

1 Server Life Cycle Handlers

115 Feb 2014

1 Server Life Cycle HandlersServer Life Cycle Handlers

1.1 Description
This chapter discusses server life cycle and the mod_perl handlers participating in it.

1.2 Server Life Cycle
The following diagram depicts the Apache 2.0 server life cycle and highlights which handlers are available
to mod_perl 2.0:

server life cycle

Apache 2.0 starts by parsing the configuration file. After the configuration file is parsed, the PerlOpen-
LogsHandler handlers are executed if any. After that it’s a turn of PerlPostConfigHandler
handlers to be run. When the post_config phase is finished the server immediately restarts, to make sure
that it can survive graceful restarts after starting to serve the clients.

When the restart is completed, Apache 2.0 spawns the workers that will do the actual work. Depending on
the used MPM, these can be threads, processes or a mixture of both. For example the worker MPM
spawns a number of processes, each running a number of threads. When each child process is started
PerlChildInitHandler handlers are executed. Notice that they are run for each starting process, not
a thread.

From that moment on each working thread processes connections until it’s killed by the server or the
server is shutdown.

1.2.1 Startup Phases Demonstration Module

Let’s look at the following example that demonstrates all the startup phases:

 #file:MyApache2/StartupLog.pm
 #----------------------------
 package MyApache2::StartupLog;

 use strict;
 use warnings;

 use Apache2::Log ();
 use Apache2::ServerUtil ();

 use Fcntl qw(:flock);
 use File::Spec::Functions;

 use Apache2::Const -compile => ’OK’;

 my $log_path = catfile Apache2::ServerUtil::server_root,
 "logs", "startup_log";
 my $log_fh;

 sub open_logs {
 my ($conf_pool, $log_pool, $temp_pool, $s) = @_;

15 Feb 20142

1.1 Description

 $s->warn("opening the log file: $log_path");
 open $log_fh, ">>$log_path" or die "can’t open $log_path: $!";
 my $oldfh = select($log_fh); $| = 1; select($oldfh);

 say("process $$ is born to reproduce");
 return Apache2::Const::OK;
 }

 sub post_config {
 my ($conf_pool, $log_pool, $temp_pool, $s) = @_;
 say("configuration is completed");
 return Apache2::Const::OK;
 }

 sub child_init {
 my ($child_pool, $s) = @_;
 say("process $$ is born to serve");
 return Apache2::Const::OK;

 }

 sub child_exit {
 my ($child_pool, $s) = @_;
 say("process $$ now exits");
 return Apache2::Const::OK;
 }

 sub say {
 my ($caller) = (caller(1))[3] =~ /([^:]+)$/;
 if (defined $log_fh) {
 flock $log_fh, LOCK_EX;
 printf $log_fh "[%s] - %-11s: %s\n",
 scalar(localtime), $caller, $_[0];
 flock $log_fh, LOCK_UN;
 }
 else {
 # when the log file is not open
 warn __PACKAGE__ . " says: $_[0]\n";
 }
 }

 my $parent_pid = $$;
 END {
 my $msg = "process $$ is shutdown";
 $msg .= "\n". "-" x 20 if $$ == $parent_pid;
 say($msg);
 }

 1;

And the httpd.conf configuration section:

 <IfModule prefork.c>
 StartServers 4
 MinSpareServers 4
 MaxSpareServers 4

315 Feb 2014

1.2.1 Startup Phases Demonstration ModuleServer Life Cycle Handlers

 MaxClients 10
 MaxRequestsPerChild 0
 </IfModule>

 PerlModule MyApache2::StartupLog
 PerlOpenLogsHandler MyApache2::StartupLog::open_logs
 PerlPostConfigHandler MyApache2::StartupLog::post_config
 PerlChildInitHandler MyApache2::StartupLog::child_init
 PerlChildExitHandler MyApache2::StartupLog::child_exit

When we perform a server startup followed by a shutdown, the logs/startup_log is created if it didn’t exist
already (it shares the same directory with error_log and other standard log files), and each stage appends
to that file its log information. So when we perform:

 % bin/apachectl start && bin/apachectl stop

the following is getting logged to logs/startup_log:

 [Sun Jun 6 01:50:06 2004] - open_logs : process 24189 is born to reproduce
 [Sun Jun 6 01:50:06 2004] - post_config: configuration is completed
 [Sun Jun 6 01:50:07 2004] - END : process 24189 is shutdown

 [Sun Jun 6 01:50:08 2004] - open_logs : process 24190 is born to reproduce
 [Sun Jun 6 01:50:08 2004] - post_config: configuration is completed
 [Sun Jun 6 01:50:09 2004] - child_init : process 24192 is born to serve
 [Sun Jun 6 01:50:09 2004] - child_init : process 24193 is born to serve
 [Sun Jun 6 01:50:09 2004] - child_init : process 24194 is born to serve
 [Sun Jun 6 01:50:09 2004] - child_init : process 24195 is born to serve
 [Sun Jun 6 01:50:10 2004] - child_exit : process 24193 now exits
 [Sun Jun 6 01:50:10 2004] - END : process 24193 is shutdown
 [Sun Jun 6 01:50:10 2004] - child_exit : process 24194 now exits
 [Sun Jun 6 01:50:10 2004] - END : process 24194 is shutdown
 [Sun Jun 6 01:50:10 2004] - child_exit : process 24195 now exits
 [Sun Jun 6 01:50:10 2004] - child_exit : process 24192 now exits
 [Sun Jun 6 01:50:10 2004] - END : process 24192 is shutdown
 [Sun Jun 6 01:50:10 2004] - END : process 24195 is shutdown
 [Sun Jun 6 01:50:10 2004] - END : process 24190 is shutdown

First of all, we can clearly see that Apache always restart itself after the first post_config phase is over.
The logs show that the post_config phase is preceded by the open_logs phase. Only after Apache has
restarted itself and has completed the open_logs and post_config phase again, the child_init phase is run
for each child process. In our example we have had the setting StartServers=4 , therefore you can see
four child processes were started.

Finally you can see that on server shutdown, the child_exit phase is run for each child process and the END
{} block is executed by the parent process and each of the child processes. This is because that END block
was inherited from the parent on fork.

However the presented behavior varies from MPM to MPM. This demonstration was performed using
prefork mpm. Other MPMs like winnt, may run open_logs and post_config more than once. Also the END
blocks may be run more times, when threads are involved. You should be very careful when designing
features relying on the phases covered in this chapter if you plan support multiple MPMs. The only thing

15 Feb 20144

1.2.1 Startup Phases Demonstration Module

that’s sure is that you will have each of these phases run at least once.

Apache also specifies the pre_config phase, which is executed before the configuration files are parsed,
but this is of no use to mod_perl, because mod_perl is loaded only during the configuration phase.

Now let’s discuss each of the mentioned startup handlers and their implementation in the
MyApache2::StartupLog module in detail.

1.2.2 PerlOpenLogsHandler

The open_logs phase happens just before the post_config phase.

Handlers registered by PerlOpenLogsHandler are usually used for opening module-specific log files
(e.g., httpd core and mod_ssl open their log files during this phase).

At this stage the STDERR stream is not yet redirected to error_log, and therefore any messages to that
stream will be printed to the console the server is starting from (if such exists).

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV.

Arguments

The open_logs handler is passed four arguments: the configuration pool, the logging stream pool, the
temporary pool and the main server object.

The pool arguments are:

$conf_pool is the main process sub-pool, therefore its life-span is the same as the main process’s
one. The main process is a sub-pool of the global pool.

$log_pool is a global pool’s sub-pool, therefore its life-span is the same as the Apache program’s
one.

META: what is it good for if it lives the same life as conf pool?

$temp_pool is a $conf_pool subpool, created before the config phase, lives through the
open_logs phase and get destroyed after the post_config phase. So you will want to use that pool for
doing anything that can be discarded before the requests processing starts.

All three pool arguments are instances of APR::Pool .

$s is the base server object (an instance of Apache2::ServerRec).

Return

515 Feb 2014

1.2.2 PerlOpenLogsHandlerServer Life Cycle Handlers

The handler should return Apache2::Const::OK if it completes successfully.

Examples

 sub open_logs {
 my ($conf_pool, $log_pool, $temp_pool, $s) = @_;

 $s->warn("opening the log file: $log_path");
 open $log_fh, ">>$log_path" or die "can’t open $log_path: $!";
 my $oldfh = select($log_fh); $| = 1; select($oldfh);

 say("process $$ is born to reproduce");
 return Apache2::Const::OK;
 }

In our example the handler opens a log file for appending and sets the filehandle to unbuffered mode. It
then logs the fact that it’s running in the parent process.

As you’ve seen in the example this handler is configured by adding to the top level of httpd.conf:

 PerlOpenLogsHandler MyApache2::StartupLog::open_logs

This handler can be executed only by the main server. If you want to traverse the configured virtual hosts,
you can accomplish that using a simple loop. For example to print out the configured port numbers do:

 use Apache2::ServerRec ();
 # ...
 sub open_logs {
 my ($conf_pool, $log_pool, $temp_pool, $s) = @_;

 my $port = $s->port;
 warn "base port: $port\n";
 for (my $vs = $s->next; $vs; $vs = $vs->next) {
 my $port = $vs->port;
 warn "vhost port: $port\n";
 }
 return Apache2::Const::OK;
 }

1.2.3 PerlPostConfigHandler

The post_config phase happens right after Apache has processed the configuration files, before any child
processes were spawned (which happens at the child_init phase).

This phase can be used for initializing things to be shared between all child processes. You can do the
same in the startup file, but in the post_config phase you have an access to a complete configuration tree
(via Apache2::Directive).

This phase is of type RUN_ALL.

15 Feb 20146

1.2.3 PerlPostConfigHandler

The handler’s configuration scope is SRV.

Arguments

Arguments are exactly as for PerlOpenLogsHandler .

Return

If the handler completes successfully it should return Apache2::Const::OK .

Examples

In our MyApache2::StartupLog example we used the post_config() handler:

 sub post_config {
 my ($conf_pool, $log_pool, $temp_pool, $s) = @_;
 say("configuration is completed");
 return Apache2::Const::OK;
 }

As you can see, its arguments are identical to the open_logs phase’s handler. In this example handler we
don’t do much, but logging that the configuration was completed and returning right away.

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlPostConfigHandler MyApache2::StartupLog::post_config

Everything that applies to PerlOpenLogsHandler identically applies to this handler.

The add_version_component() includes another useful example.

1.2.4 PerlChildInitHandler

The child_init phase happens immediately after the child process is spawned. Each child process (not a
thread!) will run the hooks of this phase only once in their life-time.

In the prefork MPM this phase is useful for initializing any data structures which should be private to each
process. For example Apache::DBI pre-opens database connections during this phase and
Apache2::Resource sets the process’ resources limits.

This phase is of type VOID.

The handler’s configuration scope is SRV.

Arguments

The child_init() handler is passed two arguments: the child process pool (APR::Pool) and the server
object (Apache2::ServerRec).

715 Feb 2014

1.2.4 PerlChildInitHandlerServer Life Cycle Handlers

Return

If the handler completes successfully it should return Apache2::Const::OK .

Examples

In our MyApache2::StartupLog example we used the child_init() handler:

 sub child_init {
 my ($child_pool, $s) = @_;
 say("process $$ is born to serve");
 return Apache2::Const::OK;
 }

The example handler logs the pid of the child process it’s run in and returns.

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlChildInitHandler MyApache2::StartupLog::child_init

1.2.5 PerlChildExitHandler

Opposite to the child_init phase, the child_exit phase is executed before the child process exits. Notice that
it happens only when the process exits, not the thread (assuming that you are using a threaded mpm).

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV.

Arguments

The child_exit() handler accepts two arguments: the child process pool (APR::Pool) and the server
object (Apache2::ServerRec).

Return

If the handler completes successfully it should return Apache2::Const::OK .

Examples

In our MyApache2::StartupLog example we used the child_exit() handler:

 sub child_exit {
 my ($child_pool, $s) = @_;
 say("process $$ now exits");
 return Apache2::Const::OK;
 }

The example handler logs the pid of the child process it’s run in and returns.

15 Feb 20148

1.2.5 PerlChildExitHandler

As you’ve seen in the example this handler is configured by adding to httpd.conf:

 PerlChildExitHandler MyApache2::StartupLog::child_exit

1.3 Apache Command-line Commands
Some notes on how Apache start/restart Apache commands affect mod_perl.

META: not sure this is the best place for this section, but start some notes here.

Apache re-parses httpd.conf at least once for each of the following commands (and will run any mod_perl
code found in it).

httpd -k start

No special issues here.

Apache start and immediately restarts itself.

httpd -k restart

This will abort any processed requests and restart the server.

All kind of problems could be encountered here, including segfaults and other kind of crashes. This is
because when the SIGTERM signal is sent, things in process will be aborted.

Avoid using this method.

Alternatively httpd -k restart can be executed kill -HUP HTTPD_PID .

httpd -k graceful

No issues here. Apache starts and restarts itself just like with start , but it waits for the existing
requests to finish before killing them.

Alternatively httpd -k graceful can be executed kill -USR1 HTTPD_PID .

httpd -k stop

Similarly to httpd -k restart you may encounter all kind of issues here, due to the SIGTERM
signal.

1.4 mod_perl Startup
The following sections discuss the specifics of the mod_perl startup.

915 Feb 2014

1.3 Apache Command-line CommandsServer Life Cycle Handlers

1.4.1 Start Immediately Restarts

As explained in the Server Life Cycle section, on start Apache normally runs the server configuration
phase, followed by PerlOpenLogsHandler and PerlPostConfigHandler phases, then immedi-
ately restarts itself. Therefore everything running at the server startup is executed twice. During the restart,
Perl is completely destroyed and started again.

1.4.2 When Does perl Start To Run

If Apache is started as ’httpd -t’ (equivalent to ’apachectl configtest’) or as ’httpd
-S’ , it will run only the configuration phase and exit. Depending on your configuration file, it may or
may not start perl. See the details below.

During the normal startup, mod_perl 2.0 postpones the startup of perl until after the configuration phase is
over, to allow the usage of the PerlSwitches directive, which can’t be used after Perl is started.

After the configuration phase is over, as the very first thing during the post_config phase , mod_perl
starts perl and runs any registered PerlRequire and PerlModule entries.

At the very end of the post_config phase any registrered PerlPostConfigRequire entries are
run.

When any of the following configuration directives is encountered (during the configuration phase)
mod_perl 2.0 is forced to start as soon as they are encountered (as these options require a running perl):

PerlLoadModule

<Perl> section

PerlConfigRequire

Therefore if you want to trigger an early Perl startup, you could add an empty <Perl> section in
httpd.conf:

 <Perl>
 # trigger an early Perl startup
 </Perl>

right after loading the mod_perl module, if you are using DSO, or just before your mod_perl configuration
section, if you’re using a static mod_perl build. But most likely you want to use the PerlConfigRe-
quire instead.

1.4.3 Startup File

A startup file with Perl code to be executed at the server startup can be loaded using PerlPostConfi-
gRequire . For example:

15 Feb 201410

1.4.1 Start Immediately Restarts

 PerlPostConfigRequire /home/httpd/perl/lib/startup.pl

It’s used to adjust Perl modules search paths in @INC, pre-load commonly used modules, pre-compile
constants, etc. Here is a typical startup.pl for mod_perl 2.0:

 #file:startup.pl
 #---------------

 use lib qw(/home/httpd/perl);

 # enable if the mod_perl 1.0 compatibility is needed
 # use Apache2::compat ();

 # preload all mp2 modules
 # use ModPerl::MethodLookup;
 # ModPerl::MethodLookup::preload_all_modules();

 use ModPerl::Util (); #for CORE::GLOBAL::exit

 use Apache2::RequestRec ();
 use Apache2::RequestIO ();
 use Apache2::RequestUtil ();

 use Apache2::ServerRec ();
 use Apache2::ServerUtil ();
 use Apache2::Connection ();
 use Apache2::Log ();

 use APR::Table ();

 use ModPerl::Registry ();

 use Apache2::Const -compile => ’:common’;
 use APR::Const -compile => ’:common’;

 1;

In this file @INC in adjusted to include non-standard directories with Perl modules:

 use lib qw(/home/httpd/perl);

If you need to use the backwards compatibility layer load:

 use Apache2::compat ();

Next we preload the commonly used mod_perl 2.0 modules and precompile common constants.

Finally as usual the startup.pl file must be terminated with 1; .

1115 Feb 2014

1.4.3 Startup FileServer Life Cycle Handlers

1.4.4 Dealing with Restarts

Ideally the code running at the server startup shouldn’t be affected by the apache restart. If however this is
not the case, you can use Apache2::ServerUtil::restart_count .

1.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

1.6 Authors

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201412

1.5 Maintainers

http://stason.org/

Table of Contents:
................ 11 Server Life Cycle Handlers
................... 21.1 Description
................. 21.2 Server Life Cycle
............ 21.2.1 Startup Phases Demonstration Module
.............. 51.2.2 PerlOpenLogsHandler
............. 61.2.3 PerlPostConfigHandler
............. 71.2.4 PerlChildInitHandler
............. 81.2.5 PerlChildExitHandler
............. 91.3 Apache Command-line Commands
................. 91.4 mod_perl Startup
.............. 101.4.1 Start Immediately Restarts
.............. 101.4.2 When Does perl Start To Run
.................. 101.4.3 Startup File
............... 121.4.4 Dealing with Restarts
.................. 121.5 Maintainers
................... 121.6 Authors

i15 Feb 2014

Table of Contents:Server Life Cycle Handlers

	1€€Server Life Cycle Handlers
	1.1€€Description
	1.2€€Server Life Cycle
	1.2.1€€Startup Phases Demonstration Module
	1.2.2€€PerlOpenLogsHandler
	1.2.3€€PerlPostConfigHandler
	1.2.4€€PerlChildInitHandler
	1.2.5€€PerlChildExitHandler

	1.3€€Apache Command-line Commands
	1.4€€mod_perl Startup
	1.4.1€€Start Immediately Restarts
	1.4.2€€When Does perl Start To Run
	1.4.3€€Startup File
	1.4.4€€Dealing with Restarts

	1.5€€Maintainers
	1.6€€Authors

