

1 Apache Server Configuration Customization in Perl

115 Feb 2014

1 Apache Server Configuration Customization in PerlApache Server Configuration Customization in Perl

1.1 Description
This chapter explains how to create custom Apache configuration directives in Perl.

1.2 Incentives
mod_perl provides several ways to pass custom configuration information to the modules.

The simplest way to pass custom information from the configuration file to the Perl module is to use the
PerlSetVar and PerlAddVar directives. For example:

 PerlSetVar Secret "Matrix is us"

and in the mod_perl code this value can be retrieved as:

 my $secret = $r->dir_config("Secret");

Another alternative is to add custom configuration directives. There are several reasons for choosing this
approach:

When the expected value is not a simple argument, but must be supplied using a certain syntax,
Apache can verify at startup time that this syntax is valid and abort the server start up if the syntax is
invalid.

Custom configuration directives are faster because their values are parsed at the startup time, whereas
PerlSetVar and PerlAddVar values are parsed at the request time.

It’s possible that some other modules have accidentally chosen to use the same key names but for
absolutely different needs. So the two now can’t be used together. Of course this collision can be
avoided if a unique to your module prefix is used in the key names. For example:

 PerlSetVar ApacheFooSecret "Matrix is us"

Finally, modules can be configured in pure Perl using <Perl> Sections or a startup file, by simply
modifying the global variables in the module’s package. This approach could be undesirable because it
requires a use of globals, which we all try to reduce. A bigger problem with this approach is that you can’t
have different settings for different sections of the site (since there is only one version of a global vari-
able), something that the previous two approaches easily achieve.

1.3 Creating and Using Custom Configuration Directives
In mod_perl 2.0, adding new configuration directives is a piece of cake, because it requires no XS code
and Makefile.PL, needed in case of mod_perl 1.0. In mod_perl 2.0, custom directives are implemented in
pure Perl.

15 Feb 20142

1.1 Description

Here is a very basic module that declares two new configuration directives: MyParameter , which
accepts one or more arguments, and MyOtherParameter which accepts a single argument. MyParam-
eter validates that its arguments are valid strings.

 #file:MyApache2/MyParameters.pm
 #-----------------------------
 package MyApache2::MyParameters;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Test;
 use Apache::TestUtil;

 use Apache2::Const -compile => qw(OR_ALL ITERATE);

 use Apache2::CmdParms ();
 use Apache2::Module ();
 use Apache2::Directive ();

 my @directives = (
 {
 name => ’MyParameter’,
 func => __PACKAGE__ . ’::MyParameter’,
 req_override => Apache2::Const::OR_ALL,
 args_how => Apache2::Const::ITERATE,
 errmsg => ’MyParameter Entry1 [Entry2 ... [EntryN]]’,
 },
 {
 name => ’MyOtherParameter’,
 },
);
 Apache2::Module::add(__PACKAGE__, \@directives);

 sub MyParameter {
 my ($self, $parms, @args) = @_;
 $self->{MyParameter} = \@args;

 # validate that the arguments are strings
 for (@args) {
 unless (/^\w+$/) {
 my $directive = $parms->directive;
 die sprintf "error: MyParameter at %s:%d expects " .
 "string arguments: (’$_’ is not a string)\n",

 $directive->filename, $directive->line_num;
 }
 }
 }
 1;

And here is how to use it in httpd.conf:

315 Feb 2014

1.3 Creating and Using Custom Configuration DirectivesApache Server Configuration Customization in Perl

 # first load the module so Apache will recognize the new directives
 PerlLoadModule MyApache2::MyParameters

 MyParameter one two three
 MyOtherParameter Foo
 <Location /perl>
 MyParameter eleven twenty
 MyOtherParameter Bar
 </Location>

The following sections discuss this and more advanced modules in detail.

A minimal configuration module is comprised of three groups of elements:

An array @directives for declaring the new directives and their behavior.
A call to Apache2::Module::add() to register the new directives with apache.
A subroutine per each new directive, which is called when the directive is seen

1.3.1 @directives

@directives is an array of hash references. Each hash represents a separate new configuration direc-
tive. In our example we had:

 my @directives = (
 {
 name => ’MyParameter’,
 func => __PACKAGE__ . ’::MyParameter’,
 req_override => Apache2::Const::OR_ALL,
 args_how => Apache2::Const::ITERATE,
 errmsg => ’MyParameter Entry1 [Entry2 ... [EntryN]]’,
 },
 {
 name => ’MyOtherParameter’,
 },
);

This structure declares two new directives: MyParameter and MyOtherParameter . You have to
declare at least the name of the new directive, which is how we have declared the MyOtherParameter
directive. mod_perl will fill in the rest of the configuration using the defaults described next.

These are the attributes that can be used to define the directives behavior: name, func, args_how,
req_override and errmsg. They are discussed in the following sections.

It is worth noting that in previous versions of mod_perl, it was necessary to call this variable
@APACHE_MODULE_COMMANDS. It is not the case anymore, and we consistently use the name
@directives in the documentation for clarity. It can be named anything at all.

15 Feb 20144

1.3.1 @directives

1.3.1.1 name

This is the only required attribute. And it declares the name of the new directive as it’ll be used in
httpd.conf.

1.3.1.2 func

The func attribute expects a reference to a function or a function name. This function is called by httpd
every time it encounters the directive that is described by this entry while parsing the configuration file.
Therefore it’s invoked once for every instance of the directive at the server startup, and once per request
per instance in the .htaccess file.

This function accepts two or more arguments, depending on the args_how attribute’s value.

This attribute is optional. If not supplied, mod_perl will try to use a function in the current package whose
name is the same as of the directive in question. In our example with MyOtherParameter , mod_perl
will use:

 __PACKAGE__ . ’::MyOtherParameter’

as a name of a subroutine and it anticipates that it exists in that package.

1.3.1.3 req_override

The attribute defines the valid scope in which this directive can appear. There are several constants which
map onto the corresponding Apache macros. These constants should be imported from the
Apache2::Const package.

For example, to use the OR_ALL constant, which allows directives to be defined anywhere, first, it needs
to be imported:

 use Apache2::Const -compile => qw(OR_ALL);

and then assigned to the req_override attribute:

 req_override => Apache2::Const::OR_ALL,

It’s possible to combine several options using the unary operators. For example, the following setting:

 req_override => Apache2::Const::RSRC_CONF | Apache2::Const::ACCESS_CONF

will allow the directive to appear anywhere in httpd.conf, but forbid it from ever being used in .htaccess
files:

This attribute is optional. If not supplied, the default value of Apache2::Const::OR_ALL is used.

515 Feb 2014

1.3.1 @directivesApache Server Configuration Customization in Perl

1.3.1.4 args_how

Directives can receive zero, one or many arguments. In order to help Apache validate that the number of
arguments is valid, the args_how attribute should be set to the desired value. Similar to the req_override
attribute, the Apache2::Const package provides a special :cmd_how constants group which maps to
the corresponding Apache macros. There are several constants to choose from.

In our example, the directive MyParameter accepts one or more arguments, therefore we have the
Apache2::Const::ITERATE constant:

 args_how => Apache2::Const::ITERATE,

This attribute is optional. If not supplied, the default value of Apache2::Const::TAKE1 is used.

1.3.1.5 errmsg

The errmsg attribute provides a short but succinct usage statement that summarizes the arguments that the
directive takes. It’s used by Apache to generate a descriptive error message, when the directive is config-
ured with a wrong number of arguments.

In our example, the directive MyParameter accepts one or more arguments, therefore we have chosen
the following usage string:

 errmsg => ’MyParameter Entry1 [Entry2 ... [EntryN]]’,

This attribute is optional. If not supplied, the default value of will be a string based on the directive’s name
and args_how attributes.

1.3.1.6 cmd_data

Sometimes it is useful to pass information back to the directive handler callback. For instance, if you use
the func parameter to specify the same callback for two different directives you might want to know which
directive is being called currently. To do this, you can use the cmd_data parameter, which allows you to
store arbitrary strings for later retrieval from your directive handler. For instance:

 my @directives = (
 {
 name => ’<Location’,
 # func defaults to Location()
 req_override => Apache2::Const::RSRC_CONF,
 args_how => Apache2::Const::RAW_ARGS,
 },
 {
 name => ’<LocationMatch’,
 func => Location,
 req_override => Apache2::Const::RSRC_CONF,
 args_how => Apache2::Const::RAW_ARGS,
 cmd_data => ’1’,
 },
);

15 Feb 20146

1.3.1 @directives

Here, we are using the Location() function to process both the Location and LocationMatch
directives. In the Location() callback we can check the data in the cmd_data slot to see whether the
directive being processed is LocationMatch and alter our logic accordingly. How? Through the
info() method exposed by the Apache2::CmdParms class.

 use Apache2::CmdParms ();

 sub Location {

 my ($cfg, $parms, $data) = @_;

 # see if we were called via LocationMatch
 my $regex = $parms->info;

 # continue along
 }

In case you are wondering, Location and LocationMatch were chosen for a reason - this is exactly
how httpd core handles these two directives.

1.3.2 Registering the new directives

Once the @directives array is populated, it needs to be registered with apache using
Apache2::Module::add()

 Apache2::Module::add(__PACKAGE__, \@directives);

1.3.3 Directive Scope Definition Constants

The req_override attribute specifies the configuration scope in which it’s valid to use a given configura-
tion directive. This attribute’s value can be any of or a combination of the following constants:

(these constants are declared in httpd-2.0/include/http_config.h.)

1.3.3.1 Apache2::Const::OR_NONE

The directive cannot be overridden by any of the AllowOverride options.

1.3.3.2 Apache2::Const::OR_LIMIT

The directive can appear within directory sections, but not outside them. It is also allowed within .htaccess
files, provided that AllowOverride Limit is set for the current directory.

1.3.3.3 Apache2::Const::OR_OPTIONS

The directive can appear anywhere within httpd.conf, as well as within .htaccess files provided that
AllowOverride Options is set for the current directory.

715 Feb 2014

1.3.2 Registering the new directivesApache Server Configuration Customization in Perl

1.3.3.4 Apache2::Const::OR_FILEINFO

The directive can appear anywhere within httpd.conf, as well as within .htaccess files provided that
AllowOverride FileInfo is set for the current directory.

1.3.3.5 Apache2::Const::OR_AUTHCFG

The directive can appear within directory sections, but not outside them. It is also allowed within .htaccess
files, provided that AllowOverride AuthConfig is set for the current directory.

1.3.3.6 Apache2::Const::OR_INDEXES

The directive can appear anywhere within httpd.conf, as well as within .htaccess files provided that
AllowOverride Indexes is set for the current directory.

1.3.3.7 Apache2::Const::OR_UNSET

META: details? "unset a directive (in Allow)"

1.3.3.8 Apache2::Const::ACCESS_CONF

The directive can appear within directory sections. The directive is not allowed in .htaccess files.

1.3.3.9 Apache2::Const::RSRC_CONF

The directive can appear in httpd.conf outside a directory section (<Directory> , <Location> or
<Files> ; also <FilesMatch> and kin). The directive is not allowed in .htaccess files.

1.3.3.10 Apache2::Const::EXEC_ON_READ

Force directive to execute a command which would modify the configuration (like including another file,
or IFModule).

Normally, Apache first parses the configuration tree and then executes the directives it has encountered
(e.g., SetEnv). But there are directives that must be executed during the initial parsing, either because
they affect the configuration tree (e.g., Include may load extra configuration) or because they tell
Apache about new directives (e.g., IfModule or PerlLoadModule , may load a module, which installs
handlers for new directives). These directives must have the Apache2::Const::EXEC_ON_READ
turned on.

1.3.3.11 Apache2::Const::OR_ALL

The directive can appear anywhere. It is not limited in any way.

15 Feb 20148

1.3.3 Directive Scope Definition Constants

1.3.4 Directive Callback Subroutine

Depending on the value of the args_how attribute the callback subroutine, specified with the func attribute,
will be called with two or more arguments. The first two arguments are always $self and $parms . A
typical callback function which expects a single value (Apache2::Const::TAKE1) might look like
the following:

 sub MyParam {
 my ($self, $parms, $arg) = @_;
 $self->{MyParam} = $arg;
 }

In this function we store the passed single value in the configuration object, using the directive’s name
(assuming that it was MyParam) as the key.

Let’s look at the subroutine arguments in detail:

1. $self is the current container’s configuration object.

This configuration object is a reference to a hash, in which you can store arbitrary key/value pairs.
When the directive callback function is invoked it may already include several key/value pairs
inserted by other directive callbacks or during the SERVER_CREATE and DIR_CREATE functions,
which will be explained later.

Usually the callback function stores the passed argument(s), which later will be read by
SERVER_MERGE and DIR_MERGE, which will be explained later, and of course at request time.

The convention is use the name of the directive as the hash key, where the received values are stored.
The value can be a simple scalar, or a reference to a more complex structure. So for example you can
store a reference to an array, if there is more than one value to store.

This object can be later retrieved at request time via:

 my $dir_cfg = $self->get_config($s, $r->per_dir_config);

You can retrieve the server configuration object via:

 my $srv_cfg = $self->get_config($s);

if invoked inside the virtual host, the virtual host’s configuration object will be returned.

2. $parms is an Apache2::CmdParms object from which you can retrieve various other informa-
tion about the configuration. For example to retrieve the server object:

 my $s = $parms->server;

See Apache2::CmdParms for more information.

915 Feb 2014

1.3.4 Directive Callback SubroutineApache Server Configuration Customization in Perl

3. The rest of the arguments whose number depends on the args_how’s value are covered in the next
section.

1.3.5 Directive Syntax Definition Constants

The following values of the args_how attribute define how many arguments and what kind of arguments
directives can accept. These values are constants that can be imported from the Apache2::Const
package (:cmd_how constants group).

For example:

 use Apache2::Const -compile => qw(TAKE1 TAKE23);

1.3.5.1 Apache2::Const::NO_ARGS

The directive takes no arguments. The callback will be invoked once each time the directive is encoun-
tered. For example:

 sub MyParameter {
 my ($self, $parms) = @_;
 $self->{MyParameter}++;
 }

1.3.5.2 Apache2::Const::TAKE1

The directive takes a single argument. The callback will be invoked once each time the directive is
encountered, and its argument will be passed as the third argument. For example:

 sub MyParameter {
 my ($self, $parms, $arg) = @_;
 $self->{MyParameter} = $arg;
 }

1.3.5.3 Apache2::Const::TAKE2

The directive takes two arguments. They are passed to the callback as the third and fourth arguments. For
example:

 sub MyParameter {
 my ($self, $parms, $arg1, $arg2) = @_;
 $self->{MyParameter} = {$arg1 => $arg2};
 }

1.3.5.4 Apache2::Const::TAKE3

This is like Apache2::Const::TAKE1 and Apache2::Const::TAKE2 , but the directive takes
three mandatory arguments. For example:

15 Feb 201410

1.3.5 Directive Syntax Definition Constants

 sub MyParameter {
 my ($self, $parms, @args) = @_;
 $self->{MyParameter} = \@args;
 }

1.3.5.5 Apache2::Const::TAKE12

This directive takes one mandatory argument, and a second optional one. This can be used when the
second argument has a default value that the user may want to override. For example:

 sub MyParameter {
 my ($self, $parms, $arg1, $arg2) = @_;
 $self->{MyParameter} = {$arg1 => $arg2||’default’};
 }

1.3.5.6 Apache2::Const::TAKE23

Apache2::Const::TAKE23 is just like Apache2::Const::TAKE12 , except now there are two
mandatory arguments and an optional third one.

1.3.5.7 Apache2::Const::TAKE123

In the Apache2::Const::TAKE123 variant, the first argument is mandatory and the other two are
optional. This is useful for providing defaults for two arguments.

1.3.5.8 Apache2::Const::ITERATE

Apache2::Const::ITERATE is used when a directive can take an unlimited number of arguments.
The callback is invoked repeatedly with a single argument, once for each argument in the list. It’s done
this way for interoperability with the C API, which doesn’t have the flexible argument passing that Perl
provides. For example:

 sub MyParameter {
 my ($self, $parms, $args) = @_;
 push @{ $self->{MyParameter} }, $arg;
 }

1.3.5.9 Apache2::Const::ITERATE2

Apache2::Const::ITERATE2 is used for directives that take a mandatory first argument followed by
a list of arguments to be applied to the first. A familiar example is the AddType directive, in which a
series of file extensions are applied to a single MIME type:

 AddType image/jpeg JPG JPEG JFIF jfif

Apache will invoke your callback once for each item in the list. Each time Apache runs your callback, it
passes the routine the constant first argument ("image/jpeg" in the example above), and the current item in
the list ("JPG" the first time around, "JPEG" the second time, and so on). In the example above, the
configuration processing routine will be run a total of four times.

1115 Feb 2014

1.3.5 Directive Syntax Definition ConstantsApache Server Configuration Customization in Perl

For example:

 sub MyParameter {
 my ($self, $parms, $key, $val) = @_;
 push @{ $self->{MyParameter}{$key} }, $val;
 }

1.3.5.10 Apache2::Const::RAW_ARGS

An args_how of Apache2::Const::RAW_ARGS instructs Apache to turn off parsing altogether.
Instead it simply passes your callback function the line of text following the directive. Leading and trailing
whitespace is stripped from the text, but it is not otherwise processed. Your callback can then do whatever
processing it wishes to perform.

This callback receives three arguments (similar to Apache2::Const::TAKE1), the third of which is a
string-valued scalar containing the remaining text following the directive line.

 sub MyParameter {
 my ($self, $parms, $val) = @_;
 # process $val
 }

If this mode is used to implement a custom "container" directive, the attribute req_override needs to OR
Apache2::Const::EXEC_ON_READ . e.g.:

 req_override => Apache2::Const::OR_ALL | Apache2::Const::EXEC_ON_READ,

META: complete the details, which are new to 2.0.

To retrieve the contents of a custom "container" directive, use the Apache2::Directive object’s
methods as_hash or as_string :

 sub MyParameter {
 my ($self, $parms, $val) = @_;
 my $directive = $parms->directive;
 my $content = $directive->as_string;
 }

There is one other trick to making configuration containers work. In order to be recognized as a valid
directive, the name attribute must contain the leading <. This token will be stripped by the code that
handles the custom directive callbacks to Apache. For example:

 name => ’<MyContainer’,

One other trick that is not required, but can provide some more user friendliness is to provide a handler for
the container end token. In our example, the Apache configuration gears will never see the </MyCon-
tainer> token, as our Apache2::Const::RAW_ARGS handler will read in that line and stop reading
when it is seen. However in order to catch cases in which the </MyContainer> text appears without a
preceding <MyContainer> opening section, we need to turn the end token into a directive that simply
reports an error and exits. For example:

15 Feb 201412

1.3.5 Directive Syntax Definition Constants

 {
 name => ’</MyContainer>’,
 func => __PACKAGE__ . "::MyContainer_END",
 errmsg => ’end of MyContainer without beginning?’,
 args_how => Apache2::Const::NO_ARGS,
 req_override => Apache2::Const::OR_ALL,
 },
 ...
 my $EndToken = "</MyContainer>";
 sub MyContainer_END {
 die "$EndToken outside a <MyContainer> container\n";
 }

Now, should the server administrator misplace the container end token, the server will not start, complain-
ing with this error message:

 Syntax error on line 54 of httpd.conf:
 </MyContainer> outside a <MyContainer> container

1.3.5.11 Apache2::Const::FLAG

When Apache2::Const::FLAG is used, Apache will only allow the argument to be one of two values,
On or Off . This string value will be converted into an integer, 1 if the flag is On, 0 if it is Off . If the
configuration argument is anything other than On or Off , Apache will complain:

 Syntax error on line 73 of httpd.conf:
 MyFlag must be On or Off

For example:

 sub MyFlag {
 my ($self, $parms, $arg) = @_;
 $self->{MyFlag} = $arg; # 1 or 0
 }

1.3.6 Enabling the New Configuration Directives

As seen in the first example, the module needs to be loaded before the new directives can be used. A
special directive PerlLoadModule is used for this purpose. For example:

 PerlLoadModule MyApache2::MyParameters

This directive is similar to PerlModule , but it require()’s the Perl module immediately, causing an early
mod_perl startup. After loading the module it let’s Apache know of the new directives and installs the call-
backs to be called when the corresponding directives are encountered.

1.3.7 Creating and Merging Configuration Objects

By default mod_perl creates a simple hash to store each container’s configuration values, which are popu-
lated by directive callbacks, invoked when the httpd.conf and the .htaccess files are parsed and the corre-
sponding directive are encountered. It’s possible to pre-populate the hash entries when the data structure is

1315 Feb 2014

1.3.6 Enabling the New Configuration DirectivesApache Server Configuration Customization in Perl

created, e.g., to provide reasonable default values for cases where they weren’t set in the configuration
file. To accomplish that the optional SERVER_CREATE and DIR_CREATE functions can be supplied.

When a request is mapped to a container, Apache checks if that container has any ancestor containers. If
that’s the case, it allows mod_perl to call special merging functions, which decide whether configurations
in the parent containers should be inherited, appended or overridden in the child container. The custom
configuration module can supply custom merging functions SERVER_MERGE and DIR_MERGE, which
can override the default behavior. If these functions are not supplied the following default behavior takes
place: The child container inherits its parent configuration, unless it specifies its own and then it overrides
its parent configuration.

1.3.7.1 SERVER_CREATE

SERVER_CREATE is called once for the main server, and once more for each virtual host defined in
httpd.conf. It’s called with two arguments: $class , the package name it was created in and $parms the
already familiar Apache2::CmdParms object. The object is expected to return a reference to a blessed
hash, which will be used by configuration directives callbacks to set the values assigned in the configura-
tion file. But it’s possible to preset some values here:

For example, in the following example the object assigns a default value, which can be overridden during
merge if a the directive was used to assign a custom value:

 package MyApache2::MyParameters;
 ...
 use Apache2::Module ();
 use Apache2::CmdParms ();
 my @directives = (...);
 Apache2::Module::add(__PACKAGE__, \@directives);
 ...
 sub SERVER_CREATE {
 my ($class, $parms) = @_;
 return bless {
 name => __PACKAGE__,
 }, $class;
 }

To retrieve that value later, you can use:

 use Apache2::Module ();
 ...
 my $srv_cfg = Apache2::Module::get_config(’MyApache2::MyParameters’, $s);
 print $srv_cfg->{name};

If a request is made to a resource inside a virtual host, $srv_cfg will contain the object of the virtual
host’s server. To reach the main server’s configuration object use:

15 Feb 201414

1.3.7 Creating and Merging Configuration Objects

 use Apache2::Module ();
 use Apache2::ServerRec ();
 use Apache2::ServerUtil ();
 ...
 if ($s->is_virtual) {
 my $base_srv_cfg = Apache2::Module::get_config(’MyApache2::MyParameters’,
 Apache2::ServerUtil->server);
 print $base_srv_cfg->{name};
 }

If the function SERVER_CREATE is not supplied by the module, a function that returns a blessed into the
current package reference to a hash is used.

1.3.7.2 SERVER_MERGE

During the configuration parsing virtual hosts are given a chance to inherit the configuration from the
main host, append to or override it. The SERVER_MERGE subroutine can be supplied to override the
default behavior, which simply overrides the main server’s configuration.

The custom subroutine accepts two arguments: $base , a blessed reference to the main server configura-
tion object, and $add , a blessed reference to a virtual host configuration object. It’s expected to return a
blessed object after performing the merge of the two objects it has received. Here is the skeleton of a
merging function:

 sub merge {
 my ($base, $add) = @_;
 my %mrg = ();
 # code to merge %$base and %$add
 return bless \%mrg, ref($base);
 }

The section Merging at Work provides an extensive example of a merging function.

1.3.7.3 DIR_CREATE

Similarly to SERVER_CREATE, this optional function, is used to create an object for the directory
resource. If the function is not supplied mod_perl will use an empty hash variable as an object.

Just like SERVER_CREATE, it’s called once for the main server and one more time for each virtual host.
In addition it’ll be called once more for each resource (<Location> , <Directory> and others). All
this happens during the startup. At request time it might be called for each parsed .htaccess file and for
each resource defined in it.

The DIR_CREATE function’s skeleton is identical to SERVER_CREATE. Here is an example:

 package MyApache2::MyParameters;
 ...
 use Apache2::Module ();
 use Apache2::CmdParms ();
 my @directives = (...);
 Apache2::Module::add(__PACKAGE__, \@directives);
 ...

1515 Feb 2014

1.3.7 Creating and Merging Configuration ObjectsApache Server Configuration Customization in Perl

 sub DIR_CREATE {
 my ($class, $parms) = @_;
 return bless {
 foo => ’bar’,
 }, $class;
 }

To retrieve that value later, you can use:

 use Apache2::Module ();
 ...
 my $dir_cfg = Apache2::Module::get_config(’MyApache2::MyParameters’,
 $s, $r->per_dir_config);
 print $dir_cfg->{foo};

The only difference in the retrieving the directory configuration object. Here the third argument
$r->per_dir_config tells Apache2::Module to get the directory configuration object.

1.3.7.4 DIR_MERGE

Similarly to SERVER_MERGE, DIR_MERGE merges the ancestor and the current node’s directory config-
uration objects. At the server startup DIR_MERGE is called once for each virtual host. At request time, the
merging of the objects of resources, their sub-resources and the virtual host/main server merge happens.
Apache caches the products of merges, so you may see certain merges happening only once.

The section Merging Order Consequences discusses in detail the merging order.

The section Merging at Work provides an extensive example of a merging function.

1.4 Examples

1.4.1 Merging at Work

In the following example we are going to demonstrate in details how merging works, by showing various
merging techniques.

Here is an example Perl module, which, when loaded, installs four custom directives into Apache.

 #file:MyApache2/CustomDirectives.pm
 #---------------------------------
 package MyApache2::CustomDirectives;

 use strict;
 use warnings FATAL => ’all’;

 use Apache2::CmdParms ();
 use Apache2::Module ();
 use Apache2::ServerUtil ();

 use Apache2::Const -compile => qw(OK);

15 Feb 201416

1.4 Examples

 my @directives = (
 { name => ’MyPlus’ },
 { name => ’MyList’ },
 { name => ’MyAppend’ },
 { name => ’MyOverride’ },
);
 Apache2::Module::add(__PACKAGE__, \@directives);

 sub MyPlus { set_val(’MyPlus’, @_) }
 sub MyAppend { set_val(’MyAppend’, @_) }
 sub MyOverride { set_val(’MyOverride’, @_) }
 sub MyList { push_val(’MyList’, @_) }

 sub DIR_MERGE { merge(@_) }
 sub SERVER_MERGE { merge(@_) }

 sub set_val {
 my ($key, $self, $parms, $arg) = @_;
 $self->{$key} = $arg;
 unless ($parms->path) {
 my $srv_cfg = Apache2::Module::get_config($self,
 $parms->server);
 $srv_cfg->{$key} = $arg;
 }
 }

 sub push_val {

 my ($key, $self, $parms, $arg) = @_;
 push @{ $self->{$key} }, $arg;
 unless ($parms->path) {
 my $srv_cfg = Apache2::Module::get_config($self,
 $parms->server);
 push @{ $srv_cfg->{$key} }, $arg;
 }
 }

 sub merge {
 my ($base, $add) = @_;

 my %mrg = ();
 for my $key (keys %$base, keys %$add) {
 next if exists $mrg{$key};
 if ($key eq ’MyPlus’) {
 $mrg{$key} = ($base->{$key}||0) + ($add->{$key}||0);
 }
 elsif ($key eq ’MyList’) {
 push @{ $mrg{$key} },
 @{ $base->{$key}||[] }, @{ $add->{$key}||[] };
 }
 elsif ($key eq ’MyAppend’) {
 $mrg{$key} = join " ", grep defined, $base->{$key},
 $add->{$key};
 }
 else {
 # override mode
 $mrg{$key} = $base->{$key} if exists $base->{$key};

1715 Feb 2014

1.4.1 Merging at WorkApache Server Configuration Customization in Perl

 $mrg{$key} = $add->{$key} if exists $add->{$key};
 }
 }

 return bless \%mrg, ref($base);
 }

 1;
 __END__

It’s probably a good idea to specify all the attributes for the @directives entries, but here for simplic-
ity we have only assigned to the name directive, which is a must. Since all our directives take a single
argument, Apache2::Const::TAKE1 , the default args_how, is what we need. We also allow the
directives to appear anywhere, so Apache2::Const::OR_ALL , the default for req_override, is good
for us as well.

We use the same callback for the directives MyPlus , MyAppend and MyOverride , which simply
assigns the specified value to the hash entry with the key of the same name as the directive.

The MyList directive’s callback stores the value in the list, a reference to which is stored in the hash,
again using the name of the directive as the key. This approach is usually used when the directive is of
type Apache2::Const::ITERATE , so you may have more than one value of the same kind inside a
single container. But in our example we choose to have it of the type Apache2::Const::TAKE1 .

In both callbacks in addition to storing the value in the current directory configuration, if the value is
configured in the main server or the virtual host (which is when $parms->path is false), we also store
the data in the same way in the server configuration object. This is done in order to be able to query the
values assigned at the server and virtual host levels, when the request is made to one of the sub-resources.
We will show how to access that information in a moment.

Finally we use the same merge function for merging directory and server configuration objects. For the
key MyPlus (remember we have used the same key name as the name of the directive), the merging func-
tion performs, the obvious, summation of the ancestor’s merged value (base) and the current resource’s
value (add). MyAppend joins the values into a string, MyList joins the lists and finally MyOverride
(the default) overrides the value with the current one if any. Notice that all four merging methods take into
account that the values in the ancestor or the current configuration object might be unset, which is the case
when the directive wasn’t used by all ancestors or for the current resource.

At the end of the merging, a blessed reference to the merged hash is returned. The reference is blessed into
the same class, as the base or the add objects, which is MyApache2::CustomDirectives in our
example. That hash is used as the merged ancestor’s object for a sub-resource of the resource that has just
undergone merging.

Next we supply the following httpd.conf configuration section, so we can demonstrate the features of this
example:

 PerlLoadModule MyApache2::CustomDirectives
 MyPlus 5
 MyList "MainServer"
 MyAppend "MainServer"

15 Feb 201418

1.4.1 Merging at Work

 MyOverride "MainServer"
 Listen 8081
 <VirtualHost _default_:8081>
 MyPlus 2
 MyList "VHost"
 MyAppend "VHost"
 MyOverride "VHost"
 <Location /custom_directives_test>
 MyPlus 3
 MyList "Dir"
 MyAppend "Dir"
 MyOverride "Dir"
 SetHandler modperl
 PerlResponseHandler MyApache2::CustomDirectivesTest
 </Location>
 <Location /custom_directives_test/subdir>
 MyPlus 1
 MyList "SubDir"
 MyAppend "SubDir"
 MyOverride "SubDir"
 </Location>
 </VirtualHost>
 <Location /custom_directives_test>
 SetHandler modperl
 PerlResponseHandler MyApache2::CustomDirectivesTest
 </Location>

PerlLoadModule loads the Perl module MyApache2::CustomDirectives and then installs a
new Apache module named MyApache2::CustomDirectives , using the callbacks provided by the
Perl module. In our example functions SERVER_CREATE and DIR_CREATE aren’t provided, so by
default an empty hash will be created to represent the configuration object for the merging functions. If we
don’t provide merging functions, Apache will simply skip the merging. Though you must provide a call-
back function for each directive you add.

After installing the new module, we add a virtual host container, containing two resources (which at other
times called locations, directories, sections, etc.), one being a sub-resource of the other, plus one another
resource which resides in the main server.

We assign different values in all four containers, but the last one. Here we refer to the four containers as
MainServer, VHost, Dir and SubDir, and use these names as values for all configuration directives, but
MyPlus , to make it easier understand the outcome of various merging methods and the merging order. In
the last container used by <Location /custom_directives_test> , we don’t specify any direc-
tives so we can verify that all the values are inherited from the main server.

For all three resources we are going to use the same response handler, which will dump the values of
configuration objects that in its reach. As we will see that different resources will see see certain things
identically, while others differently. So here it the handler:

 #file:MyApache2/CustomDirectivesTest.pm
 #-------------------------------------
 package MyApache2::CustomDirectivesTest;

 use strict;

1915 Feb 2014

1.4.1 Merging at WorkApache Server Configuration Customization in Perl

 use warnings FATAL => ’all’;

 use Apache2::RequestRec ();
 use Apache2::RequestIO ();
 use Apache2::ServerRec ();
 use Apache2::ServerUtil ();
 use Apache2::Module ();

 use Apache2::Const -compile => qw(OK);

 sub get_config {
 Apache2::Module::get_config(’MyApache2::CustomDirectives’, @_);
 }

 sub handler {
 my ($r) = @_;
 my %secs = ();

 $r->content_type(’text/plain’);

 my $s = $r->server;
 my $dir_cfg = get_config($s, $r->per_dir_config);
 my $srv_cfg = get_config($s);

 if ($s->is_virtual) {
 $secs{"1: Main Server"} = get_config(Apache2::ServerUtil->server);
 $secs{"2: Virtual Host"} = $srv_cfg;
 $secs{"3: Location"} = $dir_cfg;
 }
 else {
 $secs{"1: Main Server"} = $srv_cfg;
 $secs{"2: Location"} = $dir_cfg;
 }

 $r->printf("Processing by %s.\n",

 $s->is_virtual ? "virtual host" : "main server");

 for my $sec (sort keys %secs) {
 $r->print("\nSection $sec\n");
 for my $k (sort keys %{ $secs{$sec}||{} }) {
 my $v = exists $secs{$sec}->{$k}
 ? $secs{$sec}->{$k}
 : ’UNSET’;
 $v = ’[’ . (join ", ", map {qq{"$_"}} @$v) . ’]’
 if ref($v) eq ’ARRAY’;
 $r->printf("%-10s : %s\n", $k, $v);
 }
 }

 return Apache2::Const::OK;
 }

 1;
 __END__

15 Feb 201420

1.4.1 Merging at Work

The handler is relatively simple. It retrieves the current resource (directory) and the server’s configuration
objects. If the server is a virtual host, it also retrieves the main server’s configuration object. Once these
objects are retrieved, we simply dump the contents of these objects, so we can verify that our merging
worked correctly. Of course we nicely format the data that we print, taking a special care of array refer-
ences, which we know is the case with the key MyList, but we use a generic code, since Perl tells us when
a reference is a list.

It’s a show time. First we issue a request to a resource residing in the main server:

 % GET http://localhost:8002/custom_directives_test/

 Processing by main server.

 Section 1: Main Server
 MyAppend : MainServer
 MyList : ["MainServer"]
 MyOverride : MainServer
 MyPlus : 5

 Section 2: Location
 MyAppend : MainServer
 MyList : ["MainServer"]
 MyOverride : MainServer
 MyPlus : 5

Since we didn’t have any directives in that resource’s configuration, we confirm that our merge worked
correctly and the directory configuration object contains the same data as its ancestor, the main server. In
this case the merge has simply inherited the values from its ancestor.

The next request is for the resource residing in the virtual host:

 % GET http://localhost:8081/custom_directives_test/

 Processing by virtual host.

 Section 1: Main Server
 MyAppend : MainServer
 MyList : ["MainServer"]
 MyOverride : MainServer
 MyPlus : 5

 Section 2: Virtual Host
 MyAppend : MainServer VHost
 MyList : ["MainServer", "VHost"]
 MyOverride : VHost
 MyPlus : 7

 Section 3: Location
 MyAppend : MainServer VHost Dir
 MyList : ["MainServer", "VHost", "Dir"]
 MyOverride : Dir
 MyPlus : 10

2115 Feb 2014

1.4.1 Merging at WorkApache Server Configuration Customization in Perl

That’s where the real fun starts. We can see that the merge worked correctly in the virtual host, and so it
did inside the <Location> resource. It’s easy to see that MyAppend and MyList are correct, the same
for MyOverride . For MyPlus , we have to work harder and perform some math. Inside the virtual host
we have main(5)+vhost(2)=7, and inside the first resource vhost_merged(7)+resource(3)=10.

So far so good, the last request is made to the sub-resource of the resource we have requested previously:

 % GET http://localhost:8081/custom_directives_test/subdir/

 Processing by virtual host.

 Section 1: Main Server
 MyAppend : MainServer
 MyList : ["MainServer"]
 MyOverride : MainServer
 MyPlus : 5

 Section 2: Virtual Host
 MyAppend : MainServer VHost
 MyList : ["MainServer", "VHost"]
 MyOverride : VHost
 MyPlus : 7

 Section 3: Location
 MyAppend : MainServer VHost Dir SubDir
 MyList : ["MainServer", "VHost", "Dir", "SubDir"]
 MyOverride : SubDir
 MyPlus : 11

No surprises here. By comparing the configuration sections and the outcome, it’s clear that the merging is
correct for most directives. The only harder verification is for MyPlus , all we need to do is to add 1 to 10,
which was the result we saw in the previous request, or to do it from scratch, summing up all the ancestors
of this sub-resource: 5+2+3+1=11.

1.4.1.1 Merging Entries Whose Values Are References

When merging entries whose values are references and not scalars, it’s important to make a deep copy and
not a shallow copy, when the references gets copied. In our example we merged two references to lists, by
explicitly extracting the values of each list:

 push @{ $mrg{$key} },
 @{ $base->{$key}||[] }, @{ $add->{$key}||[] };

While seemingly the following snippet is doing the same:

 $mrg{$key} = $base->{$key};
 push @{ $mrg{$key} }, @{ $add->{$key}||[] };

it won’t do what you expect if the same merge (with the same $base and $add arguments) is called
more than once, which is the case in certain cases. What happens in the latter implementation, is that the
first line makes both $mrg{$key} and $base->{$key} point to the same reference. When the second
line expands the @{ $mrg{$key} } , it also affects @{ $base->{$key} } . Therefore when the

15 Feb 201422

1.4.1 Merging at Work

same merge is called second time, the $base argument is not the same anymore.

Certainly we could workaround this problem in the mod_perl core, by freezing the arguments before the
merge call and restoring them afterwards, but this will incur a performance hit. One simply has to remem-
ber that the arguments and the references they point to, should stay unmodified through the function call,
and then the right code can be supplied.

1.4.1.2 Merging Order Consequences

Sometimes the merging logic can be influenced by the order of merging. It’s desirable that the logic will
work properly regardless of the merging order.

In Apache 1.3 the merging was happening in the following order:

 (((base_srv -> vhost) -> section) -> subsection)

Whereas as of this writing Apache 2.0 performs:

 ((base_srv -> vhost) -> (section -> subsection))

A product of subsections merge (which happen during the request) is merged with the product of the
server and virtual host merge (which happens at the startup time). This change was done to improve the
configuration merging performance.

So for example, if you implement a directive MyExp which performs the exponential:
$mrg=$base**$add , and let’s say there directive is used four times in httpd.conf:

 MyExp 5
 <VirtualHost _default_:8001>
 MyExp 4
 <Location /section>
 MyExp 3
 </Location>
 <Location /section/subsection>
 MyExp 2
 </Location>

The merged configuration for a request http://localhost:8001/section/subsection will see:

 (5 ** 4) ** (3 ** 2) = 1.45519152283669e+25

under Apache 2.0, whereas under Apache 1.3 the result would be:

 ((5 ** 4) ** 3) ** 2 = 5.96046447753906e+16

which is not quite the same.

Chances are that your merging rules work identically, regardless of the merging order. But you should be
aware of this behavior.

2315 Feb 2014

1.4.1 Merging at WorkApache Server Configuration Customization in Perl

http://localhost:8001/section/subsection

1.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

1.6 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201424

1.5 Maintainers

http://stason.org/
http://stason.org/

Table of Contents:
.......... 11 Apache Server Configuration Customization in Perl
................... 21.1 Description
................... 21.2 Incentives
......... 21.3 Creating and Using Custom Configuration Directives
................ 41.3.1 @directives
.................. 51.3.1.1 name
.................. 51.3.1.2 func
............... 51.3.1.3 req_override
................ 61.3.1.4 args_how
................. 61.3.1.5 errmsg
................ 61.3.1.6 cmd_data
............. 71.3.2 Registering the new directives
............ 71.3.3 Directive Scope Definition Constants
........... 71.3.3.1 Apache2::Const::OR_NONE
........... 71.3.3.2 Apache2::Const::OR_LIMIT
.......... 71.3.3.3 Apache2::Const::OR_OPTIONS
.......... 81.3.3.4 Apache2::Const::OR_FILEINFO
.......... 81.3.3.5 Apache2::Const::OR_AUTHCFG
.......... 81.3.3.6 Apache2::Const::OR_INDEXES
........... 81.3.3.7 Apache2::Const::OR_UNSET
.......... 81.3.3.8 Apache2::Const::ACCESS_CONF
........... 81.3.3.9 Apache2::Const::RSRC_CONF
.......... 81.3.3.10 Apache2::Const::EXEC_ON_READ
............ 81.3.3.11 Apache2::Const::OR_ALL
............. 91.3.4 Directive Callback Subroutine
............ 101.3.5 Directive Syntax Definition Constants
........... 101.3.5.1 Apache2::Const::NO_ARGS
............ 101.3.5.2 Apache2::Const::TAKE1
............ 101.3.5.3 Apache2::Const::TAKE2
............ 101.3.5.4 Apache2::Const::TAKE3
............ 111.3.5.5 Apache2::Const::TAKE12
............ 111.3.5.6 Apache2::Const::TAKE23
........... 111.3.5.7 Apache2::Const::TAKE123
........... 111.3.5.8 Apache2::Const::ITERATE
........... 111.3.5.9 Apache2::Const::ITERATE2
........... 121.3.5.10 Apache2::Const::RAW_ARGS
............ 131.3.5.11 Apache2::Const::FLAG
.......... 131.3.6 Enabling the New Configuration Directives
.......... 131.3.7 Creating and Merging Configuration Objects
............... 141.3.7.1 SERVER_CREATE
............... 151.3.7.2 SERVER_MERGE
................ 151.3.7.3 DIR_CREATE
................ 161.3.7.4 DIR_MERGE
................... 161.4 Examples

i15 Feb 2014

Table of Contents:Apache Server Configuration Customization in Perl

................. 161.4.1 Merging at Work

.......... 221.4.1.1 Merging Entries Whose Values Are References

.............. 231.4.1.2 Merging Order Consequences

.................... 241.5 Maintainers

.................... 241.6 Authors

15 Feb 2014ii

Table of Contents:

	1€€Apache Server Configuration Customization in Perl
	1.1€€Description
	1.2€€Incentives
	1.3€€Creating and Using Custom Configuration Directives
	1.3.1€€@directives
	1.3.1.1€€name
	1.3.1.2€€func
	1.3.1.3€€req_override
	1.3.1.4€€args_how
	1.3.1.5€€errmsg
	1.3.1.6€€cmd_data

	1.3.2€€Registering the new directives
	1.3.3€€Directive Scope Definition Constants
	1.3.3.1€€Apache2::Const::OR_NONE
	1.3.3.2€€Apache2::Const::OR_LIMIT
	1.3.3.3€€Apache2::Const::OR_OPTIONS
	1.3.3.4€€Apache2::Const::OR_FILEINFO
	1.3.3.5€€Apache2::Const::OR_AUTHCFG
	1.3.3.6€€Apache2::Const::OR_INDEXES
	1.3.3.7€€Apache2::Const::OR_UNSET
	1.3.3.8€€Apache2::Const::ACCESS_CONF
	1.3.3.9€€Apache2::Const::RSRC_CONF
	1.3.3.10€€Apache2::Const::EXEC_ON_READ
	1.3.3.11€€Apache2::Const::OR_ALL

	1.3.4€€Directive Callback Subroutine
	1.3.5€€Directive Syntax Definition Constants
	1.3.5.1€€Apache2::Const::NO_ARGS
	1.3.5.2€€Apache2::Const::TAKE1
	1.3.5.3€€Apache2::Const::TAKE2
	1.3.5.4€€Apache2::Const::TAKE3
	1.3.5.5€€Apache2::Const::TAKE12
	1.3.5.6€€Apache2::Const::TAKE23
	1.3.5.7€€Apache2::Const::TAKE123
	1.3.5.8€€Apache2::Const::ITERATE
	1.3.5.9€€Apache2::Const::ITERATE2
	1.3.5.10€€Apache2::Const::RAW_ARGS
	1.3.5.11€€Apache2::Const::FLAG

	1.3.6€€Enabling the New Configuration Directives
	1.3.7€€Creating and Merging Configuration Objects
	1.3.7.1€€SERVER_CREATE
	1.3.7.2€€SERVER_MERGE
	1.3.7.3€€DIR_CREATE
	1.3.7.4€€DIR_MERGE

	1.4€€Examples
	1.4.1€€Merging at Work
	1.4.1.1€€Merging Entries Whose Values Are References
	1.4.1.2€€Merging Order Consequences

	1.5€€Maintainers
	1.6€€Authors

