

1 CGI to mod_perl Porting. mod_perl Coding guide-
lines.

115 Feb 2014

1 CGI to mod_perl Porting. mod_perl Coding guidelines.CGI to mod_perl Porting. mod_perl Coding guidelines.

1.1 Description
This chapter is relevant both to writing a new CGI script or perl handler from scratch and to migrating an
application from plain CGI to mod_perl.

It also addresses the situation where the CGI script being ported does the job, but is too dirty to be altered
easily to run as a mod_perl program. (Apache::PerlRun mode)

If you are at the porting stage, you can use this chapter as a reference for possible problems you might
encounter when running an existing CGI script in the new mode.

If your project schedule is tight, I would suggest converting to mod_perl in the following steps: Initially,
run all the scripts in the Apache::PerlRun mode. Then as time allows, move them into
Apache::Registry mode. Later if you need Apache Perl API functionality you can always add it.

If you are about to write a new CGI script from scratch, it would be a good idea to learn about possible
mod_perl related pitfalls and to avoid them in the first place.

If you don’t need mod_cgi compatibility, it’s a good idea to start writing using the mod_perl API in first
place. This will make your application a little bit more efficient and it will be easier to use the full
mod_perl feature set, which extends the core Perl functionality with Apache specific functions and over-
ridden Perl core functions that were reimplemented to work better in mod_perl environment.

1.2 Before you start to code
It can be a good idea to tighten up some of your Perl programming practices, since mod_perl doesn’t toler-
ate sloppy programming.

This chapter relies on a certain level of Perl knowledge. Please read through the Perl Reference chapter
and make sure you know the material covered there. This will allow me to concentrate on pure mod_perl
issues and make them more prominent to the experienced Perl programmer, which would otherwise be lost
in the sea of Perl background notes.

Additional resources:

Perl Module Mechanics

This page describes the mechanics of creating, compiling, releasing, and maintaining Perl modules.
http://world.std.com/~swmcd/steven/perl/module_mechanics.html

The information is very relevant to a mod_perl developer.

The Eagle Book

"Writing Apache Modules with Perl and C" is a "must have" book!

15 Feb 20142

1.1 Description

http://world.std.com/~swmcd/steven/perl/module_mechanics.html

See the details at http://www.modperl.com .

"Programming Perl" Book
"Perl Cookbook" Book
"Object Oriented Perl" Book

1.3 Exposing Apache::Registry secrets
Let’s start with some simple code and see what can go wrong with it, detect bugs and debug them, discuss
possible pitfalls and how to avoid them.

I will use a simple CGI script, that initializes a $counter to 0, and prints its value to the browser while
incrementing it.

 counter.pl:

 #!/usr/bin/perl -w
 use strict;

 print "Content-type: text/plain\r\n\r\n";

 my $counter = 0; # Explicit initialization technically redundant

 for (1..5) {
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }

You would expect to see the output:

 Counter is equal to 1 !
 Counter is equal to 2 !
 Counter is equal to 3 !
 Counter is equal to 4 !
 Counter is equal to 5 !

And that’s what you see when you execute this script the first time. But let’s reload it a few times... See,
suddenly after a few reloads the counter doesn’t start its count from 1 any more. We continue to reload and
see that it keeps on growing, but not steadily starting almost randomly at 10, 10, 10, 15, 20... Weird...

 Counter is equal to 6 !
 Counter is equal to 7 !
 Counter is equal to 8 !
 Counter is equal to 9 !
 Counter is equal to 10 !

315 Feb 2014

1.3 Exposing Apache::Registry secretsCGI to mod_perl Porting. mod_perl Coding guidelines.

http://www.modperl.com/

We saw two anomalies in this very simple script: Unexpected increment of our counter over 5 and incon-
sistent growth over reloads. Let’s investigate this script.

1.3.1 The First Mystery

First let’s peek into the error_log file. Since we have enabled the warnings what we see is:

 Variable "$counter" will not stay shared
 at /home/httpd/perl/conference/counter.pl line 13.

The Variable "$counter" will not stay shared warning is generated when the script contains a named
nested subroutine (a named - as opposed to anonymous - subroutine defined inside another subroutine)
that refers to a lexically scoped variable defined outside this nested subroutine. This effect is explained in
my () Scoped Variable in Nested Subroutines.

Do you see a nested named subroutine in my script? I don’t! What’s going on? Maybe it’s a bug? But
wait, maybe the perl interpreter sees the script in a different way, maybe the code goes through some
changes before it actually gets executed? The easiest way to check what’s actually happening is to run the
script with a debugger.

But since we must debug it when it’s being executed by the webserver, a normal debugger won’t help,
because the debugger has to be invoked from within the webserver. Luckily Doug MacEachern wrote the
Apache::DB module and we will use this to debug my script. While Apache::DB allows you to debug
the code interactively, we will do it non-interactively.

Modify the httpd.conf file in the following way:

 PerlSetEnv PERLDB_OPTS "NonStop=1 LineInfo=/tmp/db.out AutoTrace=1 frame=2"
 PerlModule Apache::DB
 <Location /perl>
 PerlFixupHandler Apache::DB
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 </Location>

Restart the server and issue a request to counter.pl as before. On the surface nothing has changed--we still
see the correct output as before, but two things happened in the background:

Firstly, the file /tmp/db.out was written, with a complete trace of the code that was executed.

Secondly, if you have loaded the Carp module already, error_log now contains the real code that was
actually executed. This is produced as a side effect of reporting the Variable "$counter" will not stay
shared at... warning that we saw earlier. To load the Carp module, you can add:

 use Carp;

15 Feb 20144

1.3.1 The First Mystery

in your startup.pl file or in the executed code.

Here is the code that was actually executed:

 package Apache::ROOT::perl::conference::counter_2epl;
 use Apache qw(exit);
 sub handler {
 BEGIN {
 $^W = 1;
 };
 $^W = 1;

 use strict;

 print "Content-type: text/plain\r\n\r\n";

 my $counter = 0; # Explicit initialization technically redundant

 for (1..5) {
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }
 }

The code in the error_log wasn’t indented. I’ve indented it for you to stress that the code was wrapped
inside the handler() subroutine.

What do we learn from this?

Well firstly that every CGI script is cached under a package whose name is formed from the
Apache::ROOT:: prefix and the relative part of the script’s URL (perl::confer-
ence::counter_2epl) by replacing all occurrences of / with :: and . with _2e . That’s how
mod_perl knows what script should be fetched from the cache--each script is just a package with a single
subroutine named handler .

If we were to add use diagnostics to the script we would also see a reference in the error text to an
inner (nested) subroutine--increment_counter is actually a nested subroutine.

With mod_perl, each subroutine in every Apache::Registry script is nested inside the handler
subroutine.

It’s important to understand that the inner subroutine effect happens only with code that
Apache::Registry wraps with a declaration of the handler subroutine. If you put all your code
into modules, which the main script use() s, this effect doesn’t occur.

Do not use Perl4-style libraries. Subroutines in such libraries will only be available to the first script in any
given interpreter thread to require() a library of any given name. This can lead to confusing sporadic
failures.

515 Feb 2014

1.3.1 The First MysteryCGI to mod_perl Porting. mod_perl Coding guidelines.

The easiest and the fastest way to solve the nested subroutines problem is to switch every lexically scoped
variable foe which you get the warning for to a package variable. The handler subroutines are never
called re-entrantly and each resides in a package to itself. Most of the usual disadvantates of package
scoped variables are, therefore, not a concern. Note, however, that whereas explicit initialization is not
always necessary for lexical variables it is usually necessary for these package variables as they persist in
subsequent executions of the handler and unlike lexical variables, don’t get automatically destroyed at the
end of each handler.

 counter.pl:

 #!/usr/bin/perl -w
 use strict;

 print "Content-type: text/plain\r\n\r\n";

 # In Perl <5.6 our() did not exist, so:
 # use vars qw($counter);
 our $counter = 0; # Explicit initialization now necessary

 for (1..5) {
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }

If the variable contains a reference it may hold onto lots of unecessary memory (or worse) if the reference
is left to hang about until the next call to the same handler. For such variables you should use local so
that the value is removed when the handler subroutine exits.

 my $query = CGI->new;

becomes:

 local our $query = CGI->new;

All this is very interesting but as a general rule of thumb, unless the script is very short, I tend to write all
the code in external libraries, and to have only a few lines in the main script. Generally the main script
simply calls the main function of my library. Usually I call it init() or run() . I don’t worry about
nested subroutine effects anymore (unless I create them myself :).

The section ’Remedies for Inner Subroutines’ discusses many other possible workarounds for this
problem.

You shouldn’t be intimidated by this issue at all, since Perl is your friend. Just keep the warnings mode On
and Perl will gladly tell you whenever you have this effect, by saying:

 Variable "$counter" will not stay shared at ...[snipped]

15 Feb 20146

1.3.1 The First Mystery

Just don’t forget to check your error_log file, before going into production!

By the way, the above example was pretty boring. In my first days of using mod_perl, I wrote a simple
user registration program. I’ll give a very simple representation of this program.

 use CGI;
 $q = CGI->new;
 my $name = $q->param(’name’);
 print_response();

 sub print_response{
 print "Content-type: text/plain\r\n\r\n";
 print "Thank you, $name!";
 }

My boss and I checked the program at the development server and it worked OK. So we decided to put it
in production. Everything was OK, but my boss decided to keep on checking by submitting variations of
his profile. Imagine the surprise when after submitting his name (let’s say "The Boss" :), he saw the
response "Thank you, Stas Bekman!".

What happened is that I tried the production system as well. I was new to mod_perl stuff, and was so
excited with the speed improvement that I didn’t notice the nested subroutine problem. It hit me. At first I
thought that maybe Apache had started to confuse connections, returning responses from other people’s
requests. I was wrong of course.

Why didn’t we notice this when we were trying the software on our development server? Keep reading
and you will understand why.

1.3.2 The Second Mystery

Let’s return to our original example and proceed with the second mystery we noticed. Why did we see
inconsistent results over numerous reloads?

That’s very simple. Every time a server gets a request to process, it hands it over one of the children,
generally in a round robin fashion. So if you have 10 httpd children alive, the first 10 reloads might seem
to be correct because the effect we’ve just talked about starts to appear from the second re-invocation.
Subsequent reloads then return unexpected results.

Moreover, requests can appear at random and children don’t always run the same scripts. At any given
moment one of the children could have served the same script more times than any other, and another may
never have run it. That’s why we saw the strange behavior.

Now you see why we didn’t notice the problem with the user registration system in the example. First, we
didn’t look at the error_log . (As a matter of fact we did, but there were so many warnings in there that
we couldn’t tell what were the important ones and what were not). Second, we had too many server chil-
dren running to notice the problem.

715 Feb 2014

1.3.2 The Second MysteryCGI to mod_perl Porting. mod_perl Coding guidelines.

A workaround is to run the server as a single process. You achieve this by invoking the server with the -X
parameter (httpd -X). Since there are no other servers (children) running, you will see the problem on
the second reload.

But before that, let the error_log help you detect most of the possible errors--most of the warnings can
become errors, so you should make sure to check every warning that is detected by perl, and probably you
should write your code in such a way that no warnings appear in the error_log . If your error_log
file is filled up with hundreds of lines on every script invocation, you will have difficulty noticing and
locating real problems--and on a production server you’ll soon run out of disk space if your site is popular.

Of course none of the warnings will be reported if the warning mechanism is not turned On. Refer to the
section "Tracing Warnings Reports" to learn about warnings in general and to the "Warnings" section to
learn how to turn them on and off under mod_perl.

1.4 Sometimes it Works, Sometimes it Doesn’t
When you start running your scripts under mod_perl, you might find yourself in a situation where a script
seems to work, but sometimes it screws up. And the more it runs without a restart, the more it screws up.
Often the problem is easily detectable and solvable. You have to test your script under a server running in
single process mode (httpd -X).

Generally the problem is the result of using global variables. Because global variables don’t change from
one script invocation to another unless you change them, you can find your scripts do strange things.

Let’s look at three real world examples:

1.4.1 An Easy Break-in

The first example is amazing--Web Services. Imagine that you enter some site where you have an account,
perhaps a free email account. Having read your own mail you decide to take a look at someone else’s.

You type in the username you want to peek at and a dummy password and try to enter the account. On
some services this will work!!!

You say, why in the world does this happen? The answer is simple: Global Variables. You have entered
the account of someone who happened to be served by the same server child as you. Because of sloppy
programming, a global variable was not reset at the beginning of the program and voila, you can easily
peek into someone else’s email! Here is an example of sloppy code:

 use vars ($authenticated);
 my $q = new CGI;
 my $username = $q->param(’username’);
 my $passwd = $q->param(’passwd’);
 authenticate($username,$passwd);
 # failed, break out
 unless ($authenticated){
 print "Wrong passwd";
 exit;
 }

15 Feb 20148

1.4 Sometimes it Works, Sometimes it Doesn’t

 # user is OK, fetch user’s data
 show_user($username);

 sub authenticate{
 my ($username,$passwd) = @_;
 # some checking
 $authenticated = 1 if SOME_USER_PASSWD_CHECK_IS_OK;
 }

Do you see the catch? With the code above, I can type in any valid username and any dummy password
and enter that user’s account, provided she has successfully entered her account before me using the same
child process! Since $authenticated is global--if it becomes 1 once, it’ll stay 1 for the remainder of
the child’s life!!! The solution is trivial--reset $authenticated to 0 at the beginning of the program.

A cleaner solution of course is not to rely on global variables, but rely on the return value from the func-
tion.

 my $q = CGI->new;
 my $username = $q->param(’username’);
 my $passwd = $q->param(’passwd’);
 my $authenticated = authenticate($username,$passwd);
 # failed, break out
 unless ($authenticated){
 print "Wrong passwd";
 exit;
 }
 # user is OK, fetch user’s data
 show_user($username);

 sub authenticate{
 my ($username,$passwd) = @_;
 # some checking
 return (SOME_USER_PASSWD_CHECK_IS_OK) ? 1 : 0;
 }

Of course this example is trivial--but believe me it happens!

1.4.2 Thinking mod_cgi

Just another little one liner that can spoil your day, assuming you forgot to reset the $allowed variable.
It works perfectly OK in plain mod_cgi:

 $allowed = 1 if $username eq ’admin’;

But using mod_perl, and if your system administrator with superuser access rights has previously used the
system, anybody who is lucky enough to be served later by the same child which served your administra-
tor will happen to gain the same rights.

The obvious fix is:

915 Feb 2014

1.4.2 Thinking mod_cgiCGI to mod_perl Porting. mod_perl Coding guidelines.

 $allowed = $username eq ’admin’ ? 1 : 0;

1.4.3 Regular Expression Memory

Another good example is usage of the /o regular expression modifier, which compiles a regular expres-
sion once, on its first execution, and never compiles it again. This problem can be difficult to detect, as
after restarting the server each request you make will be served by a different child process, and thus the
regex pattern for that child will be compiled afresh. Only when you make a request that happens to be
served by a child which has already cached the regex will you see the problem. Generally you miss that.
When you press reload, you see that it works (with a new, fresh child). Eventually it doesn’t, because you
get a child that has already cached the regex and won’t recompile because of the /o modifier.

An example of such a case would be:

 my $pat = $q->param("keyword");
 foreach(@list) {
 print if /$pat/o;
 }

To make sure you don’t miss these bugs always test your CGI in single process mode.

To solve this particular /o modifier problem refer to Compiled Regular Expressions.

1.5 Script’s name space
Scripts under Apache::Registry do not run in package main , they run in a unique name space based
on the requested URI. For example, if your URI is /perl/test.pl the package will be called
Apache::ROOT::perl::test_2epl .

1.6 @INC and mod_perl
The basic Perl @INC behaviour is explained in section use(), require(), do(), %INC and @INC Explained.

When running under mod_perl, once the server is up @INC is frozen and cannot be updated. The only
opportunity to temporarily modify @INC is while the script or the module are loaded and compiled for the
first time. After that its value is reset to the original one. The only way to change @INC permanently is to
modify it at Apache startup.

Two ways to alter @INC at server startup:

In the configuration file. For example add:

 PerlSetEnv PERL5LIB /home/httpd/perl

or

15 Feb 201410

1.5 Script’s name space

 PerlSetEnv PERL5LIB /home/httpd/perl:/home/httpd/mymodules

Note that this setting will be ignored if you have the PerlTaintCheck mode turned on.

In the startup file directly alter the @INC. For example

 startup.pl

 use lib qw(/home/httpd/perl /home/httpd/mymodules);
 1;

and load the startup file from the configuration file by:

 PerlRequire /path/to/startup.pl

1.7 Reloading Modules and Required Files
You might want to read the "use(), require(), do(), %INC and @INC Explained" before you proceed with
this section.

When you develop plain CGI scripts, you can just change the code, and rerun the CGI from your browser.
Since the script isn’t cached in memory, the next time you call it the server starts up a new perl process,
which recompiles it from scratch. The effects of any modifications you’ve applied are immediately
present.

The situation is different with Apache::Registry , since the whole idea is to get maximum perfor-
mance from the server. By default, the server won’t spend time checking whether any included library
modules have been changed. It assumes that they weren’t, thus saving a few milliseconds to stat() the
source file (multiplied by however many modules/libraries you use() and/or require() in your script.)

The only check that is done is to see whether your main script has been changed. So if you have only
scripts which do not use() or require() other perl modules or packages, there is nothing to worry about. If,
however, you are developing a script that includes other modules, the files you use() or require() aren’t
checked for modification and you need to do something about that.

So how do we get our mod_perl-enabled server to recognize changes in library modules? Well, there are a
couple of techniques:

1.7.1 Restarting the server

The simplest approach is to restart the server each time you apply some change to your code. See Server
Restarting techniques.

After restarting the server about 100 times, you will tire of it and you will look for other solutions.

1115 Feb 2014

1.7 Reloading Modules and Required FilesCGI to mod_perl Porting. mod_perl Coding guidelines.

1.7.2 Using Apache::StatINC for the Development Process

Help comes from the Apache::StatINC module. When Perl pulls a file via require(), it stores the full
pathname as a value in the global hash %INC with the file name as the key. Apache::StatINC looks
through %INC and immediately reloads any files that have been updated on disk.

To enable this module just add two lines to httpd.conf .

 PerlModule Apache::StatINC
 PerlInitHandler Apache::StatINC

To be sure it really works, turn on debug mode on your development box by adding PerlSetVar
StatINCDebug On to your config file. You end up with something like this:

 PerlModule Apache::StatINC
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 PerlInitHandler Apache::StatINC
 PerlSetVar StatINCDebug On
 </Location>

Be aware that only the modules located in @INC are reloaded on change, and you can change @INC only
before the server has been started (in the startup file).

Nothing you do in your scripts and modules which are pulled in with require() after server startup will
have any effect on @INC.

When you write:

 use lib qw(foo/bar);

@INC is changed only for the time the code is being parsed and compiled. When that’s done, @INC is
reset to its original value.

To make sure that you have set @INC correctly, configure /perl-status location, fetch
http://www.example.com/perl-status?inc and look at the bottom of the page, where the contents of @INC
will be shown.

Notice the following trap:

While ". " is in @INC, perl knows to require() files with pathnames given relative to the current (script)
directory. After the script has been parsed, the server doesn’t remember the path!

So you can end up with a broken entry in %INC like this:

15 Feb 201412

1.7.2 Using Apache::StatINC for the Development Process

http://www.example.com/perl-status?inc

 $INC{bar.pl} eq "bar.pl"

If you want Apache::StatINC to reload your script--modify @INC at server startup, or use a full path in the
require() call.

1.7.3 Using Apache::Reload

Apache::Reload comes as a drop-in replacement for Apache::StatINC . It provides extra func-
tionality and better flexibility.

If you want Apache::Reload to check all the loaded modules on each request, you just add to
httpd.conf:

 PerlInitHandler Apache::Reload

If you want to reload only specific modules when these get changed, you have two ways to do that.

1.7.3.1 Register Modules Implicitly

The first way is to turn Off the ReloadAll variable, which is On by default

 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off

and add:

 use Apache::Reload;

to every module that you want to be reloaded on change.

1.7.3.2 Register Modules Explicitly

The second way is to explicitly specify modules to be reloaded in httpd.conf:

 PerlInitHandler Apache::Reload
 PerlSetVar ReloadModules "My::Foo My::Bar Foo::Bar::Test"

Note that these are split on whitespace, but the module list must be in quotes, otherwise Apache tries to
parse the parameter list.

You can register groups of modules using the metacharacter (*).

 PerlSetVar ReloadModules "Foo::* Bar::*"

In the above example all modules starting with Foo:: and Bar:: will become registered. This features
allows you to assign the whole project modules tree in one pattern.

1315 Feb 2014

1.7.3 Using Apache::ReloadCGI to mod_perl Porting. mod_perl Coding guidelines.

1.7.3.3 Special "Touch" File

You can also set a file that you can touch(1) that causes the reloads to be performed. If you set this, and
don’t touch(1) the file, the reloads don’t happen (no matter how have you registered the modules to be
reloaded).

 PerlSetVar ReloadTouchFile /tmp/reload_modules

Now when you’re happy with your changes, simply go to the command line and type:

 % touch /tmp/reload_modules

This feature is very convenient in a production server environment, but compared to a full restart, the
benefits of preloaded modules memory sharing are lost, since each child will get it’s own copy of the
reloaded modules.

1.7.3.4 Caveats

This module might have a problem with reloading single modules that contain multiple packages that all
use pseudo-hashes.

Also if you have modules loaded from directories which are not in @INC, Apache::Reload will fail to
find the files, due the fact that @INC is reset to its original value even if it gets temporary modified in the
script. The solution is to extend @INC at the server startup to include directories you load the files from
which aren’t in @INC.

For example, if you have a script which loads MyTest.pm from /home/stas/myproject:

 use lib qw(/home/stas/myproject);
 require MyTest;

Apache::Reload won’t find this file, unless you alter @INC in startup.pl (or httpd.conf):

 startup.pl

 use lib qw(/home/stas/myproject);

and restart the server. Now the problem is solved.

1.7.3.5 Availability

This module is available from CPAN.

1.7.4 Configuration Files: Writing, Dynamically Updating and
Reloading

Checking all the modules in %INC on every request can add a large overhead to server response times, and
you certainly would not want the Apache::StatINC module to be enabled in your production site’s
configuration. But sometimes you want a configuration file reloaded when it is updated, without restarting

15 Feb 201414

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

the server.

This is an especially important feature if for example you have a person that is allowed to modify some of
the tool configuration, but for security reasons it’s undesirable for him to telnet to the server to restart it.

1.7.4.1 Writing Configuration Files

Since we are talking about configuration files, I would like to show you some good and bad approaches to
configuration file writing.

If you have a configuration file of just a few variables, it doesn’t really matter how you do it. But generally
this is not the case. Configuration files tend to grow as a project grows. It’s very relevant to projects that
generate HTML files, since they tend to demand many easily configurable parameters, like headers,
footers, colors and so on.

So let’s start with the approach that is most often taken by CGI scripts writers. All configuration variables
are defined in a separate file.

For example:

 $cgi_dir = "/home/httpd/perl";
 $cgi_url = "/perl";
 $docs_dir = "/home/httpd/docs";
 $docs_url = "/";
 $img_dir = "/home/httpd/docs/images";
 $img_url = "/images";
 ... many more config params here ...
 $color_hint = "#777777";
 $color_warn = "#990066";
 $color_normal = "#000000";

The use strict; pragma demands that all the variables be declared. When we want to use these vari-
ables in a mod_perl script we must declare them with use vars in the script. (Under Perl v5.6.0 our()
has replaced use vars .)

So we start the script with:

 use strict;
 use vars qw($cgi_dir $cgi_url $docs_dir $docs_url
 ... many more config params here
 $color_hint $color_warn $color_normal
);

It is a nightmare to maintain such a script, especially if not all the features have been coded yet. You have
to keep adding and removing variable names. But that’s not a big deal.

Since we want our code clean, we start the configuration file with use strict; as well, so we have to
list the variables with use vars pragma here as well. A second list of variables to maintain.

1515 Feb 2014

1.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

If you have many scripts, you may get collisions between configuration files. One of the best solutions is
to declare packages, with unique names of course. For example for our configuration file we might declare
the following package name:

 package My::Config;

The moment you add a package declaration and think that you are done, you realize that the nightmare has
just begun. When you have declared the package, you cannot just require() the file and use the variables,
since they now belong to a different package. So you have either to modify all your scripts to use a fully
qualified notation like $My::Config::cgi_url instead of just $cgi_url or to import the needed
variables into any script that is going to use them.

Since you don’t want to do the extra typing to make the variables fully qualified, you’d go for importing
approach. But your configuration package has to export them first. That means that you have to list all the
variables again and now you have to keep at least three variable lists updated when you make some
changes in the naming of the configuration variables. And that’s when you have only one script that uses
the configuration file, in the general case you have many of them. So now our example configuration file
looks like this:

 package My::Config;
 use strict;

 BEGIN {
 use Exporter ();

 @My::HTML::ISA = qw(Exporter);
 @My::HTML::EXPORT = qw();
 @My::HTML::EXPORT_OK = qw($cgi_dir $cgi_url $docs_dir $docs_url
 ... many more config params here
 $color_hint $color_warn $color_normal);
 }

 use vars qw($cgi_dir $cgi_url $docs_dir $docs_url
 ... many more config params here
 $color_hint $color_warn $color_normal
);

 $cgi_dir = "/home/httpd/perl";
 $cgi_url = "/perl";
 $docs_dir = "/home/httpd/docs";
 $docs_url = "/";
 $img_dir = "/home/httpd/docs/images";
 $img_url = "/images";
 ... many more config params here ...
 $color_hint = "#777777";
 $color_warn = "#990066";
 $color_normal = "#000000";

And in the code:

15 Feb 201416

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

 use strict;
 use My::Config qw($cgi_dir $cgi_url $docs_dir $docs_url
 ... many more config params here
 $color_hint $color_warn $color_normal
);
 use vars qw($cgi_dir $cgi_url $docs_dir $docs_url
 ... many more config params here
 $color_hint $color_warn $color_normal
);

This approach is especially bad in the context of mod_perl, since exported variables add a memory over-
head. The more variables exported the more memory you use. If we multiply this overhead by the number
of servers we are going to run, we get a pretty big number which could be used to run a few more servers
instead.

As a matter of fact things aren’t so bad. You can group your variables, and call the groups by special
names called tags, which can later be used as arguments to the import() or use() calls. You are probably
familiar with:

 use CGI qw(:standard :html);

We can implement this quite easily, with the help of export_ok_tags() from Exporter . For example:

 BEGIN {
 use Exporter ();
 use vars qw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
 @ISA = qw(Exporter);
 @EXPORT = qw();
 @EXPORT_OK = qw();

 %EXPORT_TAGS = (
 vars => [qw($fname $lname)],
 subs => [qw(reread_conf untaint_path)],
);
 Exporter::export_ok_tags(’vars’);
 Exporter::export_ok_tags(’subs’);
 }

You export subroutines exactly like variables, since what’s actually being exported is a symbol. The defi-
nition of these subroutines is not shown here.

Notice that we didn’t use export_tags(), as it exports the variables automatically without the user asking
for them in first place, which is considered bad style. If a module automatically exports variables with
export_tags() you can stop this by not exporting at all:

 use My::Config ();

In your code you can now write:

 use My::Config qw(:subs :vars);

1715 Feb 2014

1.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

Groups of group tags:

The :all tag from CGI.pm is a group tag of all other groups. It will require a little more effort to imple-
ment, but you can always save time by looking at the solution in CGI.pm ’s code. It’s just a matter of a
little code to expand all the groups recursively.

After going through the pain of maintaining a list of variables in a big project with a huge configuration
file (more than 100 variables) and many files actually using them, I came up with a much simpler solution:
keeping all the variables in a single hash, which is built from references to other anonymous scalars, arrays
and hashes.

Now my configuration file looks like this:

 package My::Config;
 use strict;

 BEGIN {
 use Exporter ();

 @My::Config::ISA = qw(Exporter);
 @My::Config::EXPORT = qw();
 @My::Config::EXPORT_OK = qw(%c);
 }

 use vars qw(%c);

 %c = (
 dir => {
 cgi => "/home/httpd/perl",
 docs => "/home/httpd/docs",
 img => "/home/httpd/docs/images",
 },
 url => {
 cgi => "/perl",
 docs => "/",
 img => "/images",
 },
 color => {
 hint => "#777777",
 warn => "#990066",
 normal => "#000000",
 },
);

Good perl style suggests keeping a comma at the end of lists. That’s because additional items tend to be
added to the end of the list. If you keep that last comma in place, you don’t have to remember to add one
when you add a new item.

So now the script looks like this:

15 Feb 201418

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

 use strict;
 use My::Config qw(%c);
 use vars qw(%c)
 print "Content-type: text/plain\r\n\r\n";
 print "My url docs root: $c{url}{docs}\n";

Do you see the difference? The whole mess has gone, there is only one variable to worry about.

There is one small downside to taking this approach: auto-vivification. For example, if we wrote
$c{url}{doc} by mistake, perl would silently create this element for us with the value undef. When we
use strict; Perl will tell us about any misspelling of this kind for a simple scalar, but this check is
not performed for hash elements. This puts the onus of responsibility back on us since we must take
greater care. A possible solution to this is to use pseudo-hashes, but they are still considered experimental
so we won’t cover them here.

The benefits of the hash approach are significant and we can make do even better. I would like to get rid of
the Exporter stuff completely. I remove all the exporting code so my config file now looks like:

 package My::Config;
 use strict;
 use vars qw(%c);

 %c = (
 dir => {
 cgi => "/home/httpd/perl",
 docs => "/home/httpd/docs",
 img => "/home/httpd/docs/images",
 },
 url => {
 cgi => "/perl",
 docs => "/",
 img => "/images",
 },
 color => {
 hint => "#777777",
 warn => "#990066",
 normal => "#000000",
 },
);

And the code:

 use strict;
 use My::Config ();
 print "Content-type: text/plain\r\n\r\n";
 print "My url docs root: $My::Config::c{url}{docs}\n";

Since we still want to save lots of typing, and since now we need to use a fully qualified notation like
$My::Config::c{url}{docs} , let’s use the magical Perl aliasing feature. I’ll modify the code to
be:

1915 Feb 2014

1.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

 use strict;
 use My::Config ();
 use vars qw(%c);
 *c = \%My::Config::c;
 print "Content-type: text/plain\r\n\r\n";
 print "My url docs root: $c{url}{docs}\n";

I have aliased the *c glob with \%My::Config::c , a reference to a hash. From now on,
%My::Config::c and %c are the same hash and you can read from or modify either of them.

Just one last little point. Sometimes you see a lot of redundancy in the configuration variables, for
example:

 $cgi_dir = "/home/httpd/perl";
 $docs_dir = "/home/httpd/docs";
 $img_dir = "/home/httpd/docs/images";

Now if you want to move the base path "/home/httpd" into a new place, it demands lots of typing. Of
course the solution is:

 $base = "/home/httpd";
 $cgi_dir = "$base/perl";
 $docs_dir = "$base/docs";
 $img_dir = "$docs_dir/images";

You cannot do the same trick with a hash, since you cannot refer to its values before the definition is
finished. So this wouldn’t work:

 %c =
 (
 base => "/home/httpd",
 dir => {
 cgi => "$c{base}/perl",
 docs => "$c{base}/docs",
 img => "$c{base}{docs}/images",
 },
);

But nothing stops us from adding additional variables, which are lexically scoped with my (). The follow-
ing code is correct.

 my $base = "/home/httpd";
 %c =
 (
 dir => {
 cgi => "$base/perl",
 docs => "$base/docs",
 img => "$base/docs/images",
 },
);

You have just learned how to make configuration files easily maintainable, and how to save memory by
avoiding the export of variables into a script’s namespace.

15 Feb 201420

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

1.7.4.2 Reloading Configuration Files

First, lets look at a simple case, when we just have to look after a simple configuration file like the one
below. Imagine a script that tells you who is the patch pumpkin of the current Perl release.

Sidenote: Pumpkin A humorous term for the token (notional or real) that gives its possessor (the "pump-
king" or the "pumpkineer") exclusive access to something, e.g. applying patches to a master copy of some
source (for which the token is called the "patch pumpkin").

 use CGI ();
 use strict;

 my $fname = "Larry";
 my $lname = "Wall";
 my $q = CGI->new;

 print $q->header(-type=>’text/html’);
 print $q->p("$fname $lname holds the patch pumpkin" .
 "for this Perl release.");

The script has a hardcoded value for the name. It’s very simple: initialize the CGI object, print the proper
HTTP header and tell the world who is the current patch pumpkin.

When the patch pumpkin changes we don’t want to modify the script. Therefore, we put the $fname and
$lname variables into a configuration file.

 $fname = "Gurusamy";
 $lname = "Sarathy";
 1;

Please note that there is no package declaration in the above file, so the code will be evaluated in the
caller’s package or in the main:: package if none was declared. This means that the variables $fname
and $lname will override (or initialize if they weren’t yet) the variables with the same names in the
caller’s namespace. This works for global variables only--you cannot update variables defined lexically
(with my ()) using this technique.

You have started the server and everything is working properly. After a while you decide to modify the
configuration. How do you let your running server know that the configuration was modified without
restarting it? Remember we are in production and server restarting can be quite expensive for us. One of
the simplest solutions is to poll the file’s modification time by calling stat() before the script starts to do
real work. If we see that the file was updated, we force a reconfiguration of the variables located in this
file. We will call the function that reloads the configuration reread_conf() and have it accept a single argu-
ment, which is the relative path to the configuration file.

Apache::Registry calls a chdir() to the script’s directory before it starts the script’s execution. So if
your CGI script is invoked under the Apache::Registry handler you can put the configuration file in
the same directory as the script. Alternatively you can put the file in a directory below that and use a path
relative to the script directory. You have to make sure that the file will be found, somehow. Be aware that
do() searches the libraries in the directories in @INC.

2115 Feb 2014

1.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

 use vars qw(%MODIFIED);
 sub reread_conf{
 my $file = shift;
 return unless defined $file;
 return unless -e $file and -r _;
 my $mod = -M _;
 unless (exists $MODIFIED{$file} and $MODIFIED{$file} == $mod) {
 my $result;
 unless ($result = do $file) {
 warn "couldn’t parse $file: $@" if $@;
 warn "couldn’t do $file: $!" unless defined $result;
 warn "couldn’t run $file" unless $result;
 }
 $MODIFIED{$file} = $mod; # Update the MODIFICATION times
 }
 } # end of reread_conf

Notice that we use the == comparison operator when checking file’s modification timestamp, because all
we want to know whether the file was changed or not.

When the require(), use() and do() operators successfully return, the file that was passed as an argument is
inserted into %INC (the key is the name of the file and the value the path to it). Specifically, when Perl
sees require() or use() in the code, it first tests %INC to see whether the file is already there and thus
loaded. If the test returns true, Perl saves the overhead of code re-reading and re-compiling; however
calling do() will (re)load regardless.

You generally don’t notice with plain perl scripts, but in mod_perl it’s used all the time; after the first
request served by a process all the files loaded by require() stay in memory. If the file is preloaded at
server startup, even the first request doesn’t have the loading overhead.

We use do() to reload the code in this file and not require() because while do() behaves almost identically
to require(), it reloads the file unconditionally. If do() cannot read the file, it returns undef and sets $! to
report the error. If do() can read the file but cannot compile it, it returns undef and sets an error message
in $@. If the file is successfully compiled, do() returns the value of the last expression evaluated.

The configuration file can be broken if someone has incorrectly modified it. We don’t want the whole
service that uses that file to be broken, just because of that. We trap the possible failure to do() the file and
ignore the changes, by the resetting the modification time. If do() fails to load the file it might be a good
idea to send an email to the system administrator about the problem.

Notice however, that since do() updates %INC like require() does, if you are using Apache::StatINC
it will attempt to reload this file before the reread_conf() call. So if the file wouldn’t compile, the request
will be aborted. Apache::StatINC shouldn’t be used in production (because it slows things down by
stat()’ing all the files listed in %INC) so this shouldn’t be a problem.

Note that we assume that the entire purpose of this function is to reload the configuration if it was
changed. This is fail-safe, because if something goes wrong we just return without modifying the server
configuration. The script should not be used to initialize the variables on its first invocation. To do that,
you would need to replace each occurrence of return() and warn() with die(). If you do that, take a look at
the section "Redirecting Errors to the Client instead of error_log".

15 Feb 201422

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

I used the above approach when I had a huge configuration file that was loaded only at server startup, and
another little configuration file that included only a few variables that could be updated by hand or through
the web interface. Those variables were initialized in the main configuration file. If the webmaster breaks
the syntax of this dynamic file while updating it by hand, it won’t affect the main (write-protected) config-
uration file and so stop the proper execution of the programs. Soon we will see a simple web interface
which allows us to modify the configuration file without actually breaking it.

A sample script using the presented subroutine would be:

 use vars qw(%MODIFIED $fname $lname);
 use CGI ();
 use strict;

 my $q = CGI->new;
 print $q->header(-type=>’text/plain’);
 my $config_file = "./config.pl";
 reread_conf($config_file);
 print $q->p("$fname $lname holds the patch pumpkin" .
 "for this Perl release.");

 sub reread_conf{
 my $file = shift;
 return unless defined $file;
 return unless -e $file and -r _;
 my $mod = -M _;
 unless ($MODIFIED{$file} and $MODIFIED{$file} == $mod) {
 my $result;
 unless ($result = do $file) {
 warn "couldn’t parse $file: $@" if $@;
 warn "couldn’t do $file: $!" unless defined $result;
 warn "couldn’t run $file" unless $result;
 }
 $MODIFIED{$file} = $mod; # Update the MODIFICATION times
 }
 } # end of reread_conf

Remember that you should be using (stat $file)[9] instead of -M $file if you are modifying
the $^T variable. In some of my scripts, I reset $^T to the time of the script invocation with "$^T =
time()" . That way I can perform -M and the similar (-A , -C) file status tests relative to the script invo-
cation time, and not the time the process was started.

If your configuration file is more sophisticated and it declares a package and exports variables, the above
code will work just as well. Even if you think that you will have to import() variables again, when do()
recompiles the script the originally imported variables get updated with the values from the reloaded code.

1.7.4.3 Dynamically updating configuration files

The CGI script below allows a system administrator to dynamically update a configuration file through the
web interface. Combining this with the code we have just seen to reload the modified files, you get a
system which is dynamically reconfigurable without needing to restart the server. Configuration can be
performed from any machine having just a web interface (a simple browser connected to the Internet).

2315 Feb 2014

1.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

Let’s say you have a configuration file like this:

 package MainConfig;

 use strict;
 use vars qw(%c);

 %c = (
 name => "Larry Wall",
 release => "5.000",
 comments => "Adding more ways to do the same thing :)",

 other => "More config values",

 hash => { foo => "ouch",
 bar => "geez",
 },

 array => [qw(a b c)],

);

You want to make the variables name, release and comments dynamically configurable. You want to
have a web interface with an input form that allows you to modify these variables. Once modified you
want to update the configuration file and propagate the changes to all the currently running processes.
Quite a simple task.

Let’s look at the main stages of the implementation. Create a form with preset current values of the vari-
ables. Let the administrator modify it and submit the changes. Validate the submitted information
(numeric fields should carry numbers, literals--words, etc). Update the configuration file. Update the
modified value in the memory of the current process. Present the form as before but with updated fields if
any.

The only part that seems to be complicated to implement is a configuration file update, for a couple of
reasons. If updating the file breaks it, the whole service won’t work. If the file is very big and includes
comments and complex data structures, parsing the file can be quite a challenge.

So let’s simplify the task. If all we want is to update a few variables, why don’t we create a tiny configura-
tion file with just those variables? It can be modified through the web interface and overwritten each time
there is something to be changed. This way we don’t have to parse the file before updating it. If the main
configuration file is changed we don’t care, we don’t depend on it any more.

The dynamically updated variables are duplicated, they will be in the main file and in the dynamic file. We
do this to simplify maintenance. When a new release is installed the dynamic configuration file won’t exist
at all. It will be created only after the first update. As we just saw, the only change in the main code is to
add a snippet to load this file if it exists and was changed.

This additional code must be executed after the main configuration file has been loaded. That way the
updated variables will override the default values in the main file.

15 Feb 201424

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

META: extend on the comments:

 # remember to run this code in taint mode

 use strict;
 use vars qw($q %c $dynamic_config_file %vars_to_change %validation_rules);

 use CGI ();

 use lib qw(.);
 use MainConfig ();
 *c = \%MainConfig::c;

 $dynamic_config_file = "./config.pl";

 # load the dynamic configuration file if it exists, and override the
 # default values from the main configuration file
 do $dynamic_config_file if -e $dynamic_config_file and -r _;

 # fields that can be changed and their titles
 %vars_to_change =
 (
 ’name’ => "Patch Pumpkin’s Name",
 ’release’ => "Current Perl Release",
 ’comments’ => "Release Comments",
);

 %validation_rules =
 (
 ’name’ => sub { $_[0] =~ /^[\w\s\.]+$/; },
 ’release’ => sub { $_[0] =~ /^\d+\.[\d_]+$/; },
 ’comments’ => sub { 1; },
);

 $q = CGI->new;
 print $q->header(-type=>’text/html’),
 $q->start_html();

 my %updates = ();

 # We always rewrite the dynamic config file, so we want all the
 # vars to be passed, but to save time we will only do checking

 # of vars that were changed. The rest will be retrieved from
 # the ’prev_foo’ values.
 foreach (keys %vars_to_change) {
 # copy var so we can modify it
 my $new_val = $q->param($_) || ’’;

 # strip a possible ^M char (DOS/WIN)
 $new_val =~ s/\cM//g;

 # push to hash if was changed
 $updates{$_} = $new_val
 if defined $q->param("prev_".$_)
 and $new_val ne $q->param("prev_".$_);
 }

2515 Feb 2014

1.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

 # Note that we cannot trust the previous values of the variables
 # since they were presented to the user as hidden form variables,
 # and the user can mangle those. We don’t care: it cannot do any
 # damage, as we verify each variable by rules which we define.

 # Process if there is something to process. Will be not called if
 # it’s invoked a first time to display the form or when the form
 # was submitted but the values weren’t modified (we know that by
 # comparing with the previous values of the variables, which are
 # the hidden fields in the form)

 # process and update the values if valid
 process_change_config(%updates) if %updates;

 # print the update form
 conf_modification_form();

 # update the config file but first validate that the values are correct ones
 #########################
 sub process_change_config{
 my %updates = @_;

 # we will list here all the malformatted vars
 my %malformatted = ();

 print $q->b("Trying to validate these values
");
 foreach (keys %updates) {
 print "<DT>$_ => <PRE>$updates{$_}</PRE>";

 # now we have to handle each var to be changed very carefully
 # since this file goes immediately into production!
 $malformatted{$_} = delete $updates{$_}
 unless $validation_rules{$_}->($updates{$_});

 } # end of foreach (keys %updates)

 # print warnings if there are any invalid changes
 print $q->hr,
 $q->p($q->b(qq{Warning! These variables were changed
 but found malformed, thus the original
 values will be preserved.})
),
 join(",
",
 map { $q->b($vars_to_change{$_}) . " : $malformatted{$_}\n"
 } keys %malformatted)
 if %malformatted;

 # Now complete the vars that weren’t changed from the
 # $q->param(’prev_var’) values
 map { $updates{$_} = $q->param(’prev_’.$_) unless exists $updates{$_}
 } keys %vars_to_change;

 # Now we have all the data that should be written into the dynamic
 # config file

 # escape single quotes "’" while creating a file

15 Feb 201426

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

 my $content = join "\n",
 map { $updates{$_} =~ s/([’\\])/\\$1/g;
 ’$c{’ . $_ . "} = ’" . $updates{$_} . "’;\n"
 } keys %updates;

 # now add ’1;’ to make require() happy
 $content .= "\n1;";

 # keep the dummy result in $res so it won’t complain

 eval {my $res = $content};
 if ($@) {
 print qq{Warning! Something went wrong with config file
 generation!<P> The error was :
<PRE>$@</PRE>};
 return;
 }

 print $q->hr;

 # overwrite the dynamic config file
 use Symbol ();
 my $fh = Symbol::gensym();
 open $fh, ">$dynamic_config_file.bak"
 or die "Can’t open $dynamic_config_file.bak for writing :$! \n";
 flock $fh,2; # exclusive lock
 seek $fh,0,0; # rewind to the start
 truncate $fh, 0; # the file might shrink!
 print $fh $content;
 close $fh;

 # OK, now we make a real file
 rename "$dynamic_config_file.bak",$dynamic_config_file
 or die "Failed to rename: $!";

 # rerun it to update variables in the current process! Note that
 # it won’t update the variables in other processes. Special
 # code that watches the timestamps on the config file will do this
 # work for each process. Since the next invocation will update the
 # configuration anyway, why do we need to load it here? The reason
 # is simple: we are going to fill the form’s input fields with
 # the updated data.
 do $dynamic_config_file;

 } # end sub process_change_config

 ##########################
 sub conf_modification_form{

 print $q->center($q->h3("Update Form"));

 print $q->hr,
 $q->p(qq{This form allows you to dynamically update the current
 configuration. You don\’t need to restart the server in
 order for changes to take an effect}
);

 # set the previous settings in the form’s hidden fields, so we

2715 Feb 2014

1.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

 # know whether we have to do some changes or not
 map {$q->param("prev_$_",$c{$_}) } keys %vars_to_change;

 # rows for the table, go into the form
 my @configs = ();

 # prepare one textfield entries
 push @configs,
 map {
 $q->td(
 $q->b("$vars_to_change{$_}:"),
),
 $q->td(
 $q->textfield(-name => $_,
 -default => $c{$_},
 -override => 1,
 -size => 20,
 -maxlength => 50,
)
),
 } qw(name release);

 # prepare multiline textarea entries
 push @configs,
 map {
 $q->td(
 $q->b("$vars_to_change{$_}:"),
),
 $q->td(
 $q->textarea(-name => $_,
 -default => $c{$_},
 -override => 1,
 -rows => 10,

 -columns => 50,
 -wrap => "HARD",
)
),
 } qw(comments);

 print $q->startform(’POST’,$q->url),"\n",
 $q->center($q->table(map {$q->Tr($_),"\n",} @configs),
 $q->submit(’’,’Update!’),"\n",
),
 map ({$q->hidden("prev_".$_, $q->param("prev_".$_))."\n" }
 keys %vars_to_change), # hidden previous values
 $q->br,"\n",
 $q->endform,"\n",
 $q->hr,"\n",
 $q->end_html;

 } # end sub conf_modification_form

Once updated the script generates a file like:

15 Feb 201428

1.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

 $c{release} = ’5.6’;

 $c{name} = ’Gurusamy Sarathy’;

 $c{comments} = ’Perl rules the world!’;

 1;

1.7.5 Reloading handlers

If you want to reload a perlhandler on each invocation, the following trick will do it:

 PerlHandler "sub { do ’MyTest.pm’; MyTest::handler(shift) }"

do() reloads MyTest.pm on every request.

1.8 Name collisions with Modules and libs
This section requires an in-depth understanding of use(), require(), do(), %INC and @INC .

To make things clear before we go into details: each child process has its own %INC hash which is used to
store information about its compiled modules. The keys of the hash are the names of the modules and files
passed as arguments to require() and use(). The values are the full or relative paths to these modules and
files.

Suppose we have my-lib.pl and MyModule.pm both located at /home/httpd/perl/my/ .

/home/httpd/perl/my/ is in @INC at server startup.

 require "my-lib.pl";
 use MyModule;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

prints:

 /home/httpd/perl/my/my-lib.pl
 /home/httpd/perl/my/MyModule.pm

Adding use lib :

 use lib qw(.);
 require "my-lib.pl";
 use MyModule;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

prints:

2915 Feb 2014

1.8 Name collisions with Modules and libsCGI to mod_perl Porting. mod_perl Coding guidelines.

 my-lib.pl
 MyModule.pm

/home/httpd/perl/my/ isn’t in @INC at server startup.

 require "my-lib.pl";
 use MyModule;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

wouldn’t work, since perl cannot find the modules.

Adding use lib :

 use lib qw(.);
 require "my-lib.pl";
 use MyModule;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

prints:

 my-lib.pl
 MyModule.pm

Let’s look at three scripts with faults related to name space. For the following discussion we will consider
just one individual child process.

Scenario 1

First, You can’t have two identical module names running on the same server! Only the first one
found in a use() or require() statement will be compiled into the package, the request for the other
module will be skipped, since the server will think that it’s already compiled. This is a direct result of
using %INC, which has keys equal to the names of the modules. Two identical names will refer to the
same key in the hash. (Refer to the section ’Looking inside the server’ to find out how you can know
what is loaded and where.)

So if you have two different Foo modules in two different directories and two scripts script1.pl
and script2.pl , placed like this:

 ./tool1/Foo.pm
 ./tool1/tool1.pl
 ./tool2/Foo.pm
 ./tool2/tool2.pl

Where some sample code could be:

 ./tool1/tool1.pl

 use Foo;
 print "Content-type: text/plain\r\n\r\n";
 print "I’m Script number One\n";
 foo();

15 Feb 201430

1.8 Name collisions with Modules and libs

 ./tool1/Foo.pm

 sub foo{
 print "I’m Tool Number One!\n";
 }
 1;

 ./tool2/tool2.pl

 use Foo;
 print "Content-type: text/plain\r\n\r\n";
 print "I’m Script number Two\n";
 foo();

 ./tool2/Foo.pm

 sub foo{
 print "I’m Tool Number Two!\n";
 }
 1;

Both scripts call use Foo; . Only the first one called will know about Foo. When you call the
second script it will not know about Foo at all--it’s like you’ve forgotten to write use Foo; . Run
the server in single server mode to detect this kind of bug immediately.

You will see the following in the error_log file:

 Undefined subroutine
 &Apache::ROOT::perl::tool2::tool2_2epl::foo called at
 /home/httpd/perl/tool2/tool2.pl line 4.

Scenario 2

If the files do not declare a package, the above is true for libraries (i.e. my-lib.pl") you require() as
well:

Suppose that you have a directory structure like this:

 ./tool1/config.pl
 ./tool1/tool1.pl
 ./tool2/config.pl
 ./tool2/tool2.pl

and both scripts contain:

 use lib qw(.);
 require "config.pl";

while ./tool1/config.pl can be something like this:

 $foo = 0;
 1;

3115 Feb 2014

1.8 Name collisions with Modules and libsCGI to mod_perl Porting. mod_perl Coding guidelines.

and ./tool2/config.pl:

 $foo = 1;
 1;

The second scenario is not different from the first, there is almost no difference between use() and
require() if you don’t have to import some symbols into a calling script. Only the first script served
will actually do the require(), for the same reason as the example above. %INC already includes the
key "config.pl"!

Scenario 3

It is interesting that the following scenario will fail too!

 ./tool/config.pl
 ./tool/tool1.pl
 ./tool/tool2.pl

where tool1.pl and tool2.pl both require() the same config.pl .

There are three solutions for this:

Solution 1

The first two faulty scenarios can be solved by placing your library modules in a subdirectory struc-
ture so that they have different path prefixes. The file system layout will be something like:

 ./tool1/Tool1/Foo.pm
 ./tool1/tool1.pl
 ./tool2/Tool2/Foo.pm
 ./tool2/tool2.pl

And modify the scripts:

 use Tool1::Foo;
 use Tool2::Foo;

For require() (scenario number 2) use the following:

 ./tool1/tool1-lib/config.pl
 ./tool1/tool1.pl
 ./tool2/tool2-lib/config.pl
 ./tool2/tool2.pl

And each script contains respectively:

 use lib qw(.);
 require "tool1-lib/config.pl";

 use lib qw(.);
 require "tool2-lib/config.pl";

15 Feb 201432

1.8 Name collisions with Modules and libs

This solution isn’t good, since while it might work for you now, if you add another script that wants
to use the same module or config.pl file, it would fail as we saw in the third scenario.

Let’s see some better solutions.

Solution 2

Another option is to use a full path to the script, so it will be used as a key in %INC;

 require "/full/path/to/the/config.pl";

This solution solves the problem of the first two scenarios. I was surprised that it worked for the third
scenario as well!

With this solution you lose some portability. If you move the tool around in the file system you will
have to change the base directory or write some additional script that will automatically update the
hardcoded path after it was moved. Of course you will have to remember to invoke it.

Solution 3

Make sure you read all of this solution.

Declare a package name in the required files! It should be unique in relation to the rest of the package
names you use. %INC will then use the unique package name for the key. It’s a good idea to use at
least two-level package names for your private modules, e.g. MyProject::Carp and not Carp ,
since the latter will collide with an existing standard package. Even though a package may not exist
in the standard distribution now, a package may come along in a later distribution which collides with
a name you’ve chosen. Using a two part package name will help avoid this problem.

Even a better approach is to use three level naming, like CompanyName::Project-
Name::Module , which is most unlikely to have conflicts with later Perl releases. Foresee problems
like this and save yourself future trouble.

What are the implications of package declaration?

Without package declarations, it is very convenient to use() or require() files because all the variables
and subroutines are part of the main:: package. Any of them can be used as if they are part of the
main script. With package declarations things are more awkward. You have to use the
Package::function() method to call a subroutine from Package and to access a global vari-
able $foo inside the same package you have to write $Package::foo .

Lexically defined variables, those declared with my () inside Package will be inaccessible from
outside the package.

You can leave your scripts unchanged if you import the names of the global variables and subroutines
into the namespace of package main:: like this:

3315 Feb 2014

1.8 Name collisions with Modules and libsCGI to mod_perl Porting. mod_perl Coding guidelines.

 use Module qw(:mysubs sub_b $var1 :myvars);

You can export both subroutines and global variables. Note however that this method has the disad-
vantage of consuming more memory for the current process.

See perldoc Exporter for information about exporting other variables and symbols.

This completely covers the third scenario. When you use different module names in package declara-
tions, as explained above, you cover the first two as well.

A Hack

The following solution should be used only as a short term bandaid. You can force reloading of the
modules by either fiddling with %INC or replacing use() and require() calls with do().

If you delete the module entry from the %INC hash, before calling require() or use() the module will
be loaded and compiled again. For example:

 ./project/runA.pl

 BEGIN {
 delete $INC{"MyConfig.pm"};
 }
 use lib qw(.);
 use MyConfig;
 print "Content-type: text/plain\n\n";
 print "Script A\n";
 print "Inside project: ", project_name();

Apply the same fix to runB.pl.

Another alternative is to force module reload via do():

 ./project/runA.pl

 use lib qw(.);
 do "MyConfig.pm";
 print "Content-type: text/plain\n\n";
 print "Script B\n";
 print "Inside project: ", project_name();

Apply the same fix to runB.pl.

If you needed to import() something from the loaded module, call the import() method explicitly. For
example if you had:

 use MyConfig qw(foo bar);

now the code will look as:

15 Feb 201434

1.8 Name collisions with Modules and libs

 do "MyConfig.pm";
 MyConfig->import(qw(foo bar));

Both presented solutions are ineffective, since the modules in question will be reloaded on each
request, slowing down the response times. Therefore use these only when a very quick fix is needed
and provide one of the more robust solutions discussed in the previous sections.

See also the perlmodlib and perlmod manpages.

From the above discussion it should be clear that you cannot run development and production versions of
the tools using the same apache server! You have to run a separate server for each. They can be on the
same machine, but the servers will use different ports.

1.9 More package name related issues
If you have the following:

 PerlHandler Apache::Work::Foo
 PerlHandler Apache::Work::Foo::Bar

And you make a request that pulls in Apache/Work/Foo/Bar.pm first, then the
Apache::Work::Foo package gets defined, so mod_perl does not try to pull in
Apache/Work/Foo.pm

1.10 __END__ and __DATA__ tokens
Apache::Registry scripts cannot contain __END__ or __DATA__ tokens.

Why? Because Apache::Registry scripts are being wrapped into a subroutine called handler , like
the script at URI /perl/test.pl :

 print "Content-type: text/plain\r\n\r\n";
 print "Hi";

When the script is being executed under Apache::Registry handler, it actually becomes:

 package Apache::ROOT::perl::test_2epl;
 use Apache qw(exit);
 sub handler {
 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 }

So if you happen to put an __END__ tag, like:

 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 __END__
 Some text that wouldn’t be normally executed

3515 Feb 2014

1.9 More package name related issuesCGI to mod_perl Porting. mod_perl Coding guidelines.

it will be turned into:

 package Apache::ROOT::perl::test_2epl;
 use Apache qw(exit);
 sub handler {
 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 __END__
 Some text that wouldn’t be normally executed
 }

and you try to execute this script, you will receive the following error:

 Missing right bracket at line 4, at end of line

Perl cuts everything after the __END__ tag. The same applies to the __DATA__ tag.

Also, remember that whatever applies to Apache::Registry scripts, in most cases applies to
Apache::PerlRun scripts.

1.11 Output from system calls
The output of system() , exec() , and open(PIPE,"|program") calls will not be sent to the
browser unless your Perl was configured with sfio .

You can use backticks as a possible workaround:

 print ‘command here‘;

But you’re throwing performance out the window either way. It’s best not to fork at all if you can avoid it.
See the "Forking or Executing subprocesses from mod_perl" section to learn about implications of
forking.

Also read about Apache::SubProcess for overridden system() and exec() implementations that work with
mod_perl.

1.12 Using format() and write()
The interface to filehandles which are linked to variables with Perl’s tie() function is not yet complete. The
format() and write() functions are missing. If you configure Perl with sfio , write() and format() should
work just fine.

Otherwise you could use sprintf() to replace format(): ##.## becomes %2.2f and ####.## becomes
%4.2f .

Pad all strings with (" " x 80) before using, and set their length with: %.25s for a max 25 char string. Or
prefix the string with (" " x 80) for right-justifying.

15 Feb 201436

1.11 Output from system calls

Another alternative is to use the Text::Reform module.

1.13 Terminating requests and processes, the exit() and
child_terminate() functions
Perl’s exit() built-in function (all versions prior to 5.6) cannot be used in mod_perl scripts. Calling it
causes the mod_perl process to exit (which defeats the purpose of using mod_perl). The
Apache::exit() function should be used instead. Starting from Perl version 5.6 mod_perl will over-
ride exit() behind the scenes, using CORE::GLOBAL:: , a new magical package.

You might start your scripts by overriding the exit() subroutine (if you use Apache::exit() directly,
you will have a problem testing the script from the shell, unless you put use Apache (); into your
code.) I use the following code:

 use constant IS_MODPERL => $ENV{MOD_PERL};
 use subs qw(exit);
 # Select the correct exit function
 *exit = IS_MODPERL ? \&Apache::exit : sub { CORE::exit };

Now the correct exit() is always chosen, whether the script is running under mod_perl, ordinary CGI or
from the shell. Notice that since we are using the constant pragma, there is no runtime overhead to select
one of the code references, since IS_MODPERL constant is folded, that block is optimized away at
compile time outside of mod_perl.

Note that if you run the script under Apache::Registry , The Apache function exit() overrides
the Perl core built-in function. While you see exit() listed in the @EXPORT_OK list of the Apache
package, Apache::Registry does something you don’t see and imports this function for you. This
means that if your script is running under the Apache::Registry handler you don’t have to worry
about exit(). The same applies to Apache::PerlRun .

If you use CORE::exit() in scripts running under mod_perl, the child will exit, but neither a proper
exit nor logging will happen on the way. CORE::exit() cuts off the server’s legs.

Note that Apache::exit(Apache::Constants::DONE) will cause the server to exit gracefully,
completing the logging functions and protocol requirements etc. (Apache::Constants::DONE == -2,
Apache::Constants::OK == 0.)

If you need to shut down the child cleanly after the request was completed, use the
$r->child_terminate method. You can call it anywhere in the code, and not just at the "end". This
sets the value of the MaxRequestsPerChild configuration variable to 1 and clears the keepalive
flag. After the request is serviced, the current connection is broken, because of the keepalive flag, and
the parent tells the child to cleanly quit, because MaxRequestsPerChild is smaller than the number
of requests served.

In an Apache::Registry script you would do:

3715 Feb 2014

1.13 Terminating requests and processes, the exit() and child_terminate() functionsCGI to mod_perl Porting. mod_perl Coding guidelines.

 Apache->request->child_terminate;

or in httpd.conf:

 PerlFixupHandler "sub { shift->child_terminate }"

You would want to use the latter example only if you wanted the child to terminate every time the regis-
tered handler is called. Probably this is not what you want.

Even if you don’t need to call child_terminate() at the end of the request if you want the process to quit
afterwards, here is an example of assigning the postprocessing handler. You might do this if you wanted to
execute your own code a moment before the process quits.

 my $r = shift;
 $r->post_connection(\&exit_child);
 sub exit_child{
 # some logic here if needed
 $r->child_terminate;
 }

The above is the code that is used by the Apache::SizeLimit module which terminates processes
that grow bigger than a value you choose.

Apache::GTopLimit (based on libgtop and GTop.pm) is a similar module. It does the same thing, plus
you can configure it to terminate processes when their shared memory shrinks below some specified size.

1.14 die() and mod_perl
When you write:

 open FILE, "foo" or die "Cannot open foo file for reading: $!";

in a perl script and execute it--the script would die() if it is unable to open the file, by aborting the script
execution, printing the death reason and quitting the Perl interpreter.

You will hardly find a properly written Perl script that doesn’t have at least one die() statement in it, if it
has to cope with system calls and the like.

A CGI script running under mod_cgi exits on its completion. The Perl interperter exits as well. So it
doesn’t really matter whether the interpreter quits because the script died by natural death (when the last
statement was executed) or was aborted by a die() statement.

In mod_perl we don’t want the interpreter to quit. We already know that when the script completes its
chores the interpeter won’t quit. There is no reason why it should quit when the script has stopped because
of die(). As a result calling die() won’t quit the process.

And this is how it works--when the die() gets triggered, it’s mod_perl’s $SIG{__DIE__} handler that
logs the error message and calls Apache::exit() instead of CORE::die(). Thus the script stops, but the
process doesn’t quit.

15 Feb 201438

1.14 die() and mod_perl

Here is an example of such trapping code, although it isn’t the real code:

 $SIG{__DIE__} = sub { print STDERR @_; Apache::exit(); }

1.15 Return Codes
Apache::Registry normally assumes a return code of OK (200). If you want to send another return
code, use $r->status() :

 use Apache::Constants qw(NOT_FOUND);
 $r->status(NOT_FOUND);

Of course if you do that, you don’t have to call $r->send_http_header() (assuming that you have
PerlSendHeader Off).

1.16 Testing the Code from the Shell
Your CGI scripts will not yet run from the command line unless you use CGI::Switch or CGI.pm and
have Perl 5.004 or later. They must not make any direct calls to Apache’s Perl API methods.

1.17 I/O is different
If you are using Perl 5.004 or later, most CGI scripts can run under mod_perl untouched.

If you’re using 5.003, Perl’s built-in read() and print() functions do not work as they do under CGI.
If you’re using CGI.pm , use $query->print instead of plain ol’ print() .

1.18 STDIN, STDOUT and STDERR streams
In mod_perl both STDIN and STDOUT are tied to the socket the request came from. Because the C level
STDOUT is not hooked up to the client, you can re-open the STDOUT filehandler using tie(). For
example if you want to dup an STDOUT filehandler and for the code to work with mod_perl and without
it, the following example will do:

 use constant IS_MODPERL => $ENV{MOD_PERL};
 if (IS_MODPERL) {
 tie *OUT, ’Apache’;
 } else {
 open (OUT, ">-");
 }

Note that OUT was picked just as an example -- there is nothing special about it. If you are looking to redi-
rect the STDOUT stream into a scalar, see the Redirecting STDOUT into a String section.

STDERR is tied to the file defined by the ErrorLog directive.

3915 Feb 2014

1.15 Return CodesCGI to mod_perl Porting. mod_perl Coding guidelines.

1.19 Redirecting STDOUT into a Scalar
Sometimes you have a situation where a black box functions prints the output to STDOUT and you want to
get this output into a scalar. This is just as valid under mod_perl, where you want the STDOUT to be tied
to the Apache object. So that’s where the IO::String package comes to help. You can re-tie() the
STDOUT (or any other filehandler to a string) by doing a simple select() on the IO::String object and
at the end to re-tie() the STDOUT back to its original stream:

 my $str;
 my $str_fh = IO::String->new($str);
 my $old_fh = select($str_fh);

 # some function that prints to currently selected file handler.
 print_stuff()

 # reset default fh to previous value
 select($old_fh) if defined $old_fh;

1.20 Apache::print() and CORE::print()
Under mod_perl CORE::print() will redirect its data to Apache::print() since the STDOUT
filehandle is tied to the Apache module. This allows us to run CGI scripts unmodified under
Apache::Registry by chaining the output of one content handler to the input of the other handler.

Apache::print() behaves mostly like the built-in print() function. In addition it sets a timeout so that
if the client connection is broken the handler won’t wait forever trying to print data downstream to the
client.

There is also an optimization built into Apache::print() . If any of the arguments to the method are
scalar references to strings, they are automatically dereferenced for you. This avoids needless copying of
large strings when passing them to subroutines. For example:

 $long_string = "A" x 10000000;
 $r->print(\$long_string);

If you still want to print the reference you can always call:

 $r->print(\\$foo);

or by forcing it into a scalar context:

 print(scalar($foo));

1.21 Global Variables Persistence
Since the child process generally doesn’t exit before it has serviced several requests, global variables
persist inside the same process from request to request. This means that you must never rely on the value
of the global variable if it wasn’t initialized at the beginning of the request processing. See "Variables
globally, lexically scoped and fully qualified" for more information.

15 Feb 201440

1.19 Redirecting STDOUT into a Scalar

You should avoid using global variables unless it’s impossible without them, because it will make code
development harder and you will have to make certain that all the variables are initialized before they are
used. Use my () scoped variables wherever you can.

You should be especially careful with Perl Special Variables which cannot be lexically scoped. You have
to use local() instead.

Here is an example with Perl hash variables, which store the iteration state in the hash variable and that
state persists between requests unless explicitly reset. Consider the following registry script:

 #file:hash_iteration.pl
 #----------------------
 our %hash;
 %hash = map {$_ => 1 } ’a’..’c’ unless %hash;

 print "Content-type: text/plain\n\n";

 for (my ($k, $v) = each %hash) {
 print "$k $v\n";
 last;
 }

That script prints different values on the first 3 invocations and prints nothing on the 4th, and then repeats
the loop. (when you run with httpd -X). There are 3 hash key/value pairs in the global variable %hash.

In order to get the iteration state to its initial state at the beginning of each request, you need to reset the
iterator as explained in the manpage for the each() operator. So adding:

 keys %hash;

before using %hash solves the problem for the current example.

1.22 Generating correct HTTP Headers
A HTTP response header consists of at least two fields. HTTP response and MIME type header
Content-type :

 HTTP/1.0 200 OK
 Content-Type: text/plain

After adding one more new line, you can start printing the content. A more complete response includes the
date timestamp and server type, for example:

 HTTP/1.0 200 OK
 Date: Tue, 28 Dec 1999 18:47:58 GMT
 Server: Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
 Content-Type: text/plain

To notify that the server was configured with KeepAlive Off, you need to tell the client that the connection
was closed, with:

4115 Feb 2014

1.22 Generating correct HTTP HeadersCGI to mod_perl Porting. mod_perl Coding guidelines.

 Connection: close

There can be other headers as well, like caching control and others specified by the HTTP protocol. You
can code the response header with a single print():

 print qq{HTTP/1.1 200 OK
 Date: Tue, 28 Dec 1999 18:49:41 GMT
 Server: Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
 Connection: close
 Content-type: text/plain

 };

or with a "here" style print:

 print <<EOT;
 HTTP/1.1 200 OK
 Date: Tue, 28 Dec 1999 18:49:41 GMT
 Server: Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
 Connection: close
 Content-type: text/plain

 EOT

Notice the double new line at the end. But you have to prepare a timestamp string
(Apache::Util::ht_time() does just this) and to know what server you are running under. You
needed to send only the response MIME type (Content-type) under mod_cgi, so why would you want
to do this manually under mod_perl?

Actually sometimes you do want to set some headers manually, but not every time. So mod_perl gives you
the default set of headers, just like in the example above. And if you want to override or add more headers
you can do that as well. Let’s see how to do that.

When writing your own handlers and scripts with the Perl Apache API the proper way to send the HTTP
header is with the send_http_header() method. If you need to add or override methods you can use the
header_out() method:

 $r->header_out("Server" => "Apache Next Generation 10.0");
 $r->header_out("Date" => "Tue, 28 Dec 1999 18:49:41 GMT");

When you have prepared all the headers you send them with:

 $r->send_http_header;

Some headers have special aliases:

 $r->content_type(’text/plain’);

is the same as:

15 Feb 201442

1.22 Generating correct HTTP Headers

 $r->header_out("Content-type" => "text/plain");

A typical handler looks like this:

 $r->content_type(’text/plain’);
 $r->send_http_header;
 return OK if $r->header_only;

If the client issues an HTTP HEAD request rather than the usual GET, to be compliant with the HTTP
protocol we should not send the document body, but only the HTTP header. When Apache receives a
HEAD request, header_only() returns true. If we see that this has happened, we return from the handler
immediately with an OK status code.

Generally, you don’t need the explicit content type setting, since Apache does this for you, by looking up
the MIME type of the request and by matching the extension of the URI in the MIME tables (from the
mime.types file). So if the request URI is /welcome.html, the text/html content-type will be picked.
However for CGI scripts or URIs that cannot be mapped by a known extension, you should set the appro-
priate type by using content_type() method.

The situation is a little bit different with Apache::Registry and similar handlers. If you take a basic
CGI script like this:

 print "Content-type: text/plain\r\n\r\n";
 print "Hello world";

it wouldn’t work, because the HTTP header will not be sent out. By default, mod_perl does not send any
headers itself. You may wish to change this by adding

 PerlSendHeader On

in the Apache::Registry <Location> section of your configuration. Now, the response line and
common headers will be sent as they are by mod_cgi. Just as with mod_cgi, PerlSendHeader will not
send the MIME type and a terminating double newline. Your script must send that itself, e.g.:

 print "Content-type: text/html\r\n\r\n";

According to HTTP specs, you should send "\cM\cJ", "\015\012" or "\0x0D\0x0A" string. The "\r\n" is the
way to do that on UNIX and MS-DOS/Windows machines. However, on a Mac "\r\n" eq "\012\015",
exactly the other way around.

Note, that in most UNIX CGI scripts, developers use a simpler "\n\n" and not "\r\n\r\n". There are occa-
sions where sending "\n" without "\r" can cause problems, make it a habit to always send "\r\n" every time.

If you use an OS which uses the EBCDIC as character set (e.g. BS2000-Posix), you should use this
method to send the Content-type header:

 shift->send_http_header(’text/html’);

4315 Feb 2014

1.22 Generating correct HTTP HeadersCGI to mod_perl Porting. mod_perl Coding guidelines.

The PerlSendHeader On directive tells mod_perl to intercept anything that looks like a header line
(such as Content-Type: text/plain) and automatically turn it into a correctly formatted
HTTP/1.0 header, the same way it happens with CGI scripts running under mod_cgi. This allows you to
keep your CGI scripts unmodified.

You can use $ENV{PERL_SEND_HEADER} to find out whether PerlSendHeader is On or Off . You
use it in your module like this:

 if($ENV{PERL_SEND_HEADER}) {
 print "Content-type: text/html\r\n\r\n";
 }
 else {
 my $r = Apache->request;
 $r->content_type(’text/html’);
 $r->send_http_header;
 }

Note that you can always use the code in the else part of the above example, no matter whether the
PerlSendHeader directive is On or Off.

If you use CGI.pm ’s header() function to generate HTTP headers, you do not need to activate this
directive because CGI.pm detects mod_perl and calls send_http_header() for you.

There is no free lunch--you get the mod_cgi behavior at the expense of the small but finite overhead of
parsing the text that is sent. Note that mod_perl makes the assumption that individual headers are not split
across print statements.

The Apache::print() routine has to gather up the headers that your script outputs, in order to pass
them to $r->send_http_header . This happens in src/modules/perl/Apache.xs (print)
and Apache/Apache.pm (send_cgi_header). There is a shortcut in there, namely the assumption
that each print statement contains one or more complete headers. If for example you generate a
Set-Cookie header by multiple print() statements, like this:

 print "Content-type: text/plain\n";
 print "Set-Cookie: iscookietext\; ";
 print "expires=Wednesday, 09-Nov-1999 00:00:00 GMT\; ";
 print "path=\/\; ";
 print "domain=\.mmyserver.com\; ";
 print "\r\n\r\n";
 print "hello";

Your generated Set-Cookie header is split over a number of print() statements and gets lost. The above
example wouldn’t work! Try this instead:

 my $cookie = "Set-Cookie: iscookietext\; ";
 $cookie .= "expires=Wednesday, 09-Nov-1999 00:00:00 GMT\; ";
 $cookie .= "path=\/\; ";
 $cookie .= "domain=\.mmyserver.com\; ";
 print "Content-type: text/plain\n",
 print "$cookie\r\n\r\n";
 print "hello";

15 Feb 201444

1.22 Generating correct HTTP Headers

Of course using a special purpose cookie generator modules, like Apache::Cookie , CGI::Cookie
etc is an even cleaner solution.

Sometimes when you call a script you see an ugly "Content-Type: text/html" displayed at the top of the
page, and of course the rest of the HTML code won’t be rendered correctly by the browser. As you have
seen above, this generally happens when your code has already sent the header so you see the duplicate
header rendered into the browser’s page. This might happen when you call the CGI.pm $q->header
method or mod_perl’s $r->send_http_header .

If you have a complicated application where the header might be generated from many different places,
depending on the calling logic, you might want to write a special subroutine that sends a header, and keeps
track of whether the header has been already sent. Of course you can use a global variable to flag that the
header has already been sent:

 use strict;
 use vars qw{$header_printed};
 $header_printed = 0;

 print_header("text/plain");
 print "It worked!\n";
 print_header("text/plain");

 sub print_header {
 my $type = shift || "text/html";
 unless ($header_printed) {
 $header_printed = 1;
 my $r = Apache->request;
 $r->content_type($type);
 $r->send_http_header;
 }
 }

$header_printed is the variable that flags whether the header was sent or not and it gets initialized to
false (0) at the beginning of each code invocation. Note that the second invocation of print_header() within
the same code, will do nothing, since $header_printed will become true after print_header() will be
executed for the first time.

A solution that is a little bit more memory friendly is to use a fully qualified variable instead:

 use strict;
 $main::header_printed = 0;

 print_header("text/plain");
 print "It worked!\n";
 print_header("text/plain");

 sub print_header {
 my $type = shift || "text/html";
 unless ($main::header_printed) {
 $main::header_printed = 1;
 my $r = Apache->request;

4515 Feb 2014

1.22 Generating correct HTTP HeadersCGI to mod_perl Porting. mod_perl Coding guidelines.

 $r->content_type($type);
 $r->send_http_header;
 }
 }

We just removed the global variable predeclaration, which allowed us to use $header_printed under
"use strict" and replaced $header_printed with $main::header_printed ;

You may become tempted to use a more elegant Perl solution--the nested subroutine effect which seems to
be a natural approach to take here. Unfortunately it will not work. If the process was starting fresh for each
script or handler, like with plain mod_cgi scripts, it would work just fine:

 use strict;

 print_header("text/plain");
 print "It worked!\n";
 print_header("text/plain");

 {
 my $header_printed = 0;
 sub print_header {
 my $type = shift || "text/html";
 unless ($header_printed) {
 $header_printed = 1;
 my $r = Apache->request;
 $r->content_type($type);
 $r->send_http_header;
 }
 }
 }

In this code $header_printed is declared as lexically scoped (with my ()) outside the subroutine
print_header() and modified inside of it. Curly braces define the block which limits the scope of the lexi-
cally variable.

This means that once print_header() sets it to 1, it will stay 1 as long as the code is running. So all subse-
quent calls to this subroutine will just return without doing a thing. This would serve our purpose, but
unfortunately it will work only for the first time the script is invoked within a process. When the script is
executed for the second or subsequent times and is served by the same process--the header will not be
printed anymore, since print_header() will remember that the value of $header_printed is equal to
1--it won’t be reinitialized, since the subroutine won’t be recompiled.

Why can’t we use a lexical without hitting the nested subroutine effect? Because when we’ve discussed
Apache::Registry secrets we have seen that the code is wrapped in a handler routine, effectively turning
any subroutines within the file a script resides in into nested subroutines. Hence we are forced to use a
global in this situation.

Let’s make our smart method more elaborate with respect to the PerlSendHeader directive, so that it
always does the right thing. It’s especially important if you write an application that you are going to
distribute, hopefully under one of the Open Source or GPL licenses.

15 Feb 201446

1.22 Generating correct HTTP Headers

You can continue to improve this subroutine even further to handle additional headers, such as cookies.

See also Correct Headers--A quick guide for mod_perl users

1.23 NPH (Non Parsed Headers) scripts
To run a Non Parsed Header CGI script under mod_perl, simply add to your code:

 local $| = 1;

And if you normally set PerlSendHeader On , add this to your server’s configuration file:

 <Files */nph-*>
 PerlSendHeader Off
 </Files>

1.24 BEGIN blocks
Perl executes BEGIN blocks as soon as possible, at the time of compiling the code. The same is true under
mod_perl. However, since mod_perl normally only compiles scripts and modules once, either in the parent
server or once per-child, BEGIN blocks in that code will only be run once. As the perlmod manpage
explains, once a BEGIN block has run, it is immediately undefined. In the mod_perl environment, this
means that BEGIN blocks will not be run during the response to an incoming request unless that request
happens to be the one that causes the compilation of the code.

BEGIN blocks in modules and files pulled in via require() or use() will be executed:

Only once, if pulled in by the parent process.

Once per-child process if not pulled in by the parent process.

An additional time, once per child process if the module is pulled in off disk again via
Apache::StatINC .

An additional time, in the parent process on each restart if PerlFreshRestart is On.

Unpredictable if you fiddle with %INC yourself.

BEGIN blocks in Apache::Registry scripts will be executed, as above plus:

Only once, if pulled in by the parent process via

Apache::RegistryLoader .

Once per-child process if not pulled in by the parent process.

4715 Feb 2014

1.23 NPH (Non Parsed Headers) scriptsCGI to mod_perl Porting. mod_perl Coding guidelines.

An additional time, once per child process, each time the script file changes on disk.

An additional time, in the parent process on each restart if pulled in by the parent process via
Apache::RegistryLoader and PerlFreshRestart is On.

Make sure you read Evil things might happen when using PerlFreshRestart.

1.25 END blocks
As the perlmod manpage explains, an END subroutine is executed as late as possible, that is, when the
interpreter exits. In the mod_perl environment, the interpreter does not exit until the server shuts down.
However, mod_perl does make a special case for Apache::Registry scripts.

Normally, END blocks are executed by Perl during its perl_run() function. This is called once each
time the Perl program is executed, i.e. under mod_cgi, once per invocation of the CGI script. However,
mod_perl only calls perl_run() once, during server startup. Any END blocks encountered during main
server startup, i.e. those pulled in by PerlRequire , PerlModule and the startup file, are suspended.

Except during the cleanup phase, any END blocks encountered during compilation of
Apache::Registry scripts (including those defined in the packages use() ’d by the script), including
subsequent invocations when the script is cached in memory, are called after the script has completed.

All other END blocks encountered during other Perl*Handler call-backs, e.g. PerlChil-
dInitHandler , will be suspended while the process is running and called during child_exit()
when the process is shutting down. Module authors might wish to use $r->register_cleanup() as
an alternative to END blocks if this behavior is not desirable. $r->register_cleanup() is called at
the CleanUp processing phase of each request and thus can be used to emulate plain perl’s END{} block
behavior.

The last paragraph is very important for handling the case of ’User Pressed the Stop Button’.

If you only want something to run once in the parent on shutdown or restart you can use $r->regis-
ter_cleanup() in the startup.pl.

 #PerlRequire startup.pl
 warn "parent pid is $$\n";
 Apache->server->register_cleanup
 (sub { warn "server cleanup in $$\n"});

This is usually useful when some server wide cleanup should be performed when the server is stopped or
restarted.

1.26 CHECK And INIT Blocks
These blocks run when compilation is complete, but before the program starts. CHECK can mean "check-
point" or "double-check" or even just "stop". INIT stands for "initialization". The difference is subtle;
CHECK blocks are run just after the compilation ends, INIT just before the runtime begins. (Hence the -c
command-line flag to perl runs CHECK blocks but not INIT blocks.)

15 Feb 201448

1.25 END blocks

Perl only calls these blocks during perl_parse(), which mod_perl calls once at startup time. Therefore
CHECK and INIT blocks don’t work for the same reason these don’t:

 % perl -e ’eval qq(CHECK { print "ok\n" })’
 % perl -e ’eval qq(INIT { print "ok\n" })’

1.27 Command Line Switches (-w, -T, etc)
Normally when you run perl from the command line, you have the shell invoke it with #!/bin/perl
(sometimes referred to as the shebang line). In scripts running under mod_cgi, you may use perl execution
switch arguments as described in the perlrun manpage, such as -w , -T or -d . Since scripts running
under mod_perl don’t need the shebang line, all switches except -w are ignored by mod_perl. This feature
was added for a backward compatibility with CGI scripts.

Most command line switches have a special variable equivalent which allows them to be set/unset in code.
Consult the perlvar manpage for more details.

1.27.1 Warnings

There are three ways to enable warnings:

Globally to all Processes

Setting:

 PerlWarn On

in httpd.conf will turn warnings On in any script.

You can then fine tune your code, turning warnings Off and On by using the warnings pragma in
your scripts (or by setting the $^W variable, if you prefer to be compatible with older, pre-5.6, perls).

Locally to a script

 #!/usr/bin/perl -w

will turn warnings On for the scope of the script. You can turn them Off and On in the script with
no warnings; and use warnings; as noted above.

Locally to a block

This code turns warnings mode On for the scope of the block.

 {
 use warnings;
 # some code
 }
 # back to the previous mode here

4915 Feb 2014

1.27 Command Line Switches (-w, -T, etc)CGI to mod_perl Porting. mod_perl Coding guidelines.

This turns it Off :

 {
 no warnings;
 # some code
 }
 # back to the previous mode here

This turns Off only the warnings from the listed categories : (warnings categories are explicited in
the perldiag manpage.)

 {
 no warnings qw(uninitialized unopened);
 # some code
 }
 # back to the previous mode here

If you want to turn warnings On for the scope of the whole file, you can do this by adding:

 use warnings;

at the beginning of the file.

While having warning mode turned On is essential for a development server, you should turn it globally
Off in a production server, since, for example, if every served request generates only one warning, and
your server serves millions of requests per day, your log file will eat up all of your disk space and your
system will die.

1.27.2 Taint Mode

Perl’s -T switch enables Taint mode. (META: Link to security chapter). If you aren’t forcing all your
scripts to run under Taint mode you are looking for trouble from malicious users. (See the perlsec
manpage for more information. Also read the re pragma’s manpage.)

If you have some scripts that won’t run under Taint mode, run only the ones that run under mod_perl with
Taint mode enabled and the rest on another server with Taint mode disabled -- this can be either a
mod_cgi in the front-end server or another back-end mod_perl server. You can use the mod_rewrite
module and redirect requests based on the file extensions. For example you can use .tcgi for the taint-clean
scripts, and cgi for the rest.

When you have this setup you can start working toward cleaning the rest of the scripts, to make them run
under the Taint mode. Just because you have a few dirty scripts doesn’t mean that you should jeopardize
your whole service.

Since the -T switch doesn’t have an equivalent perl variable, mod_perl provides the PerlTaintCheck
directive to turn on taint checks. In httpd.conf , enable this mode with:

 PerlTaintCheck On

15 Feb 201450

1.27.2 Taint Mode

Now any code compiled inside httpd will be taint checked.

If you use the -T switch, Perl will warn you that you should use the PerlTaintCheck configuration
directive and will otherwise ignore it.

1.27.3 Other switches

Finally, if you still need to set additional perl startup flags such as -d and -D , you can use an environment
variable PERL5OPT. Switches in this variable are treated as if they were on every Perl command line.

Only the -[DIMUdmw] switches are allowed.

When the PerlTaintCheck variable is turned on, the value of PERL5OPT will be ignored.

[META: verify]

See also Apache::PerlRun.

1.28 The strict pragma
It’s _absolutely_ mandatory (at least for development) to start all your scripts with:

 use strict;

If needed, you can always turn off the ’strict’ pragma or a part of it inside the block, e.g:

 {
 no strict ’refs’;
 ... some code
 }

It’s more important to have the strict pragma enabled under mod_perl than anywhere else. While it’s
not required by the language, its use cannot be too strongly recommended. It will save you a great deal of
time. And, of course, clean scripts will still run under mod_cgi (plain CGI)!

1.29 Passing ENV variables to CGI
To pass an environment variable from httpd.conf, add to it:

 PerlSetEnv key val
 PerlPassEnv key

e.g.:

 PerlSetEnv PERLDB_OPTS "NonStop=1 LineInfo=/tmp/db.out AutoTrace=1"

5115 Feb 2014

1.28 The strict pragmaCGI to mod_perl Porting. mod_perl Coding guidelines.

will set $ENV{PERLDB_OPTS}, and it will be accessible in every child.

%ENV is only set up for CGI emulation. If you are using the API, you should use $r->subpro-
cess_env , $r->notes or $r->pnotes for passing data around between handlers. %ENV is slow
because it must update the underlying C environment table. It also insecure since its use exposes the data
on systems which allow users to see the environment with ps .

In any case, %ENV and the tables used by those methods are all cleared after the request is served.

The Perl %ENV is cleared during startup, but the C environment is left intact. With a combo of forking
‘env‘ and <Perl> sections you can do even do wildcards matching. For example, this passes all envi-
ronment variables that begin with the letter H:

 <Perl>
 local $ENV{PATH} = ’/usr/bin’;
 local $_;

 for (‘env‘) {
 next unless /^(H.*)=/;
 push @PassEnv, $1;
 }
 </Perl>

See also PerlSetupEnv which can enable/disable environment variables settings.

1.30 -M and other time() file tests under mod_perl
Under mod_perl, files that have been created after the server’s (child) startup are reported as having a
negative age with -M (-C -A) test. This is obvious if you remember that you will get the negative result if
the server was started before the file was created. It’s normal behavior with perl.

If you want to have -M report the time relative to the current request, you should reset the $^T variable
just as with any other perl script. Add:

 local $^T = time;

at the beginning of the script.

Another even simpler solution would be to specify a fixup handler, which will be executed before each
script is run:

 sub Apache::PerlBaseTime::handler {
 $^T = shift->request_time;
 return Apache::Constants::DECLINED;
 }

and then in the httpd.conf:

15 Feb 201452

1.30 -M and other time() file tests under mod_perl

 PerlFixupHandler Apache::PerlBaseTime

This technique is better performance-wise as it skips the time() system call, and uses the already available
time of the request has been started at via $r->request_time method.

1.31 Apache and syslog
When native syslog support is enabled, the stderr stream will be redirected to /dev/null !

It has nothing to do with mod_perl (plain Apache does the same). Doug wrote the Apache::LogSTDERR
module to work around this.

1.32 File tests operators
Remember that with mod_perl you might get negative times when you use file test operators like -M -- last
modification time, -A -- last access time, -C -- last inode-change time, and others. -M returns the differ-
ence in time between the modification time of the file and the time the script was started. Because the ^T
variable is not reset on each script invocation, and is equal to the time when the process was forked, you
might want to perform:

 $^T = time;

at the beginning of your scripts to simulate the regular perl script behaviour of file tests.

META: Above is near duplicate of "-M and other time() file tests under mod_perl" make a link instead

1.33 Filehandlers and locks leakages
META: duplication at debug.pod: =head3 Safe Resource Locking

When you write a script running under mod_cgi, you can get away with sloppy programming, like
opening a file and letting the interpreter close it for you when the script had finished its run:

 open IN, "in.txt" or die "Cannot open in.txt for reading : $!\n";

For mod_perl, before the end of the script you must close() any files you opened!

 close IN;

If you forget to close() , you might get file descriptor leakage and (if you flock()ed on this file
descriptor) also unlock problems.

Even if you do call close(), if for some reason the interpreter was stopped before the close() call, the
leakage will still happen. See for example Handling the ’User pressed Stop button’ case. After a long run
without restarting Apache your machine might run out of file descriptors, and worse, files might be left
locked and unusable.

5315 Feb 2014

1.31 Apache and syslogCGI to mod_perl Porting. mod_perl Coding guidelines.

What can you do? Use IO::File (and the other IO::* modules). This allows you to assign the file
handler to variable which can be my () (lexically) scoped. When this variable goes out of scope the file
or other file system entity will be properly closed (and unlocked if it was locked). Lexically scoped vari-
ables will always go out of scope at the end of the script’s invocation even if it was aborted in the middle.
If the variable was defined inside some internal block, it will go out of scope at the end of the block. For
example:

 {
 my $fh = IO::File->new("filename") or die $!;
 # read from $fh
 } # ...$fh is closed automatically at end of block, without leaks.

As I have just mentioned, you don’t have to create a special block for this purpose. A script in a file is
effectively written in a block with the same scope as the file, so you can simply write:

 my $fh = IO::File->new("filename") or die $!;
 # read from $fh
 # ...$fh is closed automatically at end of script, without leaks.

Using a { BLOCK }) makes sure is that the file is closed the moment that the end of the block is reached.

An even faster and lighter technique is to use Symbol.pm :

 my $fh = Symbol::gensym();
 open $fh, "filename" or die $!;

Use these approaches to ensure you have no leakages, but don’t be too lazy to write close() statements.
Make it a habit.

Under perl 5.6.0 we can do this instead:

 open my $fh, $filename or die $! ;

1.34 Code has been changed, but it seems the script is
running the old code
Files pulled in via use or require statements are not automatically reloaded when they change on disk.
See Reloading Modules and Required Files for more information.

1.35 The Script Is Too Dirty, But It Does The Job And I
Cannot Afford To Rewrite It.
You still can win from using mod_perl.

One approach is to replace the Apache::Registry handler with Apache::PerlRun and define a
new location. The script can reside in the same directory on the disk.

15 Feb 201454

1.34 Code has been changed, but it seems the script is running the old code

 # httpd.conf
 Alias /cgi-perl/ /home/httpd/cgi/

 <Location /cgi-perl>
 #AllowOverride None
 SetHandler perl-script
 PerlHandler Apache::PerlRun
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

See Apache::PerlRun--a closer look

Another "bad", but workable method is to set MaxRequestsPerChild to 1, which will force each
child to exit after serving only one request. You will get the preloaded modules, etc., but the script will be
compiled for each request, then be thrown away. This isn’t good for "high-traffic" sites, as the parent
server will need to fork a new child each time one is killed. You can fiddle with MaxStartServers
and MinSpareServers , so that the parent pre-spawns more servers than actually required and the
killed one will immediately be replaced with a fresh one. Probably that’s not what you want.

1.36 Apache::PerlRun--a closer look
Apache::PerlRun gives you the benefit of preloaded Perl and its modules. This module’s handler
emulates the CGI environment, allowing programmers to write scripts that run under CGI or mod_perl
without any change. Unlike Apache::Registry , the Apache::PerlRun handler does not cache the
script inside a subroutine. Scripts will be "compiled" on each request. After the script has run, its name
space is flushed of all variables and subroutines. Still, you don’t have the overhead of loading the Perl
interpreter and the compilation time of the standard modules. If your script is very light, but uses lots of
standard modules, you will see no difference between Apache::PerlRun and
Apache::Registry !.

Be aware though, that if you use packages that use internal variables that have circular references, they
will be not flushed!!! Apache::PerlRun only flushes your script’s name space, which does not include
any other required packages’ name spaces. If there’s a reference to a my () scoped variable that’s
keeping it from being destroyed after leaving the eval scope (of Apache::PerlRun), that cleanup
might not be taken care of until the server is shutdown and perl_destruct() is run, which always
happens after running command line scripts. Consider this example:

 package Foo;
 sub new { bless {} }
 sub DESTROY {
 warn "Foo->DESTROY\n";
 }

 eval <<’EOF’;
 package my_script;
 my $self = Foo->new;
 #$self->{circle} = $self;

5515 Feb 2014

1.36 Apache::PerlRun--a closer lookCGI to mod_perl Porting. mod_perl Coding guidelines.

 EOF

 print $@ if $@;
 print "Done with script\n";

When executed as a plain script you’ll see:

 Foo->DESTROY
 Done with script

Then, uncomment the line where $self makes a circular reference, and you’ll see:

 Done with script
 Foo->DESTROY

If you run this example with the circular reference enabled under mod_perl you won’t see
Foo->DESTROY until server shutdown, or until your module properly takes care of things. Note that the
warn() call logs its messages to the error_log file, so you should expect the output there and not together
with STDOUT.

1.37 Sharing variables between processes
META: to be completed

Global variables initialized at server startup, through the Perl startup file, can be shared between
processes, until modified by some of the processes. e.g. when you write:

 $My::debug = 1;

all processes will read the same value. If one of the processes changes that value to 0, it will still be
equal to 1 for any other process, but not for the one which actually made the change. When a process
modifies a shared variable, it becomes the process’ private copy.

IPC::Shareable can be used to share variables between children.

libmm

other methods?

1.38 Preventing Apache::Constants Stringification
In mod_perl, you are going to use a certain number of constants in your code, mainly exported from
Apache::Constants . However, in some cases, Perl will not understand that the constant you’re trying
to call is really a constant, but interprets it as a string. This is the case with the hash notation =>, which
automatically stringifies the key.

For example:

15 Feb 201456

1.37 Sharing variables between processes

 $r->custom_response(FORBIDDEN => "File size exceeds quota.");

This will not set a custom response for FORBIDDEN, but for the string "FORBIDDEN", which clearly
isn’t what is expected. You’ll get an error like this:

 [Tue Apr 23 19:46:14 2002] null: Argument "FORBIDDEN" isn’t numeric
 in subroutine entry at ...

Therefore, you can avoid this by not using the hash notation for things that don’t require it.

 $r->custom_response(FORBIDDEN, "File size exceeds quota.");

There are other workarounds, which you should avoid using unless you really have to use hash notation:

 my %hash = (
 FORBIDDEN() => ’this is forbidden’,
 +AUTH_REQUIRED => "You aren’t authorized to enter!",
);

Another important note is that you should be using the correct constants defined here, and not direct HTTP
codes. For example:

 sub handler {
 return 200;
 }

Is not correct. The correct use is:

 use Apache::Constants qw(OK);

 sub handler {
 return OK;
 }

Also remember that OK != HTTP_OK .

1.39 Transitioning from Apache::Registry to Apache
handlers
Even if you are a CGI script die-hard at some point you might want to move a few or all your scripts to
Apache Perl handlers. Actually this is an easy task, since we saw already what Apache::Registry
makes our scripts appear to Apache to be Perl handlers.

When you no longer need backward mod_cgi compatibility you can benefit from the Perl libraries
working only under mod_perl. We will see why in a moment.

Let’s see an example. We will start with a mod_cgi compatible CGI script running under
Apache::Registry , transpose it into a Perl content handler and then convert it to use
Apache::Request and Apache::Cookie .

5715 Feb 2014

1.39 Transitioning from Apache::Registry to Apache handlersCGI to mod_perl Porting. mod_perl Coding guidelines.

1.39.1 Starting with mod_cgi Compatible Script

This is the original script’s code we are going to work with:

 cookie_script.pl

 use strict;
 use CGI;
 use CGI::Cookie;
 use vars qw($q $switch $status $sessionID);

 init();
 print_header();
 print_status();

 ### <-- subroutines --> ###

 # the init code
 ###########
 sub init{
 $q = new CGI;

 $switch = $q->param("switch") ? 1 : 0;

 # try to retrieve the session ID
 # fetch existing cookies
 my %cookies = CGI::Cookie->fetch;
 $sessionID = exists $cookies{’sessionID’}
 ? $cookies{’sessionID’}->value : ’’;

 # 0 = not running, 1 = running
 $status = $sessionID ? 1 : 0;

 # switch status if asked to
 $status = ($status+1) % 2 if $switch;

 if ($status){
 # preserve sessionID if exists or create a new one
 $sessionID ||= generate_sessionID() if $status;
 } else {
 # delete the sessionID
 $sessionID = ’’;
 }

 } # end of sub init

 #################
 sub print_header{
 # prepare a cookie
 my $c = CGI::Cookie->new
 (’-name’ => ’sessionID’,
 ’-value’ => $sessionID,
 ’-expires’ => ’+1h’);

 print $q->header
 (-type => ’text/html’,

15 Feb 201458

1.39.1 Starting with mod_cgi Compatible Script

 -cookie => $c);

 } # end of sub print_header

 # print the current Session status and a form to toggle the status
 #################
 sub print_status{

 print qq{<HTML><HEAD><TITLE>Cookie</TITLE></HEAD><BODY>};

 # print status
 print "Status: ",
 $status
 ? "Session is running with ID: $sessionID"
 : "No session is running";

 # change status form
 my $button_label = $status ? "Stop" : "Start";
 print qq{<HR>
 <FORM>
 <INPUT TYPE=SUBMIT NAME=switch VALUE=" $button_label ">
 </FORM>
 };

 print qq{</BODY></HTML>};

 } # end of sub print_status

 # A dummy ID generator
 # Replace with a real session ID generator
 ########################
 sub generate_sessionID {
 return scalar localtime;
 } # end of sub generate_sessionID

The code is very simple. It creates a session if you’ve pressed the ’Start’ button or deletes it if you’ve
pressed the ’Stop’ button. The session is stored and retrieved using the cookies technique.

Note that we have split the obviously simple and short code into three logical units, by putting the code
into three subroutines. init() to initialize global variables and parse incoming data, print_header() to print
the HTTP headers including the cookie header, and finally print_status() to generate the output. Later we
will see that this logical separation will allow us an easy conversion to Perl content handler code.

We have used global variables for a few variables since we didn’t want to pass them from function to
function. In a big project you should be very restrictive about what variables should be allowed to be
global, if any at all. In any case, the init() subroutine makes sure all these variables are re-initialized for
each code reinvocation.

Note that we have used a very simple generate_sessionID() function that returns a date string (i.e.
Wed Apr 12 15:02:23 2000) as a session ID. You want to replace this one with code which generates a
unique session every time it was called. And it should be secure, i.e. users will not be able to forge one and
do nasty things.

5915 Feb 2014

1.39.1 Starting with mod_cgi Compatible ScriptCGI to mod_perl Porting. mod_perl Coding guidelines.

1.39.2 Converting into Perl Content Handler

Now let’s convert this script into a content handler. There are two parts to this task; the first one is to
configure Apache to run the new code as a Perl handler, the second one is to modify the code itself.

First we add the following snippet to httpd.conf:

 PerlModule Test::Cookie
 <Location /test/cookie>
 SetHandler perl-script
 PerlHandler Test::Cookie
 </Location>

After we restart the server, when there is a request whose URI starts with /test/cookie, Apache will execute
the Test::Cookie::handler() subroutine as a content handler. We made sure to preload the
Test::Cookie module at server start-up, with the PerlModule directive.

Now we are going to modify the script itself. We copy the content to the file Cookie.pm and place it into
one of the directories listed in @INC. For example if /home/httpd/perl is a part of @INC and since we want
to call this package Test::Cookie , we can put Cookie.pm into the /home/httpd/perl/Test/ directory.

So this is the new code. Notice that all the subroutines were left unmodified from the original script, so to
make the differences clear we do not repeat them here.

 Test/Cookie.pm

 package Test::Cookie;
 use Apache::Constants qw(:common);

 use strict;
 use CGI;
 use CGI::Cookie;
 use vars qw($q $switch $status $sessionID);

 sub handler{
 my $r = shift;
 Apache->request($r);

 init();
 print_header();
 print_status();

 return OK;
 }

 ### <-- subroutines --> ###
 # all subroutines as before

 1;

As you see there are two lines added to the beginning of the code:

15 Feb 201460

1.39.2 Converting into Perl Content Handler

 package Test::Cookie;
 use Apache::Constants qw(:common);

The first one declares the package name and the second one imports some symbols commonly used in Perl
handlers to return status codes.

 use strict;
 use CGI;
 use CGI::Cookie;
 use vars qw($q $switch $status $sessionID);

This code is left unchanged just as before.

 sub handler{
 my $r = shift;
 Apache->request($r);

 init();
 print_header();
 print_status();

 return OK;
 }

Each content handler (and any other handler) should begin with a subroutine called handler(). This subrou-
tine is called when a request’s URI starts with /test/cookie as per our configuration. Of course you can
choose a different name, for example execute(), but then you must explicitly use it in the configuration
directives in the following way:

 PerlModule Test::Cookie
 <Location /test/cookie>
 SetHandler perl-script
 PerlHandler Test::Cookie::execute
 </Location>

But we will use the default name, handler().

The handler() subroutine is just like any other subroutine, but generally it has the following structure:

 sub handler{
 my $r = shift;

 # the code

 # status (OK, DECLINED or else)
 return OK;
 }

First we get the request object by shifting it from @_ and assigning it to the $r variable.

Second we write the code that does the processing of the request.

6115 Feb 2014

1.39.2 Converting into Perl Content HandlerCGI to mod_perl Porting. mod_perl Coding guidelines.

Third we return the status of the execution. There are many possible statuses, the most commonly used are
OK and DECLINED, which tell the server whether they have completed the request phase that the handler
was assigned to do or not. If not, another handler must complete the processing. Apache::Constants
imports these two and other some commonly used status codes.

So in our example all we had to do was to wrap the three calls:

 init();
 print_header();
 print_status();

inside:

 sub handler{
 my $r = shift;
 Apache->request($r);

 return OK;
 }

There is one line we didn’t discuss:

 Apache->request($r);

Since we use CGI.pm , it relies on the fact that $r was set in the Apache module.
Apache::Registry did that behind the scenes. Since we don’t use Apache::Registry here, we
have to do that ourselves.

The one last thing we should do is to add 1; at the end of the module, just like with any Perl module, so
PerlModule will not fail when it tries to load Test::Cookie .

So to summarize, we took the original script’s code and added the following eight lines:

 package Test::Cookie;
 use Apache::Constants qw(:common);

 sub handler{
 my $r = shift;
 Apache->request($r);

 return OK;
 }
 1;

and now we have a fully fledged Perl Content Handler.

1.39.3 Converting to use Apache Perl Modules

So now we have a complete PerlHandler, let’s convert it to use Apache Perl modules. This breaks the
backward compatibility, but gives us better performance, mainly because the internals of many of these
Perl modules are implemented in C, therefore we should get a significant improvement in speed. The
section "TMTOWTDI: Convenience and Performance" compares the three approaches.

15 Feb 201462

1.39.3 Converting to use Apache Perl Modules

What we are going to do is to replace CGI.pm and CGI::Cookie with Apache::Request and
Apache::Cookie respectively. The two modules are written in C with the XS interface to Perl, which
makes code much faster if it utilizes any of these modules a lot. Apache::Request uses an API similar
to the one CGI uses, the same goes for Apache::Cookie and CGI::Cookie . This allows an easy
porting process. Basically we just replace:

 use CGI;
 $q = new CGI;

with:

 use Apache::Request ();
 my $q = Apache::Request->new($r);

and

 use CGI::Cookie ();
 my $cookie = CGI::Cookie->new(...)

with

 use Apache::Cookie ();
 my $cookie = Apache::Cookie->new($r, ...);

This is the new code for Test::Cookie2 :

 Test/Cookie2.pm

 package Test::Cookie2;
 use Apache::Constants qw(:common);

 use strict;
 use Apache::Request;
 use Apache::Cookie ();
 use vars qw($r $q $switch $status $sessionID);

 sub handler{
 $r = shift;

 init();
 print_header();
 print_status();

 return OK;
 }

 ### <-- subroutines --> ###

 # the init code
 ###########
 sub init{

 $q = Apache::Request->new($r);
 $switch = $q->param("switch") ? 1 : 0;

6315 Feb 2014

1.39.3 Converting to use Apache Perl ModulesCGI to mod_perl Porting. mod_perl Coding guidelines.

 # fetch existing cookies
 my %cookies = Apache::Cookie->fetch;
 # try to retrieve the session ID
 $sessionID = exists $cookies{’sessionID’}
 ? $cookies{’sessionID’}->value : ’’;

 # 0 = not running, 1 = running
 $status = $sessionID ? 1 : 0;

 # switch status if asked to
 $status = ($status+1) % 2 if $switch;

 if ($status){
 # preserve sessionID if exists or create a new one
 $sessionID ||= generate_sessionID() if $status;
 } else {
 # delete the sessionID
 $sessionID = ’’;
 }

 } # end of sub init

 #################
 sub print_header{
 # prepare a cookie
 my $c = Apache::Cookie->new
 ($r,
 -name => ’sessionID’,
 -value => $sessionID,
 -expires => ’+1h’);

 # Add a Set-Cookie header to the outgoing headers table
 $c->bake;

 $r->send_http_header(’text/html’);

 } # end of sub print_header

 # print the current Session status and a form to toggle the status
 #################
 sub print_status{

 print qq{<HTML><HEAD><TITLE>Cookie</TITLE></HEAD><BODY>};

 # print status
 print "Status: ",
 $status
 ? "Session is running with ID: $sessionID"

 : "No session is running";

 # change status form

15 Feb 201464

1.39.3 Converting to use Apache Perl Modules

 my $button_label = $status ? "Stop" : "Start";
 print qq{<HR>
 <FORM>
 <INPUT TYPE=SUBMIT NAME=switch VALUE=" $button_label ">
 </FORM>
 };

 print qq{</BODY></HTML>};

 } # end of sub print_status

 # replace with a real session ID generator
 ########################
 sub generate_sessionID {
 return scalar localtime;
 }

 1;

The only other changes are in the print_header() function, where instead of passing the cookie code to the
CGI’s header() to return a proper HTTP header:

 print $q->header
 (-type => ’text/html’,
 -cookie => $c);

we do it in two stages.

 $c->bake;

Adds a Set-Cookie header to the outgoing headers table, and:

 $r->send_http_header(’text/html’);

sends out the header itself. We have also eliminated:

 Apache->request($r);

since we don’t rely on CGI.pm any more and in this case we don’t need it.

The rest of the code is unchanged.

Of course we add the following snippet to httpd.conf:

 PerlModule Test::Cookie2
 <Location /test/cookie2>
 SetHandler perl-script
 PerlHandler Test::Cookie2
 </Location>

So now the magic URI that will trigger the above code execution will be the one starting with /test/cookie2
. We save the code in the file /home/httpd/perl/Test/Cookie2.pm since we have called this package
Test::Cookie2 .

6515 Feb 2014

1.39.3 Converting to use Apache Perl ModulesCGI to mod_perl Porting. mod_perl Coding guidelines.

1.39.4 Conclusion

If your took care to write the original plain CGI script’s code in a clean and modular way, you can see that
the transition is a very simple one and doesn’t take a lot of effort. Almost no code was modified.

1.40 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

1.41 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201466

1.40 Maintainers

http://stason.org/
http://stason.org/

Table of Contents:
......... 11 CGI to mod_perl Porting. mod_perl Coding guidelines.
................... 21.1 Description
................ 21.2 Before you start to code
............. 31.3 Exposing Apache::Registry secrets
................ 41.3.1 The First Mystery
............... 71.3.2 The Second Mystery
........... 81.4 Sometimes it Works, Sometimes it Doesn’t
................ 81.4.1 An Easy Break-in
................ 91.4.2 Thinking mod_cgi
.............. 101.4.3 Regular Expression Memory
................. 101.5 Script’s name space
................ 101.6 @INC and mod_perl
............ 111.7 Reloading Modules and Required Files
................ 111.7.1 Restarting the server
........ 121.7.2 Using Apache::StatINC for the Development Process
............... 131.7.3 Using Apache::Reload
............. 131.7.3.1 Register Modules Implicitly
............. 131.7.3.2 Register Modules Explicitly
............... 141.7.3.3 Special "Touch" File
................. 141.7.3.4 Caveats
................ 141.7.3.5 Availability
..... 141.7.4 Configuration Files: Writing, Dynamically Updating and Reloading
............. 151.7.4.1 Writing Configuration Files
............ 211.7.4.2 Reloading Configuration Files
.......... 231.7.4.3 Dynamically updating configuration files
................ 291.7.5 Reloading handlers
............ 291.8 Name collisions with Modules and libs
............. 351.9 More package name related issues
............. 351.10 __END__ and __DATA__ tokens
............... 361.11 Output from system calls
............... 361.12 Using format() and write()
... 371.13 Terminating requests and processes, the exit() and child_terminate() functions
................. 381.14 die() and mod_perl
.................. 391.15 Return Codes
.............. 391.16 Testing the Code from the Shell
.................. 391.17 I/O is different
............ 391.18 STDIN, STDOUT and STDERR streams
............. 401.19 Redirecting STDOUT into a Scalar
............. 401.20 Apache::print() and CORE::print()
.............. 401.21 Global Variables Persistence
............. 411.22 Generating correct HTTP Headers
............. 471.23 NPH (Non Parsed Headers) scripts
.................. 471.24 BEGIN blocks
.................. 481.25 END blocks

i15 Feb 2014

Table of Contents:CGI to mod_perl Porting. mod_perl Coding guidelines.

................ 481.26 CHECK And INIT Blocks

............. 491.27 Command Line Switches (-w, -T, etc)

................... 491.27.1 Warnings

.................. 501.27.2 Taint Mode

.................. 511.27.3 Other switches

.................. 511.28 The strict pragma

............... 511.29 Passing ENV variables to CGI

............ 521.30 -M and other time() file tests under mod_perl

.................. 531.31 Apache and syslog

.................. 531.32 File tests operators

............... 531.33 Filehandlers and locks leakages

...... 541.34 Code has been changed, but it seems the script is running the old code

.... 541.35 The Script Is Too Dirty, But It Does The Job And I Cannot Afford To Rewrite It.

............... 551.36 Apache::PerlRun--a closer look

.............. 561.37 Sharing variables between processes

............ 561.38 Preventing Apache::Constants Stringification

......... 571.39 Transitioning from Apache::Registry to Apache handlers

............ 581.39.1 Starting with mod_cgi Compatible Script

............. 601.39.2 Converting into Perl Content Handler

............ 621.39.3 Converting to use Apache Perl Modules

.................. 661.39.4 Conclusion

................... 661.40 Maintainers

.................... 661.41 Authors

15 Feb 2014ii

Table of Contents:

	1€€CGI to mod_perl Porting. mod_perl Coding guidelines.
	1.1€€Description
	1.2€€Before you start to code
	1.3€€Exposing Apache::Registry secrets
	1.3.1€€The First Mystery
	1.3.2€€The Second Mystery

	1.4€€Sometimes it Works, Sometimes it Doesn't
	1.4.1€€An Easy Break-in
	1.4.2€€Thinking mod_cgi
	1.4.3€€Regular Expression Memory

	1.5€€Script's name space
	1.6€€@INC and mod_perl
	1.7€€Reloading Modules and Required Files
	1.7.1€€Restarting the server
	1.7.2€€Using Apache::StatINC for the Development Process
	1.7.3€€Using Apache::Reload
	1.7.3.1€€Register Modules Implicitly
	1.7.3.2€€Register Modules Explicitly
	1.7.3.3€€Special "Touch" File
	1.7.3.4€€Caveats
	1.7.3.5€€Availability

	1.7.4€€Configuration Files: Writing, Dynamically Updating and Reloading
	1.7.4.1€€Writing Configuration Files
	1.7.4.2€€Reloading Configuration Files
	1.7.4.3€€Dynamically updating configuration files

	1.7.5€€Reloading handlers

	1.8€€Name collisions with Modules and libs
	1.9€€More package name related issues
	1.10€€__END__ and __DATA__ tokens
	1.11€€Output from system calls
	1.12€€Using format() and write()
	1.13€€Terminating requests and processes, the exit() and child_terminate() functions
	1.14€€die() and mod_perl
	1.15€€Return Codes
	1.16€€Testing the Code from the Shell
	1.17€€I/O is different
	1.18€€STDIN, STDOUT and STDERR streams
	1.19€€Redirecting STDOUT into a Scalar
	1.20€€Apache::print() and CORE::print()
	1.21€€Global Variables Persistence
	1.22€€Generating correct HTTP Headers
	1.23€€NPH (Non Parsed Headers) scripts
	1.24€€BEGIN blocks
	1.25€€END blocks
	1.26€€CHECK And INIT Blocks
	1.27€€Command Line Switches (-w, -T, etc)
	1.27.1€€Warnings
	1.27.2€€Taint Mode
	1.27.3€€Other switches

	1.28€€The strict pragma
	1.29€€Passing ENV variables to CGI
	1.30€€-M and other time() file tests under mod_perl
	1.31€€Apache and syslog
	1.32€€File tests operators
	1.33€€Filehandlers and locks leakages
	1.34€€Code has been changed, but it seems the script is running the old code
	1.35€€The Script Is Too Dirty, But It Does The Job And I Cannot Afford To Rewrite It.
	1.36€€Apache::PerlRun--a closer look
	1.37€€Sharing variables between processes
	1.38€€Preventing Apache::Constants Stringification
	1.39€€Transitioning from Apache::Registry to Apache handlers
	1.39.1€€Starting with mod_cgi Compatible Script
	1.39.2€€Converting into Perl Content Handler
	1.39.3€€Converting to use Apache Perl Modules
	1.39.4€€Conclusion

	1.40€€Maintainers
	1.41€€Authors

