

1 HTTP Handlers

115 Feb 2014

1 HTTP HandlersHTTP Handlers

1.1 Description
This chapter explains how to implement the HTTP protocol handlers in mod_perl.

1.2 HTTP Request Handler Skeleton
All HTTP Request handlers have the following structure:

 package MyApache2::MyHandlerName;

 # load modules that are going to be used
 use ...;

 # compile (or import) constants
 use Apache2::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 # handler code comes here

 return Apache2::Const::OK; # or another status constant
 }
 1;

First, the package is declared. Next, the modules that are going to be used are loaded and constants
compiled.

The handler itself coming next and usually it receives the only argument: the Apache2::RequestRec
object. If the handler is declared as a method handler :

 sub handler : method {
 my ($class, $r) = @_;

the handler receives two arguments: the class name and the Apache2::RequestRec object.

The handler ends with a return code and the file is ended with 1; to return true when it gets loaded.

1.3 HTTP Request Cycle Phases
Those familiar with mod_perl 1.0 will find the HTTP request cycle in mod_perl 2.0 to be almost identical
to the mod_perl 1.0’s model. The different things are:

a new directive PerlMapToStorageHandler was added to match the new phase
map_to_storage added by Apache 2.0.

the PerlHandler directive has been renamed to PerlResponseHandler to better match the
corresponding Apache phase name (response).

15 Feb 20142

1.1 Description

the response phase now includes filtering.

The following diagram depicts the HTTP request life cycle and highlights which handlers are available to
mod_perl 2.0:

HTTP cycle

From the diagram it can be seen that an HTTP request is processed by 12 phases, executed in the follow-
ing order:

1. PerlPostReadRequestHandler (PerlInitHandler)
2. PerlTransHandler
3. PerlMapToStorageHandler
4. PerlHeaderParserHandler (PerlInitHandler)
5. PerlAccessHandler
6. PerlAuthenHandler
7. PerlAuthzHandler
8. PerlTypeHandler
9. PerlFixupHandler

10. PerlResponseHandler
11. PerlLogHandler
12. PerlCleanupHandler

It’s possible that the cycle will not be completed if any of the phases terminates it, usually when an error
happens. In that case Apache skips to the logging phase (mod_perl executes all registered PerlLogHan-
dler handlers) and finally the cleanup phase happens.

Notice that when the response handler is reading the input data it can be filtered through request input
filters, which are preceded by connection input filters if any. Similarly the generated response is first run
through request output filters and eventually through connection output filters before it’s sent to the client.
We will talk about filters in detail later in the dedicated to filters chapter.

Before discussing each handler in detail remember that if you use the stacked handlers feature all handlers
in the chain will be run as long as they return Apache2::Const::OK or
Apache2::Const::DECLINED . Because stacked handlers is a special case. So don’t be surprised if
you’ve returned Apache2::Const::OK and the next handler was still executed. This is a feature, not a
bug.

Now let’s discuss each of the mentioned handlers in detail.

1.3.1 PerlPostReadRequestHandler

The post_read_request phase is the first request phase and happens immediately after the request has been
read and HTTP headers were parsed.

315 Feb 2014

1.3.1 PerlPostReadRequestHandlerHTTP Handlers

This phase is usually used to do processing that must happen once per request. For example
Apache2::Reload is usually invoked at this phase to reload modified Perl modules.

This phase is of type RUN_ALL.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

Now, let’s look at an example. Consider the following registry script:

 #file:touch.pl
 #-------------
 use strict;
 use warnings;

 use Apache2::ServerUtil ();
 use Apache2::RequestIO ();
 use File::Spec::Functions qw(catfile);

 my $r = shift;
 $r->content_type(’text/plain’);

 my $conf_file = catfile Apache2::ServerUtil::server_root,
 "conf", "httpd.conf";

 printf "$conf_file is %0.2f minutes old\n", 60*24*(-M $conf_file);

This registry script is supposed to print when the last time httpd.conf has been modified, compared to the
start of the request process time. If you run this script several times you might be surprised that it reports
the same value all the time. Unless the request happens to be served by a recently started child process
which will then report a different value. But most of the time the value won’t be reported correctly.

This happens because the -M operator reports the difference between file’s modification time and the
value of a special Perl variable $^T . When we run scripts from the command line, this variable is always
set to the time when the script gets invoked. Under mod_perl this variable is getting preset once when the
child process starts and doesn’t change since then, so all requests see the same time, when operators like
-M, -C and -A are used.

Armed with this knowledge, in order to make our code behave similarly to the command line programs we
need to reset $^T to the request’s start time, before -M is used. We can change the script itself, but what if
we need to do the same change for several other scripts and handlers? A simple PerlPostRead-

15 Feb 20144

1.3.1 PerlPostReadRequestHandler

RequestHandler handler, which will be executed as the very first thing of each requests, comes handy
here:

 #file:MyApache2/TimeReset.pm
 #--------------------------
 package MyApache2::TimeReset;

 use strict;
 use warnings;

 use Apache2::RequestRec ();

 use Apache2::Const -compile => ’OK’;

 sub handler {
 my $r = shift;
 $^T = $r->request_time;
 return Apache2::Const::OK;
 }
 1;

We could do:

 $^T = time();

But to make things more efficient we use $r->request_time since the request object $r already
stores the request’s start time, so we get it without performing an additional system call.

To enable it just add to httpd.conf:

 PerlPostReadRequestHandler MyApache2::TimeReset

either to the global section, or to the <VirtualHost> section if you want this handler to be run only for
a specific virtual host.

1.3.2 PerlTransHandler

The translate phase is used to perform the manipulation of a request’s URI. If no custom handler is
provided, the server’s standard translation rules (e.g., Alias directives, mod_rewrite, etc.) will be used. A
PerlTransHandler handler can alter the default translation mechanism or completely override it. This
is also a good place to register new handlers for the following phases based on the URI. PerlMap-
ToStorageHandler is to be used to override the URI to filename translation.

This phase is of type RUN_FIRST.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

Arguments

515 Feb 2014

1.3.2 PerlTransHandlerHTTP Handlers

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

There are many useful things that can be performed at this stage. Let’s look at the example handler that
rewrites request URIs, similar to what mod_rewrite does. For example, if your web-site was originally
made of static pages, and now you have moved to a dynamic page generation chances are that you don’t
want to change the old URIs, because you don’t want to break links for those who link to your site. If the
URI:

 http://example.com/news/20021031/09/index.html

is now handled by:

 http://example.com/perl/news.pl?date=20021031;id=09;page=index.html

the following handler can do the rewriting work transparent to news.pl, so you can still use the former URI
mapping:

 #file:MyApache2/RewriteURI.pm
 #---------------------------
 package MyApache2::RewriteURI;

 use strict;
 use warnings;

 use Apache2::RequestRec ();

 use Apache2::Const -compile => qw(DECLINED);

 sub handler {
 my $r = shift;

 my ($date, $id, $page) = $r->uri =~ m|^/news/(\d+)/(\d+)/(.*)|;
 $r->uri("/perl/news.pl");
 $r->args("date=$date;id=$id;page=$page");

 return Apache2::Const::DECLINED;
 }
 1;

The handler matches the URI and assigns a new URI via $r->uri() and the query string via
$r->args() . It then returns Apache2::Const::DECLINED , so the next translation handler will get
invoked, if more rewrites and translations are needed.

Of course if you need to do a more complicated rewriting, this handler can be easily adjusted to do so.

15 Feb 20146

1.3.2 PerlTransHandler

To configure this module simply add to httpd.conf:

 PerlTransHandler +MyApache2::RewriteURI

1.3.3 PerlMapToStorageHandler

The map_to_storage phase is used to perform the translation of a request’s URI into a corresponding file-
name. If no custom handler is provided, the server will try to walk the filesystem trying to find what file or
directory corresponds to the request’s URI. Since usually mod_perl handler don’t have corresponding files
on the filesystem, you will want to shortcut this phase and save quite a few CPU cycles.

This phase is of type RUN_FIRST.

The handler’s configuration scope is SRV, because at this phase the request has not yet been associated
with a particular filename or directory.

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

For example if you don’t want Apache to try to attempt to translate URI into a filename, just add a
handler:

 PerlMapToStorageHandler MyApache2::NoTranslation

using the following code:

 #file:MyApache2/NoTranslation.pm
 #------------------------------
 package MyApache2::NoTranslation;

 use strict;
 use warnings FATAL => ’all’;

 use Apache2::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 # skip ap_directory_walk stat() calls
 return Apache2::Const::OK;
 }
 1;

715 Feb 2014

1.3.3 PerlMapToStorageHandlerHTTP Handlers

But this can be done from httpd.conf too!

 PerlMapToStorageHandler Apache2::Const::OK

If you haven’t already compiled Apache2::Const::OK elsewhere, you should add:

 <Perl>
 use Apache2::Const -compile => qw(OK);
 </Perl>

Apache also uses this phase to handle TRACE requests. So if you shortcut it, TRACE calls will be not
handled. In case you need to handle such, you may rewrite it as:

 #file:MyApache2/NoTranslation2.pm
 #-------------------------------
 package MyApache2::NoTranslation2;

 use strict;
 use warnings FATAL => ’all’;

 use Apache2::RequestRec ();

 use Apache2::Const -compile => qw(DECLINED OK M_TRACE);

 sub handler {
 my $r = shift;

 return Apache2::Const::DECLINED
 if $r->method_number == Apache2::Const::M_TRACE;

 # skip ap_directory_walk stat() calls
 return Apache2::Const::OK;
 }
 1;

BTW, the HTTP TRACE method asks a web server to echo the contents of the request back to the client
for debugging purposes. i.e., the complete request, including HTTP headers, is returned in the entity-body
of a TRACE response. Attackers may abuse HTTP TRACE functionality to gain access to information in
HTTP headers such as cookies and authentication data. In the presence of other cross-domain vulnerabili-
ties in web browsers, sensitive header information could be read from any domains that support the HTTP
TRACE method.

Another way to prevent the core translation is to set $r->filename() to some value, which can also be
done in the PerlTransHandler , if you are already using it.

1.3.4 PerlHeaderParserHandler

The header_parser phase is the first phase to happen after the request has been mapped to its <Loca-
tion> (or an equivalent container). At this phase the handler can examine the request headers and to take
a special action based on these. For example this phase can be used to block evil clients targeting certain
resources, while little resources were wasted so far.

15 Feb 20148

1.3.4 PerlHeaderParserHandler

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

This phase is very similar to PerlPostReadRequestHandler , with the only difference that it’s run
after the request has been mapped to the resource. Both phases are useful for doing something once per
request, as early as possible. And usually you can take any PerlPostReadRequestHandler and
turn it into PerlHeaderParserHandler by simply changing the directive name in httpd.conf and
moving it inside the container where it should be executed. Moreover, because of this similarity mod_perl
provides a special directive PerlInitHandler which if found outside resource containers behaves as
PerlPostReadRequestHandler , otherwise as PerlHeaderParserHandler .

You already know that Apache handles the HEAD, GET, POST and several other HTTP methods. But did
you know that you can invent your own HTTP method as long as there is a client that supports it. If you
think of emails, they are very similar to HTTP messages: they have a set of headers and a body, sometimes
a multi-part body. Therefore we can develop a handler that extends HTTP by adding a support for the
EMAIL method. We can enable this protocol extension and push the real content handler during the
PerlHeaderParserHandler phase:

 <Location /email>
 PerlHeaderParserHandler MyApache2::SendEmail
 </Location>

and here is the MyApache2::SendEmail handler:

 #file:MyApache2/SendEmail.pm
 #--------------------------
 package MyApache2::SendEmail;

 use strict;
 use warnings;

 use Apache2::RequestRec ();
 use Apache2::RequestIO ();
 use Apache2::RequestUtil ();
 use Apache2::ServerUtil ();
 use Apache2::ServerRec ();
 use Apache2::Process ();
 use APR::Table ();

 use Apache2::Const -compile => qw(DECLINED OK);

915 Feb 2014

1.3.4 PerlHeaderParserHandlerHTTP Handlers

 use constant METHOD => ’EMAIL’;
 use constant SMTP_HOSTNAME => "localhost";

 sub handler {
 my $r = shift;

 return Apache2::Const::DECLINED unless $r->method eq METHOD;

 $r->server->method_register(METHOD);
 $r->handler("perl-script");
 $r->push_handlers(PerlResponseHandler => \&send_email_handler);

 return Apache2::Const::OK;
 }

 sub send_email_handler {
 my $r = shift;

 my %headers = map {$_ => $r->headers_in->get($_)}
 qw(To From Subject);

 my $content = content($r);

 my $status = send_email(\%headers, \$content);

 $r->content_type(’text/plain’);
 $r->print($status ? "ACK" : "NACK");
 return Apache2::Const::OK;
 }

 sub send_email {
 my ($rh_headers, $r_body) = @_;

 require MIME::Lite;
 MIME::Lite->send("smtp", SMTP_HOSTNAME, Timeout => 60);

 my $msg = MIME::Lite->new(%$rh_headers, Data => $$r_body);
 #warn $msg->as_string;
 $msg->send;
 }

 use APR::Brigade ();
 use APR::Bucket ();

 use Apache2::Const -compile => qw(MODE_READBYTES);
 use APR::Const -compile => qw(SUCCESS BLOCK_READ);

 use constant IOBUFSIZE => 8192;

 sub content {
 my $r = shift;

 my $bb = APR::Brigade->new($r->pool, $r->connection->bucket_alloc);

 my $data = ’’;
 my $seen_eos = 0;
 do {

15 Feb 201410

1.3.4 PerlHeaderParserHandler

 $r->input_filters->get_brigade($bb,
 Apache2::Const::MODE_READBYTES,
 APR::Const::BLOCK_READ, IOBUFSIZE);

 for (my $b = $bb->first; $b; $b = $bb->next($b)) {
 if ($b->is_eos) {

 $seen_eos++;
 last;
 }

 if ($b->read(my $buf)) {
 $data .= $buf;
 }

 $b->remove; # optimization to reuse memory
 }
 } while (!$seen_eos);

 $bb->destroy;

 return $data;
 }

 1;

Let’s get the less interesting code out of the way. The function content() grabs the request body. The func-
tion send_email() sends the email over SMTP. You should adjust the constant SMTP_HOSTNAME to point
to your outgoing SMTP server. You can replace this function with your own if you prefer to use a different
method to send email.

Now to the more interesting functions. The function handler() returns immediately and passes the
control to the next handler if the request method is not equal to EMAIL (set in the METHOD constant):

 return Apache2::Const::DECLINED unless $r->method eq METHOD;

Next it tells Apache that this new method is a valid one and that the perl-script handler will do the
processing.

 $r->server->method_register(METHOD);
 $r->handler("perl-script");

Finally it pushes the function send_email_handler() to the PerlResponseHandler list of
handlers:

 $r->push_handlers(PerlResponseHandler => \&send_email_handler);

The function terminates the header_parser phase by:

 return Apache2::Const::OK;

1115 Feb 2014

1.3.4 PerlHeaderParserHandlerHTTP Handlers

All other phases run as usual, so you can reuse any HTTP protocol hooks, such as authentication and fixup
phases.

When the response phase starts send_email_handler() is invoked, assuming that no other response
handlers were inserted before it. The response handler consists of three parts. Retrieve the email headers
To, From and Subject , and the body of the message:

 my %headers = map {$_ => $r->headers_in->get($_)}
 qw(To From Subject);
 my $content = $r->content;

Then send the email:

 my $status = send_email(\%headers, \$content);

Finally return to the client a simple response acknowledging that email has been sent and finish the
response phase by returning Apache2::Const::OK :

 $r->content_type(’text/plain’);
 $r->print($status ? "ACK" : "NACK");
 return Apache2::Const::OK;

Of course you will want to add extra validations if you want to use this code in production. This is just a
proof of concept implementation.

As already mentioned when you extend an HTTP protocol you need to have a client that knows how to use
the extension. So here is a simple client that uses LWP::UserAgent to issue an EMAIL method request
over HTTP protocol:

 #file:send_http_email.pl
 #-----------------------
 #!/usr/bin/perl

 use strict;
 use warnings;

 require LWP::UserAgent;

 my $url = "http://localhost:8000/email/";

 my %headers = (
 From => ’example@example.com’,
 To => ’example@example.com’,
 Subject => ’3 weeks in Tibet’,
);

 my $content = <<EOI;
 I didn’t have an email software,
 but could use HTTP so I’m sending it over HTTP
 EOI

15 Feb 201412

1.3.4 PerlHeaderParserHandler

 my $headers = HTTP::Headers->new(%headers);
 my $req = HTTP::Request->new("EMAIL", $url, $headers, $content);
 my $res = LWP::UserAgent->new->request($req);
 print $res->is_success ? $res->content : "failed";

most of the code is just a custom data. The code that does something consists of four lines at the very end.
Create HTTP::Headers and HTTP::Request object. Issue the request and get the response. Finally
print the response’s content if it was successful or just "failed" if not.

Now save the client code in the file send_http_email.pl, adjust the To field, make the file executable and
execute it, after you have restarted the server. You should receive an email shortly to the address set in the
To field.

1.3.5 PerlInitHandler

When configured inside any container directive, except <VirtualHost> , this handler is an alias for
PerlHeaderParserHandler described earlier. Otherwise it acts as an alias for PerlPostRead-
RequestHandler described earlier.

It is the first handler to be invoked when serving a request.

This phase is of type RUN_ALL.

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

The best example here would be to use Apache2::Reload which takes the benefit of this directive.
Usually Apache2::Reload is configured as:

 PerlInitHandler Apache2::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "MyApache2::*"

which during the current HTTP request will monitor and reload all MyApache2::* modules that have
been modified since the last HTTP request. However if we move the global configuration into a <Loca-
tion> container:

1315 Feb 2014

1.3.5 PerlInitHandlerHTTP Handlers

 <Location /devel>
 PerlInitHandler Apache2::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "MyApache2::*"
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 Options +ExecCGI
 </Location>

Apache2::Reload will reload the modified modules, only when a request to the /devel namespace is
issued, because PerlInitHandler plays the role of PerlHeaderParserHandler here.

1.3.6 PerlAccessHandler

The access_checker phase is the first of three handlers that are involved in what’s known as AAA:
Authentication, Authorization, and Access control.

This phase can be used to restrict access from a certain IP address, time of the day or any other rule not
connected to the user’s identity.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

The concept behind access checker handler is very simple, return Apache2::Const::FORBIDDEN if
the access is not allowed, otherwise return Apache2::Const::OK .

The following example handler denies requests made from IPs on the blacklist.

 #file:MyApache2/BlockByIP.pm
 #--------------------------
 package MyApache2::BlockByIP;

 use strict;
 use warnings;

 use Apache2::RequestRec ();
 use Apache2::Connection ();

 use Apache2::Const -compile => qw(FORBIDDEN OK);

 my %bad_ips = map {$_ => 1} qw(127.0.0.1 10.0.0.4);

15 Feb 201414

1.3.6 PerlAccessHandler

 sub handler {
 my $r = shift;

 return exists $bad_ips{$r->connection->remote_ip}
 ? Apache2::Const::FORBIDDEN
 : Apache2::Const::OK;
 }

 1;

The handler retrieves the connection’s IP address, looks it up in the hash of blacklisted IPs and forbids the
access if found. If the IP is not blacklisted, the handler returns control to the next access checker handler,
which may still block the access based on a different rule.

To enable the handler simply add it to the container that needs to be protected. For example to protect an
access to the registry scripts executed from the base location /perl add:

 <Location /perl/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlAccessHandler MyApache2::BlockByIP
 Options +ExecCGI
 </Location>

It’s important to notice that PerlAccessHandler can be configured for any subsection of the site, no
matter whether it’s served by a mod_perl response handler or not. For example to run the handler from our
example for all requests to the server simply add to httpd.conf:

 <Location />
 PerlAccessHandler MyApache2::BlockByIP
 </Location>

1.3.7 PerlAuthenHandler

The check_user_id (authen) phase is called whenever the requested file or directory is password protected.
This, in turn, requires that the directory be associated with AuthName, AuthType and at least one
require directive.

This phase is usually used to verify a user’s identification credentials. If the credentials are verified to be
correct, the handler should return Apache2::Const::OK . Otherwise the handler returns
Apache2::Const::HTTP_UNAUTHORIZED to indicate that the user has not authenticated success-
fully. When Apache sends the HTTP header with this code, the browser will normally pop up a dialog box
that prompts the user for login information.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

1515 Feb 2014

1.3.7 PerlAuthenHandlerHTTP Handlers

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

The following handler authenticates users by asking for a username and a password and lets them in only
if the length of a string made from the supplied username and password and a single space equals to the
secret length, specified by the constant SECRET_LENGTH.

 #file:MyApache2/SecretLengthAuth.pm
 #---------------------------------
 package MyApache2::SecretLengthAuth;

 use strict;
 use warnings;

 use Apache2::Access ();
 use Apache2::RequestUtil ();

 use Apache2::Const -compile => qw(OK DECLINED HTTP_UNAUTHORIZED);

 use constant SECRET_LENGTH => 14;

 sub handler {
 my $r = shift;

 my ($status, $password) = $r->get_basic_auth_pw;
 return $status unless $status == Apache2::Const::OK;

 return Apache2::Const::OK
 if SECRET_LENGTH == length join " ", $r->user, $password;

 $r->note_basic_auth_failure;
 return Apache2::Const::HTTP_UNAUTHORIZED;
 }

 1;

First the handler retrieves the status of the authentication and the password in plain text. The status will be
set to Apache2::Const::OK only when the user has supplied the username and the password creden-
tials. If the status is different, we just let Apache handle this situation for us, which will usually challenge
the client so it’ll supply the credentials.

Note that get_basic_auth_pw() does a few things behind the scenes, which are important to under-
stand if you plan on implementing your own authentication mechanism that does not use
get_basic_auth_pw() . First, is checks the value of the configured AuthType for the request,
making sure it is Basic . Then it makes sure that the Authorization (or Proxy-Authorization) header is
formatted for Basic authentication. Finally, after isolating the user and password from the header, it

15 Feb 201416

1.3.7 PerlAuthenHandler

populates the ap_auth_type slot in the request record with Basic . For the first and last parts of this
process, mod_perl offers an API. $r->auth_type returns the configured authentication type for the
current request - whatever was set via the AuthType configuration directive. $r->ap_auth_type
populates the ap_auth_type slot in the request record, which should be done after it has been confirmed
that the request is indeed using Basic authentication. (Note: $r->ap_auth_type was
$r->connection->auth_type in the mod_perl 1.0 API.)

Once we know that we have the username and the password supplied by the client, we can proceed with
the authentication. Our authentication algorithm is unusual. Instead of validating the username/password
pair against a password file, we simply check that the string built from these two items plus a single space
is SECRET_LENGTH long (14 in our example). So for example the pair mod_perl/rules authenticates
correctly, whereas secret/password does not, because the latter pair will make a string of 15 characters. Of
course this is not a strong authentication scheme and you shouldn’t use it for serious things, but it’s fun to
play with. Most authentication validations simply verify the username/password against a database of
valid pairs, usually this requires the password to be encrypted first, since storing passwords in clear is a
bad idea.

Finally if our authentication fails the handler calls note_basic_auth_failure() and returns
Apache2::Const::HTTP_UNAUTHORIZED , which sets the proper HTTP response headers that tell
the client that its user that the authentication has failed and the credentials should be supplied again.

It’s not enough to enable this handler for the authentication to work. You have to tell Apache what authen-
tication scheme to use (Basic or Digest), which is specified by the AuthType directive, and you
should also supply the AuthName -- the authentication realm, which is really just a string that the client
usually uses as a title in the pop-up box, where the username and the password are inserted. Finally the
Require directive is needed to specify which usernames are allowed to authenticate. If you set it to
valid-user any username will do.

Here is the whole configuration section that requires users to authenticate before they are allowed to run
the registry scripts from /perl/:

 <Location /perl/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlAuthenHandler MyApache2::SecretLengthAuth
 Options +ExecCGI

 AuthType Basic
 AuthName "The Gate"
 Require valid-user
 </Location>

Just like PerlAccessHandler and other mod_perl handlers, PerlAuthenHandler can be config-
ured for any subsection of the site, no matter whether it’s served by a mod_perl response handler or not.
For example to use the authentication handler from the last example for any requests to the site, simply
use:

1715 Feb 2014

1.3.7 PerlAuthenHandlerHTTP Handlers

 <Location />
 PerlAuthenHandler MyApache2::SecretLengthAuth
 AuthType Basic
 AuthName "The Gate"
 Require valid-user
 </Location>

1.3.8 PerlAuthzHandler

The auth_checker (authz) phase is used for authorization control. This phase requires a successful authen-
tication from the previous phase, because a username is needed in order to decide whether a user is autho-
rized to access the requested resource.

As this phase is tightly connected to the authentication phase, the handlers registered for this phase are
only called when the requested resource is password protected, similar to the auth phase. The handler is
expected to return Apache2::Const::DECLINED to defer the decision, Apache2::Const::OK to
indicate its acceptance of the user’s authorization, or Apache2::Const::HTTP_UNAUTHORIZED to
indicate that the user is not authorized to access the requested document.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

Here is the MyApache2::SecretResourceAuthz handler which grants access to certain resources
only to certain users who have already properly authenticated:

 #file:MyApache2/SecretResourceAuthz.pm
 #------------------------------------
 package MyApache2::SecretResourceAuthz;

 use strict;
 use warnings;

 use Apache2::Access ();
 use Apache2::RequestUtil ();

 use Apache2::Const -compile => qw(OK HTTP_UNAUTHORIZED);

 my %protected = (
 ’admin’ => [’stas’],
 ’report’ => [qw(stas boss)],
);

15 Feb 201418

1.3.8 PerlAuthzHandler

 sub handler {
 my $r = shift;

 my $user = $r->user;
 if ($user) {
 my ($section) = $r->uri =~ m|^/company/(\w+)/|;
 if (defined $section && exists $protected{$section}) {
 my $users = $protected{$section};
 return Apache2::Const::OK if grep { $_ eq $user } @$users;
 }
 else {
 return Apache2::Const::OK;
 }
 }

 $r->note_basic_auth_failure;
 return Apache2::Const::HTTP_UNAUTHORIZED;
 }

 1;

This authorization handler is very similar to the authentication handler from the previous section. Here we
rely on the previous phase to get users authenticated, and now as we have the username we can make deci-
sions whether to let the user access the resource it has asked for or not. In our example we have a simple
hash which maps which users are allowed to access what resources. So for example anything under
/company/admin/ can be accessed only by the user stas, /company/report/ can be accessed by users stas
and boss, whereas any other resources under /company/ can be accessed by everybody who has reached so
far. If for some reason we don’t get the username, we or the user is not authorized to access the resource
the handler does the same thing as it does when the authentication fails, i.e, calls:

 $r->note_basic_auth_failure;
 return Apache2::Const::HTTP_UNAUTHORIZED;

The configuration is similar to the one in the previous section, this time we just add the PerlAu-
thzHandler setting. The rest doesn’t change.

 Alias /company/ /home/httpd/httpd-2.0/perl/
 <Location /company/>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlAuthenHandler MyApache2::SecretLengthAuth
 PerlAuthzHandler MyApache2::SecretResourceAuthz
 Options +ExecCGI

 AuthType Basic
 AuthName "The Secret Gate"
 Require valid-user
 </Location>

And if you want to run the authentication and authorization for the whole site, simply add:

1915 Feb 2014

1.3.8 PerlAuthzHandlerHTTP Handlers

 <Location />
 PerlAuthenHandler MyApache2::SecretLengthAuth
 PerlAuthzHandler MyApache2::SecretResourceAuthz
 AuthType Basic
 AuthName "The Secret Gate"
 Require valid-user
 </Location>

1.3.9 PerlTypeHandler

The type_checker phase is used to set the response MIME type (Content-type) and sometimes other
bits of document type information like the document language.

For example mod_autoindex , which performs automatic directory indexing, uses this phase to map the
filename extensions to the corresponding icons which will be later used in the listing of files.

Of course later phases may override the mime type set in this phase.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

The most important thing to remember when overriding the default type_checker handler, which is usually
the mod_mime handler, is that you have to set the handler that will take care of the response phase and the
response callback function or the code won’t work. mod_mime does that based on SetHandler and
AddHandler directives, and file extensions. So if you want the content handler to be run by mod_perl,
set either:

 $r->handler(’perl-script’);
 $r->set_handlers(PerlResponseHandler => \&handler);

or:

 $r->handler(’modperl’);
 $r->set_handlers(PerlResponseHandler => \&handler);

depending on which type of response handler is wanted.

15 Feb 201420

1.3.9 PerlTypeHandler

Writing a PerlTypeHandler handler which sets the content-type value and returns
Apache2::Const::DECLINED so that the default handler will do the rest of the work, is not a good
idea, because mod_mime will probably override this and other settings.

Therefore it’s the easiest to leave this stage alone and do any desired settings in the fixups phase.

1.3.10 PerlFixupHandler

The fixups phase is happening just before the content handling phase. It gives the last chance to do things
before the response is generated. For example in this phase mod_env populates the environment with
variables configured with SetEnv and PassEnv directives.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

The following fixup handler example tells Apache at run time which handler and callback should be used
to process the request based on the file extension of the request’s URI.

 #file:MyApache2/FileExtDispatch.pm
 #--------------------------------
 package MyApache2::FileExtDispatch;

 use strict;
 use warnings;

 use Apache2::RequestIO ();
 use Apache2::RequestRec ();
 use Apache2::RequestUtil ();

 use Apache2::Const -compile => ’OK’;

 use constant HANDLER => 0;
 use constant CALLBACK => 1;

 my %exts = (
 cgi => [’perl-script’, \&cgi_handler],
 pl => [’modperl’, \&pl_handler],
 tt => [’perl-script’, \&tt_handler],
 txt => [’default-handler’, undef],
);

2115 Feb 2014

1.3.10 PerlFixupHandlerHTTP Handlers

 sub handler {
 my $r = shift;

 my ($ext) = $r->uri =~ /\.(\w+)$/;
 $ext = ’txt’ unless defined $ext and exists $exts{$ext};

 $r->handler($exts{$ext}->[HANDLER]);

 if (defined $exts{$ext}->[CALLBACK]) {
 $r->set_handlers(PerlResponseHandler => $exts{$ext}->[CALLBACK]);
 }

 return Apache2::Const::OK;
 }

 sub cgi_handler { content_handler($_[0], ’cgi’) }
 sub pl_handler { content_handler($_[0], ’pl’) }

 sub tt_handler { content_handler($_[0], ’tt’) }

 sub content_handler {
 my ($r, $type) = @_;

 $r->content_type(’text/plain’);
 $r->print("A handler of type ’$type’ was called");

 return Apache2::Const::OK;
 }

 1;

In the example we have used the following mapping.

 my %exts = (
 cgi => [’perl-script’, \&cgi_handler],
 pl => [’modperl’, \&pl_handler],
 tt => [’perl-script’, \&tt_handler],
 txt => [’default-handler’, undef],
);

So that .cgi requests will be handled by the perl-script handler and the cgi_handler() callback,
.pl requests by modperl and pl_handler() , .tt (template toolkit) by perl-script and the
tt_handler() , finally .txt request by the default-handler handler, which requires no callback.

Moreover the handler assumes that if the request’s URI has no file extension or it does, but it’s not in its
mapping, the default-handler will be used, as if the txt extension was used.

After doing the mapping, the handler assigns the handler:

 $r->handler($exts{$ext}->[HANDLER]);

and the callback if needed:

15 Feb 201422

1.3.10 PerlFixupHandler

 if (defined $exts{$ext}->[CALLBACK]) {
 $r->set_handlers(
 PerlResponseHandler => $exts{$ext}->[CALLBACK]);
 }

In this simple example the callback functions don’t do much but calling the same content handler which
simply prints the name of the extension if handled by mod_perl, otherwise Apache will serve the other
files using the default handler. In real world you will use callbacks to real content handlers that do real
things.

Here is how this handler is configured:

 Alias /dispatch/ /home/httpd/httpd-2.0/htdocs/
 <Location /dispatch/>
 PerlFixupHandler MyApache2::FileExtDispatch
 </Location>

Notice that there is no need to specify anything, but the fixup handler. It applies the rest of the settings
dynamically at run-time.

1.3.11 PerlResponseHandler

The handler (response) phase is used for generating the response. This is arguably the most important
phase and most of the existing Apache modules do most of their work at this phase.

This is the only phase that requires two directives under mod_perl. For example:

 <Location /perl>
 SetHandler perl-script
 PerlResponseHandler MyApache2::WorldDomination
 </Location>

SetHandler set to perl-script or modperl tells Apache that mod_perl is going to handle the
response generation. PerlResponseHandler tells mod_perl which callback is going to do the job.

This phase is of type RUN_FIRST.

The handler’s configuration scope is DIR.

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

2315 Feb 2014

1.3.11 PerlResponseHandlerHTTP Handlers

Most of the Apache:: modules on CPAN are dealing with this phase. In fact most of the developers
spend the majority of their time working on handlers that generate response content.

Let’s write a simple response handler, that just generates some content. This time let’s do something more
interesting than printing "Hello world". Let’s write a handler that prints itself:

 #file:MyApache2/Deparse.pm
 #------------------------
 package MyApache2::Deparse;

 use strict;
 use warnings;

 use Apache2::RequestRec ();
 use Apache2::RequestIO ();
 use B::Deparse ();

 use Apache2::Const -compile => ’OK’;

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 $r->print(’sub handler ’, B::Deparse->new->coderef2text(\&handler));

 return Apache2::Const::OK;
 }
 1;

To enable this handler add to httpd.conf:

 <Location /deparse>
 SetHandler modperl
 PerlResponseHandler MyApache2::Deparse
 </Location>

Now when the server is restarted and we issue a request to http://localhost/deparse we get the following
response:

 sub handler {
 package MyApache2::Deparse;
 use warnings;
 use strict ’refs’;
 my $r = shift @_;
 $r->content_type(’text/plain’);
 $r->print(’sub handler ’, ’B::Deparse’->new->coderef2text(\&handler));
 return 0;
 }

If you compare it to the source code, it’s pretty much the same code. B::Deparse is fun to play with!

15 Feb 201424

1.3.11 PerlResponseHandler

http://localhost/deparse

1.3.12 PerlLogHandler

The log_transaction phase happens no matter how the previous phases have ended up. If one of the earlier
phases has aborted a request, e.g., failed authentication or 404 (file not found) errors, the rest of the phases
up to and including the response phases are skipped. But this phase is always executed.

By this phase all the information about the request and the response is known, therefore the logging
handlers usually record this information in various ways (e.g., logging to a flat file or a database).

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

Imagine a situation where you have to log requests into individual files, one per user. Assuming that all
requests start with /~username/, so it’s easy to categorize requests by the username. Here is the log handler
that does that:

 #file:MyApache2/LogPerUser.pm
 #---------------------------
 package MyApache2::LogPerUser;

 use strict;
 use warnings;

 use Apache2::RequestRec ();
 use Apache2::Connection ();

 use Fcntl qw(:flock);
 use File::Spec::Functions qw(catfile);

 use Apache2::Const -compile => qw(OK DECLINED);

 sub handler {
 my $r = shift;

 my ($username) = $r->uri =~ m|^/~([^/]+)|;
 return Apache2::Const::DECLINED unless defined $username;

 my $entry = sprintf qq(%s [%s] "%s" %d %d\n),
 $r->connection->remote_ip, scalar(localtime),
 $r->uri, $r->status, $r->bytes_sent;

 my $log_path = catfile Apache2::ServerUtil::server_root,

2515 Feb 2014

1.3.12 PerlLogHandlerHTTP Handlers

 "logs", "$username.log";
 open my $fh, ">>$log_path" or die "can’t open $log_path: $!";
 flock $fh, LOCK_EX;
 print $fh $entry;
 close $fh;

 return Apache2::Const::OK;
 }
 1;

First the handler tries to figure out what username the request is issued for, if it fails to match the URI, it
simply returns Apache2::Const::DECLINED , letting other log handlers to do the logging. Though it
could return Apache2::Const::OK since all other log handlers will be run anyway.

Next it builds the log entry, similar to the default access_log entry. It’s comprised of remote IP, the current
time, the uri, the return status and how many bytes were sent to the client as a response body.

Finally the handler appends this entry to the log file for the user the request was issued for. Usually it’s
safe to append short strings to the file without being afraid of messing up the file, when two files attempt
to write at the same time, but just to be on the safe side the handler exclusively locks the file before
performing the writing.

To configure the handler simply enable the module with the PerlLogHandler directive, for the desired
URI namespace (starting with : /~ in our example):

 <LocationMatch "^/~">
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 PerlLogHandler MyApache2::LogPerUser
 Options +ExecCGI
 </LocationMatch>

After restarting the server and issuing requests to the following URIs:

 http://localhost/~stas/test.pl
 http://localhost/~eric/test.pl
 http://localhost/~stas/date.pl

The MyApache2::LogPerUser handler will append to logs/stas.log:

 127.0.0.1 [Sat Aug 31 01:50:38 2002] "/~stas/test.pl" 200 8
 127.0.0.1 [Sat Aug 31 01:50:40 2002] "/~stas/date.pl" 200 44

and to logs/eric.log:

 127.0.0.1 [Sat Aug 31 01:50:39 2002] "/~eric/test.pl" 200 8

It’s important to notice that PerlLogHandler can be configured for any subsection of the site, no
matter whether it’s served by a mod_perl response handler or not. For example to run the handler from our
example for all requests to the server, simply add to httpd.conf:

15 Feb 201426

1.3.12 PerlLogHandler

 <Location />
 PerlLogHandler MyApache2::LogPerUser
 </Location>

Since the PerlLogHandler phase is of type RUN_ALL, all other logging handlers will be called as
well.

1.3.13 PerlCleanupHandler

There is no cleanup Apache phase, it exists only inside mod_perl. It is used to execute some code immedi-
ately after the request has been served (the client went away) and before the request object is destroyed.

There are several usages for this use phase. The obvious one is to run a cleanup code, for example remov-
ing temporarily created files. The less obvious is to use this phase instead of PerlLogHandler if the
logging operation is time consuming. This approach allows to free the client as soon as the response is
sent.

This phase is of type RUN_ALL.

The handler’s configuration scope is DIR.

Arguments

See the HTTP Request Handler Skeleton for a description of handler arguments.

Return

See Stacked Handlers for a description of handler return codes.

Examples

There are two ways to register and run cleanup handlers:

1. Using the PerlCleanupHandler phase

 PerlCleanupHandler MyApache2::Cleanup

or:

 $r->push_handlers(PerlCleanupHandler => \&cleanup);

This method is identical to all other handlers.

In this technique the cleanup() callback accepts $r as its only argument.

2. Using cleanup_register() acting on the request object’s pool

Since a request object pool is destroyed at the end of each request, we can use cleanup_regis-
ter to register a cleanup callback which will be executed just before the pool is destroyed. For
example:

2715 Feb 2014

1.3.13 PerlCleanupHandlerHTTP Handlers

 $r->pool->cleanup_register(\&cleanup, $arg);

The important difference from using the PerlCleanupHandler handler, is that here you can pass
an optional arbitrary argument to the callback function, and no $r argument is passed by default.
Therefore if you need to pass any data other than $r you may want to use this technique.

Here is an example where the cleanup handler is used to delete a temporary file. The response handler is
running ls -l and stores the output in temporary file, which is then used by $r->sendfile to send
the file’s contents. We use push_handlers() to push PerlCleanupHandler to unlink the file at
the end of the request.

 #file:MyApache2/Cleanup1.pm
 #-------------------------
 package MyApache2::Cleanup1;

 use strict;
 use warnings FATAL => ’all’;

 use File::Spec::Functions qw(catfile);

 use Apache2::RequestRec ();
 use Apache2::RequestIO ();
 use Apache2::RequestUtil ();

 use Apache2::Const -compile => qw(OK DECLINED);
 use APR::Const -compile => ’SUCCESS’;

 my $file = catfile "/tmp", "data";

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);

 local @ENV{qw(PATH BASH_ENV)};
 qx(/bin/ls -l > $file);

 my $status = $r->sendfile($file);
 die "sendfile has failed" unless $status == APR::Const::SUCCESS;

 $r->push_handlers(PerlCleanupHandler => \&cleanup);

 return Apache2::Const::OK;
 }

 sub cleanup {
 my $r = shift;

 die "Can’t find file: $file" unless -e $file;
 unlink $file or die "failed to unlink $file";

 return Apache2::Const::OK;
 }
 1;

15 Feb 201428

1.3.13 PerlCleanupHandler

Next we add the following configuration:

 <Location /cleanup1>
 SetHandler modperl
 PerlResponseHandler MyApache2::Cleanup1
 </Location>

Now when a request to /cleanup1 is made, the contents of the current directory will be printed and once
the request is over the temporary file is deleted.

This response handler has a problem of running in a multi-process environment, since it uses the same file,
and several processes may try to read/write/delete that file at the same time, wrecking havoc. We could
have appended the process id $$ to the file’s name, but remember that mod_perl 2.0 code may run in the
threaded environment, meaning that there will be many threads running in the same process and the $$
trick won’t work any longer. Therefore one really has to use this code to create unique, but predictable,
file names across threads and processes:

 sub unique_id {
 require Apache2::MPM;
 require APR::OS;
 return Apache2::MPM->is_threaded
 ? "$$." . ${ APR::OS::current_thread_id() }
 : $$;
 }

In the threaded environment it will return a string containing the process ID, followed by a thread ID. In
the non-threaded environment only the process ID will be returned. However since it gives us a
predictable string, they may still be a non-satisfactory solution. Therefore we need to use a random string.
We can either either Perl’s rand , some CPAN module or the APR’s APR::UUID :

 sub unique_id {
 require APR::UUID;
 return APR::UUID->new->format;
 }

Now the problem is how do we tell the cleanup handler what file should be cleaned up? We could have
stored it in the $r->notes table in the response handler and then retrieve it in the cleanup handler.
However there is a better way - as mentioned earlier, we can register a callback for request pool cleanup,
and when using this method we can pass an arbitrary argument to it. Therefore in our case we choose to
pass the file name, based on random string. Here is a better version of the response and cleanup handlers,
that uses this technique:

 #file: MyApache2/Cleanup2.pm
 #-------------------------
 package MyApache2::Cleanup2;

 use strict;
 use warnings FATAL => ’all’;

 use File::Spec::Functions qw(catfile);

 use Apache2::RequestRec ();
 use Apache2::RequestIO ();

2915 Feb 2014

1.3.13 PerlCleanupHandlerHTTP Handlers

 use Apache2::RequestUtil ();
 use APR::UUID ();
 use APR::Pool ();

 use Apache2::Const -compile => qw(OK DECLINED);
 use APR::Const -compile => ’SUCCESS’;

 my $file_base = catfile "/tmp", "data-";

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 my $file = $file_base . APR::UUID->new->format;

 local @ENV{qw(PATH BASH_ENV)};
 qx(/bin/ls -l > $file);

 my $status = $r->sendfile($file);
 die "sendfile has failed" unless $status == APR::Const::SUCCESS;

 $r->pool->cleanup_register(\&cleanup, $file);

 return Apache2::Const::OK;
 }

 sub cleanup {
 my $file = shift;

 die "Can’t find file: $file" unless -e $file;
 unlink $file or die "failed to unlink $file";

 return Apache2::Const::OK;
 }
 1;

Similarly to the first handler, we add the configuration:

 <Location /cleanup2>
 SetHandler modperl
 PerlResponseHandler MyApache2::Cleanup2
 </Location>

And now when requesting /cleanup2 we still get the same output -- the listing of the current directory --
but this time this code will work correctly in the multi-processes/multi-threaded environment and tempo-
rary files get cleaned up as well.

1.3.13.1 Possible Caveats

PerlCleanupHandler may fail to be completed on server shutdown/graceful restart since Apache will
kill the registered handlers via SIGTERM, before they had a chance to run or even in the middle of its
execution. See: http://marc.theaimsgroup.com/?t=106387845200003&r=1&w=2 http://marc.theaims-
group.com/?l=apache-modperl-dev&m=106427616108596&w=2

15 Feb 201430

1.3.13 PerlCleanupHandler

http://marc.theaimsgroup.com/?t=106387845200003&r=1&w=2
http://marc.theaimsgroup.com/?l=apache-modperl-dev&m=106427616108596&w=2
http://marc.theaimsgroup.com/?l=apache-modperl-dev&m=106427616108596&w=2

1.4 Miscellaneous Issues

1.4.1 Handling HEAD Requests

In order to avoid the overhead of sending the data to the client when the request is of type HEAD in
mod_perl 1.0 we used to return early from the handler:

 return Apache2::Const::OK if $r->header_only;

This logic should not be used in mod_perl 2.0, because Apache 2.0 automatically discards the response
body for HEAD requests. It expects the full body to generate the correct set of response headers, if you
don’t send the body you may encounter problems.

(You can also read the comment in for ap_http_header_filter() in modules/http/http_protocol.c
in the Apache 2.0 source.)

1.4.2 Content-Length Response Header

You may encounter some issues with the C-L (Content-Length) header. Some of them are discussed
here.

The special case of Content-Length: 0

Since Apache proclaims itself governor of the C-L header via the C-L filter (ap_content_length_filter
at httpd-2.0/server/protocol.c), for the most part GET and HEAD behave exactly the same. However,
when Apache sees a HEAD request with a C-L header of zero it takes special action and removes the
C-L header. This is done to protect against handlers that called $r->header_only (which was ok
in 1.3 but is not in 2.0). Therefore, GET and HEAD behave identically, except when the content
handler (and/or filters) end up sending no content. For more details refer to the lengthy comments in
ap_http_header_filter() in httpd-2.0/modules/http/http_protocol.c).

For more discussion on why it is important to get HEAD requests right, see these threads from the
mod_perl list:

 http://marc.theaimsgroup.com/?l=apache-modperl&m=108647669726915&w=2
 http://marc.theaimsgroup.com/?t=109122984600001&r=1&w=2

as well as this bug report from mozilla, which shows how HEAD requests are used in the wild:

 http://bugzilla.mozilla.org/show_bug.cgi?id=245447

Not getting Content-Length header with HEAD requests

Even though the spec says that content handlers should send an identical response for GET and
HEAD requests, some folks try to avoid the overhead of generating the response body, which Apache
is going to discard anyway for HEAD requests. The following discussion assumes that we deal with a
HEAD request.

3115 Feb 2014

1.4 Miscellaneous IssuesHTTP Handlers

When Apache sees EOS and no headers and no response body were sent,
ap_content_length_filter() (httpd-2.0/server/protocol.c) sets C-L to 0. Later on
ap_http_header_filter() (httpd-2.0/modules/http/http_protocol.c) removes the C-L header
for the HEAD requests.

The workaround is to force the sending of the response headers, before EOS was sent (which happens
when the response handler returns). The simplest solution is to use rflush():

 if ($r->header_only) { # HEAD
 $body_len = calculate_body_len();
 $r->set_content_length($body_len);
 $r->rflush;
 }
 else { # GET
 # generate and send the body
 }

now if the handler sets the C-L header it’ll be delivered to the client unmodified.

1.5 Misc Notes
These items will need to be extended and integrated in this or other HTTP related documents:

front-end back-end setup: mod_proxy+X-Forwarded-For

apache-1.3:

frontend: mod_proxy_add_forward http://develooper.com/code/mpaf/

backend: mod_rpaf (reverse proxy add forward): http://stderr.net/apache/rpaf/

apache-2.x:

frontend: mod_proxy

backend: mod_rpaf: http://stderr.net/apache/rpaf/

1.6 Extending HTTP Protocol
Extending HTTP under mod_perl is a trivial task. Look at the example of adding a new method EMAIL
for details.

1.7 HTTP Status Codes
The Hypertext Transfer Protocol (HTTP) is an application-level protocol for distributed, collaborative,
hypermedia information systems. It is a generic, stateless, protocol which can be used for many tasks
beyond its use for hypertext, such as name servers and distributed object management systems, through
extension of its request methods, error codes and headers. A feature of HTTP is the typing and negotiation

15 Feb 201432

1.5 Misc Notes

http://develooper.com/code/mpaf/
http://stderr.net/apache/rpaf/
http://stderr.net/apache/rpaf/

of data representation, allowing systems to be built independently of the data being transferred.

HTTP 1.0 is described in Requests For Comments (RFC) 1945. HTTP 1.1 is the latest version of the speci-
fications and as of this writing HTTP 1.1 is covered in RFC 2616.

When writing mod_perl applications, usually only a small subset of HTTP response codes is used, but
sometimes you need to know others as well. We will give a short description of each code and you will
find the extended explanation in the appropriate RFC. (Section 9 in RFC 1945 and section 10 in RFC
2616). You can always find the latest link to these RFCs at the Web Consortium site,
http://www.w3.org/Protocols/.

While HTTP 1.1 is widely supported, HTTP 1.0 still remains the mainstream standard. Therefore we will
supply a summary of the both versions including the corresponding Apache constants.

In mod_perl these constants can be accessed the Apache::Constants package (e.g., to access the
HTTP_OK constant use Apache::Constants::HTTP_OK). See the Apache::Constants
manpage for more information.

In mod_perl2 these constants can be accessed the Apache2::Const package (e.g., to access the
HTTP_OK constant use Apache2::Const::HTTP_OK). See the Apache2::Const manpage for
more information.

1.7.1 HTTP 1.0 Status Codes

Successful 2xx:

 200 HTTP_OK OK
 201 HTTP_CREATED Created
 202 HTTP_ACCEPTED Accepted
 204 HTTP_NO_CONTENT No Content

Redirection 3xx:

 301 HTTP_MOVED_PERMANENTLY Multiple Choices
 302 HTTP_MOVED_TEMPORARILY Moved Permanently
 303 HTTP_SEE_OTHER Moved Temporarily
 304 HTTP_NOT_MODIFIED Not Modified

Client Error 4xx:

 400 HTTP_BAD_REQUEST Bad Request
 401 HTTP_UNAUTHORIZED Unauthorized
 403 HTTP_FORBIDDEN Forbidden
 404 HTTP_NOT_FOUND Not Found

Server Error 5xx:

 500 HTTP_INTERNAL_SERVER_ERROR Internal Server Error
 501 HTTP_NOT_IMPLEMENTED Not Implemented
 502 HTTP_BAD_GATEWAY Bad Gateway
 503 HTTP_SERVICE_UNAVAILABLE Service UnavailableStatus Codes

3315 Feb 2014

1.7.1 HTTP 1.0 Status CodesHTTP Handlers

http://www.w3.org/Protocols/

1.7.2 HTTP 1.1 Status Codes

Informational 1xx:

 100 HTTP_CONTINUE Continue
 101 HTTP_SWITCHING_PROTOCOLS Switching Protocols

Successful 2xx:

 200 HTTP_OK OK
 201 HTTP_CREATED Created
 202 HTTP_ACCEPTED Accepted
 203 HTTP_NON_AUTHORITATIVE Non-Authoritative Information
 204 HTTP_NO_CONTENT No Content
 205 HTTP_RESET_CONTENT Reset Content
 206 HTTP_PARTIAL_CONTENT Partial Content

Redirection 3xx:

 300 HTTP_MULTIPLE_CHOICES Multiple Choices
 301 HTTP_MOVED_PERMANENTLY Moved Permanently
 302 HTTP_MOVED_TEMPORARILY Found
 303 HTTP_SEE_OTHER See Other
 304 HTTP_NOT_MODIFIED Not Modified
 305 HTTP_USE_PROXY Use Proxy
 306 (Unused)
 307 HTTP_TEMPORARY_REDIRECT Temporary Redirect

Client Error 4xx:

 400 HTTP_BAD_REQUEST Bad Request
 401 HTTP_UNAUTHORIZED Unauthorized
 402 HTTP_PAYMENT_REQUIRED Payment Required
 403 HTTP_FORBIDDEN Forbidden
 404 HTTP_NOT_FOUND Not Found
 405 HTTP_METHOD_NOT_ALLOWED Method Not Allowed
 406 HTTP_NOT_ACCEPTABLE Not Acceptable
 407 HTTP_PROXY_AUTHENTICATION_REQUIRED Proxy Authentication Required
 408 HTTP_REQUEST_TIMEOUT Request Timeout
 409 HTTP_CONFLICT Conflict
 410 HTTP_GONE Gone
 411 HTTP_LENGTH REQUIRED Length Required
 412 HTTP_PRECONDITION_FAILED Precondition Failed
 413 HTTP_REQUEST_ENTITY_TOO_LARGE Request Entity Too Large
 414 HTTP_REQUEST_URI_TOO_LARGE Request-URI Too Long
 415 HTTP_UNSUPPORTED_MEDIA_TYPE Unsupported Media Type
 416 HTTP_RANGE_NOT_SATISFIABLE Requested Range Not Satisfiable
 417 HTTP_EXPECTATION_FAILED Expectation Failed

Server Error 5xx:

15 Feb 201434

1.7.2 HTTP 1.1 Status Codes

 500 HTTP_INTERNAL_SERVER_ERROR Internal Server Error
 501 HTTP_NOT IMPLEMENTED Not Implemented
 502 HTTP_BAD_GATEWAY Bad Gateway
 503 HTTP_SERVICE_UNAVAILABLE Service Unavailable
 504 HTTP_GATEWAY_TIME_OUT Gateway Timeout
 505 HTTP_VERSION_NOT_SUPPORTED HTTP Version Not Supported

1.7.3 References

All the information related to web protocols can be found at the World Wide Web Consortium site,
http://www.w3.org/Protocols/.

There are many mirrors of the RFCs all around the world. One of the good starting points might be
http://www.rfc-editor.org/.

The Eagle Book provided much of the HTTP constants material shown here
http://www.modperl.com/book/chapters/ch9.html#The_Apache_Constants_Class

1.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The mod_perl development team and numerous contributors.

1.9 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

3515 Feb 2014

1.8 MaintainersHTTP Handlers

http://www.w3.org/Protocols/
http://www.rfc-editor.org/
http://www.modperl.com/book/chapters/ch9.html#The_Apache_Constants_Class
http://stason.org/

Table of Contents:
.................. 11 HTTP Handlers
................... 21.1 Description
.............. 21.2 HTTP Request Handler Skeleton
............... 21.3 HTTP Request Cycle Phases
.............. 31.3.1 PerlPostReadRequestHandler
................ 51.3.2 PerlTransHandler
.............. 71.3.3 PerlMapToStorageHandler
.............. 81.3.4 PerlHeaderParserHandler
................. 131.3.5 PerlInitHandler
................ 141.3.6 PerlAccessHandler
................ 151.3.7 PerlAuthenHandler
................ 181.3.8 PerlAuthzHandler
................ 201.3.9 PerlTypeHandler
................ 211.3.10 PerlFixupHandler
............... 231.3.11 PerlResponseHandler
................ 251.3.12 PerlLogHandler
............... 271.3.13 PerlCleanupHandler
............... 301.3.13.1 Possible Caveats
................ 311.4 Miscellaneous Issues
.............. 311.4.1 Handling HEAD Requests
........... 311.4.2 Content-Length Response Header
................... 321.5 Misc Notes
............... 321.6 Extending HTTP Protocol
................. 321.7 HTTP Status Codes
............... 331.7.1 HTTP 1.0 Status Codes
............... 341.7.2 HTTP 1.1 Status Codes
.................. 351.7.3 References
.................. 351.8 Maintainers
................... 351.9 Authors

i15 Feb 2014

Table of Contents:HTTP Handlers

	1€€HTTP Handlers
	1.1€€Description
	1.2€€HTTP Request Handler Skeleton
	1.3€€HTTP Request Cycle Phases
	1.3.1€€PerlPostReadRequestHandler
	1.3.2€€PerlTransHandler
	1.3.3€€PerlMapToStorageHandler
	1.3.4€€PerlHeaderParserHandler
	1.3.5€€PerlInitHandler
	1.3.6€€PerlAccessHandler
	1.3.7€€PerlAuthenHandler
	1.3.8€€PerlAuthzHandler
	1.3.9€€PerlTypeHandler
	1.3.10€€PerlFixupHandler
	1.3.11€€PerlResponseHandler
	1.3.12€€PerlLogHandler
	1.3.13€€PerlCleanupHandler
	1.3.13.1€€Possible Caveats

	1.4€€Miscellaneous Issues
	1.4.1€€Handling HEAD Requests
	1.4.2€€Content-Length Response Header

	1.5€€Misc Notes
	1.6€€Extending HTTP Protocol
	1.7€€HTTP Status Codes
	1.7.1€€HTTP 1.0 Status Codes
	1.7.2€€HTTP 1.1 Status Codes
	1.7.3€€References

	1.8€€Maintainers
	1.9€€Authors

