

1 mod_perl 2.0 Source Code Explained

115 Feb 2014

1 mod_perl 2.0 Source Code Explainedmod_perl 2.0 Source Code Explained

1.1 Description
This document explains how to navigate the mod_perl source code, modify and rebuild the existing code
and most important: how to add new functionality.

1.2 Project’s Filesystem Layout
In its pristine state the project is comprised of the following directories and files residing at the root direc-
tory of the project:

 Apache-Test/ - test kit for mod_perl and Apache2::* modules
 ModPerl-Registry/ - ModPerl::Registry sub-project
 build/ - utilities used during project build
 docs/ - documentation
 lib/ - Perl modules
 src/ - C code that builds libmodperl.so
 t/ - mod_perl tests
 todo/ - things to be done
 util/ - useful utilities for developers
 xs/ - source xs code and maps
 Changes - Changes file
 LICENSE - ASF LICENSE document
 Makefile.PL - generates all the needed Makefiles

After building the project, the following root directories and files get generated:

 Makefile - Makefile
 WrapXS/ - autogenerated XS code
 blib/ - ready to install version of the package

1.3 Directory src

1.3.1 Directory src/modules/perl/

The directory src/modules/perl includes the C source files needed to build the libmodperl library.

Notice that several files in this directory are autogenerated during the perl Makefile stage.

When adding new source files to this directory you should add their names to the @c_src_names vari-
able in lib/ModPerl/Code.pm, so they will be picked up by the autogenerated Makefile.

1.4 Directory xs/
 Apache2/ - Apache specific XS code
 APR/ - APR specific XS code
 ModPerl/ - ModPerl specific XS code
 maps/ -
 tables/ -
 Makefile.PL -

15 Feb 20142

1.1 Description

 modperl_xs_sv_convert.h -
 modperl_xs_typedefs.h -
 modperl_xs_util.h -
 typemap -

1.4.1 xs/Apache2, xs/APR and xs/ModPerl

The xs/Apache2, xs/APR and xs/ModPerl directories include .h files which have C and XS code in them.
They all have the .h extension because they are always #include-d, never compiled into their own
object file. and only the file that #include-s an .h file from these directories should be able to see
what’s in there. Anything else belongs in a src/modules/perl/foo.c public API.

1.4.2 xs/maps

The xs/maps directory includes mapping files which describe how Apache Perl API should be constructed
and various XS typemapping.

These files get modified whenever:

a new function is added or the API of the existing one is modified.

a new struct is added or the existing one is modified

a new C datatype or Perl typemap is added or an existing one is modified.

The execution of:

 % make source_scan

or:

 % perl build/source_scan.pl

converts these map files into their Perl table representation in the xs/tables/current/ directory. This Perl
representation is then used during perl Makefile.PL to generate the XS code in the ./WrapXS/ direc-
tory by the xs_generate() function. This XS code is combined of the Apache API Perl glue and mod_perl
specific extensions.

If you need to skip certain unwanted C defines from being picked by the source scanning you can add
them to the array $Apache2::ParseSource::defines_unwanted in lib/Apache2/Pars-
eSource.pm.

Notice that source_scan target is normally not run during the project build process, since the source scan-
ning is not stable yet, therefore everytime the map files change, make source_scan should be run
manually and the updated files ending up in the xs/tables/current/ directory should be committed to the
svn repository.

315 Feb 2014

1.4.1 xs/Apache2, xs/APR and xs/ModPerlmod_perl 2.0 Source Code Explained

lib/ModPerl/CScan.pm requires Data::Flow from CPAN which is used by build/source_scan.pl

There are three different types of map files in the xs/maps/ directory:

Functions Mapping

 apache_functions.map
 modperl_functions.map
 apr_functions.map

Structures Mapping

 apache_structures.map
 apr_structures.map

Types Mapping

 apache_types.map
 apr_types.map
 modperl_types.map

The following sections describe the syntax of the files in each group

1.4.2.1 Functions Mapping

The functions mapping file is comprised of groups of function definitions. Each group starts with a header
similar to XS syntax:

 MODULE=... PACKAGE=... PREFIX=... BOOT=... ISA=...

where:

MODULE

the module name where the functions should be put. e.g. MODULE Apache2::Connection will
place the functions into WrapXS/Apache2/Connection.{pm,xs}.

PACKAGE

the package name functions belong to, defaults to MODULE. The value of guess indicates that package
name should be guessed based on first argument found that maps to a Perl class. If the value is not
defined and the function’s name starts with ap_ the Apache2 package will be used, if it starts with
apr_ then the APR package is used.

PREFIX

prefix string to be stripped from the function name. If not specified it defaults to PACKAGE,
converted to C name convention, e.g. APR::Base64 makes the prefix: apr_base64_. If the
converted prefix does not match, defaults to ap_ or apr_.

15 Feb 20144

1.4.2 xs/maps

BOOT

The BOOT directive tells the XS generator, whether to add the boot function to the autogenerated XS
file or not. If the value of BOOT is not true or it’s simply not declared, the boot function won’t be
added.

If the value is true, a boot function will be added to the XS file. Note, that this function is not
declared in the map file.

The boot function name must be constructed from three parts:

 ’mpxs_’ . MODULE . ’_BOOT’

where MODULE is the one declared with MODULE= in the map file.

For example if we want to have an XS boot function for a class APR::IO, we create this function in
xs/APR/IO/APR__IO.h:

 static void mpxs_APR__IO_BOOT(pTHX)
 {
 /* boot code here */
 }

and now we add the BOOT=1 declaration to the xs/maps/modperl_functions.map file:

 MODULE=APR::IO PACKAGE=APR::IO BOOT=1

Notice that the PACKAGE= declaration is a must.

When make xs_generate is run (after running make source_scan), it autogenerates
Wrap/APR/IO/IO.xs and amongst other things will include:

 BOOT:
 mpxs_APR__IO_BOOT(aTHXo);

ISA

META: complete

Every function definition is declared on a separate line (use \ if the line is too long), using the following
format:

 C function name | Dispatch function name | Argspec | Perl alias

where:

C function name

The name of the real C function.

515 Feb 2014

1.4.2 xs/mapsmod_perl 2.0 Source Code Explained

Function names that do not begin with /^\w/ are skipped. For details see:
%ModPerl::MapUtil::disabled_map.

The return type can be specified before the C function name. It defaults to return_type in
{Apache2,ModPerl}::FunctionTable.

META: DEFINE nuances

Dispatch function name

Dispatch function name defaults to C function name. If the dispatch name is just a prefix (mpxs_,
MPXS_) the C function name is appended to it.

See the explanation about function naming and arguments passing.

Argspec

The argspec defaults to arguments in {Apache2,ModPerl}::FunctionTable. Argument
types can be specified to override those in the FunctionTable. Default values can be specified,
e.g. arg=default_value. Argspec of ... indicates passthru, calling the function with (aTHX_
I32 items, SP **sp, SV **MARK).

Perl alias

the Perl alias will be created in the current PACKAGE.

1.4.2.2 Structures Mapping

See %ModPerl::MapUtil::disabled_map in lib/ModPerl/MapUtil.pm

META: complete

1.4.2.3 Types Mapping

META: complete

1.4.2.4 Modifying Maps

As explained in the beginning of this section, whenever the map file is modified you need first to run:

 % make source_scan

Next check that the conversion to Perl tables is properly done by verifying the resulting corresponding file
in xs/tables/current. For example xs/maps/modperl_functions.map is converted into
xs/tables/current/ModPerl/FunctionTable.pm.

If you want to do a visual check on how XS code will be generated, run:

15 Feb 20146

1.4.2 xs/maps

 % make xs_generate

and verify that the autogenerated XS code under the directory ./WrapXS is correct. Notice that for func-
tions, whose arguments or return types can’t be resolved, the XS glue won’t be generated and a warning
will be printed. If that’s the case add the missing type’s typemap to the types map file as explained in
Adding Typemaps for new C Data Types and run the XS generation stage again.

You can also build the project normally:

 % perl Makefile.PL ...

which runs the XS generation stage.

1.4.3 XS generation process

As mentioned before XS code is generated in the WrapXS directory either during perl Makefile.PL
via xs_generate() if MP_GENERATE_XS=1 is used (which is the default) or explicitly via:

 % make xs_generate

In addition it creates a number of files in the xs/ directory:

 modperl_xs_sv_convert.h
 modperl_xs_typedefs.h

1.5 Gluing Existing APIs
If you have an API that you simply want to provide the Perl interface without writing any code...

META: complete

WrapXS allows you to adjust some arguments and supply default values for function arguments without
writing any code

META: complete

MPXS_ functions are final XSUBs and always accept:

 aTHX_ I32 items, SP **sp, SV **MARK

as their arguments. Whereas mpxs_ functions are either intermediate thin wrappers for the existing C
functions or functions that do something by themselves. MPXS_ functions also can be used for writing thin
wrappers for C macros.

715 Feb 2014

1.5 Gluing Existing APIsmod_perl 2.0 Source Code Explained

1.6 Adding Wrappers for existing APIs and Creating New
APIs
In certain cases the existing APIs need to be adjusted. There are a few reasons for doing this.

First, is to make the given C API more Perlish. For example C functions cannot return more than one
value, and the pass by reference technique is used. This is not Perlish. Perl has no problem returning a list
of value, and passing by reference is used only when an array or a hash in addition to any other variables
need to be passes or returned from the function. Therefore we may want to adjust the C API to return a list
rather than passing a reference to a return value, which is not intuitive for Perl programmers.

Second, is to adjust the functionality, i.e. we still use the C API but may want to adjust its arguments
before calling the original function, or do something with return values. And of course optionally adding
some new code.

Third, is to create completely new APIs. It’s quite possible that we need more functionality built on top of
the existing API. In that case we simply create new APIs.

The following sections discuss various techniques for retrieving function arguments and returning values
to the caller. They range from using usual C argument passing and returning to more complex Perl argu-
ments’ stack manipulation. Once you know how to retrieve the arguments in various situations and how to
put the return values on the stack, the rest is usually normal C programming potentially involving using
Perl APIs.

Let’s look at various ways we can declare functions and what options various declarions provide to us:

1.6.1 Functions Returning a Single Value (or Nothing)

If its know deterministically what the function returns and there is only a single return value (or nothing is
returned == void), we are on the C playground and we don’t need to manipulate the returning stack.
However if the function may return a single value or nothing at all, depending on the inputs and the code,
we have to manually manipulate the stack and therefore this section doesn’t apply.

Let’s look at various requirements and implement these using simple examples. The following testing
code exercises the interfaces we are about to develop, so refer to this code to see how the functions are
invoked from Perl and what is returned:

 file:t/response/TestApache2/coredemo.pm
 --
 package TestApache2::coredemo;

 use strict;
 use warnings FATAL => ’all’;

 use Apache2::Const -compile => ’OK’;

 use Apache::Test;
 use Apache::TestUtil;

15 Feb 20148

1.6 Adding Wrappers for existing APIs and Creating New APIs

 use Apache2::CoreDemo;

 sub handler {
 my $r = shift;

 plan $r, tests => 7;

 my $a = 7;
 my $b = 3;
 my ($add, $subst);

 $add = Apache2::CoreDemo::print($a, $b);
 t_debug "print";
 ok !$add;

 $add = Apache2::CoreDemo::add($a, $b);
 ok t_cmp($a + $b, $add, "add");

 $add = Apache2::CoreDemo::add_sv($a, $b);
 ok t_cmp($a + $b, $add, "add: return sv");

 $add = Apache2::CoreDemo::add_sv_sv($a, $b);
 ok t_cmp($a + $b, $add, "add: pass/return svs");

 ($add, $subst) = @{ Apache2::CoreDemo::add_subst($a, $b) };
 ok t_cmp($a + $b, $add, "add_subst: add");
 ok t_cmp($a - $b, $subst, "add_subst: subst");

 $subst = Apache2::CoreDemo::subst_sp($a, $b);
 ok t_cmp($a - $b, $subst, "subst via SP");

 Apache2::Const::OK;
 }

 1;

The first case is the simplest: pass two integer arguments, print these to the STDERR stream and return
nothing:

 file:xs/Apache2/CoreDemo/Apache2__CoreDemo.h
 --
 static MP_INLINE
 void mpxs_Apache2__CoreDemo_print(int a, int b)
 {
 fprintf(stderr, "%d, %d\n", a, b);
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache2::CoreDemo
 mpxs_Apache2__CoreDemo_print

Now let’s say that the b argument is optional and in case it wasn’t provided, we want to use a default
value, e.g. 0. In that case we don’t need to change the code, but simply adjust the map file to be:

915 Feb 2014

1.6.1 Functions Returning a Single Value (or Nothing)mod_perl 2.0 Source Code Explained

 file:xs/maps/modperl_functions.map

 MODULE=Apache2::CoreDemo
 mpxs_Apache2__CoreDemo_print | | a, b=0

In the previous example, we didn’t list the arguments in the map file since they were automatically
retrieved from the source code. In this example we tell WrapXS to assign a value of 0 to the argument b, if
it wasn’t supplied by the caller. All the arguments must be listed and in the same order as they are defined
in the function.

You may add an extra test that test teh default value assignment:

 $add = Apache2::CoreDemo::add($a);
 ok t_cmp($a + 0, $add, "add (b=0 default)");

The second case: pass two integer arguments and return their sum:

 file:xs/Apache2/CoreDemo/Apache2__CoreDemo.h
 --
 static MP_INLINE
 int mpxs_Apache2__CoreDemo_add(int a, int b)
 {
 return a + b;
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache2::CoreDemo
 mpxs_Apache2__CoreDemo_add

The third case is similar to the previous one, but we return the sum as as a Perl scalar. Though in C we say
SV*, in the Perl space we will get a normal scalar:

 file:xs/Apache2/CoreDemo/Apache2__CoreDemo.h
 --
 static MP_INLINE
 SV *mpxs_Apache2__CoreDemo_add_sv(pTHX_ int a, int b)
 {
 return newSViv(a + b);
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache2::CoreDemo
 mpxs_Apache2__CoreDemo_add_sv

In the second example the XSUB function was converting the returned int value to a Perl scalar behind the
scenes. In this example we return the scalar ourselves. This is of course to demonstrate that you can return
a Perl scalar, which can be a reference to a complex Perl datastructure, which we will see in the fifth
example.

15 Feb 201410

1.6.1 Functions Returning a Single Value (or Nothing)

The forth case demonstrates that you can pass Perl variables to your functions without needing XSUB to
do the conversion. In all previous examples XSUB was automatically converting Perl scalars in the argu-
ment list to the corresponding C variables, using the typemap definitions.

 file:xs/Apache2/CoreDemo/Apache2__CoreDemo.h
 --
 static MP_INLINE
 SV *mpxs_Apache2__CoreDemo_add_sv_sv(pTHX_ SV *a_sv, SV *b_sv)
 {
 int a = (int)SvIV(a_sv);
 int b = (int)SvIV(b_sv);

 return newSViv(a + b);
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache2::CoreDemo
 mpxs_Apache2__CoreDemo_add_sv_sv

So this example is the same simple case of addition, though we manually convert the Perl variables to C
variables, perform the addition operation, convert the result to a Perl Scalar of kind IV (Integer Value) and
return it directly to the caller.

In case where more than one value needs to be returned, we can still implement this without directly
manipulating the stack before a function returns. The fifth case demonstrates a function that returns the
result of addition and substruction operations on its arguments:

 file:xs/Apache2/CoreDemo/Apache2__CoreDemo.h
 --
 static MP_INLINE
 SV *mpxs_Apache2__CoreDemo_add_subst(pTHX_ int a, int b)
 {
 AV *av = newAV();

 av_push(av, newSViv(a + b));
 av_push(av, newSViv(a - b));

 return newRV_noinc((SV*)av);
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache2::CoreDemo
 mpxs_Apache2__CoreDemo_add_subst

If you look at the corresponding testing code:

 ($add, $subst) = @{ Apache2::CoreDemo::add_subst($a, $b) };
 ok t_cmp($a + $b, $add, "add_subst: add");
 ok t_cmp($a - $b, $subst, "add_subst: subst");

1115 Feb 2014

1.6.1 Functions Returning a Single Value (or Nothing)mod_perl 2.0 Source Code Explained

you can see that this technique comes at a price of needing to dereference the return value to turn it into a
list. The actual code is very similar to the Apache2::CoreDemo::add_sv function which was doing
only the addition operation and returning a Perl scalar. Here we perform the addition and the substraction
operation and push the two results into a previously created AV* data structure, which represents an array.
Since only the SV datastructures are allowed to be put on stack, we take a reference RV (which is of an SV
kind) to the existing AV and return it.

The sixth case demonstrates a situation where the number of arguments or their types may vary and aren’t
known at compile time. Though notice that we still know that we are returning at compile time (zero or
one arguments), int in this example:

 file:xs/Apache2/CoreDemo/Apache2__CoreDemo.h
 --
 static MP_INLINE
 int mpxs_Apache2__CoreDemo_subst_sp(pTHX_ I32 items, SV **MARK, SV **SP)
 {
 int a, b;

 if (items != 2) {
 Perl_croak(aTHX_ "usage: ...");
 }

 a = mp_xs_sv2_int(*MARK);
 b = mp_xs_sv2_int(*(MARK+1));

 return a - b;
 }

 file:xs/maps/modperl_functions.map

 MODULE=Apache2::CoreDemo
 mpxs_Apache2__CoreDemo_subst_sp | | ...

In the map file we use a special token ... which tells the XSUB constructor to pass items, MARK and
SP arguments to the function. The macro MARK points to the first argument passed by the caller in the Perl
namespace. For example to access the second argument to retrieve the value of b we use *(MARK+1),
which if you remember represented as an SV variable, which nees to be converted to the corresponding C
type.

In this example we use the macro mp_xs_sv2_int, automatically generated based on the data from the
xs/typemap and xs/maps/*_types.map files, and placed into the xs/modperl_xs_sv_convert.h file. In the
case of int C type the macro is:

 #define mp_xs_sv2_int(sv) (int)SvIV(sv)

which simply converts the SV variable on the stack and generates an int value.

While in this example you have an access to the stack, you cannot manipulate the return values, because
the XSUB wrapper expects a single return value of type int, so even if you put something on the stack it
will be ignored.

15 Feb 201412

1.6.1 Functions Returning a Single Value (or Nothing)

1.6.2 Functions Returning Variable Number of Values

We saw earlier that if we want to return an array one of the ways to go is to return a reference to an array
as a single return value, which fits the C paradigm. So we simply declare the return value as SV*.

This section talks about cases where it’s unknown at compile time how many return values will be or it’s
known that there will be more than one return value--something that C cannot handle via its return mecha-
nism.

Let’s rewrite the function mpxs_Apache2__CoreDemo_add_subst from the earlier section to
return two results instead of a reference to a list:

 file:xs/Apache2/CoreDemo/Apache2__CoreDemo.h
 --
 static XS(MPXS_Apache2__CoreDemo_add_subst_sp)
 {
 dXSARGS;
 int a, b;

 if (items != 2) {
 Perl_croak(aTHX_ "usage: Apache2::CoreDemo::add_subst_sp($a, $b)");
 }
 a = mp_xs_sv2_int(ST(0));
 b = mp_xs_sv2_int(ST(1));

 SP -= items;

 if (GIMME == G_ARRAY) {
 EXTEND(sp, 2);
 PUSHs(sv_2mortal(newSViv(a + b)));
 PUSHs(sv_2mortal(newSViv(a - b)));
 }
 else {
 XPUSHs(sv_2mortal(newSViv(a + b)));
 }

 PUTBACK;
 }

Before explaining the function here is the prototype we add to the map file:

 file:xs/maps/modperl_functions.map

 MODULE=Apache2::CoreDemo
 DEFINE_add_subst_sp | MPXS_Apache2__CoreDemo_add_subst_sp | ...

The mpxs_ functions declare in the third column the arguments that they expect to receive (and optionally
the default values). The MPXS functions are the real XSUBs and therefore they always accept:

 aTHX_ I32 items, SP **sp, SV **MARK

1315 Feb 2014

1.6.2 Functions Returning Variable Number of Valuesmod_perl 2.0 Source Code Explained

as their arguments. Therefore it doesn’t matter what is placed in this column when the MPXS_ function is
declared. Usually for documentation the Perl side arguments are listed. For example you can say:

 DEFINE_add_subst_sp | MPXS_Apache2__CoreDemo_add_subst_sp | x, y

In this function we manually manipulate the stack to retrieve the arguments passed on the Perl side and put
the results back onto the stack. Therefore the first thing we do is to initialize a few special variables using
the dXSARGS macro defined in XSUB.h, which in fact calls a bunch of other macros. These variables help
to manipulate the stack. dSP is one of these macros and it declares and initial- izes a local copy of the Perl
stack pointer sp which . This local copy should always be accessed as SP.

We retrieve the original function arguments using the ST() macros. ST(0) and ST(1) point to the first
and the second argument on the stack, respectively. But first we check that we have exactly two arguments
on the stack, and if not we abort the function. The items variable is the function argument.

Once we have retrieved all the arguments from the stack we set the local stack pointer SP to point to the
bottom of the stack (like there are no items on the stack):

 SP -= items;

Now we can do whatever processing is needed and put the results back on the stack. In our example we
return the results of addition and substraction operations if the function is called in the list context. In the
scalar context the function returns only the result of the addition operation. We use the GIMME macro
which tells us the context.

In the list context we make sure that we have two spare slots on the stack since we are going to push two
items, and then we push them using the PUSHs macro:

 EXTEND(sp, 2);
 PUSHs(sv_2mortal(newSViv(a + b)));
 PUSHs(sv_2mortal(newSViv(a - b)));

Alternatively we could use:

 XPUSHs(sv_2mortal(newSViv(a + b)));
 XPUSHs(sv_2mortal(newSViv(a - b)));

The XPUSHs macro eXtends the stack before pushing the item into it if needed. If we plan to push more
than a single item onto the stack, it’s more efficient to extend the stack in one call.

In the scalar context we push only one item, so here we use the XPUSHs macro:

 XPUSHs(sv_2mortal(newSViv(a + b)));

The last command we call is:

 PUTBACK;

which makes the local stack pointer global. This is a must call if the state of the stack was changed when
the function is about to return. The stack changes if something was popped from or pushed to it, or both
and changed the number of items on the stack.

15 Feb 201414

1.6.2 Functions Returning Variable Number of Values

In our example we don’t need to call PUTBACK if the function is called in the list context. Because in this
case we return two variables, the same as two function arguments, the count didn’t change. Though in the
scalar context we push onto the stack only one argument, so the function won’t return what is expected.
The simplest way to avoid errors here is to always call PUTBACK when the stack is changed.

For more information refer to the perlcall manpage which explains the stack manipulation process in great
details.

Finally we test the function in the list and scalar contexts:

 file:t/response/TestApache2/coredemo.pm
 --
 ...
 my $a = 7;
 my $b = 3;
 my ($add, $subst);

 # list context
 ($add, $subst) = Apache2::CoreDemo::add_subst_sp($a, $b);
 ok t_cmp($a + $b, $add, "add_subst_sp list context: add");
 ok t_cmp($a - $b, $subst, "add_subst_sp list context: subst");

 # scalar context
 $add = Apache2::CoreDemo::add_subst_sp($a, $b);
 ok t_cmp($a + $b, $add, "add_subs_spt scalar context: add");
 ...

1.6.3 Wrappers Functions for C Macros

Let’s say you have a C macro which you want to provide a Perl interface for. For example let’s take a
simple macro which performs the power of function:

 file:xs/Apache2/CoreDemo/Apache2__CoreDemo.h
 --
 #define mpxs_Apache2__CoreDemo_power(x, y) pow(x, y)

To create the XS glue code we use the following entry in the map file:

 file:xs/maps/modperl_functions.map

 MODULE=Apache2::CoreDemo
 double:DEFINE_power | | double:x, double:y

This works very similar to the MPXS_Apache2__CoreDemo_add_subst_sp function presented
earlier. But since this is a macro the XS wrapper needs to know the types of the arguments and the return
type, so these are added. The return type is added just before the function name and separated from it by
the colon (:), the argument types are specified in the third column. The type is always separated from the
name of the variable by the colon (:).

1515 Feb 2014

1.6.3 Wrappers Functions for C Macrosmod_perl 2.0 Source Code Explained

And of course finally we need to test that the function works in Perl:

 file:t/response/TestApache2/coredemo.pm
 --
 ...
 my $a = 7;
 my $b = 3;
 my $power = Apache2::CoreDemo::power($a, $b);
 ok t_cmp($a ** $b, $power, "power macro");
 ...

1.6.4 Passing aTHX for DEFINE map entries

Let’s say you have a function or a C macro which you want to provide a Perl interface for, and you don’t
need to write a wrapper since C arguments are the same as Perl arguments. For example:

 char *foo(aTHX_ int bar);

The map entry will look like:

 MODULE=Apache2::CoreDemo
 char *:DEFINE_foo | | int:bar

But there is no way to pass aTHX_ since this is a macro and it’s an empty string with non-threaded Perls.
Another macro comes to help:

 file:xs/Apache2/CoreDemo/Apache2__CoreDemo.h
 --
 #define mpxs_Apache2__CoreDemo_foo(x, y) foo(aTHX_ x, y)

1.7 Wrappers for modperl_, apr_ and ap_ APIs
If you already have a C function whose name starts from modperl_, apr_ or ap_ and you want to do some-
thing before calling the real C function, you can write a XS wrapper using the same method as in the
MPXS_Apache2__CoreDemo_add_subst_sp . The only difference is that it’ll be clearly seen in the map
file that this is a wrapper for an existing C API.

Let’s say that we have an existing C function apr_power(), this is how we declare its wrapper:

 file:xs/maps/apr_functions.map

 MODULE=APR::Foo
 apr_power | MPXS_ | x, y

The first column specifies the existing function’s name, the second tells that the XS wrapper will use the
MPXS_ prefix, which means that the wrapper must be called MPXS_apr_power. The third column spec-
ifies the argument names, but for MPXS_ no matter what you specify there the ... will be passed:

15 Feb 201416

1.7 Wrappers for modperl_, apr_ and ap_ APIs

 aTHX_ I32 items, SP **sp, SV **MARK

so you can leave that column empty, but here we use x and y to remind us that these two arguments are
passed from Perl.

If the forth column is empty this function will be called APR::Foo::power in the Perl namespace. But
you can use that column to give a different Perl name, e.g with:

 apr_power | MPXS_ | x, y | pow

This function will be available from Perl as APR::Foo::pow.

Similarly you can write a MPXS_modperl_power wrapper for a modperl_power() function but
here you have to explicitly give the Perl function’s name in the forth column:

 file:xs/maps/apr_functions.map

 MODULE=Apache2::CoreDemo
 modperl_power | MPXS_ | x, y | mypower

and the Perl function will be called Apache2::CoreDemo::mypower.

The MPXS_ wrapper’s implementation is similar to MPXS_Apache2__CoreDemo_add_subst_sp .

1.8 MP_INLINE vs C Macros vs Normal Functions
To make the code maintainable and reusable functions and macros are used in when programming in C
(and other languages :).

When function is marked as inlined it’s merely a hint to the compiler to replace the call to a function with
the code inside this function (i.e. inlined). Not every function can be inlined. Some typical reasons why
inlining is sometimes not done include:

the function calls itself, that is, is recursive

the function contains loops such as for(;;) or while()

the function size is too large

Most of the advantage of inline functions comes from avoiding the overhead of calling an actual function.
Such overhead includes saving registers, setting up stack frames, etc. But with large functions the over-
head becomes less important.

Use the MP_INLINE keyword in the declaration of the functions that are to be inlined. The functions
should be inlined when:

Only ever called once (the wrappers that are called from .xs files), no matter what the size of code is.

1715 Feb 2014

1.8 MP_INLINE vs C Macros vs Normal Functionsmod_perl 2.0 Source Code Explained

Short bodies of code called in a hot code (like modperl_env_hv_store, which is called many times
inside of a loop), where it is cleaner to see the code in function form rather than macro with lots of
\’s. Remember that an inline function takes much more space than a normal functions if called from
many places in the code.

Of course C macros are a bit faster then inlined functions, since there is not even short jump to be made,
the code is literally copied into the place it’s called from. However using macros comes at a price:

Also unlike macros, in functions argument types are checked, and necessary conversions are
performed correctly. With macros it’s possible that weird things will happen if the caller has passed
arguments of the wrong type when calling a macro.

One should be careful to pass only absolute values as "arguments" to macros. Consider a macro that
returns an absolute value of the passed argument:

 #define ABS(v) ((v) >= 0 ? (v) : -(v))

In our example if you happen to pass a function it will be called twice:

 abs_val = ABS(f());

Since it’ll be extended as:

 abs_val = f() >= 0 ? f() : -f();

You cannot do simple operation like increment--in our example it will be called twice:

 abs_val = ABS(i++);

Because it becomes:

 abs_val = i++ >= 0 ? i++ : -i++;

It’s dangerous to use the if() condition without enclosing the code in {}, since the macro may be
called from inside another if-else condition, which may cause the else part called if the if() part from
the macro fails.

But we always use {} for the code inside the if-else condition, so it’s not a problem here.

A multi-line macro can cause problems if someone uses the macro in a context that demands a single
statement.

 while (foo) MYMACRO(bar);

But again, we always enclose any code in conditional with {}, so it’s not a problem for us.

Inline functions present a problem for debuggers and profilers, because the function is expanded at
the point of call and loses its identity. This makes the debugging process a nightmare.

15 Feb 201418

1.8 MP_INLINE vs C Macros vs Normal Functions

A compiler will typically have some option available to disable inlining.

In all other cases use normal functions.

1.9 Adding New Interfaces

1.9.1 Adding Typemaps for new C Data Types

Sometimes when a new interface is added it may include C data types for which we don’t have corre-
sponding XS typemaps yet. In such a case, the first thing to do is to provide the required typemaps.

Let’s add a prototype for the typedef struct scoreboard data type defined in httpd-2.0/include/score-
board.h.

First we include the relevant header files in src/modules/perl/modperl_apache_includes.h:

 #include "scoreboard.h"

If you want to specify your own type and don’t have a header file for it (e.g. if you extend some existing
datatype within mod_perl) you may add the typedef to src/modules/perl/modperl_types.h.

After deciding that Apache::Scoreboard is the Perl class will be used for manipulating C scoreboard
data structures, we map the scoreboard data structure to the Apache::Scoreboard class. Therefore
we add to xs/maps/apache_types.map:

 struct scoreboard | Apache::Scoreboard

Since we want the scoreboard data structure to be an opaque object on the perl side, we simply let
mod_perl use the default T_PTROBJ typemap. After running make xs_generate you can check the
assigned typemap in the autogenerated WrapXS/typemap file.

If you need to do some special handling while converting from C to Perl and back, you need to add the
conversion functions to the xs/typemap file. For example the Apache2::RequestRec objects need
special handling, so you can see the special INPUT and OUTPUT typemappings for the corresponding
T_APACHEOBJ object type.

Now we run make xs_generate and find the following definitions in the autogenerated files:

 file:xs/modperl_xs_typedefs.h

 typedef scoreboard * Apache__Scoreboard;

 file:xs/modperl_xs_sv_convert.h

 #define mp_xs_sv2_Apache__Scoreboard(sv) \
 ((SvROK(sv) && (SvTYPE(SvRV(sv)) == SVt_PVMG)) \
 || (Perl_croak(aTHX_ "argument is not a blessed reference \
 (expecting an Apache::Scoreboard derived object)"),0) ? \

1915 Feb 2014

1.9 Adding New Interfacesmod_perl 2.0 Source Code Explained

 (scoreboard *)SvIV((SV*)SvRV(sv)) : (scoreboard *)NULL)

 #define mp_xs_Apache__Scoreboard_2obj(ptr) \
 sv_setref_pv(sv_newmortal(), "Apache::Scoreboard", (void*)ptr)

The file xs/modperl_xs_typedefs.h declares the typemapping from C to Perl and equivalent to the
TYPEMAP section of the XS’s typemap file. The second file xs/modperl_xs_sv_convert.h generates two
macros. The first macro is used to convert from Perl to C datatype and equivalent to the typemap file’s
INPUT section. The second macro is used to convert from C to Perl datatype and equivalent to the
typemap’s OUTPUT section.

Now proceed on adding the glue code for the new interface.

1.9.2 Importing Constants and Enums into Perl API

To import httpd and APR constants and enums into Perl API, edit lib/Apache2/ParseSource.pm. To add a
new type of DEFINE constants adjust the %defines_wanted variable, for enums modify
%enums_wanted.

For example to import all DEFINEs starting with APR_FLOCK_ add:

 my %defines_wanted = (
 ...
 APR => {
 ...
 flock => [qw{APR_FLOCK_}],
 ...
 },
);

When deciding which constants are to be exported, the regular expression will be used, so in our example
all matches /^APR_FLOCK_/ will be imported into the Perl API.

For example to import an read_type_e enum for APR, add:

 my %enums_wanted = (
 APR => { map { $_, 1 } qw(apr_read_type) },
);

Notice that _e part at the end of the enum name has gone.

in case of Apache constants remove the leading ap_ and terminating /_(t|e)$/. For example
ap_conn_keepalive_e needs to be added as:

 my %enums_wanted = (
 Apache2 => { map { $_, 1 } qw(conn_keepalive) },
);

After adding/modifying the datastructures make sure to run make source_scan or perl
build/source_scan.pl and verify that the wanted constant or enum were picked by the source
scanning process. Simply grep xs/tables/current for the wanted string. For example after adding

15 Feb 201420

1.9.2 Importing Constants and Enums into Perl API

apr_read_type_e enum we can check:

 % more xs/tables/current/Apache2/ConstantsTable.pm
 ...
 ’read_type’ => [
 ’APR_BLOCK_READ’,
 ’APR_NONBLOCK_READ’
],

Of course the newly added constant or enum’s typemap should be declared in the appropriate
xs/maps/*_types.map files, so the XS conversion of arguments will be performed correctly. For example
apr_read_type is an APR enum so it’s declared in xs/maps/apr_types.map:

 apr_read_type | IV

IV is used as a typemap, Since enum is just an integer. In more complex cases the typemap can be differ-
ent. (META: examples)

1.10 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

1.11 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

2115 Feb 2014

1.10 Maintainersmod_perl 2.0 Source Code Explained

http://stason.org/
http://stason.org/

Table of Contents:
............. 11 mod_perl 2.0 Source Code Explained
................... 21.1 Description
............... 21.2 Project’s Filesystem Layout
.................. 21.3 Directory src
.............. 21.3.1 Directory src/modules/perl/
.................. 21.4 Directory xs/
............ 31.4.1 xs/Apache2, xs/APR and xs/ModPerl
.................. 31.4.2 xs/maps
............... 41.4.2.1 Functions Mapping
............... 61.4.2.2 Structures Mapping
................ 61.4.2.3 Types Mapping
............... 61.4.2.4 Modifying Maps
............... 71.4.3 XS generation process
................ 71.5 Gluing Existing APIs
........ 81.6 Adding Wrappers for existing APIs and Creating New APIs
......... 81.6.1 Functions Returning a Single Value (or Nothing)
......... 131.6.2 Functions Returning Variable Number of Values
............. 151.6.3 Wrappers Functions for C Macros
........... 161.6.4 Passing aTHX for DEFINE map entries
........... 161.7 Wrappers for modperl_, apr_ and ap_ APIs
.......... 171.8 MP_INLINE vs C Macros vs Normal Functions
................ 191.9 Adding New Interfaces
........... 191.9.1 Adding Typemaps for new C Data Types
.......... 201.9.2 Importing Constants and Enums into Perl API
.................. 211.10 Maintainers
................... 211.11 Authors

i15 Feb 2014

Table of Contents:mod_perl 2.0 Source Code Explained

	1€€mod_perl 2.0 Source Code Explained
	1.1€€Description
	1.2€€Project's Filesystem Layout
	1.3€€Directory src
	1.3.1€€Directory src/modules/perl/

	1.4€€Directory xs/
	1.4.1€€xs/Apache2, xs/APR and xs/ModPerl
	1.4.2€€xs/maps
	1.4.2.1€€Functions Mapping
	1.4.2.2€€Structures Mapping
	1.4.2.3€€Types Mapping
	1.4.2.4€€Modifying Maps

	1.4.3€€XS generation process

	1.5€€Gluing Existing APIs
	1.6€€Adding Wrappers for existing APIs and Creating New APIs
	1.6.1€€Functions Returning a Single Value (or Nothing)
	1.6.2€€Functions Returning Variable Number of Values
	1.6.3€€Wrappers Functions for C Macros
	1.6.4€€Passing aTHX for DEFINE map entries

	1.7€€Wrappers for modperl_, apr_ and ap_ APIs
	1.8€€MP_INLINE vs C Macros vs Normal Functions
	1.9€€Adding New Interfaces
	1.9.1€€Adding Typemaps for new C Data Types
	1.9.2€€Importing Constants and Enums into Perl API

	1.10€€Maintainers
	1.11€€Authors

