Signal Handlers.

19.6.3 APR::Socket::recv: (11) Resource temporarily unavailable at ...

You need to make sure that the socket is set to blocking IO mode before using it.

19.6.4 APR: : UUI D- >new Hanging

Seq Server Hanging at the Staftup.

19.6.5 Memory Leaks

® s///in perls 5.8.1 and 5.8.2

p5-porters reporf:_http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2003-12/msg00634.html

312 15 Feb 2014

http://www.xray.mpe.mpg.de/mailing-lists/perl5-porters/2003-12/msg00634.html

Troubleshooting mod_perl problems 19.6.6 C Libraries Don’t See %ENV Entries Set by Perl Code

Fixed in 5.8.3. There is no workaround but to upgrade to 5.8.3 or higher.

19.6.6 C Libraries Don’'t Se&&ENV Entries Set by Perl Code

For example some people have reported problemsDBib::Oracle (whose guts are implemented in
C), which doesn’t see environment variables (W®ACLE_HOMBRACLE_SID etc.) set in the perl
script and therefore fails to connect.

The issue is that the C arrapviron]] is not thread-safe. Therefore mod_perl 2.0 urtb&sN\from
the underlyingenviron|] array under theerl-scripthandler.

The DBD::Oracle driver or client library usegetenv() (which fetches from thenviron(]
array). Wher®oENVs untied fromenviron[] , Perl code will seB6ENWhanges, but C code will not.

Themodperlhandler does not untsENMrom environ[] . Still one should avoid settifgENWalues
whenever possible. And if it is required, should be done at startup time.

In the particular case of thé&BD:: drivers, you can set the variables that don't change
(SENV{ORACLE_HOMERNd$ENV{NLS_LANG} in the startup file, and those that change pass via the
connect() method, e.g.:

my $sid ='ynt0’;

my $dsn ='dbi:Oracle’’;

my $user ='username/password’;

my $password = ";

$dbh = DBI->connect("$dsn$sid", $user, $password)
or die "Cannot connect: " . $DBI::errstr;

Also remember thadBD::Oracle requires thaORACLE_HOMHKFand any other stuff likBlISL_LANG
stuff) be in%ENWhenDBD::Oracle is loaded (which might happen indirectly via b8l module.
Therefore you need to make sure that wherever that load higiids properly set by that time.

Another solution that works only with prefork mpm, is to use Env:C (
[http://search.cpan.org/dist/Env}C/). This module sets the process level environ, bypassirfgpENY's

This module is not thread-safe, due to the nature of environ process struct, so don’t even try using it in a
threaded environment.

19.6.7 Error about not finding Apache.pm with CGl.pm

You need to install at least version 3.11 of CGl.pm to work under mod_perl 2.0, as earlier CGl.pm
versions aren’t mod_perl 2.0 aware.

19.6.8 20014:Error string not specified yet

This error is reported when some undefined Apache error happens. The known cases are:

15 Feb 2014 313

http://search.cpan.org/dist/Env-C/

19.6.9 (22)Invalid argument: core_output_filter: writing data to the network

® when using mod_deflate

A bug in mod_deflate was triggering this error, when a response handler would flush the data that
was flushed earliel:_http://nagoya.apache.org/bugzilla/show_bug.cgi?id$22259 It has been fixed in
httpd-2.0.48.

19.6.9 (22)Invalid argument: core_output_filter: writing data to the
network

Apache uses the sendfile syscall on platforms where it is available in order to speed sending of responses.
Unfortunately, on some systems, Apache will detect the presence of sendfile at compile-time, even when it
does not work properly. This happens most frequently when using network or other non-standard
file-system.

The whole story and the solutions are documented at:
[http://httpd.apache.org/docs-2.0/fag/error.html#error.sepdfile

19.6.10 undefined symbol: apr_table compress

After a successful mod_perl build, sometimes during the startup or a runtime you'd get an "undefined
symbol: foo" error. The following is one possible scenario to encounter this problem and possible ways to
resolve it.

Let's say you ran mod_perl’s test suite:
% make test

and got errors, and you looked in teeor_log file (t/logs/error_log and saw one or more "undefined
symbol" errors, e.g.

% undefined symbol: apr_table_compress
® Stepl

From the source directory (same place you ran "make test") run:

% Idd blib/arch/auto/APR/APR.so | grep apr-

Idd is not available on all platforms, e.g. not on Darwin/OS X. Instead on Darwin/OS X, you can use
their otool.

You you should get a full path, for example:

libapr-0.s0.0 => /usr/local/apache?2/lib/libapr-0.s0.0 (0x40003000)

or

314 15 Feb 2014

http://nagoya.apache.org/bugzilla/show_bug.cgi?id=22259
http://httpd.apache.org/docs-2.0/faq/error.html#error.sendfile

Troubleshooting mod_perl problems 19.6.10 undefined symbol: apr_table_compress

libapr-0.s0.0 => /some/path/to/apache/lib/libapr-0.s0.0 (0x40003000)
or something like that. It's that full path to libapr-0.s0.0 that you want.
® Step 2
Do:
% nm /path/to/your/libapr-0.s0.0 | grep table_compress
for example:
% nm /usr/local/apache2/lib/libapr-0.s0.0 | grep table_compress
You should get something like this:
0000d010 T apr_table_compress

If you get the message:

nm: /usr/local/apache?2/lib/libapr-0.s0.0: no symbols

that means that the library was stripped. You probably want to obtain Apache 2.x or libapr source,
matching your binary and check it instead. Or rebuild it with debugging enabled, which will not strip
the symbols.

Note that the "grep table_compress" is only an example, the exact string you are looking for is the
name of the "undefined symbol" from teegor_log file. So, if you get:

undefined symbol apr_holy_grail

then you would do:
% nm /usr/local/apache2/lib/libapr-0.s0.0 | grep holy_grail
® Step3

Now, let's see what shared libraries your apache binary has. So, if in step 1 you got
lusr/local/apache2/lib/libapr-0.so.then you will do:

% Idd /usr/local/apache2/bin/httpd

if in step 1 you gotfoo/bar/apache/lib/libapr-0.so.then you do:

% ldd /foo/bar/apache/bin/httpd

The output should look something like this:

libssl.so0.2 => /lib/libssl.s0.2 (0x40023000)

libcrypto.so.2 => /lib/libcrypto.so.2 (0x40054000)

libaprutil-0.s0.0 => /usr/local/apache2/lib/libaprutil-0.s0.0 (0x40128000)
libgdbm.so.2 => /ust/lib/libgdbm.so0.2 (0x4013c000)

libdb-4.0.s0 => /lib/libdb-4.0.s0 (0x40143000)

15 Feb 2014 315

19.6.10 undefined symbol: apr_table_compress

libexpat.s0.0 => /ust/lib/libexpat.s0.0 (0x401eb000)

libapr-0.s0.0 => /usr/local/apache?2/lib/libapr-0.s0.0 (0x4020b000)
librt.so.1 => /lib/librt.so.1 (0x40228000)

libm.s0.6 => /lib/i686/libm.s0.6 (0x4023a000)

libcrypt.so.1 => /lib/libcrypt.so.1 (0x4025c000)

libnsl.so.1 => /lib/libnsl.so.1 (0x40289000)

libdl.s0.2 => /lib/libdl.so0.2 (0x4029f000)

libpthread.so.0 => /lib/i686/libpthread.so0.0 (0x402a2000)
libc.so0.6 => /lib/i686/libc.s0.6 (0x42000000)

/lib/ld-linux.s0.2 => /lib/ld-linux.s0.2 (0x40000000)

Those are name => value pairs showing the shared libraries usedipthe binary.

Take note of the value fdibapr-0.so.0and compare it to what you got in step 1. They should be the
same, if not, then mod_perl was compiled pointing to the wrong Apache installation. You should run
"make clean" and then

% perl Makefile.pl MP_APACHE_CONFIG=/path/to/apache/bin/apr-config
using the correct path for the Apache installation.
® Step 4

You should also search for extra copiedilodpr-0.s0.0 If you find one infusr/lib or /usr/local/lib
that will explain the problem. Most likely you have an old pre-installed apr package which gets
loaded before the copy you found in step 1.

On most Linux (and Mac OS X) machines you can do a fast search with:

% locate libapr-0.s0.0

which searches a database of files on your machine. The "locate" database isn’t always up-to-date so
a slower, more comprehensive search can be run (as root if possible):

% find / -name "libapr-0.s0.0*"
or
% find /usr/local -name "libapr-0.s0.0*"
You might get output like this:
lusr/local/apache2.0.47/lib/libapr-0.s0.0.9.4
lusr/local/apache2.0.47/lib/libapr-0.s0.0

lusr/local/apache2.0.45/lib/libapr-0.s0.0.9.3
lusr/local/apache2.0.45/lib/libapr-0.s0.0

in which case you would want to make sure that you are configuring and compiling mod_perl with
the latest version of apache, for example using the above output, you would do:

316 15 Feb 2014

Troubleshooting mod_perl problems 19.6.11 Variable $x will not stay shared at

% perl Makefile.PL MP_AP_CONFIG=/usr/local/apache2.0.47
% make
% make test

There could be other causes, but this example shows you how to act when you encounter this problem.

19.6.11 Variable $x will not stay shared at

This warning is normally as a result of variables that your script is sharing with subroutines globally,
rather than passing by value or reference. As the cause and solution of this is virtually identical to another
commonly encountered problem (Sometimes it works, sometimes it doesn’t), the text is not repeated here
but is instead included in that section which follows this one.

You may have read somewherat therethat this warning can be ignored, but if you read on you will see
that you shouldheverignore the warning. The other thing that might confuse you is that this warning is
normally encountered when defining subroutines within subroutines. So why would you experience it in
your script where that is not the case? The reason is because mod_perl wraps your script in its own
subroutine (see the Perl Reference documentation for more details).

19.6.12 Sometimes it Works, Sometimes it Doesn’t

When you start running your scripts under mod_perl, you might find yourself in a situation where a script
seems to work, but sometimes it screws up. And the more it runs without a restart, the more it screws up.
Often the problem is easily detectable and solvable. You have to test your script under a server running in
single process modétfpd -X).

Generally the problem is the result of using global variables (normally accompanied by a Variable $x will
not stay shared at warning). Because global variables don’t change from one script invocation to another
unless you change them, you can find your scripts do strange things.

Let's look at three real world examples:

19.6.12.1 An Easy Break-in

The first example is amazing: Web Services. Imagine that you enter some site where you have an account,
perhaps a free email account. Having read your own mail you decide to take a look at someone else’s.

You type in the username you want to peek at and a dummy password and try to enter the account. On
some services this will work!!

You say, why in the world does this happen? The answer is si@igleal Variables. You have entered

the account of someone who happened to be served by the same server child as you. Because of sloppy
programming, a global variable was not reset at the beginning of the program and voila, you can easily
peek into someone else’s email! Here is an example of sloppy code:

use vars ($authenticated);

my $q = new CGl;

my $username = $g->param('username’);
my $passwd = $g->param(’passwd’);

15 Feb 2014 317

19.6.12 Sometimes it Works, Sometimes it Doesn't

authenticate($username,$passwd);
failed, break out
unless ($authenticated){
print "Wrong passwd";
exit;
}
user is OK, fetch user’s data
show_user($username);

sub authenticate{
my ($username,$passwd) = @_;
some checking
$authenticated = 1 if SOME_USER_PASSWD_CHECK_IS_OK;

}

Do you see the catch? With the code above, | can type in any valid username and any dummy password
and enter that user’s account, provided she has successfully entered her account before me using the same
child process! Sinc&authenticated is global--if it becomes 1 once, it'll stay 1 for the remainder of

the child’s life!!! The solution is trivial--res&authenticated to O at the beginning of the program.

A cleaner solution of course is not to rely on global variables, but rely on the return value from the func-
tion.

my $q = CGI->new;
my $username = $g->param(’username’);
my $passwd = $qg->param(‘passwd’);
my $authenticated = authenticate($username,$passwd);
failed, break out
unless ($authenticated){
print "Wrong passwd";
exit;
}
user is OK, fetch user’s data
show_user($username);

sub authenticate{
my ($username,$passwd) = @_;

some checking
return (SOME_USER_PASSWD_CHECK_IS_OK) ? 1:0;

}

Of course this example is trivial--but believe me it happens!

19.6.12.2 Thinking mod_cgi

Just another little one liner that can spoil your day, assuming you forgot to re$alithesd variable.
It works perfectly OK in plain mod_cgi:

$allowed = 1 if $username eq ’admin’;

But using mod_perl, and if your system administrator with superuser access rights has previously used the
system, anybody who is lucky enough to be served later by the same child which served your administra-
tor will happen to gain the same rights.

318 15 Feb 2014

Troubleshooting mod_perl problems 19.7 Issues with APR Used Outside of mod_perl

The obvious fix is:

$allowed = $Susername eq 'admin’ ? 1 : 0;

19.6.12.3 Regular Expression Memory

Another good example is usage of fhe regular expression modifier, which compiles a regular expres-

sion once, on its first execution, and never compiles it again. This problem can be difficult to detect, as
after restarting the server each request you make will be served by a different child process, and thus the
regex pattern for that child will be compiled afresh. Only when you make a request that happens to be
served by a child which has already cached the regex will you see the problem. Generally you miss that.
When you press reload, you see that it works (with a new, fresh child). Eventually it doesn’t, because you
get a child that has already cached the regex and won’'t recompile because ofrtbdifier.

An example of such a case would be:

my $pat = $g->param("keyword");
foreach(@list) {

print if /$pat/o;
}

To make sure you don’t miss these bugs always test your CGl in single process mode.
To solve this particulaio modifier problem refer to Compiled Regular Expressions.

For more details and further examples please see the Perl Reference documentation.

19.7 Issues with APR Used Outside of mod_perl

It doesn't strictly belong to this document, since it's talking about APR usages outside of mod_perl, so this
may move to its own dedicated page, some time later.

Whenever using aAPR:: package outside of mod_perl, you need to:

use APR;

in order to load the XS subroutines. For example:

% perl -MAPR -MAPR::UUID -le "print APR::UUID->new->format’

19.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman

15 Feb 2014 319

19.9 Authors

19.9 Authors

® Stas Bekman

Only the major authors are listed above. For contributors see the Changes file.

320 15 Feb 2014

User Help 20 User Help

20 User Help

15 Feb 2014 321

20.1 Description

20.1 Description
This chapter is for those needing help using mod_perl and related software.

There is a parallel Getting Help document written mainly for mod_perl core developers, but may be found
useful to non-core problems as well.

20.2 Reporting Problems

Whenever you want to report a bug or a problem remember that in order to help you, you need to provide
us the information about the software that you are using and other relevant details. Please follow the
instructions in the following sections when reporting problems.

The most important thing to understand is that you should try hard to proaliiéhe information that

may assist to understand and reproduce the problem. When you prepare a bug report, put yourself in the
position of a person who is going to try to help you, realizing that a guess-work on behalf of that helpful
person, more often doesn’t work than it does. Unfortunately most people don't realize that, and it takes
several emails to squeeze the needed details from the person reporting the bug, a process which may drag
for days.

20.2.1 Wrong Apache/mod_perl combination

First of all:

Apache 2.0 doesn’t work with mod_perl 1.0.
Apache 1.0 doesn’t work with mod_perl 2.0.

So if you aren’t using Apache 2.x with mod_perl 2.0 please do not send any bug reports.

META: mod_perl-1.99 xx is mod_perl 2.0 to-be.

20.2.2 Using the Wrong Compiler

To build mod_perl, yomust also use the same compiler that Perl was built with. You can find that out by
running perl -V and looking at the&Compiler: section. If you have used a different compiler and
have encountered problems (which most likely will be the case) recompile Perl with the same compiler
and then recompile mod_perl again.

20.2.3 Before Posting a Report
Before you post the report, make sure that you've checkedrtbe log file (t/logs/error_log in case of

the failing test suite). Usually the errors are self-descriptive and if you remember to always check this file
whenever you have a problem, chances are that you won't need to ask for help.

322 15 Feb 2014

User Help 20.2.4 Test with the Latest mod_perl 2.0 Version

20.2.4 Test with the Latest mod_perl 2.0 Version

If you are using an older version than the most recently released one, chances are that a bug that you are
about to report has already been fixed. If possible, save us and yourself time and try first to upgrade to the
latest version, and only if the bug persists report it.

Reviewing the Changes file may help as well. Here is the Changes file of the most recenly released
version] http://apache.org/dist/perl/mod_perl-2.0-current/Changes .

If the problem persists with the latest version, you may also want to try to reproduce the problem with the
latest development version. It's possible that the problem was resolved since the last release has been
made. Of course if this version solves the problem, don’t rush to put it in production unless you know
what you are doing. Instead ask the developers when the new version will be released.

20.2.5 Use a Proper Subject

Make sure to include a good subject like explaining the problem in a few words. Also please mention that
this a problem with mod_perl 2.0 and not mod_perl 1.0. Here is an example of a good subject:

Subject: [mp2] protocol module doesn’t work with filters

This is especially important now that we support mod_perl versions 1.0 and 2.0 on the same list.

20.2.6 Send the Report Inlined

When sending the bug report, please inline it and don't attach it to the email. It's hard following up on the
attachments.

20.2.7 Important Information
Whenever you send a bug report make sure to include the information about your system.

e |[f you haven't yet installed mod_perl and/or you are having problems with the test suite -- you should
do:

% cd modperl-2.0
% t/REPORT > mybugreport

wheremodperl-2.0 is the source directory where mod_perl was built. TREPORT utility is
autogenerated wheperl Makefile.PL is run, so you should have it already after building
mod_perl.

® |f you have already installed mod_perl and are having problems with things unrelated to the the test
suite -- you should do:

15 Feb 2014 323

http://apache.org/dist/perl/mod_perl-2.0-current/Changes

20.2.8 Problem Description

% mp2bug > mybugreport

mp2bug should have been installed at the same time mod_perl 2.0 was installed. If for some reason
you can'’t find it, you can alternatively run the following command, which does the same:

% perl -MApache2 -MApache::TestReportPerl \
-le 'Apache::TestReportPerl->new->run’ > mybugreport

Please post the reporhybugreportinlined in the text of your message, and not as an attachment!

Now add the problem descriptjon to the report and send it to the mod_perl users mailing list.

20.2.8 Problem Description

If the problem is with the mod_perl distribution test suite, refer tp the 'make test’ Hailures section.

If the problem incurs with your own code, please try to reduce the code to the very minimum and include
it in the bug report. Remember that if you include a long code, chances that somebody will look at it are
low. If the problem is with some CPAN module, just provide its name.

Also remember to include the relevant parthttpd.confand ofstartup.plif applicable. Don't include
whole files, only the parts that should aid to understand and reproduce the problem.

Finally don’t forget to copy-n-paste (not type!) ttedevant part of theerror_log file (not the whole file!).

To further increase the chances that bugs your code exposes will be investigated, try using
Apache-Test to create a self-contained test that core developers can easily run. To get you started, an
Apache-Test bug skeleton has been created:

[http://perl.apache.org/~geoff/bug-reporting-skeleton-mp2.{ar.gz

Detailed instructions are contained within fREADMEHile in that distribution.

Finally, if you get a segfault with or without a core dump, refer td the Resolving Segmentation Faults
section.

20.2.9 ke t est'’ Failures

If when runningmake test some of the tests fail, please re-run them in the verbose mode and post the
output of that run and the contents of tiilegs/error_log file to the list. Pleasalo not post the
t/logs/error_logfile from make test that runs a complete test suite, as it contains a lot of irrelevant
information.

For example ifmake test ' reports:

Failed Test Stat Wstat Total Fail Failed List of Failed
compat/apache_util.t 15 1 6.67% 13
modperl/pnotes.t 5 1 20% 2

324 15 Feb 2014

http://perl.apache.org/~geoff/bug-reporting-skeleton-mp2.tar.gz

User Help 20.2.10 Resolving Segmentation Faults

Do the following:

% cd modperl-2.0.xx
% make test TEST_VERBOSE=1\
TEST_FILES="compat/apache_util.t modperl/pnotes.t"

or use an alternative way:

% cd modperl-2.0.xx
% t/TEST -clean
% t/TEST -verbose compat/apache_util.t modperl/pnotes.t

In the latter approach/TEST -clean cleans things up before starting a new test. Make sure that you
don’t forget to run it, before running the individual tests.

Now post to the mailing list the output of the individual tests running and the cont¢itag®trror_log

Also please notice that there is more than miade test being run. The first one is running at the top
directory, the second in a sub-directdvpdPerl-Registry/ The first logs errors tt/logs/error_log the
second too, but relative tdodPerl-Registry/Therefore if you get failures in the second run, make sure to
chdir() to that directory before you look at thogs/error_logfile and re-run tests in the verbose
mode. For example:

% cd modperl-2.0.xx/ModPerl-Registry
% t/TEST -clean
% t/TEST -verbose closure.t

At the moment the second test suite is not run if the first one fails.

20.2.10 Resolving Segmentation Faults

If during make test or the use of mod_perl you get a segmentation fault you should send to the list a
stack backtrace. This section explains how to get the core file and extract this backtrace. Once a proper
stack backtrace is obtained append it to the bug report as explained in the previous section.

20.2.11 Please Ask Only Questions Related to mod_perl

If you have general Apache questions, please refgr to: http://httpd.apache.org/ljsts.html.

If you have general Perl questions, please refgr to: http://lists.pérl.org/.

For other remotely related to mod_perl questions see the references to other documentation.

Finally, if you are not familiar with the modperl list etiquette, please refer to the mod_perl mailing lists’
Guidelines before posting.

15 Feb 2014 325

http://httpd.apache.org/lists.html
http://lists.perl.org/

20.3 Help on Related Topics

20.3 Help on Related Topics

When developing with mod_perl, you often find yourself having questions regarding other projects and
topics like Apache, Perl, SQL, etc. This document will help you find the right resource where you can find
the answers to your questions.

20.4 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

® Stas Bekman

20.5 Authors

® Stas Bekman

Only the major authors are listed above. For contributors see the Changes file.

326 15 Feb 2014

User Help

Table of Contents:

:
IGettlng Your Feet Wet W|th mod perI

1| Getting Your Feet Wet with mod perl

11 -
1.2 nstallatio
1.3 [Configuratio]

1. 4|Server Launch and Shutd¢wn
1.5 |Registry Scripts

1.6 |Handler Modulgs

1.7 | Troubleshooting

1.8 [Maintainefs

1.9

[Overview of mod perl 2.0
2| Overview of mod perl 20 .
2.1 [Descriptig] :
2.2 IVerS|on Namlng Conventlclns
2.3|Why mod perl, The Next Generafion
2.4|What's new in Apache 2.0 . .
2.5[What's new in Perl 5.6.0 - 5.B.0.
2.6 [What's new in mod perl 2.0
2.6.1| Threads Suppprt)
2.6.2| Thread-environment Isshes.)
2.6.3| Perl Interface to the APR and Apache APIS)
2.7 [Integration with 2.0 Filterifg.
2.7.1| Other New Featufes
2.7.2 [Optimizatiors .
2.8 [Maintainels
2.9 [Author

[Notes on the design and goals of mod perI 12 0 .
3 | Notes on the design and goals of mod per]-2.0.

3.1 [Descriptioh.
3.2 :
3.3 [Interpreter Management
3.3.1[TIPod I .
3.3.2| Virtual Hosts
3.3.3[Further Enhancemelnts

3.4 [Hook Code and Callbagks .

3.5[Perl interface to the Apache API and Data Stru¢tures
3.5.1[Advantages to generating XS g¢ode .
3.5.2[Lvalue methofls

3.6

3.7 [Directive Handlels . .

3.8 [<Perl> Configuration Sectigns .

3.9 [Protocol Module Suppprt

15 Feb 2014

Table of Contents:

© OO ~NOOOOTIUTLUL N AP

Table of Contents:

3.10|mod_perl MPM. 28
311[BuldSysteln 28
3.12| Test Framewﬂrk e o
313[CGIEmulatidn 28
3.14[Apachez> Lbraly 29
3.15[Perl Enhancemehts. 29
315.1[GVSHARED29
3.15.2[Shared SVPYX. . R ¢
3.15.3[Compile-time method Iook@llps < 0
3.15.4] Memorz manaﬁement ho|oks - {0
3.15.5(Opcode h06|ks . {0
3.16 | Maintainels. . - 4 |
3. 17@ <. 1
4|m|o 7
DeSCI’IEtIOh e 1

4.2 [Prerequisites 33
4.2.1[Downloading Stable Release Sojrces 35
4.2.2[Getting Bleeding Edge Soufces 35
423m|tes 36
42.31[Pefl. 36
4.2.3.2| Apaclle 36

4.3 |Installing mod_perl from Blnary Packg]g < T 4
4.4[Installing mod_perl from Soufce 37
4.4.1[Downloading the mod ped Sojrce 37
4.4.2[Configuring mod pérl 37
4421[Dynamicmod pbrl 38
44.22[S@icmod pbrl 38
4.4, 3| mod Eerl Build OEtlohs . 1)
4.4.3.1[Boolean Build Optiohs 39
4.43.1.1MP_PROMPT DEFAULT 39
4.431.2[MP GENERATE XS 39
44313MP USEDJO 40
4.43.1.4MP_USE STATIC 40
443.15[MP_STATIC EXIIS. 40
443.16[MP_USE GTOP. 40
44317 MP_COMPAT IX 40
44318 MP DEBUG. o.M
443.19MP_MAINTAINER 4
443110MP_TRACE o.M
4.4.3.2] Non-Boolean Build Optigns 4
44321 MP_APXS . . e
4.4.3.2.2| MP AP CONFIGUB T
44323[MP_AP PREFIX 4
44324MP_AP DESTDIR 4
44325 MP_APR CONFIG 4
4.4326[MP_CCOPIS 4

ii 15 Feb 2014

User Help Table of Contents:

4432 7[MP_OPTIONS FIIE. 42
44328 MP_APR LIB . e 4
4.4.3. 3| mod perl-specific Compller Optlpns e
44331 -DMP IOBUFSIZE 43
4.43.4 mod perl OptionsHile 43
444 Re-usin§ Confiﬁure OEt@ns Y
445 ComEiIinQ mod Eérl Y
4.4.6 Testin§ mod E}arl o 2
4.4.7[Installingmod pérl 44
4.51If Something GoesWrong 44
4.6[Maintainefs 44
4.7 [Authork . . |
[mod_perl 2.0 Server Conflguratlo[|| T 1)
5 | mod Eerl 2.0 Server Conf|§urati|on 1)
51 DeSCI’IEtIOh 46
5.2 [mod Eerl conf@uratlon dlrect@es. 1 o)
5.3 Enablmﬁ mod @ e I 5
5.4 |Server Confiﬁuration Directiges)
5.4.1<Perl> Sectionls. Y 1§
5.4.2[Epod, =over _and=cut |)
5.4.3[PerlAddVar_| W o e
5.4.4PerConfigRequire] 48
5.4.5[PerlLoadModule] M e
5.4.6 e
5.4.7[PerlOptions | 49
54.7. l|EnabIe | e £]
5.4.7.2[Clone e L]
5.4.7. 3|_nher|th|tches [f. b0
54.7. 4|Parent | 50
5.4.7. sm - Y |
5476[@Autoload] =
5.4.7.7[GlobalRequest | B2
5.4.7.8[ParseHeaders |. 53
5.4.79MergeHandlers | 53
5.4.7.10[SetupEnv | e - |
5.4.8[PerlPassEnv_| M : B5
5.4.9 |PerIPostConf|gReguwe (. b5
5.4. lO|PerIRe§wre | e 1
54.11[PerlSetEnv_| b6
5412PerlSetVar | b6
5.4.13PerlSwitches | 57
5.4.14[SetHandler | 57
5.4.14.1lmodperl - Y 4
5.4.14.2|perl-script [f. . . - 58
5.4.14.3 Examﬁlks .. e - 1¢ |

5.5 [Server Life Cycle Handlers Dlrecn]/es . 210
5.5.1[PerlOpenLogsHandler | 61

15 Feb 2014 iii

Table of Contents:

5.5.2|PerlPostConfigHandler | .
5.5.3 [PerIChildInitHandler | .
5.5.4 [PerlChildExitHandler

5.6 [Protocol Handlers Directijes . .
5.6.1 PerlPreConnectiontandler] . .
5.6.2 [PerlProcessConnectionHandler |

5.7 [Filter Handlers Directivgs.
5.7.1 [PerlinputFilterHand er—l
5.7.2|PerIOutputFiIterHandIer |
5.7.3|PerISetInQutFiIter | .
5.7.4[PerlSetOutputFilter | .

5.8 [HTTP Protocol Handlers Directiyes .
5.8. l
5.8. 2|PerITransHandIer | .

5.8. 3|PerIMaQToStorageHandIer |
5.8. 4|Per||n|tHandIer . .
5.8. 5|PerIHeaderParserHandIer |
5.8. 6|PerIAccessHandIer .
5.8. 7|PerIAuthenHandIer
5.8.8
5.8.9 :
5.8.10[PerlFixupHandler | .
5.8.11[PerlResponseHandler |
5.8.12[PerlLogHandler | . .
5.8.13[PerlCleanupHandler | .

5.9 [Threads Mode Specific Directiyes
5.9.1 C
5.9.2[PerlnterpMax__] . .
5.9.3 [PerlinterpMinSpare .
5.9.4PerlinterpMaxSpare | . .
5.9.5PerlinterpMaxRequests __| .
5.9.6|Per||ntergScer . . .

5.10[Debug Directivs
5. 10 1|PerITrace |

5.12[Server Startup Options Retrig¢val
5.12.1[MODPERLDefine Optiop I
5. 13‘ Perl Interface to the Apache Configuration [Tree .
5.14] [Adjusting@IN¢ . .
5.14. 1[PERLSLIB andPERLLIB Environment Varlablgz
5.14.2[Modifying@INCon a Per-VirtualHokt. .
5.15| General Issues.
5.16 [Maintainels.
5.17 Author|s ..
|E§ache Server Configuration Customlzatlon in Pe]l .
6 [Apache Server Configuration Customization in Perl

6.1 | Description .

5.11[mod_perl Directives Argument Types and AIIowed Loclatlon .

61
61
61
61
61
61
61
61
62
62
62
62
62
62
62
62
62
62
63
63
63
63
63
63
63
63
63
64
64
64
64
64
65
65
66
69
70
70
70
71
71
71
71
72
73
73
74

15 Feb 2014

User Help

6.2 [Incentivds

6.3 | Creating and Using Custom Conflquratlon D|rect|ves .

6.3.1 |@d|rectlve |

6.3.1. l|nam

6.3.1.2
6.3.1.3|r
6.3.1.4
6.3.1.5
6.3.1.6]

func

reg overrlde | .
ar§s how |
errmsg | .

cmd datal

6.3.2 Reglsterlng the new dlrectl}/ . .
6.3.3[Directive Scoﬁe Definition Constants.

6.3.3.1
6.3.3.2
6.3.3.3

6.3.3.7
6.3.3.8]
6.3.3.9|

[Apache2::Const:OR_NONE | .
[Apache2::Const:OR_LIMIT _| .
[Apache2::Const:OR_OPTIONS |

6.3.3.4[Apache2::Const:OR_FILEINFO

6.3.3.5[Apache2::Const::OR_AUTHCFG _|

6.3.3.6[Apache2::Const::OR_INDEXES |
[Apache2::Const:OR_UNSET _| .

[Apache2::Const:ACCESS _CONF_] .

EacheZ::Const::RSRC CONF |

6.3.3.10A EacheZ::Const::EXEC ON READ |
6.3.3.11]A EacheZ::Const::OR ALL | . .
6.3.4| Directive Callback Subroutlne

6.3.5.1
6.3.5.2
6.3.5.3

6.3.5.9|

[Apache2::Const:: TAKE2 .

6.3.5.4[Apache2::Const:: TAKE3 .

6.3.5.5[Apache2::Const:TAKE12 |
6.3.5.6[Apache2::Const: TAKE23 |

6.3.5.7[Apache2::Const:TAKE123 |

6.3.5.8]

6.3.5| Directive Sintax Definition Constgnts.

(Apache2::Const::NO_ARGS |
AQacheZ :Const:: TAKE1

Agache2::Const::ITERATE

Apache2::Const::ITERATE2 | .

6.3.5.10/A EacheZ::Const::RAW ARGS |
6.3.5.11|Apache2::Const::FLAG | .

6.3.6 Enabling the New Configuration Directives .
6.3.7 Creating and Merging Configuration Ob]lects .
6.3.7. lmE
6.3.7.2[SERVER_MERGE
6.3.7.3 .

6.3.7.4

64|Exam§§

DIR_MERG

6.4. l| Merﬁm@ at Woik

6.4.1.1]
6.4.1.2]

Merging Entries Whose Values Are Refer nces
Merging Order Consequerjces

6.5 [Maintaineis
6.6 [Authork .

15 Feb 2014

Table of Contents:

74
74
76
7
7
7
78
78
78
79
79
79
79
79
80
80
80
80
80
80
80
80
81
82
82
82
82
82
83
83
83
83
83
84
85
85
85
86
87
87
88
88
88
94
95
96
96

Table of Contents:

[Writing mod_perl Handlers and Scripty .
7 | Wr| ting mod_perl Handlers and Scrlbts
DeSCI’IEIIOh .

7.2 Prerequisit¢s

7.3 [Where the Methods L||v
7.4 (Techniqugs

7.4.1[Method Handlgrs
7.4.2[Cleaningdp . .
7.5[Goodies ToolHit . . .

7.5.1[Environment Variables .

7.5.2[Threaded MPM or nﬂ)t? ..

7.5.3 Writin§ MPM- sﬁecific Coﬂ!e .

7.6 |Code Developing Nuanges .
7.6.1[Auto-Reloading Modified Modules Wlth Apache2 Relload

7.7 [Integration with Apache Isslies

7.7. l| HTTP Resﬁonse Heaﬂers . .
7.7.1.1] Generating HTTP Response Heﬂlders
7.7.1.2[Forcing HTTP Response Headerg Out
7.7.2[Sending HTTP Response Body . . .
7.7.3[Using Signal Handlgrs .

7.8 [Perl Specifics in the mot mmem
7.8.1[BEGIN Block .
7.8.2[CHECKandINIT _Blockg .

7.8.3 ENDBIock§ .
7.8.4[Requestlocalized GloBals
785Fxit |

7.9 [ModPerl::Registry Handlers Family .
7.9.1[A Look Behind the Sceties :
7.9.2[Getting thér Object . .

7.10 Iimperl
7.10.1[Thread-environment Isshes. .
7.10.2[Deploying Threalds :

7.10.3[Shared Variables
7.11[Maintainets.
7.12[Authork
8| Cooklng Recipds
Descngtlon
8.2 Sending Cookles in REDIRECT Resgonse gModPerI Reg;lstry)
8.3 [Sending Cookies in REDIRECT Response §han]jlers) .
8.4 | Sending Cookies Using Ilbaprqu .
8.5 Mamtameﬂs .
8.6 [Authork . .
[Porting Apache:: Perl Modules from mod Qerl 1 0 to 2. |o .
9 Porting Apache:: Perl Modules from mod_perl 1.0 ta 2. 0
9.1 [Description .
9. 2‘ ntroductioh .

Vi

97

97

o8

o8

98

98

o8

99
100
100
101
101
101
101
102
103
103
104
104
105
106
106
107
107
107
108
108
108
109
109
109
110
110
110
111
112
112
113
113
113
114
114
114
115
115
116
116

15 Feb 2014

User Help Table of Contents:

9.3 |UsingApache2::porting | . e 4
9.4 [Using théApache2::compat Layet . e 4
9.5|Porting a Perl Module to Run under mod Qeg‘l 2. 0 118
9.5.1[UsingMlodPerl::MethodLookup to Discover Which mod perl 2. O Modules Need tq Be
I £
9.5.1.1[Handling Methods Existing In More Than One Pagkage 119
9.5.1.2[UsindModPerl::MethodLooku Programmatically 119
9.5.1.3(Pre- Ioad|n§ All mod Eerl 2.0 Modi}les . .. 120
9.5. 2|Endlm—|c g Missin gamjl\/dencledmodpeHlOMGtNsteu’ldFWItlons .. 120
9.5.2.1[Methods that No Longer Ekist 120
9.5.2.2[Methods Whose Usage Has Been Moﬁilfled 2
9.5.3| Requiring a specific mod perl version. 121
9.5.4[Should the Module Name Be Changed? 122
9.5.5|UsincApache2::compat AsaTutorigl 122
9.5.6[HowApache::MP3 was Portedtomod perl20 122
9.5.6.1 Preparations.23
9.5.6.1.1pttpd.corff123
9.5.6.1.2startup.d. 124
9.5.6.1.3[Apache/MP3.pIn 124
9.5.6.2| Porting withpache2::compat | 126
9.5.6.3[Getting Rid of thApache2:.compat _Dependendy 132
9.5.6.4[Ensuring th&pache2::compat__is notloaded 132
9.5.6.5[Installing thdModPerl::MethodLookup _ Helpef 134
9.5.6.6[Adjusting the code to run under mod gert2 135
9.6 [Porting a Module to Run under both mod_per[2.0 and mod gerl 1.0 143
9.6.1| Making Code Conditional on Running mod_perl Vefsion 143
9.6.2| Method Handldrs . . e Y
9.7 [The Conflict of mp1 vs mp2 vs mp22 vS..vsmpNN 147
9.7.l| Distributofs l47
9.8[Maintainefs 148
9.9[Authork 148
[A Reference to mod_perl 1 0 to mod gerl 2 0 Mlgratlo e K¢
10 [A Reference to mod perl 1.0 to mod perl 2.0 Migration.. 149
10.1[Description. 150
10.2 [Configuration Files Portlhg P 510
10.2.1[PefHandler]150
10.2.2PerlSecript_ |150
10.2.3PefSendHeader |.15
10.2.4[PerlSetupEnv_|15
10.2.5[PerTaintCheck151
10.26Perwan].15
10.2.7|PerlFreshRestart | . . e X
10.2.8[$Apache::Server: StrlctPerISectlonsas
10.2. 93>Agache :Server::SaveConfig | e Ry
10.2.10| Apache Configuration Customization 152
10.2.11[@INCManipulatio. 152
10.3[ServerStartyp1k2

15 Feb 2014 vii

Table of Contents:

viii

10.4[Code Porting

10.5.1[ModPerl::RegistryLoader | .

10.6 [Apache::Constants

10.6.1| mod perl 1.0 and 2. 0 Constants CoeX|

10.6.2[Deprecated Consw@nts .
10.6.3|SERVER VERSION“
10.6.4[export() | .

10.7 [Issues with Enwronment Vana@les .

10.8 Sﬁeual Environment Varlaﬂles ..
10.8. 1m}

10. 9|E§ache Method}s .

10.9.1[Apache->request
10.9.2[Apache->define |

10.9.3|Apache->can_stack handlers | .

10.9.4[Apache->untaint | . .
10.9.5[Apache->get_handlers | .
10.9.6[Apache->push_handlers |
10.9.7[Apache->set_handlers | .
10.9.8[Apache->htipd_conf __| .
10.9.9[Apache->unescape_url_info |
10.9.10}Apache::exit() | .
10.9.11[Apache::gensym() | . .
10.9.12[Apache::log_error() | .
10.9.13[Apache->warn L
10.9.14|Apache::warn .
10.9.15|Apache::module() | .
10.10|Apache:: Variableg
10.10.1[Apache: T | . . .
10.11[Apache:Module:: Methods. . .
10.11.1}Apache::Module->top_module
10.11.2[Apache::Module->get_config
10.12[Apache:ModuleConfig:: ___ Methods.
10.12.1[Apache::ModuleConfig->get] .

10.5[Apache::Registry , Apache::PerlRun and Friends .

ence

10.13[Apache::Server:: Methods and Variables

10.13.1|$Apache::Server::CWD |

10.13.2|$Apache::Server::AddPerlVersion

152
153
153
153
154
155
155
155
155
156
156
156
156
158
158
158
158
159
159
160
160
160
160
160
161
161
161
161
161
161
161
161
161
161
162
162
162

AAlE

10.13.3|$Apache::Server::Starting

and$Apache::Server::ReStarting

| . 162

10.13.4|Apache::Server->warn
10.14[Server Object Methdds
10.14.1|$s- >reg|ster cleanup |
10.14. 2 bs>uid |
10.14.3[$s- >g|d .
10.15[Request Ob|ect Methbds .
10.15.1[$r->print |

10.15.2|$r->cqgi_env
10.15.3[$r->cqi var

i

Iltnlltnlltn

yara) | paray)

162
162
162
163
163
163
163
163
163

15 Feb 2014

User Help Table of Contents:

10.15.4{$r->current_callback e {7
10.15.5|%r->cleanup for execlo4
10.15.6{$r->get_remote host (. 164
10.15.7[r->content | 164
10.15.8{$r->args _in an Array Contekt (Y
10.15.9[$r->chdir_file1e65
10.15.10Br>s man_]165
10.15.11@r->flename 1. 165
10.15.12@r->finfo__ |165
10.15.13{$r->notes e X516
10.15.14{$r->header in | e X516
10.15.15{r->header out | 166
10.15.16[$r->err_header_out [. 1l66
10.15.17r->register cleanup | 167
10.15.18%r->post_connection __|. 167
10.15.19[r->request O X Y
10.15.20[$r->send_fd e x4
10.15.21[$r->send_http header |168
10.15.22[$r->server_root_relative [. 168
10.15.23¢r->hard_timeout __ |. 168
10.15.24$r->reset timeout | 168
10.15.25[r->soft_timeout __ |. 168
10.15.26[$r->kill_timeout ___ |. 168
10.15.27$r->set_byterange | 169
10.15.288r>each byterange] 169
10.16[Apache::Connection |169
10.16.1|$connection->auth_type169
10.16.2[fconnection->user | 169
10.16.3|$connection->local _addr Y 61°)
10.16.4{$connection->remote_addr [. 169
10.17[Apache::File | . e (¢
10.17.1jnew() , open() andclose() | T 4 0
10.17.2ftmpfile() . e 40
10.18[Apache::Util .
10.18.1}Apache::Util::size strlngg) O O 4
10.18.2‘ pache::Util::escape_uri() | e 4
10.18.3[Apache::Util::unescape_uri() P O §
10.18.4[Apache::Util::escape_htmi() T v 4 |
10.18.5[Apache::Util::parsedate() T I
10.18.6[Apache::Util::ht_time() T v 4 |
10.18.7[Apache::Util::validate_password() T Y 07
10.19[Apache::URI Y 74
10.19.1]Apache::URI- >parse($r [$ur|]) ! 172
10.19.2unparse() |172
10.20| Miscellaneols.73
10.20.1] Method Handlgrs 173
10.20.2| Stacked Handlgrs. 174

15 Feb 2014 ix

Table of Contents:

10.21|Apache::src |
10.22[Apache::Table
10.23[Apache::SIG | .
10.24[Apache - S@INC]
10.25[Maintainefs .
10.26| Authoﬂs ..
|ntroducm§ mod_perl Handlers| .
11| Introducing mod_perl Handlars
11.1| Description.
11.2|What are Handleg‘s'? .
11.3[Handler Return Valdes . . .
11.4[mod_perl Handlers Categofies .
11.5[Stacked Handlérs L
11.5.1M0I0 . .
11.5.2[RUN_FIRST
11.5.3RUN_ALL . . .
11.6 [Hook Ordering (Positidn)
11.7[Bucket Brigadgs . .
11.8[Maintainefs. .
11.9[Authork . .
|Server Life Czcle Handle@ .
12 | Server Life C che Hand@rs.
12.1 Descr@@n . .
12.2[Server Life Czcle

12.2. 1| Startup Phases Demonstratlon Mgdule .

12.2.2[PerlOpenLogsHandler | .
12.2. 3|PerIPostConf|§HandIer |
12.2.4[PerlChildInitHandler] .
12.2. 5[PerlChildExitHandler] .
12.3[Apache Command-line Comménds
12.4[mod per Starthp
12.4.1[Start Inmediately Restérts .
12.4.2[When Does perl Start To Run
12.4.3 Startuﬁ File. ..
12.4.4[Dealing with Restafts
12.5[Maintainefs.
12.6 [Authork

|Protoco| Handlerg

l3| Protocol Handleﬂs .
13.1 Descri@t@n .. .
13.2| Connection Cycle Ph .
13.2.1 PerIPreConnectlonHanﬂiIer .
13.2.2[PerlProcessConnectionHaridler.

13.2.2.1| Socket-based Protocol Moﬂiule

13.2.2.2[Bucket Brigades-based Protocol Madule

13. 3| Exam§§

13.3.1 Command Ser er

174
175
175
175
175
175
177
177
178
178
179
179
180
181
181
181
181
182
183
183
184
184
185
185
185
188
189
190
191
192
192
193
193
193
195
195
195
196
196
197
197
197
199
200
202
207
207

15 Feb 2014

User Help

13.4[CPAN Modulgs.
13.5[Maintainets.
13.6 [Authork
[HTTP Handlers] . .
14 [HTTP Handlers
14.1[Description. .
14.2|HTTP Request Handler Ske gton
14.3[HTTP Request Cycle Phgses

143.1
14.3.2
14.3.3
14.3.4
14.3.5
14.3.6
14.3.7
14.3.8
14.3.9

PerIPostReadReﬁuestHaﬂdler .
PerITransHandler. . .
PerlMaEToStoraQeHanﬂller
PerIHeaderParserHanbler .
PerllnltHandI]ar . .
PerIAccessHanQIer .
PerIAuthenHandler .
PerIAutthandI|er

PerlTiEeHand]er

14.3.10[PerlFixupHand] :
14.3. 1l| PerIResEonse an]jler
14.3. 12| PerILo§Han ..
14.3. 13| PerICIeanuEI— angle .
14.3.13. 1| Possible Cavaats
14. 4| Miscellaneous Issy Issjes .

14.4.1]
14.4.2

Handllng HEAD Reﬁuebts .

Content-Length Response Header

14.5| Misc Notg .
14.6 Extendmﬁ HTTP Proto}ol
14.7HTTP Status Coﬂes

14.7.1
14.7.2
14.7.3

HTTP 1.0 Status Cofles.
HTTP 1.1 Status Cofles.

Referencks.

14.8 [Maintainels.
14.9[Authork . .
|In§ut and Outﬁut Filters| .
15 | In§ut and Outﬁut Filtefs
15.1[Description. . .
15.2[Introducing Filtets .
15.3]1/0 Fllter|n§ Concea S

153.1
15.3.2]
15.3.3|
15.3.4

Two Methods for Mamﬁula’un@ Dh
HTTP Reﬁuest Versus Connection Fllters
Multiple Tnvocations of Filter Handlers

[BlockingCalls
15.4|mod perl Filters Declaration and Configurgtion .

15.4.1| Filter Priority Typés.

15.4.2[PerlinputFilterHandler | .
15.4.3|PerIOutputFiIterHandIer | .
15.4.4[PerlSetinputFilter | .

15 Feb 2014

Table of Contents:

212
212
212
213
213
214
214
214
215
217
219
220
225
226
227
230
232
233
235
237
239
242
243
243
243
244
244
244
245
246
247
247
247
248
248
249
249
252
252
252
253
257
259
259
259
260
261

Xi

Table of Contents:

15.4.5]
15.4.6]
15.4.7
15.4.8

PerlSetOutputFilter |
Adding OutputFilters Dinamrcally .
HTTP Request vs. Connection F||ters

Filter Initialization Phé}se

15.5[All-in-One Filte).
15.6 [Input Filteds.

15.6.1
15.6.2
15.6.3
15.6.4

Connection Input F|It rs.

HTTP Request Input Filtbrs. . .
Bucket Briﬁade-based In@ut Filkers .
Stream-oriented Input Filfers .

15.7 [Output Filtets

15.7.1

Connection Outﬁut FI|'[]3|’S

15.7.2

HTTP Request Output Fillers

15.7.

15.7.

2.1| Stream-oriented Outﬁut Filters ..
2.2| Bucket Br|§ade based Outﬁut Fllters

15. 8| Filter A Eﬁllcatloﬂs

15.8.1]
15.8.2

Handling Data Underrii
Setting the Content-Length Header in Request OutputIFllters

15.9[Filter Tips and Tricks

15.9.1]

AIterlng the Content-Type Response Héader

15. 10| iting Well-Behaving Filtefrs .
15.10. l Connection Filters over KeepAlive Connec ions

15.10.2[Adjusting HTTP Headgrs .
15.10.3[Otherissues
15.11 [Writing Efficient Filtefs.
15.12[CPAN Modulgs :
15.13[Maintainets
15.14[Authols . .
|Genera| Handlers Issu§s .
16 [General Handlers Issjes

16.1| Description.

16.2|Handlers L,ommunlcatlon

16.3‘Maintaineﬂs.)
16.4[Authork. . .

[Preventive Measures for Performance Enhancemg nt .
17 [Preventive Measures for Performance Enhancament

17.1 Descrlgtlgl .
17.2| Memorz Leakaﬁ;e

17.2.1[Proper Memor Pools U ge

17.3[Maintainets.
17.4[Authorsk . .
|Performance Considerations Under Drfferent MPM$.
18 [Performance Considerations Under Different MPMs

18.1[Description. .
18.2[Memory Requrremeﬂrts

18.2.1]

Memory Regwrements in Prefork MPM

18.2.2]

Memory Requirements in Threaded MPM

Xii

262
264
264
266
267
274
274
278
278
280
282
282
282
283
285
286
286
201
292
292
293
293
295
295
296
297
297
297
298
298
299
299
299
299
300
300
301
301
301
301
301
303
303
304
304
304
304

15 Feb 2014

User Help Table of Contents:
18.3 [Work with DataBases : : 305
18.3.1| Work with DataBases under Prefork MPM . 305
18.3.2[Work with DataBases under Threaded YIPM. 305
18.4 [Maintainels. 305
18.5[Authork 305
[Troubleshooting mod_perl problem$. . 306
19| Troubleshootin§ mod Eerl Eroblehws 306
19.1[Description. . L 307
19.2 Wb g and Installatipn. . . 307
19.2. 1| Cannot find -lgdbm / Ilqubm SO. 3 open falled No such f|Ie or dlrectory . 307
19.3 [Configuration and Starfup 307
19.3.1| Can’t locat@estFilter/in_str_consume. gm @INC l 307
19.3.2["mod perl.c” is not compatible with this version of Apache (found 20020628 need
p0020903). . 308
19.3.3[Server Hanglng at the Staftup 308
19.3.4 §28§No s@ace left on deglce .. 309
19.3.5 Se§mentation Fault when Usin§ DBI 310
19.3.6 <Perl> directive mlssm§ closm§| > 310
19.3.7[Invalid per-unknown PerlOption: ParseHeaders on HP UX 11 for PA}RISC 310
109. 4|:Lmtart . 310
19.4.1[Subroutines in <perl> sectlons under threadeg mpm . 310
19.4.2[Modules usin§calar::Util::weaken under threaded mgm 311
19.5[Code Parsing and Compilation . . e 311
19.5.1 Se§fault with read nocancel Back}race .. 311
19.5.2| Reqistry scripts fail to load with: Unrecognized character \XEF 311
19.6 [Runtime 312
19.6.1{ error Iog is FuII of Escaged \n \t |etc 312
19.6.2[Problems with Catching Signals. L 312
19.6.3| APR::Socket::recv: (11) Resource tem orarll unavailablg at.... . 312
19.6.4[APR:UUID->new Hanging . 312
19.6.5[Memory Leaks . . 312
19.6.6| C Libraries Don’t Se}é:EN\Entrles Set by PerI Cgld 313
19.6.7 Error about not fmdr@ﬁache Enwnh CGI.E@. 313
19.6.8[20014:Error string not specifiedlyet 313
19.6.9[(22)Invalid argument: core_output_filter: writing data to the network . 314
19.6. 10 undefined szmbol a@r table com@ress .. . 314
19.6.11[Variable Ex will not staz shareh at. .. 317
19.6.12[Sometimes it Works, Sometimes it Dogsn't. 317
19.6.12.1 An Easy Breaklin . Ce 317
19.6.12.2[Thinking mod dgi. . . 318
19.6.12.3[Regular Expression Menjory . . 319
19.7|Issues with APR Used Outside of mod |per| 319
19.8[Maintainefs. . 319
19.9 m 320
|User Helfj . 321
20[UserHelp . . 321
20 1n. 322

15 Feb 2014

Xiii

Table of Contents:

20.2[Reporting Problefns. . . Ce e 322
20.2.1[Wrong Apache/mod perl combln ion 322
20.2.2[Using the Wrong Compller 322
20.2.3[Before Posting a Regort . . L e22
20.2.4 Test with the Latest mod perl 2.0 Ve an 323
20.2.5[Use a Proper Subject 323
20.2.6[Send the Report Infijed. 323
20.2.7[Important Informatin 323
20.2.8[Problem Descripipn 324
20.2.9[make test__ Failure$. N
20.2.10[Resolving Segmentafion Faults32
20.2.11] Please Ask Only Questions Related to mod perl32

20.3[Help on Related Topjcs. 32

20.4[Maintainefs.32

20.5[Authors 32

Xiv 15 Feb 2014

	1€€Getting Your Feet Wet with mod_perl
	1.1€€Description
	1.2€€Installation
	1.3€€Configuration
	1.4€€Server Launch and Shutdown
	1.5€€Registry Scripts
	1.6€€Handler Modules
	1.7€€Troubleshooting
	1.8€€Maintainers
	1.9€€Authors

	2€€Overview of mod_perl 2.0
	2.1€€Description
	2.2€€Version Naming Conventions
	2.3€€Why mod_perl, The Next Generation
	2.4€€What's new in Apache 2.0
	2.5€€What's new in Perl 5.6.0 - 5.8.0
	2.6€€What's new in mod_perl 2.0
	2.6.1€€Threads Support
	2.6.2€€Thread-environment Issues
	2.6.3€€Perl Interface to the APR and Apache APIs

	2.7€€Integration with 2.0 Filtering
	2.7.1€€Other New Features
	2.7.2€€Optimizations

	2.8€€Maintainers
	2.9€€Authors

	3€€Notes on the design and goals of mod_perl-2.0
	3.1€€Description
	3.2€€Introduction
	3.3€€Interpreter Management
	3.3.1€€TIPool
	3.3.2€€Virtual Hosts
	3.3.3€€Further Enhancements

	3.4€€Hook Code and Callbacks
	3.5€€Perl interface to the Apache API and Data Structures
	3.5.1€€Advantages to generating XS code
	3.5.2€€Lvalue methods

	3.6€€Filter Hooks
	3.7€€Directive Handlers
	3.8€€<Perl> Configuration Sections
	3.9€€Protocol Module Support
	3.10€€mod_perl MPM
	3.11€€Build System
	3.12€€Test Framework
	3.13€€CGI Emulation
	3.14€€Apache2::* Library
	3.15€€Perl Enhancements
	3.15.1€€GvSHARED
	3.15.2€€Shared SvPVX
	3.15.3€€Compile-time method lookups
	3.15.4€€Memory management hooks
	3.15.5€€Opcode hooks

	3.16€€Maintainers
	3.17€€Authors

	4€€Installing mod_perl 2.0
	4.1€€Description
	4.2€€Prerequisites
	4.2.1€€Downloading Stable Release Sources
	4.2.2€€Getting Bleeding Edge Sources
	4.2.3€€Configuring and Installing Prerequisites
	4.2.3.1€€Perl
	4.2.3.2€€Apache

	4.3€€Installing mod_perl from Binary Packages
	4.4€€Installing mod_perl from Source
	4.4.1€€Downloading the mod_perl Source
	4.4.2€€Configuring mod_perl
	4.4.2.1€€Dynamic mod_perl
	4.4.2.2€€Static mod_perl

	4.4.3€€mod_perl Build Options
	4.4.3.1€€Boolean Build Options
	4.4.3.1.1€€MP_PROMPT_DEFAULT
	4.4.3.1.2€€MP_GENERATE_XS
	4.4.3.1.3€€MP_USE_DSO
	4.4.3.1.4€€MP_USE_STATIC
	4.4.3.1.5€€MP_STATIC_EXTS
	4.4.3.1.6€€MP_USE_GTOP
	4.4.3.1.7€€MP_COMPAT_1X
	4.4.3.1.8€€MP_DEBUG
	4.4.3.1.9€€MP_MAINTAINER
	4.4.3.1.10€€MP_TRACE

	4.4.3.2€€Non-Boolean Build Options
	4.4.3.2.1€€MP_APXS
	4.4.3.2.2€€MP_AP_CONFIGURE
	4.4.3.2.3€€MP_AP_PREFIX
	4.4.3.2.4€€MP_AP_DESTDIR
	4.4.3.2.5€€MP_APR_CONFIG
	4.4.3.2.6€€MP_CCOPTS
	4.4.3.2.7€€MP_OPTIONS_FILE
	4.4.3.2.8€€MP_APR_LIB

	4.4.3.3€€mod_perl-specific Compiler Options
	4.4.3.3.1€€-DMP_IOBUFSIZE

	4.4.3.4€€mod_perl Options File

	4.4.4€€Re-using Configure Options
	4.4.5€€Compiling mod_perl
	4.4.6€€Testing mod_perl
	4.4.7€€Installing mod_perl

	4.5€€If Something Goes Wrong
	4.6€€Maintainers
	4.7€€Authors

	5€€mod_perl 2.0 Server Configuration
	5.1€€Description
	5.2€€mod_perl configuration directives
	5.3€€Enabling mod_perl
	5.4€€Server Configuration Directives
	5.4.1€€<Perl> Sections
	5.4.2€€=pod, =over and =cut
	5.4.3€€PerlAddVar
	5.4.4€€PerlConfigRequire
	5.4.5€€PerlLoadModule
	5.4.6€€PerlModule
	5.4.7€€PerlOptions
	5.4.7.1€€Enable
	5.4.7.2€€Clone
	5.4.7.3€€InheritSwitches
	5.4.7.4€€Parent
	5.4.7.5€€Perl*Handler
	5.4.7.6€€AutoLoad
	5.4.7.7€€GlobalRequest
	5.4.7.8€€ParseHeaders
	5.4.7.9€€MergeHandlers
	5.4.7.10€€SetupEnv

	5.4.8€€PerlPassEnv
	5.4.9€€PerlPostConfigRequire
	5.4.10€€PerlRequire
	5.4.11€€PerlSetEnv
	5.4.12€€PerlSetVar
	5.4.13€€PerlSwitches
	5.4.14€€SetHandler
	5.4.14.1€€modperl
	5.4.14.2€€perl-script
	5.4.14.3€€Examples

	5.5€€Server Life Cycle Handlers Directives
	5.5.1€€PerlOpenLogsHandler
	5.5.2€€PerlPostConfigHandler
	5.5.3€€PerlChildInitHandler
	5.5.4€€PerlChildExitHandler

	5.6€€Protocol Handlers Directives
	5.6.1€€PerlPreConnectionHandler
	5.6.2€€PerlProcessConnectionHandler

	5.7€€Filter Handlers Directives
	5.7.1€€PerlInputFilterHandler
	5.7.2€€PerlOutputFilterHandler
	5.7.3€€PerlSetInputFilter
	5.7.4€€PerlSetOutputFilter

	5.8€€HTTP Protocol Handlers Directives
	5.8.1€€PerlPostReadRequestHandler
	5.8.2€€PerlTransHandler
	5.8.3€€PerlMapToStorageHandler
	5.8.4€€PerlInitHandler
	5.8.5€€PerlHeaderParserHandler
	5.8.6€€PerlAccessHandler
	5.8.7€€PerlAuthenHandler
	5.8.8€€PerlAuthzHandler
	5.8.9€€PerlTypeHandler
	5.8.10€€PerlFixupHandler
	5.8.11€€PerlResponseHandler
	5.8.12€€PerlLogHandler
	5.8.13€€PerlCleanupHandler

	5.9€€Threads Mode Specific Directives
	5.9.1€€PerlInterpStart
	5.9.2€€PerlInterpMax
	5.9.3€€PerlInterpMinSpare
	5.9.4€€PerlInterpMaxSpare
	5.9.5€€PerlInterpMaxRequests
	5.9.6€€PerlInterpScope

	5.10€€Debug Directives
	5.10.1€€PerlTrace

	5.11€€mod_perl Directives Argument Types and Allowed Location
	5.12€€Server Startup Options Retrieval
	5.12.1€€MODPERL2 Define Option

	5.13€€Perl Interface to the Apache Configuration Tree
	5.14€€Adjusting @INC
	5.14.1€€PERL5LIB and PERLLIB Environment Variables
	5.14.2€€Modifying @INC on a Per-VirtualHost

	5.15€€General Issues
	5.16€€Maintainers
	5.17€€Authors

	6€€Apache Server Configuration Customization in Perl
	6.1€€Description
	6.2€€Incentives
	6.3€€Creating and Using Custom Configuration Directives
	6.3.1€€@directives
	6.3.1.1€€name
	6.3.1.2€€func
	6.3.1.3€€req_override
	6.3.1.4€€args_how
	6.3.1.5€€errmsg
	6.3.1.6€€cmd_data

	6.3.2€€Registering the new directives
	6.3.3€€Directive Scope Definition Constants
	6.3.3.1€€Apache2::Const::OR_NONE
	6.3.3.2€€Apache2::Const::OR_LIMIT
	6.3.3.3€€Apache2::Const::OR_OPTIONS
	6.3.3.4€€Apache2::Const::OR_FILEINFO
	6.3.3.5€€Apache2::Const::OR_AUTHCFG
	6.3.3.6€€Apache2::Const::OR_INDEXES
	6.3.3.7€€Apache2::Const::OR_UNSET
	6.3.3.8€€Apache2::Const::ACCESS_CONF
	6.3.3.9€€Apache2::Const::RSRC_CONF
	6.3.3.10€€Apache2::Const::EXEC_ON_READ
	6.3.3.11€€Apache2::Const::OR_ALL

	6.3.4€€Directive Callback Subroutine
	6.3.5€€Directive Syntax Definition Constants
	6.3.5.1€€Apache2::Const::NO_ARGS
	6.3.5.2€€Apache2::Const::TAKE1
	6.3.5.3€€Apache2::Const::TAKE2
	6.3.5.4€€Apache2::Const::TAKE3
	6.3.5.5€€Apache2::Const::TAKE12
	6.3.5.6€€Apache2::Const::TAKE23
	6.3.5.7€€Apache2::Const::TAKE123
	6.3.5.8€€Apache2::Const::ITERATE
	6.3.5.9€€Apache2::Const::ITERATE2
	6.3.5.10€€Apache2::Const::RAW_ARGS
	6.3.5.11€€Apache2::Const::FLAG

	6.3.6€€Enabling the New Configuration Directives
	6.3.7€€Creating and Merging Configuration Objects
	6.3.7.1€€SERVER_CREATE
	6.3.7.2€€SERVER_MERGE
	6.3.7.3€€DIR_CREATE
	6.3.7.4€€DIR_MERGE

	6.4€€Examples
	6.4.1€€Merging at Work
	6.4.1.1€€Merging Entries Whose Values Are References
	6.4.1.2€€Merging Order Consequences

	6.5€€Maintainers
	6.6€€Authors

	7€€Writing mod_perl Handlers and Scripts
	7.1€€Description
	7.2€€Prerequisites
	7.3€€Where the Methods Live
	7.4€€Techniques
	7.4.1€€Method Handlers
	7.4.2€€Cleaning up

	7.5€€Goodies Toolkit
	7.5.1€€Environment Variables
	7.5.2€€Threaded MPM or not?
	7.5.3€€Writing MPM-specific Code

	7.6€€Code Developing Nuances
	7.6.1€€Auto-Reloading Modified Modules with Apache2::Reload

	7.7€€Integration with Apache Issues
	7.7.1€€HTTP Response Headers
	7.7.1.1€€Generating HTTP Response Headers
	7.7.1.2€€Forcing HTTP Response Headers Out

	7.7.2€€Sending HTTP Response Body
	7.7.3€€Using Signal Handlers

	7.8€€Perl Specifics in the mod_perl Environment
	7.8.1€€BEGIN Blocks
	7.8.2€€CHECK and INIT Blocks
	7.8.3€€END Blocks
	7.8.4€€Request-localized Globals
	7.8.5€€exit

	7.9€€ModPerl::Registry Handlers Family
	7.9.1€€A Look Behind the Scenes
	7.9.2€€Getting the $r Object

	7.10€€Threads Coding Issues Under mod_perl
	7.10.1€€Thread-environment Issues
	7.10.2€€Deploying Threads
	7.10.3€€Shared Variables

	7.11€€Maintainers
	7.12€€Authors

	8€€Cooking Recipes
	8.1€€Description
	8.2€€Sending Cookies in REDIRECT Response (ModPerl::Registry)
	8.3€€Sending Cookies in REDIRECT Response (handlers)
	8.4€€Sending Cookies Using libapreq2
	8.5€€Maintainers
	8.6€€Authors

	9€€Porting Apache:: Perl Modules from mod_perl 1.0 to 2.0
	9.1€€Description
	9.2€€Introduction
	9.3€€Using Apache2::porting
	9.4€€Using the Apache2::compat Layer
	9.5€€Porting a Perl Module to Run under mod_perl 2.0
	9.5.1€€Using ModPerl::MethodLookup to Discover Which mod_perl 2.0 Modules Need to Be Loaded
	9.5.1.1€€Handling Methods Existing In More Than One Package
	9.5.1.2€€Using ModPerl::MethodLookup Programmatically
	9.5.1.3€€Pre-loading All mod_perl 2.0 Modules

	9.5.2€€Handling Missing and Modified mod_perl 1.0 Methods and Functions
	9.5.2.1€€Methods that No Longer Exist
	9.5.2.2€€Methods Whose Usage Has Been Modified

	9.5.3€€Requiring a specific mod_perl version.
	9.5.4€€Should the Module Name Be Changed?
	9.5.5€€Using Apache2::compat As a Tutorial
	9.5.6€€How Apache::MP3 was Ported to mod_perl 2.0
	9.5.6.1€€Preparations
	9.5.6.1.1€€httpd.conf
	9.5.6.1.2€€startup.pl
	9.5.6.1.3€€Apache/MP3.pm

	9.5.6.2€€Porting with Apache2::compat
	9.5.6.3€€Getting Rid of the Apache2::compat Dependency
	9.5.6.4€€Ensuring that Apache2::compat is not loaded
	9.5.6.5€€Installing the ModPerl::MethodLookup Helper
	9.5.6.6€€Adjusting the code to run under mod_perl 2

	9.6€€Porting a Module to Run under both mod_perl 2.0 and mod_perl 1.0
	9.6.1€€Making Code Conditional on Running mod_perl Version
	9.6.2€€Method Handlers

	9.7€€The Conflict of mp1 vs mp2 vs mp22 vs ... vs mpNN
	9.7.1€€Distributors

	9.8€€Maintainers
	9.9€€Authors

	10€€A Reference to mod_perl 1.0 to mod_perl 2.0 Migration.
	10.1€€Description
	10.2€€Configuration Files Porting
	10.2.1€€PerlHandler
	10.2.2€€PerlScript
	10.2.3€€PerlSendHeader
	10.2.4€€PerlSetupEnv
	10.2.5€€PerlTaintCheck
	10.2.6€€PerlWarn
	10.2.7€€PerlFreshRestart
	10.2.8€€$Apache::Server::StrictPerlSections
	10.2.9€€$Apache::Server::SaveConfig
	10.2.10€€Apache Configuration Customization
	10.2.11€€@INC Manipulation

	10.3€€Server Startup
	10.4€€Code Porting
	10.5€€Apache::Registry, Apache::PerlRun and Friends
	10.5.1€€ModPerl::RegistryLoader

	10.6€€Apache::Constants
	10.6.1€€mod_perl 1.0 and 2.0 Constants Coexistence
	10.6.2€€Deprecated Constants
	10.6.3€€SERVER_VERSION()
	10.6.4€€export()

	10.7€€Issues with Environment Variables
	10.8€€Special Environment Variables
	10.8.1€€$ENV{GATEWAY_INTERFACE}

	10.9€€Apache:: Methods
	10.9.1€€Apache->request
	10.9.2€€Apache->define
	10.9.3€€Apache->can_stack_handlers
	10.9.4€€Apache->untaint
	10.9.5€€Apache->get_handlers
	10.9.6€€Apache->push_handlers
	10.9.7€€Apache->set_handlers
	10.9.8€€Apache->httpd_conf
	10.9.9€€Apache->unescape_url_info
	10.9.10€€Apache::exit()
	10.9.11€€Apache::gensym()
	10.9.12€€Apache::log_error()
	10.9.13€€Apache->warn
	10.9.14€€Apache::warn
	10.9.15€€Apache::module()

	10.10€€Apache:: Variables
	10.10.1€€$Apache::__T

	10.11€€Apache::Module:: Methods
	10.11.1€€Apache::Module->top_module
	10.11.2€€Apache::Module->get_config

	10.12€€Apache::ModuleConfig:: Methods
	10.12.1€€Apache::ModuleConfig->get

	10.13€€Apache::Server:: Methods and Variables
	10.13.1€€$Apache::Server::CWD
	10.13.2€€$Apache::Server::AddPerlVersion
	10.13.3€€$Apache::Server::Starting and $Apache::Server::ReStarting
	10.13.4€€Apache::Server->warn

	10.14€€Server Object Methods
	10.14.1€€$s->register_cleanup
	10.14.2€€$s->uid
	10.14.3€€$s->gid

	10.15€€Request Object Methods
	10.15.1€€$r->print
	10.15.2€€$r->cgi_env
	10.15.3€€$r->cgi_var
	10.15.4€€$r->current_callback
	10.15.5€€$r->cleanup_for_exec
	10.15.6€€$r->get_remote_host
	10.15.7€€$r->content
	10.15.8€€$r->args in an Array Context
	10.15.9€€$r->chdir_file
	10.15.10€€$r->is_main
	10.15.11€€$r->filename
	10.15.12€€$r->finfo
	10.15.13€€$r->notes
	10.15.14€€$r->header_in
	10.15.15€€$r->header_out
	10.15.16€€$r->err_header_out
	10.15.17€€$r->register_cleanup
	10.15.18€€$r->post_connection
	10.15.19€€$r->request
	10.15.20€€$r->send_fd
	10.15.21€€$r->send_http_header
	10.15.22€€$r->server_root_relative
	10.15.23€€$r->hard_timeout
	10.15.24€€$r->reset_timeout
	10.15.25€€$r->soft_timeout
	10.15.26€€$r->kill_timeout
	10.15.27€€$r->set_byterange
	10.15.28€€$r->each_byterange

	10.16€€Apache::Connection
	10.16.1€€$connection->auth_type
	10.16.2€€$connection->user
	10.16.3€€$connection->local_addr
	10.16.4€€$connection->remote_addr

	10.17€€Apache::File
	10.17.1€€new(), open() and close()
	10.17.2€€tmpfile()

	10.18€€Apache::Util
	10.18.1€€Apache::Util::size_string()
	10.18.2€€Apache::Util::escape_uri()
	10.18.3€€Apache::Util::unescape_uri()
	10.18.4€€Apache::Util::escape_html()
	10.18.5€€Apache::Util::parsedate()
	10.18.6€€Apache::Util::ht_time()
	10.18.7€€Apache::Util::validate_password()

	10.19€€Apache::URI
	10.19.1€€Apache::URI->parse($r, [$uri])
	10.19.2€€unparse()

	10.20€€Miscellaneous
	10.20.1€€Method Handlers
	10.20.2€€Stacked Handlers

	10.21€€Apache::src
	10.22€€Apache::Table
	10.23€€Apache::SIG
	10.24€€Apache::StatINC
	10.25€€Maintainers
	10.26€€Authors

	11€€Introducing mod_perl Handlers
	11.1€€Description
	11.2€€What are Handlers?
	11.3€€Handler Return Values
	11.4€€mod_perl Handlers Categories
	11.5€€Stacked Handlers
	11.5.1€€VOID
	11.5.2€€RUN_FIRST
	11.5.3€€RUN_ALL

	11.6€€Hook Ordering (Position)
	11.7€€Bucket Brigades
	11.8€€Maintainers
	11.9€€Authors

	12€€Server Life Cycle Handlers
	12.1€€Description
	12.2€€Server Life Cycle
	12.2.1€€Startup Phases Demonstration Module
	12.2.2€€PerlOpenLogsHandler
	12.2.3€€PerlPostConfigHandler
	12.2.4€€PerlChildInitHandler
	12.2.5€€PerlChildExitHandler

	12.3€€Apache Command-line Commands
	12.4€€mod_perl Startup
	12.4.1€€Start Immediately Restarts
	12.4.2€€When Does perl Start To Run
	12.4.3€€Startup File
	12.4.4€€Dealing with Restarts

	12.5€€Maintainers
	12.6€€Authors

	13€€Protocol Handlers
	13.1€€Description
	13.2€€Connection Cycle Phases
	13.2.1€€PerlPreConnectionHandler
	13.2.2€€PerlProcessConnectionHandler
	13.2.2.1€€Socket-based Protocol Module
	13.2.2.2€€Bucket Brigades-based Protocol Module

	13.3€€Examples
	13.3.1€€Command Server

	13.4€€CPAN Modules
	13.5€€Maintainers
	13.6€€Authors

	14€€HTTP Handlers
	14.1€€Description
	14.2€€HTTP Request Handler Skeleton
	14.3€€HTTP Request Cycle Phases
	14.3.1€€PerlPostReadRequestHandler
	14.3.2€€PerlTransHandler
	14.3.3€€PerlMapToStorageHandler
	14.3.4€€PerlHeaderParserHandler
	14.3.5€€PerlInitHandler
	14.3.6€€PerlAccessHandler
	14.3.7€€PerlAuthenHandler
	14.3.8€€PerlAuthzHandler
	14.3.9€€PerlTypeHandler
	14.3.10€€PerlFixupHandler
	14.3.11€€PerlResponseHandler
	14.3.12€€PerlLogHandler
	14.3.13€€PerlCleanupHandler
	14.3.13.1€€Possible Caveats

	14.4€€Miscellaneous Issues
	14.4.1€€Handling HEAD Requests
	14.4.2€€Content-Length Response Header

	14.5€€Misc Notes
	14.6€€Extending HTTP Protocol
	14.7€€HTTP Status Codes
	14.7.1€€HTTP 1.0 Status Codes
	14.7.2€€HTTP 1.1 Status Codes
	14.7.3€€References

	14.8€€Maintainers
	14.9€€Authors

	15€€Input and Output Filters
	15.1€€Description
	15.2€€Introducing Filters
	15.3€€I/O Filtering Concepts
	15.3.1€€Two Methods for Manipulating Data
	15.3.2€€HTTP Request Versus Connection Filters
	15.3.3€€Multiple Invocations of Filter Handlers
	15.3.4€€Blocking Calls

	15.4€€mod_perl Filters Declaration and Configuration
	15.4.1€€Filter Priority Types
	15.4.2€€PerlInputFilterHandler
	15.4.3€€PerlOutputFilterHandler
	15.4.4€€PerlSetInputFilter
	15.4.5€€PerlSetOutputFilter
	15.4.6€€Adding OutputFilters Dynamically
	15.4.7€€HTTP Request vs. Connection Filters
	15.4.8€€Filter Initialization Phase

	15.5€€All-in-One Filter
	15.6€€Input Filters
	15.6.1€€Connection Input Filters
	15.6.2€€HTTP Request Input Filters
	15.6.3€€Bucket Brigade-based Input Filters
	15.6.4€€Stream-oriented Input Filters

	15.7€€Output Filters
	15.7.1€€Connection Output Filters
	15.7.2€€HTTP Request Output Filters
	15.7.2.1€€Stream-oriented Output Filters
	15.7.2.2€€Bucket Brigade-based Output Filters

	15.8€€Filter Applications
	15.8.1€€Handling Data Underruns
	15.8.2€€Setting the Content-Length Header in Request Output Filters

	15.9€€Filter Tips and Tricks
	15.9.1€€Altering the Content-Type Response Header

	15.10€€Writing Well-Behaving Filters
	15.10.1€€Connection Filters over KeepAlive Connections
	15.10.2€€Adjusting HTTP Headers
	15.10.3€€Other issues

	15.11€€Writing Efficient Filters
	15.12€€CPAN Modules
	15.13€€Maintainers
	15.14€€Authors

	16€€General Handlers Issues
	16.1€€Description
	16.2€€Handlers Communication
	16.3€€Maintainers
	16.4€€Authors

	17€€Preventive Measures for Performance Enhancement
	17.1€€Description
	17.2€€Memory Leakage
	17.2.1€€Proper Memory Pools Usage

	17.3€€Maintainers
	17.4€€Authors

	18€€Performance Considerations Under Different MPMs
	18.1€€Description
	18.2€€Memory Requirements
	18.2.1€€Memory Requirements in Prefork MPM
	18.2.2€€Memory Requirements in Threaded MPM

	18.3€€Work with DataBases
	18.3.1€€Work with DataBases under Prefork MPM
	18.3.2€€Work with DataBases under Threaded MPM

	18.4€€Maintainers
	18.5€€Authors

	19€€Troubleshooting mod_perl problems
	19.1€€Description
	19.2€€Building and Installation
	19.2.1€€Cannot find -lgdbm / libgdbm.so.3: open failed: No such file or directory

	19.3€€Configuration and Startup
	19.3.1€€Can't locate TestFilter/in_str_consume.pm in @INC...
	19.3.2€€"mod_perl.c" is not compatible with this version of Apache (found 20020628, need 20020903)
	19.3.3€€Server Hanging at the Startup
	19.3.4€€(28)No space left on device
	19.3.5€€Segmentation Fault when Using DBI
	19.3.6€€<Perl> directive missing closing '>'
	19.3.7€€'Invalid per-unknown PerlOption: ParseHeaders' on HP-UX 11 for PA-RISC

	19.4€€Shutdown and Restart
	19.4.1€€Subroutines in <perl> sections under threaded mpm
	19.4.2€€Modules using Scalar::Util::weaken under threaded mpm

	19.5€€Code Parsing and Compilation
	19.5.1€€Segfault with __read_nocancel Backtrace
	19.5.2€€Registry scripts fail to load with: Unrecognized character \xEF at ...

	19.6€€Runtime
	19.6.1€€error_log is Full of Escaped \012, \011, etc.
	19.6.2€€Problems with Catching Signals
	19.6.3€€APR::Socket::recv: (11) Resource temporarily unavailable at ...
	19.6.4€€APR::UUID->new Hanging
	19.6.5€€Memory Leaks
	19.6.6€€C Libraries Don't See %ENV Entries Set by Perl Code
	19.6.7€€Error about not finding Apache.pm with CGI.pm
	19.6.8€€20014:Error string not specified yet
	19.6.9€€(22)Invalid argument: core_output_filter: writing data to the network
	19.6.10€€undefined symbol: apr_table_compress
	19.6.11€€Variable $x will not stay shared at
	19.6.12€€Sometimes it Works, Sometimes it Doesn't
	19.6.12.1€€An Easy Break-in
	19.6.12.2€€Thinking mod_cgi
	19.6.12.3€€Regular Expression Memory

	19.7€€Issues with APR Used Outside of mod_perl
	19.8€€Maintainers
	19.9€€Authors

	20€€User Help
	20.1€€Description
	20.2€€Reporting Problems
	20.2.1€€Wrong Apache/mod_perl combination
	20.2.2€€Using the Wrong Compiler
	20.2.3€€Before Posting a Report
	20.2.4€€Test with the Latest mod_perl 2.0 Version
	20.2.5€€Use a Proper Subject
	20.2.6€€Send the Report Inlined
	20.2.7€€Important Information
	20.2.8€€Problem Description
	20.2.9€€'make test' Failures
	20.2.10€€Resolving Segmentation Faults
	20.2.11€€Please Ask Only Questions Related to mod_perl

	20.3€€Help on Related Topics
	20.4€€Maintainers
	20.5€€Authors

