mod_perl 2.0 Source Code Explained 1 mod_perl 2.0 Source Code Explained

1 mod_perl 2.0 Source Code Explained

15 Feb 2014 1



1.1 Description

1.1 Description

This document explains how to navigate the mod_perl source code, modify and rebuild the existing code
and most important: how to add new functionality.

1.2 Project’s Filesystem Layout

In its pristine state the project is comprised of the following directories and files residing at the root direc-
tory of the project:

Apache- Test/ - test kit for nod_perl and Apache2::* nodul es
ModPer | - Regi stry/ - ModPerl:: Registry sub-project

bui I d/ - utilities used during project build
docs/ - documentation

lib/ - Perl nodul es

src/ - C code that builds |ibnodperl.so

t/ - nod_perl tests

t odo/ - things to be done

util/ - useful utilities for devel opers

xs/ - source xs code and maps

Changes - Changes file

LI CENSE - ASF LI CENSE docunent

Makefile. PL - generates all the needed Makefil es

After building the project, the following root directories and files get generated:

Makefil e - Makefile
W apXs/ - autogenerated XS code
bli b/ - ready to install version of the package

1.3 Directory src

1.3.1 Directory src/modules/perl/
The directorysrc/modules/perincludes the C source files needed to buildittraodperllibrary.
Notice that several files in this directory are autogenerated durinmpth®akefilestage.

When adding new source files to this directory you should add their names@ thec_nanes vari-
able inlib/ModPerl/Code.pmso they will be picked up by the autogeneratiadefile

1.4 Directory xs/

Apache?2/ - Apache specific XS code
APR/ - APR specific XS code
ModPer | / - ModPer| specific XS code
maps/ -

t abl es/

Makefil e. PL

2 15 Feb 2014



mod_perl 2.0 Source Code Explained 1.4.1 xs/Apache2, xs/APR and xs/ModPerl

nodper| _xs_sv_convert. h
nodper| _xs_typedefs. h
nmodper| _xs_util.h
typenmap

1.4.1 xs/Apache2, xs/APR and xs/ModPerl

The xs/Apache2xs/APRandxs/ModPerldirectories includeh files which have C and XS code in them.
They all have theh extension because they are alw#ysicl ude- d, never compiled into their own
object file. and only the file thati ncl ude-s an.h file from these directories should be able to see
what's in there. Anything else belongs isra/modules/perl/foo.public API.

1.4.2 xs/maps

The xs/mapdirectory includes mapping files which describe how Apache Perl API should be constructed
and various XS typemapping.

These files get modified whenever:

® a new function is added or the API of the existing one is modified.

® a new struct is added or the existing one is modified

® a new C datatype or Perl typemap is added or an existing one is modified.
The execution of:

% make source_scan
or:

% per| buil d/ source_scan. pl

converts these map files into their Perl table representation ixsttables/currentflirectory. This Perl
representation is then used durpey | Makefi |l e. PL to generate the XS code in th@/rapXS/direc-

tory by the xs_generate() function. This XS code is combined of the Apache API Perl glue and mod_perl
specific extensions.

If you need to skip certain unwanted C defines from being picked by the source scanning you can add
them to the array$Apache2:: ParseSource:: defines_unwanted in lib/Apache2/Pars-
eSource.pm

Notice thatsource_scartarget is normally not run during the project build process, since the source scan-
ning is not stable yet, therefore everytime the map files chamedes sour ce_scan should be run
manually and the updated files ending up inxk&ables/currentflirectory should be committed to the

svn repository.

15 Feb 2014 3



1.4.2 xs/maps

lib/ModPerl/CScan.pmequires Data::Flow from CPAN which is usedtwyld/source_scan.pl
There are three different types of map files inxtfenapsHirectory:

® Functions Mapping

apache_functi ons. map
nmodper | _functi ons. map
apr _functions. map

® Structures Mapping

apache_structures. map
apr_struct ures. map

® Types Mapping
apache_t ypes. map
apr_types. map

nmodper| _types. nap

The following sections describe the syntax of the files in each group

1.4.2.1 Functions Mapping

The functions mapping file is comprised of groups of function definitions. Each group starts with a header
similar to XS syntax:

MODULE=... PACKAGE=... PREFIX=... BOOT=... |SA=. ..
where:
e MODULE

the module name where the functions should be putMBIQULE Apache?2:: Connect i on will
place the functions intéd/rapXS/Apache2/Connection.{pm,xs}

® PACKAGE

the package name functions belong to, defaulldO@ULE. The value ofjuessindicates that package

name should be guessed based on first argument found that maps to a Perl class. If the value is not
defined and the function’s name starts véth the Apache?2 package will be used, if it starts with
apr_then theAPR package is used.

® PREFI X

prefix string to be stripped from the function name. If not specified it defaulRAGKAGE,
converted to C name convention, eAPR: : Base64 makes the prefixapr_base64. If the
converted prefix does not match, defaultapo or apr_.

4 15 Feb 2014



mod_perl 2.0 Source Code Explained 1.4.2 xs/maps

e BOOT

TheBQOOT directive tells the XS generator, whether to add the boot function to the autogenerated XS
file or not. If the value oBOOT is not true or it's simply not declared, the boot function won't be
added.

If the value is true, a boot function will be added to the XS file. Note, that this function is not
declared in the map file.

The boot function name must be constructed from three parts:
'mpxs_’' . MODULE . ' _BOOT’
whereMODULE is the one declared witttODULE= in the map file.

For example if we want to have an XS boot function for a &&8% : | O we create this function in
xs/APR/IO/APR__10:h

static void npxs_APR__| O BOOT( pTHX)
{

}

/* boot code here */

and now we add thBOOT=1 declaration to th&s/maps/modper|_functions.méle:
MODULE=APR: : | O PACKAGE=APR : | O BOOT=1
Notice that thde’ACKAGE= declaration is a must.

When make xs_generateis run (after running make source_scan it autogenerates
Wrap/APR/IO/I0.x@nd amongst other things will include:

BOOT:
npxs_APR__| O BOOT(aTHXo) ;

® | SA
META: complete

Every function definition is declared on a separate line (uidhe line is too long), using the following
format:

C function nane | Dispatch function nane | Argspec | Perl alias
where:
e C function name

The name of the real C function.

15 Feb 2014 5



1.4.2 xs/maps

Function names that do not begin with"\w are skipped. For details see:
%vbdPer| :: MapUtil :: di sabl ed_map.

The return type can be specified before the C function name. It defaultstuim_type in
{Apache2, ModPer | }:: Functi onTabl e.

META: DEFINE nuances
® Dispatch function name

Dispatch function name defaults to C function name. If the dispatch name is just a més, (
MPXS ) the C function name is appended to it.

See the explanation about function naming and arguments passing.
® Argspec

The argspec defaults to arguments{iApache2, ModPer | }:: Functi onTabl e. Argument
types can be specified to override those inRhact i onTabl e. Default values can be specified,
e.g.ar g=def aul t _val ue. Argspec of . . indicatespassthry calling the function witl{ aTHX_
132 items, SP **sp, SV **MARK).

® Perl alias

the Perl alias will be created in the currBPACKAGE.

1.4.2.2 Structures Mapping
See %ModPerl::MapUtil::disabled_map in lib/ModPerl/MapUtil.pm

META: complete

1.4.2.3 Types Mapping

META: complete

1.4.2.4 Modifying Maps

As explained in the beginning of this section, whenever the map file is modified you need first to run:

% make source_scan

Next check that the conversion to Perl tables is properly done by verifying the resulting corresponding file
in  xsftables/current For example xs/maps/modperl_functions.mapis  converted into
xs/tables/current/ModPerl/FunctionTable.pm

If you want to do a visual check on how XS code will be generated, run:

6 15 Feb 2014



mod_perl 2.0 Source Code Explained 1.5 Gluing Existing APIs

% nake xs_generate

and verify that the autogenerated XS code under the dire¢WirgpXSis correct. Notice that for func-

tions, whose arguments or return types can’t be resolved, the XS glue won'’t be generated and a warning
will be printed. If that's the case add the missing type’s typemap to the types map file as explained in
[Adding Typemaps for new C Data Types and run the XS generation stage again.

You can also build the project normally:

% per|l Makefile.PL ...

which runs the XS generation stage.

1.4.3 XS generation process

As mentioned before XS code is generated inhapXSdirectory either duringger | Makefil e. PL
via xs_generate() P_GENERATE _XS=1 is used (which is the default) or explicitly via:

% nmake xs_generate

In addition it creates a number of files in ttsddirectory:

nodper| _xs_sv_convert. h
nmodper| _xs_typedefs. h

1.5 Gluing Existing APIs

If you have an API that you simply want to provide the Perl interface without writing any code...
META: complete

WrapXS allows you to adjust some arguments and supply default values for function arguments without
writing any code

META: complete

MPXS functions are finaKSUBs and always accept:

aTHX_ 132 itens, SP **sp, SV **MARK

as their arguments. Whereapxs__ functions are either intermediate thin wrappers for the existing C
functions or functions that do something by themseMBXS _ functions also can be used for writing thin
wrappers for C macros.

15 Feb 2014 7



1.6 Adding Wrappers for existing APIs and Creating New APIs

1.6 Adding Wrappers for existing APIs and Creating New
APIs

In certain cases the existing APIs need to be adjusted. There are a few reasons for doing this.

First, is to make the given C API more Perlish. For example C functions cannot return more than one
value, and the pass by reference technique is used. This is not Perlish. Perl has no problem returning a list
of value, and passing by reference is used only when an array or a hash in addition to any other variables
need to be passes or returned from the function. Therefore we may want to adjust the C API to return a list
rather than passing a reference to a return value, which is not intuitive for Perl programmers.

Second, is to adjust the functionality, i.e. we still use the C API but may want to adjust its arguments
before calling the original function, or do something with return values. And of course optionally adding
some new code.

Third, is to create completely new APIs. It's quite possible that we need more functionality built on top of
the existing API. In that case we simply create new APIs.

The following sections discuss various techniques for retrieving function arguments and returning values
to the caller. They range from using usual C argument passing and returning to more complex Perl argu-
ments’ stack manipulation. Once you know how to retrieve the arguments in various situations and how to
put the return values on the stack, the rest is usually normal C programming potentially involving using
Perl APIs.

Let's look at various ways we can declare functions and what options various declarions provide to us:

1.6.1 Functions Returning a Single Value (or Nothing)

If its know deterministically what the function returns and there is only a single return value (or nothing is
returned ==void), we are on the C playground and we don’'t need to manipulate the returning stack.
However if the function may return a single value or nothing at all, depending on the inputs and the code,
we have to manually manipulate the stack and therefore this section doesn'’t apply.

Let's look at various requirements and implement these using simple examples. The following testing
code exercises the interfaces we are about to develop, so refer to this code to see how the functions are
invoked from Perl and what is returned:

file:t/response/ Test Apache2/ cor edenn. pm

package Test Apache?2:: coredenv;

use strict;
use warni ngs FATAL => "all’

use Apache2:: Const -conpile => "K' ;

use Apache:: Test;
use Apache:: TestUtil;

8 15 Feb 2014



mod_perl 2.0 Source Code Explained 1.6.1 Functions Returning a Single Value (or Nothing)

use Apache2: : Cor eDenv;

sub handl er {
ny $r = shift;

plan $r, tests => 7;

ny $a = 7;
ny $b = 3
ny ($add, $subst);

$add = Apache2:: CoreDeno:: print($a, $b);
t _debug "print";
ok ! $add;

$add = Apache2:: Cor eDenp: : add($a, $b);
ok t_cmp($a + $b, $add, "add");

$add = Apache2:: CoreDenp: : add_sv(%$a, $b);
ok t_cmp(%$a + $b, $add, "add: return sv");

$add = Apache2:: Cor eDenp: : add_sv_sv(%$a, $b);
ok t_cnmp($a + $b, $add, "add: pass/return svs");

($add, $subst) = @ Apache2:: CoreDenv:: add_subst ($a, $b) };
ok t_cmp($a + $b, $add, "add_subst: add");
ok t_cnmp($a - $b, $subst, "add_subst: subst");

$subst = Apache2:: CoreDenp: : subst _sp($a, $b);
ok t_cmp(%a - $b, $subst, "subst via SP");

Apache?2: : Const: : OK;
}

1

The first case is the simplest: pass two integer arguments, print these to the STDERR stream and return
nothing:

file:xs/ Apache2/ Cor eDenn/ Apache2__Cor eDeno. h

static MP_I NLINE
voi d nmpxs_Apache2__CoreDeno_print(int a, int b)
{

}

file:xs/ maps/ nmodper!| _functions. map

MODULE=Apache?2: : Cor eDeno
npxs_Apache2__Cor eDeno_pri nt

fprintf(stderr, "%, %\n", a, b);

Now let's say that thé argument is optional and in case it wasn't provided, we want to use a default
value, e.g. 0. In that case we don't need to change the code, but simply adjust the map file to be:

15 Feb 2014 9



1.6.1 Functions Returning a Single Value (or Nothing)

file:xs/ maps/ nmodper!| _functions. map

MODULE=Apache2: : Cor eDenp
npxs_Apache2__CoreDeno_print | | a, b=0

In the previous example, we didn’t list the arguments in the map file since they were automatically
retrieved from the source code. In this example we tell WrapXS to assign a valtetbe argument b, if

it wasn’t supplied by the caller. All the arguments must be listed and in the same order as they are defined
in the function.

You may add an extra test that test teh default value assignment:

$add = Apache?2:: Cor eDeno: : add( $a) ;
ok t_cnp($a + 0, $add, "add (b=0 default)");

The second case: pass two integer arguments and return their sum:

file:xs/ Apache2/ Cor eDenp/ Apache2__CoreDenv. h

static MP_I NLINE
i nt npxs_Apache2__CoreDenp_add(int a, int b)

{
}

file:xs/ maps/ nodper!| _functions. map

MODULE=Apache?2: : Cor eDeno
npxs_Apache2__ Cor eDeno_add

return a + b;

The third case is similar to the previous one, but we return the sum as as a Perl scalar. Though in C we say
SV*, in the Perl space we will get a normal scalar:

file:xs/ Apache2/ Cor eDeno/ Apache2__Cor eDenp. h

static MP_I NLI NE
SV *npxs_Apache2__CoreDeno_add_sv(pTHX_ int a, int b)
{

}

file:xs/ maps/ modper!| _functions. map

MODULE=Apache?2: : Cor eDeno
npxs_Apache2__Cor eDeno_add_sv

return newSViv(a + b);

In the second example the XSUB function was converting the returnealue to a Perl scalar behind the
scenes. In this example we return the scalar ourselves. This is of course to demonstrate that you can return
a Perl scalar, which can be a reference to a complex Perl datastructure, which we will see in the fifth
example.

10 15 Feb 2014



mod_perl 2.0 Source Code Explained 1.6.1 Functions Returning a Single Value (or Nothing)

The forth case demonstrates that you can pass Perl variables to your functions without needing XSUB to
do the conversion. In all previous examples XSUB was automatically converting Perl scalars in the argu-
ment list to the corresponding C variables, using the typemap definitions.

file:xs/ Apache2/ Cor eDeno/ Apache2__Cor eDenp. h

static MP_I NLI NE
SV *npxs_Apache2__CoreDenp_add_sv_sv(pTHX_ SV *a_sv, SV *b_sv)

{
int a = (int)SvlV(a_sv);
int b = (int)SvlV(b_sv);
return newSvViv(a + b);

}

file:xs/ maps/ modper!| _functions. map

MODULE=Apache?2: : Cor eDeno
npxs_Apache2__CoreDeno_add_sv_sv

So this example is the same simple case of addition, though we manually convert the Perl variables to C
variables, perform the addition operation, convert the result to a Perl Scalar 8 Kinteger Value) and
return it directly to the caller.

In case where more than one value needs to be returned, we can still implement this without directly
manipulating the stack before a function returns. The fifth case demonstrates a function that returns the
result of addition and substruction operations on its arguments:

file:xs/ Apache2/ Cor eDeno/ Apache2__Cor eDeno. h

static MP_I NLINE
SV *npxs_Apache2__Cor eDeno_add_subst (pTHX_ int a, int b)

{
AV *av = newAV();
av_push(av, newSViv(a + b));
av_push(av, newSViv(a - b));
return newRV_noi nc((SV*)av);
}

file:xs/ maps/ nodper| _functions. map

MODULE=Apache2: : Cor eDenp
npxs_Apache2__Cor eDenp_add_subst

If you look at the corresponding testing code:
($add, $subst) = @ Apache2:: CoreDenv::add_subst ($a, $b) };

ok t_cmp($a + $b, $add, "add_subst: add");
ok t_cnmp($a - $b, $subst, "add_subst: subst");

15 Feb 2014 11



1.6.1 Functions Returning a Single Value (or Nothing)

you can see that this technique comes at a price of needing to dereference the return value to turn it into a
list. The actual code is very similar to thApache2: : Cor eDenp: : add_sv function which was doing

only the addition operation and returning a Perl scalar. Here we perform the addition and the substraction
operation and push the two results into a previously crégi&diata structure, which represents an array.
Since only theSVdatastructures are allowed to be put on stack, we take a ref@¥ifadich is of anSV

kind) to the existing\V and return it.

The sixth case demonstrates a situation where the number of arguments or their types may vary and aren’t
known at compile time. Though notice that we still know that we are returning at compile time (zero or
one argumentsjnt in this example:

file:xs/ Apache2/ Cor eDeno/ Apache2__Cor eDeno. h

static MP_I NLI NE
i nt nmpxs_Apache2__CoreDenp_subst _sp(pTHX_ 132 itens, SV **MARK, SV **SP)

{
int a, b;
if (itens != 2) {
Per| _croak(aTHX_ "usage: ...");
}
a = np_xs_sv2_int (*MARK);
b = np_xs_sv2_int(*( MARK+1));
return a - b;
}

file:xs/ maps/ modper!| _functions. map

MODULE=Apache?2: : Cor eDeno
npxs_Apache2__CoreDeno_subst _sp | |

In the map file we use a special token. which tells the XSUB constructor to passens, MARK and
SP arguments to the function. The mad#aRK points to the first argument passed by the caller in the Perl
namespace. For example to access the second argument to retrieve the balee ude* ( MARK+1) ,
which if you remember represented asSfvariable, which nees to be converted to the corresponding C

type.

In this example we use the maarp_xs_sv2_intautomatically generated based on the data from the
xs/typemapand xs/maps/*_types.mafiles, and placed into thes/modperl_xs sv_convertftle. In the
case oifnt C type the macro is:

#define np_xs_sv2_int(sv) (int)SvlV(sv)
which simply converts th8Vvariable on the stack and generatemamalue.

While in this example you have an access to the stack, you cannot manipulate the return values, because
the XSUB wrapper expects a single return value of tgheso even if you put something on the stack it
will be ignored.

12 15 Feb 2014



mod_perl 2.0 Source Code Explained 1.6.2 Functions Returning Variable Number of Values

1.6.2 Functions Returning Variable Number of Values

We saw earlier that if we want to return an array one of the ways to go is to return a reference to an array
as a single return value, which fits the C paradigm. So we simply declare the return &tie as

This section talks about cases where it's unknown at compile time how many return values will be or it's
known that there will be more than one return value--something that C cannot handle via its return mecha-
nism.

Let's rewrite the functionmpxs_Apache2_ Cor eDenpo_add_subst from the earlier section to
return two results instead of a reference to a list:

file: xs/ Apache2/ Cor eDeno/ Apache2__Cor eDeno. h

static XS(MPXS_Apache2__Cor eDeno_add_subst _sp)

{
dXSARGS;

int a, b;

if (items !=2) {
Per| _croak(aTHX_ "usage: Apache2:: CoreDenp: : add_subst _sp($a, $b)");
}

a
b

nmp_xs_sv2_int (ST(0));
nmp_xs_sv2_int(ST(1));

SP -=itens;

if (A ME == G ARRAY) {
EXTEND( sp, 2);
PUSHs(sv_2nortal (newSViv(a + b)

));
PUSHs(sv_2nortal (newSViv(a - b)));

}

el se {
XPUSHs(sv_2nortal (newSViv(a + b)));
}

PUTBACK;
}

Before explaining the function here is the prototype we add to the map file:
file:xs/ maps/ nmodper!| _functions. map

MODULE=Apache2: : Cor eDenp
DEFI NE_add_subst _sp | MPXS_Apache2__CoreDenp_add_subst _sp |

Thenpxs_ functions declare in the third column the arguments that they expect to receive (and optionally
the default values). THePXS functions are the reXISUBs and therefore they always accept:

aTHX_ 132 items, SP **sp, SV **MARK

15 Feb 2014 13



1.6.2 Functions Returning Variable Number of Values

as their arguments. Therefore it doesn’'t matter what is placed in this column wingX8e function is
declared. Usually for documentation the Perl side arguments are listed. For example you can say:

DEFI NE_add_subst _sp | MPXS_Apache2__CoreDeno_add_subst _sp | x, y

In this function we manually manipulate the stack to retrieve the arguments passed on the Perl side and put
the results back onto the stack. Therefore the first thing we do is to initialize a few special variables using
the dXSARGS macro defined ilXSUB.h which in fact calls a bunch of other macros. These variables help

to manipulate the stacllSP is one of these macros and it declares and initial- izes a local copy of the Perl
stack pointesp which . This local copy should always be access&Pas

We retrieve the original function arguments using$fmé¢) macrosST(0) andST( 1) point to the first
and the second argument on the stack, respectively. But first we check that we have exactly two arguments
on the stack, and if not we abort the function. Thens variable is the function argument.

Once we have retrieved all the arguments from the stack we set the local stackSsbiot@oint to the
bottom of the stack (like there are no items on the stack):

SP -= itens;

Now we can do whatever processing is heeded and put the results back on the stack. In our example we
return the results of addition and substraction operations if the function is called in the list context. In the
scalar context the function returns only the result of the addition operation. We uSeMi#e macro

which tells us the context.

In the list context we make sure that we have two spare slots on the stack since we are going to push two
items, and then we push them usingPSHs macro:

EXTEND( sp, 2);

PUSHs(sv_2nortal (newSViv(a + b)));
PUSHs(sv_2nortal (newsSViv(a - b)));

Alternatively we could use:

XPUSHs(sv_2nortal (newSViv(a + b)));
XPUSHs(sv_2nortal (newSViv(a - b)));

The XPUSHs macro &tends the stack before pushing the item into it if needed. If we plan to push more
than a single item onto the stack, it's more efficient to extend the stack in one call.

In the scalar context we push only one item, so here we u¥®tigHs macro:
XPUSHs(sv_2nortal (newSViv(a + b)));
The last command we call is:

PUTBACK;

which makes the local stack pointer global. This is a must call if the state of the stack was changed when
the function is about to return. The stack changes if something was popped from or pushed to it, or both
and changed the number of items on the stack.

14 15 Feb 2014



mod_perl 2.0 Source Code Explained 1.6.3 Wrappers Functions for C Macros

In our example we don’t need to cRIUTBACK if the function is called in the list context. Because in this

case we return two variables, the same as two function arguments, the count didn’t change. Though in the
scalar context we push onto the stack only one argument, so the function won't return what is expected.
The simplest way to avoid errors here is to alwaysRAlBACK when the stack is changed.

For more information refer to theerlcall manpage which explains the stack manipulation process in great
details.

Finally we test the function in the list and scalar contexts:

file:t/response/ Test Apache2/ cor edenp. pm

.ni/.$a =7,
nmy $b 3;
ny ($add, $subst);

# list context

($add, $subst) = Apache2:: CoreDenp::add_subst _sp($a, $b);

ok t_cnp(%a + $b, $add, "add_subst_sp list context: add");
ok t_cnmp(%a - $b, $subst, "add_subst_sp list context: subst");

# scal ar cont ext
$add = Apache2:: CoreDenp: : add_subst _sp($a, $b);
ok t_cnp(%a + $b, $add, "add_subs_spt scal ar context: add");

1.6.3 Wrappers Functions for C Macros

Let's say you have a C macro which you want to provide a Perl interface for. For example let’s take a
simple macro which performs the power of function:

file:xs/ Apache2/ Cor eDenon/ Apache2__Cor eDeno. h

#defi ne npxs_Apache2__CoreDeno_power (X, y) pow X, YY)

To create the XS glue code we use the following entry in the map file:

file:xs/ maps/ nodper!| _functions. map

MODULE=Apache?2: : Cor eDeno
doubl e: DEFI NE_power | | double:x, double:y

This works very similar to thé/PXS_Apache2__Cor eDenp_add_subst _sp function presented

earlier. But since this is a macro the XS wrapper needs to know the types of the arguments and the return
type, so these are added. The return type is added just before the function name and separated from it by
the colon (), the argument types are specified in the third column. The type is always separated from the
name of the variable by the colan)(

15 Feb 2014 15



1.7 Wrappers for modperl_, apr_ and ap_ APIs

And of course finally we need to test that the function works in Perl:

file:t/response/ Test Apache2/ cor edenp. pm

ny $a
ny $b = 3;

ny $power = Apache2:: Cor eDenv: : power ($a, $b);
ok t_cmp(%a ** $b, $power, "power macro");

1.6.4 Passing aTHX for DEFINE map entries

Let's say you have a function or a C macro which you want to provide a Perl interface for, and you don’t
need to write a wrapper since C arguments are the same as Perl arguments. For example:

char *foo(aTHX_ int bar);

The map entry will look like:

MODULE=Apache?2: : Cor eDeno
char *:DEFINE foo | | int:bar

But there is no way to pas§HX __ since this is a macro and it's an empty string with non-threaded Perls.
Another macro comes to help:

file:xs/ Apache2/ Cor eDenp/ Apache2__CoreDeno. h

#defi ne npxs_Apache2__CoreDenp_foo(x, y) foo(aTHX_ x, YY)

1.7 Wrappers for modperl_, apr_and ap_ APIs

If you already have a C function whose name starts fmmaperl, apr_orap_and you want to do some-

thing before calling the real C function, you can write a XS wrapper using the same method as in the
[MPXS Apache2 CoreDemo_add _subsi sp . The only difference is that it'll be clearly seen in the map
file that this is a wrapper for an existing C API.

Let’s say that we have an existing C function apr_power(), this is how we declare its wrapper:

file:xs/ maps/apr_functions. map

MODULE=APR: : Foo
apr_power | MPXS_ | x, Yy

The first column specifies the existing function’s name, the second tells that the XS wrapper will use the
MPXS _ prefix, which means that the wrapper must be cal@dS apr _power . The third column spec-
ifies the argument names, but /dPXS_ no matter what you specify there the. will be passed:

16 15 Feb 2014



mod_perl 2.0 Source Code Explained 1.8 MP_INLINE vs C Macros vs Normal Functions

aTHX_ 132 itens, SP **sp, SV **MARK

S0 you can leave that column empty, but here wexusedy to remind us that these two arguments are
passed from Perl.

If the forth column is empty this function will be callé®R: : Foo: : power in the Perl namespace. But
you can use that column to give a different Perl name, e.g with:

apr_power | MPXS_ | X, y | pow
This function will be available from Perl &PR: : Foo: : pow.

Similarly you can write a/PXS_nodper | _power wrapper for arodper| _power () function but
here you have to explicitly give the Perl function’s name in the forth column:

file:xs/maps/apr_functions. map

MODULE=Apache2: : Cor eDenp
nmodper| _power | MPXS_ | X, y | nypower

and the Perl function will be calléspbache2: : Cor eDeno: : mypower .

The MPXS_ wrapper’s implementation is similar[to MPXS Apache2 CoreDemo_add_subst_sp .

1.8 MP_INLINE vs C Macros vs Normal Functions

To make the code maintainable and reusable functions and macros are used in when programming in C
(and other languages :).

When function is marked aslined it's merely a hint to the compiler to replace the call to a function with
the code inside this function (i.e. inlined). Not every function can be inlined. Some typical reasons why
inlining is sometimes not done include:

e the function calls itself, that is, is recursive
e the function contains loops suchfas (; ;) orwhi |l e()
® the function size is too large

Most of the advantage of inline functions comes from avoiding the overhead of calling an actual function.
Such overhead includes saving registers, setting up stack frames, etc. But with large functions the over-
head becomes less important.

Use theMP_I NLI NE keyword in the declaration of the functions that are to be inlined. The functions
should be inlined when:

e Only ever called once (therappersthat are called fronxsfiles), no matter what the size of code is.

15 Feb 2014 17



1.8 MP_INLINE vs C Macros vs Normal Functions

® Short bodies of code called inhat code (likemodperl_env_hv_storevhich is called many times

inside of a loop), where it is cleaner to see the code in function form rather than macro with lots of
\ ’'s. Remember that an inline function takes much more space than a normal functions if called from
many places in the code.

Of course C macros are a bit faster then inlined functions, since there is nshextejumpto be made,
the code is literally copied into the place it's called from. However using macros comes at a price:

® Also unlike macros, in functions argument types are checked, and necessary conversions are

18

performed correctly. With macros it's possible that weird things will happen if the caller has passed
arguments of the wrong type when calling a macro.

One should be careful to pass only absolute valuéargements"to macros. Consider a macro that
returns an absolute value of the passed argument:

#define ABS(v) ( (v) >=07? (v) : -(v) )
In our example if you happen to pass a function it will be called twice:
abs_val = ABS(f());
Since it'll be extended as:
abs val =f() >=07?2 f() : -f();
You cannot do simple operation like increment--in our example it will be called twice:
abs_val = ABS(i ++);
Because it becomes:
abs_val = i++ >= 0 ?2 i++ : -i++

It's dangerous to use the if() condition without enclosing the codg jrsince the macro may be
called from inside another if-else condition, which may cause the else part called if the if() part from
the macro fails.

But we always usg} for the code inside the if-else condition, so it's not a problem here.

A multi-line macro can cause problems if someone uses the macro in a context that demands a single
statement.

while (foo) MYMACRQ(bar);
But again, we always enclose any code in conditional {ithso it's not a problem for us.

Inline functions present a problem for debuggers and profilers, because the function is expanded at
the point of call and loses its identity. This makes the debugging process a nightmare.

15 Feb 2014



mod_perl 2.0 Source Code Explained 1.9 Adding New Interfaces

A compiler will typically have some option available to disable inlining.

In all other cases use normal functions.

1.9 Adding New Interfaces
1.9.1 Adding Typemaps for new C Data Types

Sometimes when a new interface is added it may include C data types for which we don’t have corre-
sponding XS typemaps yet. In such a case, the first thing to do is to provide the required typemaps.

Let's add a prototype for thiypedef struct scoreboardata type defined imttpd-2.0/include/score-
board.h

First we include the relevant header filesio/modules/perl/modperl_apache_includes.h

#i ncl ude "scoreboard. h"

If you want to specify your own type and don't have a header file for it (e.g. if you extend some existing
datatype within mod_perl) you may add thipedetto src/modules/perl/modperl_types.h

After deciding thatApache: : Scor eboar d is the Perl class will be used for manipulatingd@reboard
data structures, we map tbeoreboarddata structure to th&pache: : Scor eboar d class. Therefore
we add toks/maps/apache_types.map

struct scoreboard | Apache: : Scoreboard

Since we want thescoreboarddata structure to be an opaque object on the perl side, we simply let
mod_perl use the default PTROBJ typemap. After runningrake xs_gener at e you can check the
assigned typemap in the autogeneratgdpXS/typemafile.

If you need to do some special handling while converting from C to Perl and back, you need to add the
conversion functions to thes/typemagile. For example thé\pache2: : Request Rec objects need
special handling, so you can see the spdd@UT and OUTPUT typemappings for the corresponding
T_APACHEQOBJ object type.

Now we runnmake xs_gener at e and find the following definitions in the autogenerated files:

file:xs/nodperl _xs_typedefs.h

typedef scoreboard * Apache__Scoreboard;

file:xs/nodperl _xs_sv_convert.h

#defi ne np_xs_sv2_Apache__Scoreboard(sv) \

((SVROK(sv) && (SvTYPE(SVRV(sv)) == SVt _PVM3 ) \

|| (Perl _croak(aTHX_"argument is not a bl essed reference \
(expecting an Apache:: Scoreboard derived object)"),0) 2\

15 Feb 2014 19



1.9.2 Importing Constants and Enums into Perl API

(scoreboard *)SvlV((SV*)SvYRV(sv)) : (scoreboard *) NULL)

#defi ne np_xs_Apache__Scoreboard_2obj (ptr) \
sv_setref _pv(sv_newnortal (), "Apache:: Scoreboard", (void*)ptr)

The file xs/modperl_xs_typedefsdteclares the typemapping from C to Perl and equivalent to the
TYPEMAP section of the XS’sypemapfile. The second filexss/modperl_xs_sv_convertgenerates two
macros. The first macro is used to convert from Perl to C datatype and equivalentyjgethapfile’s

I NPUT section. The second macro is used to convert from C to Perl datatype and equivalent to the
typemafs OQUTPUT section.

Now proceed on adding the glue code for the new interface.

1.9.2 Importing Constants and Enums into Perl API

To import httpd and APR constants and enums into Perl APl Jietipache2/ParseSource.pimo add a
new type of DEFI NE constants adjust thédefi nes_want ed variable, for enuns modify
%enuns_want ed.

For example to import alDEFI NEs starting withAPR_FLOCK _ add:
my %lefines_wanted = (
APR => {

{‘i éck => [ qw{ APR_FLOCK }],

)

When deciding which constants are to be exported, the regular expression will be used, so in our example
all matcheg “"APR_FLOCK / will be imported into the Perl API.

For example to import aead_type_e@numfor APR, add:

ny %enuns_wanted = (
APR => { map { $_, 1 } gw(apr_read_type) },
)

Notice that_epart at the end of the enum name has gone.

in case of Apache constants remove the leadipg and terminating/ _(t|e)$/. For example
ap_conn_keepalive_reeeds to be added as:

my %enunms_wanted = (
Apache2 => { map { $_, 1 } gw(conn_keepalive) },
);

After adding/modifying the datastructures make sure to make source_scan or perl
bui | d/ sour ce_scan. pl and verify that the wanted constant or enum were picked by the source
scanning process. Simply gregs/tables/currentfor the wanted string. For example after adding

20 15 Feb 2014



mod_perl 2.0 Source Code Explained 1.10 Maintainers

apr_read_type_enum we can check:
% nmor e xs/tabl es/ current/Apache2/ Const ant sTabl e. pm
‘read_type’ => [
" APR_BLOCK_READ ,
" APR_NONBLOCK_READ
1.

Of course the newly added constant or enum’s typemap should be declared in the appropriate
xs/maps/*_types.maijiles, so the XS conversion of arguments will be performed correctly. For example
apr_read_typas an APR enum so it's declaredxsimaps/apr_types.map

apr_read_type | 1V

| Vis used as a typemap, Since enum is just an integer. In more complex cases the typemap can be differ-
ent. (META: examples)

1.10 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekmarn [http://stason.qrg/]

1.11 Authors

e Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 21


http://stason.org/
http://stason.org/




mod_perl 2.0 Source Code Explained Table of Contents:

Table of Contents:
1| mod perl 2. 0 Source Code Explained .

1.1 [Descriptio
1.2 | Prolect S Fllesystem Layd)ut
1.3 |Directory siic
1.3.1| Directory src/modules/p¢rll
1.4 [Directory x§/ . .
1.4.1| xs/Apache2, xs/APR and xs/ModPerI
1.4.2 S
1.4.2.1f Functlons Mapplhg
1.4.2.2| Structures Mapping
1.4.2.3[Types Mappihg
1.4.2.4[ Modifying Mags
1.4.3| XS generation process.
1.5|Gluing Existing AP|s )
1.6 |Adding Wrappers for existing APIs and Creatlng New lAPIs )
1.6.1| Functions Returning a Single Value (or Nothing) e
1.6.2| Functions Returning Variable Number of Vglues . . . . . . . . 13
1.6.3| Wrappers Functions for C MMagtos . . . . . . . . . . . . 15
1.6.4| Passing aTHX for DEFINE map enffies. . . . . . . . . . . 16
1.7 |Wrappers for modperl , apr andap APIs. . . . . . . . . . . 16
1.8|MP INLINE vs C Macros vs Normal Functipns. . . . . . . . . . 17
1.9|Adding New Interfacges. . K
1.9.1| Adding Typemaps for new C Data Types K
1.9.2| Importing Constants and Enums into PerlAPI . . . . . . . . . 20
1.10[Maintainets . . . . . . . . . . . . . . . . . . 21
1.11[Authods . . . . . . . . . . . . ... . . . .2

OO ~NNODOOOOPRWWMNNNDNNPE

15 Feb 2014 i



	1€€mod_perl 2.0 Source Code Explained
	1.1€€Description
	1.2€€Project's Filesystem Layout
	1.3€€Directory src
	1.3.1€€Directory src/modules/perl/

	1.4€€Directory xs/
	1.4.1€€xs/Apache2, xs/APR and xs/ModPerl
	1.4.2€€xs/maps
	1.4.2.1€€Functions Mapping
	1.4.2.2€€Structures Mapping
	1.4.2.3€€Types Mapping
	1.4.2.4€€Modifying Maps

	1.4.3€€XS generation process

	1.5€€Gluing Existing APIs
	1.6€€Adding Wrappers for existing APIs and Creating New APIs
	1.6.1€€Functions Returning a Single Value (or Nothing)
	1.6.2€€Functions Returning Variable Number of Values
	1.6.3€€Wrappers Functions for C Macros
	1.6.4€€Passing aTHX for DEFINE map entries

	1.7€€Wrappers for modperl_, apr_ and ap_ APIs
	1.8€€MP_INLINE vs C Macros vs Normal Functions
	1.9€€Adding New Interfaces
	1.9.1€€Adding Typemaps for new C Data Types
	1.9.2€€Importing Constants and Enums into Perl API

	1.10€€Maintainers
	1.11€€Authors


