

mod_perl 1.0 User Guide

Deploying mod_perl technology to give rocket speed to
your CGI/Perl scripts.

Last modified Sun Feb 16 01:32:59 2014 GMT

115 Feb 2014

Table of Contents:mod_perl 1.0 User Guide

Part I: Getting Started

- 1. Getting Your Feet Wet
This chapter gives you step-by-step instructions to get a basic statically-compiled mod_perl-enabled
Apache server up and running. Having a running server allows you to experiment with mod_perl as
you learn more about it.

- 2. Introduction and Incentives
An introduction to what mod_perl is all about, its different features, and some explanations of the C
API, Apache::Registry , Apache::PerlRun , and the Apache/Perl API.

- 3. mod_perl Installation
An in-depth explanation of the mod_perl installation process, from the basic installation (in 10 steps),
to a more complex one (with all the possible options you might want to use, including DSO build). It
includes troubleshooting tips too.

- 4. mod_perl Configuration
This section documents the various configuration options available for Apache and mod_perl, as well
as the Perl startup files, and more esoteric possibilites such as configuring Apache with Perl.

Part II: Coding

- 5. CGI to mod_perl Porting. mod_perl Coding guidelines.
This chapter is relevant both to writing a new CGI script or perl handler from scratch and to migrat-
ing an application from plain CGI to mod_perl.

- 6. How to use mod_perl’s Method Handlers
Described here are a few examples and hints on how to use method handlers with mod_perl.

- 7. mod_perl and Relational Databases
Creating dynamic websites with mod_perl often involves using relational databases. Apache::DBI ,
which provides a database connections persistence which boosts the mod_perl performance, is
explained in this chapter.

- 8. mod_perl and dbm files
Small databases can be implemented pretty efficiently using dbm files, but there are still some
precautions that must be taken to use them properly under mod_perl.

- 9. Protecting Your Site
Securing your site should be your first priority, because of the consequences a break-in might have.
We discuss the various authentication and authorization techniques available, a very interesting use of
mod_perl.

- 10. Code Snippets
A collection of mod_perl code snippets which you can either adapt to your own use or integrate
directly into your own code.

15 Feb 20142

Table of Contents:

- 11. Apache::* modules
Overview of some of the most popular modules for mod_perl, both to use directly from your code
and as mod_perl handlers.

Part III: Advanced Setup and Performance

- 12. Choosing the Right Strategy
This document discusses various mod_perl setup strategies used to get the best performance and scal-
ability of the services.

- 13. Real World Scenarios
This chapter provides a step-by-step installation guide for the various setups discussed in Choosing
the Right Strategy.

- 14. Performance Tuning
An exhaustive list of various techniques you might want to use to get the most performance possible
out of your mod_perl server: configuration, coding, memory use, and more.

Part IV: Troubleshooting

- 15. Frequent mod_perl problems
Some problems come up very often on the mailing list. If there is some important problem that is
being reported frequently on the list which is not included below, even if it is found elsewhere in the
Guide, please report to mod_perl mailing list.

- 16. Warnings and Errors Troubleshooting Index
If you encounter an error or warning you don’t understand, check this chapter for solutions to
common warnings and errors that the mod_perl community has encountered in the last few years.

- 17. Debugging mod_perl
Tired of Internal Server Errors? Find out how to debug your mod_perl applications, thanks to a
number of features of Perl and mod_perl.

- 18. Getting Help
If your question isn’t answered by reading this guide, check this section for information on how to get
help on mod_perl, Apache, or other topics discussed here.

315 Feb 2014

Table of Contents:mod_perl 1.0 User Guide

1 Getting Your Feet Wet

15 Feb 20144

1 Getting Your Feet Wet

1.1 Description
This chapter gives you step-by-step instructions to get a basic statically-compiled mod_perl-enabled
Apache server up and running. Having a running server allows you to experiment with mod_perl as you
learn more about it.

(Of course, you’ll be experimenting on a private machine, not on a production server, right?) The remain-
der of the guide, along with the documentation supplied with mod_perl, gives the detailed information
required for fine-tuning your mod_perl-enabled server to deliver the best possible performance.

Although there are binary distributions of mod_perl-enabled Apache servers available for various plat-
forms, we recommend that you always build mod_perl from source. It’s simple to do (provided you have
all the proper tools on your machine), and building from source circumvents possible problems with the
binary distributions (such as the reported bugs with the RPM packages built for RedHat Linux).

The mod_perl installation that follows has been tested on many mainstream Unix and Linux platforms.
Unless you’re using a very non-standard system, you should have no problems when building the basic
mod_perl server.

For Windows users, the simplest solution is to use the binary package. Windows users may skip to the
Installing mod_perl for Windows.

1.2 Installing mod_perl in Three Steps
You can install mod_perl in three easy steps: Obtaining the source files required to build mod_perl, build-
ing mod_perl, and installing it.

Building mod_perl from source requires a machine with basic development tools. In particular, you will
need an ANSI-compliant C compiler (such as gcc) and the make utility. All standard Unix-like distribu-
tions include these tools. If a required tool is not already installed, then use the package manager that is
provided with the system (rpm, apt, yast, etc.) to install them.

A recent version of Perl is also required, at least version 5.004. Perl is available as an installable package,
although most Unix-like distributions will have installed Perl by default. To check that the tools are avail-
able and learn about their version numbers, try:

 % make -v
 % gcc -v
 % perl -v

If any of these responds with Command not found , it will need to be installed.

Once all the tools are in place the installation process can begin. Experienced Unix users will need no
explanation of the commands that follow and can simply copy and paste them into a terminal window to
get the server installed.

515 Feb 2014

1.1 DescriptionGetting Your Feet Wet

Acquire the source code distrubutions of Apache and mod_perl from the Internet, using your favorite web
browser or one of the command line clients like wget, lwp-download, etc. These two distributions are
available from http://www.apache.org/dist/httpd/ and http://apache.org/dist/perl/.

Remember that mod_perl 1.0 works only with Apache 1.3, and mod_perl 2.0 requires Apache 2.0. In this
chapter we talk about mod_perl 1.0/Apache 1.3, hence the packages that you want are named
apache_1.3.xx.tar.gz and mod_perl-1.xx.tar.gz, where xx should be replaced with the real version numbers
of mod_perl and Apache.

Move the downloaded packages into a directory of your choice, e.g., /home/stas/src/, proceed with the
described steps and you will have mod_perl installed:

 % cd /home/stas/src
 % tar -zvxf apache_1.3.xx.tar.gz
 % tar -zvxf mod_perl-1.xx.tar.gz
 % cd mod_perl-1.xx
 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 APACHE_PREFIX=/home/httpd DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test
 % su
 # make install

That’s all!

All that remains is to add a few configuration lines to the Apache configuration file,
(/usr/local/apache/conf/httpd.conf), start the server, and enjoy mod_perl.

The following detailed explanation of each step should help you solve any problems that may have arisen
when executing the commands above.

1.3 Installing mod_perl for Unix Platforms
Here is a more detailed explanation of the installation process, with each step explained in detail and with
some troubleshooting advice. If the build worked and you are in a hurry to boot your new httpd, you may
skip to the next section, talking about configuration of the server.

Before installing Apache and mod_perl, you usually have to become root so that the files can be installed
in a protected area. A user who does not have root access, however, can still install all files under their
home directory. The proper approach is to build Apache in an unprivileged location and then only use root
access to install it. We will talk about the nuances of this approach in the dedicated installation process
chapter.

1.3.1 Obtaining and Unpacking the Source Code

The first step is to obtain the source code distributions of Apache, available from
http://www.apache.org/dist/httpd/ and mod_perl, available from http://apache.org/dist/perl/. Of course you
can use your favorite mirror sites to get these distributions.

15 Feb 20146

1.3 Installing mod_perl for Unix Platforms

http://www.apache.org/dist/httpd/
http://apache.org/dist/perl/
http://www.apache.org/dist/httpd/
http://apache.org/dist/perl/

Even if you have the Apache server running on your machine, usually you need to download its source
distribution, because you need to re-build it from scratch with mod_perl.

The source distributions of Apache and mod_perl should be downloaded into directory of your choice. For
the sake of consistency, we assume throughout the guide that all builds are being done in the
/home/stas/src directory. However, using a different location is perfectly possible and merely requires
changing this part of the path in the examples to the actual path being used.

The next step is to move to the directory with the source files:

 % cd /home/stas/src

Uncompress and untar both sources. GNU tar allows this using a single command per file:

 % tar -zvxf apache_1.3.xx.tar.gz
 % tar -zvxf mod_perl-1.xx.tar.gz

For non-GNU tar’s, you may need to do this with two steps (which you can combine via a pipe):

 % gzip -dc apache_1.3.xx.tar.gz | tar -xvf -
 % gzip -dc mod_perl-1.xx.tar.gz | tar -xvf -

Linux distributions supply tar and gzip and install them by default; for other systems these utilities
should be obtained from http://www.gnu.org/ or other sources, and installed--the GNU versions are avail-
able for every platform that Apache supports.

1.3.2 Building mod_perl

Move into the /home/stas/src/mod_perl-1.xx/ source distribution directory:

 % cd mod_perl-1.xx

The next step is to create the Makefile. This step is no different in principle from the creation of the Make-
file for any other Perl module.

 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

(Replace x.x.x with the Apache distribution version number.)

mod_perl accepts a variety of parameters. The options specified above will enable almost everything that
mod_perl offers. There are many other options for fine-tuning mod_perl to suit particular circumstances;
these are explained in detail in the dedicated installation process chapter.

Running Makefile.PL will cause Perl to check for prerequisites and identify any required software pack-
ages which are missing. If it reports missing Perl packages, these will have to be installed before proceed-
ing. They are all available from CPAN (http://cpan.org/) and can be easily downloaded and installed.

715 Feb 2014

1.3.2 Building mod_perlGetting Your Feet Wet

http://www.gnu.org/
http://cpan.org/

An advantage to installing mod_perl with the help of the CPAN.pm module is that all the missing modules
will be installed with the Bundle::Apache bundle:

 % perl -MCPAN -e ’install("Bundle::Apache")’

We will talk about using CPAN.pm in-depth in the installation process chapter.

Running Makefile.PL also transparently executes the ./configure script from Apache’s source distribution
directory, which prepares the Apache build configuration files. If parameters must be passed to Apache’s
./configure script, they can be passed as options to Makefile.PL.

The httpd executable can now be built by using the make utility. (Note that the current working directory
is still /home/stas/src/mod_perl-1.xx/):

 % make

This command prepares the mod_perl extension files, installs them in the Apache source tree and builds
the httpd executable (the web server itself) by compiling all the required files. Upon completion of the
make process, the working directory is restored to /home/stas/src/mod_perl-1.xx/.

Running make test will execute various mod_perl tests on the freshly built httpd executable.

 % make test

This command starts the server on a non-standard port (8529) and tests whether all parts of the built server
function correctly. The process will report anything that does not work properly.

1.3.3 Installing mod_perl

Running make install completes the installation process of mod_perl by installing all the Perl files
required for mod_perl to run--and, of course, the server documentation (man pages). Typically, you need
to be root to have permission to do this, but another user account can be used if the appropriate options
were set on the perl Makefile.PL command line. To become root, use the su command.

 % su
 # make install

If you have the proper permission, you might also chain all three make commands into a single command
line:

 # make && make test && make install

&& in shell program is similar to Perl’s &&. Each section of the statement will be executed left to right,
untill all sections will be executed and return true (success) or one of them will return false (failure).

The single-line version simplifies the installation, since there is no need to wait for each command to
complete before starting the next one. Of course, if you need to become root in order to run make install,
you’ll either need to run it as a separate command or become root before running the single-line version.

15 Feb 20148

1.3.3 Installing mod_perl

If the all-in-one approach is chosen and any of the make commands fail, execution will stop at that point.
For example if make alone fails then make test and make install will not be attempted; similarly
if make test fails then make install will not be attempted.

Finally, change to the Apache source distribution directory and run make install to create the Apache
directory tree and install Apache’s header files (*.h), default configuration files (*.conf), the httpd
executable, and a few other programs.

 # cd ../apache_1.3.xx
 # make install

Note that, as with a plain Apache installation, any configuration files left from a previous installation will
not be overwritten by this process. So there is no need to backup the previously working configuration
files before the installation, although backing up is never unwise.

At the end of the make install process, it will list the path to the apachectl utility that you can use to
start and stop the server, and the path to the installed configuration files. It is important to write down
these paths since they will frequently be needed when maintaining and configuring Apache. On our
machines these two important paths are:

 /usr/local/apache/bin/apachectl
 /usr/local/apache/conf/httpd.conf

The mod_perl Apache server is now built and installed. All that needs to be done before it can be run is to
edit the configuration file httpd.conf and write a little test script.

1.3.4 Configuring and Starting the mod_perl Server

The first thing to do is ensure that Apache was built correctly and that it can serve plain HTML files. This
helps to minimize the number of possible problem areas: once you have confirmed that Apache can serve
plain HTML files, you know that any problems with mod_perl are with mod_perl itself.

Apache should be configured just the same as when it did not have mod_perl. Set the Port , User ,
Group , ErrorLog and other directives in the httpd.conf file. Use the defaults as suggested, customizing
only when necessary. Values that will probably need to be customized are ServerName , Port , User ,
Group , ServerAdmin , DocumentRoot and a few others. There are helpful hints preceding each
directive in the configuration files themselves, with further information in Apache’s documentation.
Follow the advice in the files and documentation if in doubt.

When the configuration file has been edited, it is time to start the server. One of the ways to start and stop
the server is to use the apachectl utility. This can be used to start the server with:

 # /usr/local/apache/bin/apachectl start

And stop it with:

 # /usr/local/apache/bin/apachectl stop

915 Feb 2014

1.3.4 Configuring and Starting the mod_perl ServerGetting Your Feet Wet

Note that if the server is going to listen on port 80 or another privileged port (Any port with a number less
than 1024 can be accessed only by the programs running as root.), the user executing apachectl must
be root.

After the server has started, check in the error_log file (/usr/local/apache/logs/error_log by default) to see
if the server has indeed started. Do not rely on the status apachectl reports. The error_log should
contain something like the following:

 [Thu Jun 22 17:14:07 2000] [notice] Apache/1.3.12 (Unix)
 mod_perl/1.24 configured -- resuming normal operations

Now point the browser to http://localhost/ or http://example.name/ as configured with the ServerName
directive. If the Port directive has been set with a value different from 80 , add this port number at the
end of the server name. For example, if the port is 8080, test the server with http://localhost:8080/ or
http://example.com:8080/. The infamous "It worked" page should appear in the browser, which is an
index.html file that make install in the Apache source tree installs automatically. If this page
does not appear, something went wrong and the contents of the error_log file should be checked. The path
of the error log file is specified in the ErrorLog directive section in httpd.conf.

If everything works as expected, shut the server down, open httpd.conf with a plain text editor, and scroll
to the end of the file. The mod_perl configuration directives are added to the end of httpd.conf by conven-
tion. It is possible to place mod_perl’s configuration directives anywhere in httpd.conf, but adding them at
the end seems to work best in practice.

Assuming that all the scripts that should be executed by the mod_perl enabled server are located in the
/home/stas/modperl directory, add the following configuration directives:

 Alias /perl/ /home/stas/modperl/

 PerlModule Apache::Registry
 <Location /perl/>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options +ExecCGI
 PerlSendHeader On
 allow from all
 </Location>

Save the modified file.

This configuration causes every URI starting with /perl to be handled by the Apache mod_perl module
with the handler from the Perl module Apache::Registry .

1.4 Installing mod_perl for Windows
Apache runs on many flavors of Unix and Unix-like operating systems. Version 1.3 introduced a port to
the Windows family of operating systems, often named Win32 after the name of the common API.
Because of many deep differences between Unix and Windows, the Win32 port of Apache is still branded
as beta quality, because it hasn’t yet reached the stability and performance of the native Unix counterpart.

15 Feb 201410

1.4 Installing mod_perl for Windows

http://localhost/
http://example.name/
http://localhost:8080/
http://example.com:8080/

Another hindrance to using mod_perl 1.0 on Windows is that current versions of Perl are not thread-safe
on Win32. As a consequence, mod_perl calls to the embedded Perl interpreter must be serialized, i.e.
executed one at a time. See the discussion on multithreading on Win32 mod_perl 1.xx for details. This
situation changes with Apache/mod_perl 2.0, which is based on a multi-process/multi-thread approach
using a native Win32 threads implementation - see the mod_perl 2 overview for more details, and the
discussion of modperl 2.0 in Win32 on getting modperl-2 for Win32 in particular.

Building mod_perl from source on Windows is a bit of a challenge. Development tools such as a C
compiler are not bundled with the operating system, and most users expect a point-and-click installation as
with most Windows software. Additionally, all software packages need to be built with the same compiler
and compile options. This means building Perl, Apache, and mod_perl from source, quite a daunting task.
For details on building mod_perl on Windows, see the documentation for modperl 1.0 in Win32 or
modperl 2.0 in Win32.

For those who prefer binary distributions, there are a number of alternatives. For mod_perl 1.0, one can
obtain either mod_perl 1.0 PPM packages, suitable for use with ActivePerl’s ppm utility, or else mod_perl
1.0 all-in-one packages containing binaries of Perl and Apache, including mod_perl. For mod_perl 2.0,
similar mod_perl 2.0 PPM packages and mod_perl 2.0 all-in-one packages are available.

1.5 Preparing the Scripts Directory
Now you have to select a directory where all the mod_perl scripts and modules will be placed to. We
usually use create a directory modperl under our home directory, e.g., /home/stas/modperl, for this
purpose. Your mileage may vary.

First create this directory if it doesn’t yet exist.

 % mkdir /home/stas/modperl

What about file permissions? Remember that when scripts are executed from a shell, they are being
executed with permissions of the user’s account. Usually you want to have a read, write and execute
access for yourself, but only read and execute permissions for the server. When the scripts are run by
Apache, however, the server needs to be able to read and execute them. Apache runs under an account
specified by the User directive, typically nobody. If you modify the User directive to run the server
under your username, e.g.,

 User stas

the permissions on all files and directories should usually be rwx------ , so we can set the directory
permissions to:

 % chmod 0700 /home/stas/modperl

Now, no-one, but you and the server can access the files in this directory. You should set the same permis-
sions for all the files you place under this directory. (You don’t need to set the x bit for files that aren’t
going to be executed, for those mode 0600 would be sufficient.)

1115 Feb 2014

1.5 Preparing the Scripts DirectoryGetting Your Feet Wet

If the server is running under account nobody, you have to set the permissions to rwxr-xr-x or 0755
for your files and directories, which is insecure since other users on the same machine can read your files.

 # chmod 0755 /home/stas/modperl

If you aren’t running the server with your username, you have to set these permissions for all the files
created under this directory, so Apache can read and execute these.

If you need to have an Apache write files you have to set the file permissions to rwxrwxrwx or 0777
which is very undesirable, since any user on the same machine can read and write your files. If this is the
case, you should run the server under your username, and then only you and the server have a write access
to your files. (Assuming of course that other users have no access to your server, since if they do, they can
access your files through this server.)

In the following examples we assume that you run the server under your username, and hence we set the
scripts permissions to 0700 .

1.6 A Sample Apache::Registry Script
One of mod_perl’s benefits is that it can run existing CGI scripts written in Perl which were previously
used under mod_cgi (the standard Apache CGI handler). Indeed mod_perl can be used for running CGI
scripts without taking advantage of any of mod_perl’s special features, while getting the benefit of the
potentially huge performance boost. Here is an example of a very simple CGI-style mod_perl script:

 mod_perl_rules1.pl

 print "Content-type: text/plain\n\n";
 print "mod_perl rules!\n";

Save this script in the /home/stas/modperl/mod_perl_rules1.pl file. Notice that the #! line (colloquially
known as the shebang line) is not needed with mod_perl, although having one causes no problems, as can
be seen here:

 mod_perl_rules1.pl

 #!/usr/bin/perl
 print "Content-type: text/plain\n\n";
 print "mod_perl rules!\n";

Now make the script executable and readable by the server, as explained in the previous section.

 # chmod 0700 /home/stas/modperl/mod_perl_rules1.pl

The mod_perl_rules1.pl script can be tested from the command line, since it is essentially a regular Perl
script.

 % perl /home/stas/modperl/mod_perl_rules1.pl

15 Feb 201412

1.6 A Sample Apache::Registry Script

This should produce the following output:

 Content-type: text/plain

 mod_perl rules!

Make sure the server is running and issue these requests using a browser:

 http://localhost/perl/mod_perl_rules1.pl

If you see it--congratulations! You have a working mod_perl server.

If something went wrong, go through the installation process again, making sure that none of the steps are
missed and that each is completed successfully. If this does not solve the problem, the installation chapter
will attempt to salvage the situation.

If the port being used is not 80, for example 8080, then the port number should be included in the URL:

 http://localhost:8080/perl/mod_perl_rules1.pl

The localhost approach will work only if the browser is running on the same machine as the server. If
not, use the real server name for this test. For example:

 http://example.com/perl/mod_perl_rules1.pl

If there is any problem please refer to the error_log file for the error messages.

Jumping a little bit ahead, we would like to show the same CGI script written using mod_perl API:

 mod_perl_rules2.pl

 my $r = shift;
 $r->send_http_header(’text/plain’);
 $r->print("mod_perl rules!\n");

mod_perl API needs a request object $r to communicate with Apache. The script gets this object first
thing, after that it uses the object to send the HTTP header and print the irrefutable fact about mod_perl’s
coolness.

This script generates the same output as the previous one.

As you can see it’s not much harder to write your code in mod_perl API, all you need to know is the API,
but the concepts are the same. As we will show in the later chapters, usually you will want to use
mod_perl API for a better performance or when you need a functionality that plain Perl API doesn’t
provide.

1315 Feb 2014

1.6 A Sample Apache::Registry ScriptGetting Your Feet Wet

1.6.1 Porting Existing CGI Scripts to run under mod_perl

Now it is time to move any existing CGI scripts from the /somewhere/cgi-bin directory to
/home/stas/modperl. Once moved they should run much faster when requested from the newly configured
base URL (/perl/). For example, a CGI script called test.pl that was previously accessed as /cgi-bin/test.pl
can now be accessed under mod_perl as /perl/test.pl.

Some of the scripts might not work immediately and may require some minor tweaking or even a partial
rewrite to work properly with mod_perl. We will talk in-depth about these things in the Coding chapter.
Most scripts that have been written with care and especially developed with enabled warnings and the
strict pragma will probably work without any modifications at all.

A quick solution that avoids most rewriting or editing of existing scripts that do not run properly under
Apache::Registry is to run them under Apache::PerlRun . This can be achieved by simply
replacing Apache::Registry with Apache::PerlRun in httpd.conf. Put the following configura-
tion directives instead in httpd.conf and restart the server:

 Alias /perl/ /home/stas/modperl/
 PerlModule Apache::PerlRun
 <Location /perl/>
 SetHandler perl-script
 PerlHandler Apache::PerlRun
 Options ExecCGI
 PerlSendHeader On
 allow from all
 </Location>

Almost every script should now run without problems; the few exceptions will almost certainly be due to
the few minor limitations that mod_perl or its handlers have, but these are all solvable and covered in
Coding chapter.

Apache::PerlRun is usually useful in the transition period, while the scripts are being cleaned up to
run properly under Apache::Registry . Though it gives you a significant speedup over mod_cgi, it’s
still not as fast as Apache::Registry and mod_perl handlers.

1.7 A Simple Apache Perl Content Handler
As we mentioned in the beginning of this chapter, mod_perl lets you run both scripts and handlers. The
previous example showed a script, since that is probably the most familiar approach to web programming,
but the more advanced use of mod_perl involves writing handlers. Have no fear: writing handlers is almost
as easy as writing scripts and offers a level of access to Apache’s internals that is simply not possible with
conventional CGI scripts.

To create a mod_perl handler module, all that is necessary is to wrap the code that would have been the
body of a script into a handler subroutine, add a statement to return the status to the server when the
subroutine has successfully completed, and add a package declaration at the top of the code.

15 Feb 201414

1.7 A Simple Apache Perl Content Handler

Just as with scripts, the familiar CGI API may be used:

 ModPerl/Rules1.pm

 package ModPerl::Rules1;
 use Apache::Constants qw(:common);

 sub handler {
 print "Content-type: text/plain\n\n";
 print "mod_perl rules!\n";
 return OK; # We must return a status to mod_perl
 }
 1; # This is a perl module so we must return true to perl

Alternatively, the mod_perl API can be used. This API provides almost complete access to the Apache
core. In the simple example shown, using either approach is fine, but when lower level access to Apache is
required the mod_perl API must be used.

 ModPerl/Rules2.pm

 package ModPerl::Rules2;
 use Apache::Constants qw(:common);

 sub handler {
 my $r = shift;
 $r->send_http_header(’text/plain’);
 $r->print("mod_perl rules!\n");
 return OK; # We must return a status to mod_perl
 }
 1; # This is a perl module so we must return true to perl

Create a directory called ModPerl under one of the directories in @INC (e.g. under
/usr/lib/perl5/site_perl/5.005/), and put Rules1.pm and Rules2.pm into it (Note that you will need a root
access in order to do that.). The files should include the code from the above examples. To find out what
the @INC directories are, execute:

 % perl -le ’print join "\n", @INC’

On our machine it reports:

 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

So on our machine, we might place the files in the directory /usr/lib/perl5/site_perl/5.005/ModPerl. By
default when you work as root the files are created with permissions allowing everybody to read them, so
here we don’t have to adjust the file permissions, since the server only needs to be able to read those.

Now add the following snippet to /usr/local/apache/conf/httpd.conf to configure mod_perl to execute the
ModPerl::Rules::handler subroutine whenever a request to mod_perl_rules1 is made:

1515 Feb 2014

1.7 A Simple Apache Perl Content HandlerGetting Your Feet Wet

 PerlModule ModPerl::Rules1
 <Location /mod_perl_rules1>
 SetHandler perl-script
 PerlHandler ModPerl::Rules1
 PerlSendHeader On
 </Location>

Now issue a request to:

 http://localhost/mod_perl_rules1

and just as with the mod_perl_rules.pl scripts,

 mod_perl rules!

should be rendered as the response. (Don’t forget to include the port number if not using port 80; from
now on we will assume this is done, e.g. http://localhost:8080/mod_perl_rules1.)

To test the second module ModPerl::Rules2 add a similar configuration, while replacing all 1’s with
2’s:

 PerlModule ModPerl::Rules2
 <Location /mod_perl_rules2>
 SetHandler perl-script
 PerlHandler ModPerl::Rules2
 PerlSendHeader On
 </Location>

As we will see later in Configuration chapter you can remove the PerlSendHeader directive for this
particular module.

And to test use the URI:

 http://localhost/mod_perl_rules2

You should see the same response from the server as we have seen when issuing a request for the former
mod_perl handler.

1.8 Is This All we Need to Know About mod_perl?
Obviously the next question is: "Is this all I need to know about mod_perl?".

The answer is: "Yes and No".

The Yes part:

Just like with Perl, really cool stuff can be written even with very little mod_perl knowledge. With
the basic unoptimized setup presented in this chapter, visitor counters and guest books and any other
CGI scripts will run much faster and amaze friends and colleagues, usually without changing a single
line of code.

15 Feb 201416

1.8 Is This All we Need to Know About mod_perl?

http://localhost:8080/mod_perl_rules1

The No part:

A 50 times improvement in guest book response times is great--but when deploying a very heavy
service with thousands of concurrent users, a delay of even a few milliseconds might lose a customer,
and probably many of them.

Of course when testing a single script with the developer as the only user, squeezing yet another millisec-
ond from the response time seems unimportant. But it becomes a real issue when these milliseconds add
up at the production site, with hundreds or thousands of users concurrently generating requests to various
scripts on the site. Users are not merciful nowadays. If there is another site that provides the same kind but
a significantly faster service, chances are that users will switch to the competing site.

Testing scripts on an unloaded machine can be very misleading, Everything might seem so perfect. But
when they are moved into a production machine, things do not behave as well as they did on the develop-
ment box. For example, the production machine may run out of memory on very busy services. In the
performance tuning chapter it will be explained how to optimize code to use less memory and how to
make as much memory as possible shared.

Debugging is something that some developers prefer not to think about, since the process can be very
tedious at times. Learning how to make the debugging process simpler and efficient is essential for web
programmers. This task can be difficult enough when debugging CGI scripts, but it can be even more
complicated with mod_perl. The Debugging Chapter explains how to approach debugging in the mod_perl
environment.

mod_perl has many features unavailable under mod_cgi when working with databases. Amongst others
the most important are persistent database connections. Persistent database connections require a slightly
different approach and this is explained in the Databases chapter.

Most web services, especially those which are aimed at an international audience, must run non-stop 24x7.
But at the same time new scripts may need to be added, old ones removed, and the server software will
need upgrades and security fixes. And if the server goes down, fast recovery is essential. These issues are
considered in the Controlling your server chapter.

Finally, the most important aspect of mod_perl is the Apache Perl API, which allows intervention at any
or every stage of request processing. This provides incredible flexibility, allowing the creation of scripts
and processes which would simply be impossible with mod_cgi.

There are many more things to learn about mod_perl and web programming in general. The rest of this
guide will attempt to provide as much information as possible about these and other related matters.

1.9 References
CPAN is the Comprehensive Perl Archive Network. Comprehensive: its aim is to contain all the Perl
material you will need. Archive: close to a gigabyte in size at the time of this writing. Network:
CPAN is mirrored at more than one hundred sites around the world.

1715 Feb 2014

1.9 ReferencesGetting Your Feet Wet

The CPAN home page: http://cpan.org/

The libwww-perl distribution is a collection of Perl modules and programs which provide a simple
and consistent programming interface (API) to the World Wide Web. The main focus of the library is
to provide classes and functions that facilitate writing WWW clients, thus libwww-perl is said to be a
WWW client library. The library also contains modules that are of more general use, as well as some
useful programs.

The libwww-perl home page: http://www.linpro.no/lwp/

15 Feb 201418

1.9 References

http://cpan.org/
http://www.linpro.no/lwp/

2 Introduction and Incentives

1915 Feb 2014

2 Introduction and IncentivesIntroduction and Incentives

2.1 Description
An introduction to what mod_perl is all about, its different features, and some explanations of the C API,
Apache::Registry , Apache::PerlRun , and the Apache/Perl API.

2.2 What is mod_perl?
The Apache/Perl integration project brings together the full power of the Perl programming language and
the Apache HTTP server. With mod_perl, it is possible to write Apache modules entirely in Perl, letting
you easily do things (such as running sub-requests) that are more difficult or impossible in regular CGI
programs. In addition, the persistent Perl interpreter embedded in the server saves the overhead of starting
an external interpreter, i.e. the penalty of Perl start-up time. And not the least important feature is code
caching, where modules and scripts are loaded and compiled only once, and for the rest of the server’s life
they are served from the cache. Thus the server spends its time only running already loaded and compiled
code, which is very fast.

The primary advantages of mod_perl are power and speed. You have full access to the inner workings of
the web server and can intervene at any stage of request processing. This allows for customized processing
of (to name just a few of the phases) URI->filename translation, authentication, response generation, and
logging. There is very little run-time overhead. In particular, it is not necessary to start a separate process,
as is often done with web-server extensions. The most wide-spread such extension, the Common Gateway
Interface (CGI), can be replaced entirely with Perl code that handles the response generation phase of
request processing. mod_perl includes two general purpose modules for this purpose:
Apache::Registry , which can transparently run existing perl CGI scripts and Apache::PerlRun ,
which does a similar job but allows you to run "dirtier" (to some extent) scripts.

You can configure your httpd server and handlers in Perl (using PerlSetVar , and <Perl> sections). You
can even define your own configuration directives.

For examples on how you use mod_perl, see our What is mod_perl? section.

Many people ask "How much of a performance improvement does mod_perl give?" Well, it all depends
on what you are doing with mod_perl and possibly who you ask. Developers report speed boosts from
200% to 2000%. The best way to measure is to try it and see for yourself! (See Technologie Extraordinaire
for the facts.)

2.2.1 mod_cgi

When you run your CGI scripts by using a configuration like this:

 ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/

you are running them under a mod_cgi handler, although you never define it explicitly. Apache does all
the configuration work behind the scenes, when you use a ScriptAlias.

15 Feb 201420

2.1 Description

By the way, don’t confuse ScriptAlias with the ExecCGI configuration option, which we enable so
that the script will be executed rather than returned as a plain text file. For example for mod_perl and
Apache::Registry you would use a configuration such as:

 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options +ExecCGI
 PerlSendHeader On
 </Location>

2.2.2 C API

The Apache C API has been present for a long time, and has been the usual way to program extensions
(such as mod_perl) to Apache. When you write C extension modules, you write C code that is not inde-
pendent, but will be linked into the Apache httpd executable either at build time (if the module is statically
linked), or at runtime (if it is compiled as a Dynamic Shared Object, or DSO). Either way, you do as with
any C library: you write functions that receive a certain number of arguments and make use of external
API functions, provided by Apache or by other libraries.

The difference is that with Apache extension modules, these functions are registered inside a module
record: you tell Apache already at compile-time for which phases you wish to run any functions. Of
course, you probably won’t be handling all the phases. Here is an example of a module handling only the
content generation phase:

 /* Dispatch list of content handlers */
 static const handler_rec hello_handlers[] = {
 { "hello", hello_handler },
 { NULL, NULL }
 };

 /* Dispatch list for API hooks */
 module MODULE_VAR_EXPORT hello_module = {
 STANDARD_MODULE_STUFF,
 NULL, /* module initializer */
 NULL, /* create per-dir config structures */
 NULL, /* merge per-dir config structures */
 NULL, /* create per-server config structures */
 NULL, /* merge per-server config structures */
 NULL, /* table of config file commands */
 hello_handlers, /* [#8] MIME-typed-dispatched handlers */
 NULL, /* [#1] URI to filename translation */
 NULL, /* [#4] validate user id from request */
 NULL, /* [#5] check if the user is ok _here_ */
 NULL, /* [#3] check access by host address */
 NULL, /* [#6] determine MIME type */
 NULL, /* [#7] pre-run fixups */
 NULL, /* [#9] log a transaction */
 NULL, /* [#2] header parser */
 NULL, /* child_init */
 NULL, /* child_exit */
 NULL /* [#0] post read-request */
 };

2115 Feb 2014

2.2.2 C APIIntroduction and Incentives

Using this configuration (and a correctly built hello_handler() function), you’d then be able to use
the following configuration to allow your module to handle the requests for the /hello URI.

 <Location /hello>
 SetHandler hello
 </Location>

When Apache sees a request for the /hello URI, it will then figure out what the "hello" handler corre-
sponds to by looking it up in the handler record, and match that to the hello_handler function pointer,
which will execute the hello_handler function of your module with a request_rec *r as an
argument. From that point, your handler is free to do whatever it wants, returning content, declining the
request, or doing other bizarre things based on user input.

It is not the object of this guide to explain how to program C handlers. However, this example lets you in
on some of the secrets of the Apache core, which you will probably understand anyway by using
mod_perl. If you want more information on writing C modules, you should read the Apache API docu-
mentation at http://httpd.apache.org/docs/misc/API.html and more importantly Writing Apache Modules
with Perl and C, which will teach you about both mod_perl and C modules!

2.2.3 Perl API

After a while, C modules were found hard to write and difficult to maintain, mostly because code had to
be recompiled or just because of the low-level nature of the C language, and because these modules were
so intricately linked with Apache that a small bug could put at risk your whole server environment. In
comes mod_perl. Programmed in C and using all the techniques described above and more, it allows Perl
modules, written in good Perl style, to access the (almost) complete API provided to the conventional C
extensions.

However, the structure used for Perl Apache modules is a little different. If you’ve programmed normal
Perl modules (like those found on CPAN) before, you’ll be happy to know that programming for mod_perl
using the Apache API doesn’t involve anything else than writing a Perl module that defines a handler
subroutine (that is the convention--we’ll see that that doesn’t necessarily have to be the name). This
subroutine accepts an argument, $r , which is the Perl API equivalent of the C API request_rec *r .

$r is your entry point to the whole Perl Apache API. Through it you access methods in good
object-oriented fashion, which makes it slightly easier than with C, and looks a lot more familiar to Perl
programmers.

Furthermore, Perl Apache modules do not define handler records like C modules. You only need to create
your handler subroutine(s), and then control which requests they should handle solely with mod_perl
configuration directives inside your Apache configuration.

Let’s look at a sample handler that returns a greeting and the current local time.

 file:My/Greeting.pm

 package My::Greeting;
 use strict;

15 Feb 201422

2.2.3 Perl API

http://httpd.apache.org/docs/misc/API.html

 use Apache::Constants qw(OK);

 sub handler {
 my $r = shift;
 my $now = scalar localtime;
 my $server_name = $r->server->server_hostname;

 $r->send_http_header(’text/plain’);

 print <<EOT;
 Thanks for visiting $server_name.
 The local time is $now.
 EOT

 return OK;
 }
 1; # modules must return true

As you can see, we’re mixing Perl standard functions (like localtime()) with Apache functions
($r->send_http_header()). To return the above greeting when accessing the /hello URI, you
would configure Apache like this:

 <Location /hello>
 SetHandler perl-script
 PerlHandler My::Greeting
 </Location>

When it sees this configuration, mod_perl loads the My::Greeting module, finds the handler()
subroutine, and calls it to allow it to return the appropriate content. There are equivalent Perl*Handler
directives for the different phases we saw were available to C handlers.

The Perl API gives you an incredible number of possibilities, which you can then use to be more produc-
tive or creative. mod_perl is an enabling technology; it won’t make you smarter or more creative, but it
will do its best to make you lose less time because of "accidental difficulties" of programming, and let you
concentrate more on the important parts.

2.2.4 Apache::Registry

From the viewpoint of the Perl API, Apache::Registry is simply another handler that’s not conceptually
different from any other handler. Apache::Registry reads in the script file, compiles, executes it and
stores into the cache. Since the perl interpreter keeps running from child process’ creation to its death, any
code compiled by the interpreter is kept in memory until the child dies.

To prevent script name collisions, Apache::Registry creates a unique key for each cached script by
prepending Apache::ROOT:: to the mangled path of the script’s URI. This key is actually the package
name that the script resides in. So if you have requested a script /perl/project/test.pl , the
scripts would be wrapped in code which starts with a package declaration of:

 package Apache::ROOT::perl::project::test_e2pl;

2315 Feb 2014

2.2.4 Apache::RegistryIntroduction and Incentives

Apache::Registry also stores the script’s last modification time. Everytime the script changes, the
cached code is discarded and recompiled using the modified source. However, it doesn’t check the modifi-
cation times of any of the perl libraries the script might use.

Apache::Registry overrides CORE::exit() with Apache::exit() , so CGI scripts that use
exit() will run correctly. We will talk about all these details in depth later.

From the viewpoint of the programmer, there is almost no difference between running a script as a plain
CGI script under mod_cgi and running it under mod_perl. There is however a great speed improvement,
but at the expense of much heavier memory usage (there is no free lunch :).

When they run under mod_cgi, your CGI scripts are loaded each time they are called and then they exit.
Under mod_perl they are loaded once and cached. This gives a big performance boost. But because the
code is cached and doesn’t exit, it won’t cleanup memory as it would under mod_cgi. This can have unex-
pected effects.

Your scripts will be recompiled and reloaded by mod_perl when it detects that you have changed them,
but remember that any libraries that your scripts might require() or use() will not be recompiled when they
are changed. You will have to take action yourself to ensure that they are recompiled.

Of course the guide will answer all these issues in depth.

Let’s see what happens to your script when it’s being executed under Apache::Registry . If we take
the simplest code of (URI /perl/project/test.pl)

 print "Content-type: text/html\n\n";
 print "It works\n";

Apache::Registry will convert it into the following:

 package Apache::ROOT::perl::project::test_e2pl;
 use Apache qw(exit);
 sub handler {
 print "Content-type: text/html\n\n";
 print "It works\n";
 }

The first line provides a unique namespace for the code to use, and a unique key by which the code can be
referenced from the cache.

The second line imports Apache::exit which over-rides perl’s built-in exit .

The sub handler subroutine is wrapped around your code. By default (i.e. if you do not specify an
alternative), when you use mod_perl and your code’s URI is called, mod_perl will seek to execute the
URI’s associated handler subroutine.

Apache::Registry is usually configured in this way:

15 Feb 201424

2.2.4 Apache::Registry

 Alias /perl/ /usr/local/apache/bin/
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 </Location>

In short, we see that Apache::Registry is just another mod_perl handler, which is executed when
requests are made for the /perl directory, and then does some special handling of the Perl scripts in that
directory to turn them into Apache handlers.

2.2.5 Apache::PerlRun

Apache::PerlRun is very similar to Apache::Registry . It uses the same basic concepts, i.e. it runs
CGI scripts under mod_perl for additional speed. However, unlike Apache::Registry ,
Apache::PerlRun will not cache scripts. The reason for this is that it’s designed for use with CGI
scripts that may have been "dirty", which might cause problems when run persistently under mod_perl.
Apart from that, the configuration is the same. We discuss Apache::PerlRun in Apache::PerlRun, a
closer look.

2.3 What you will learn
This document was written in an effort to help you start using Apache’s mod_perl extension as quickly
and easily as possible. It includes information about the installation and configuration of both Perl and the
Apache web server and delves deeply into the issues of writing and porting existing Perl scripts to run
under mod_perl. Note that it does not attempt to enter the big world of using the Perl API or C API. You
will find pointers to coverage of these topics in the Offsite resources section of this site. This guide tries to
cover the most of the Apache::Registry and Apache::PerlRun modules. Along with mod_perl
related topics, there are many more issues related to administering Apache servers, debugging scripts,
using databases, mod_perl related Perl, code snippets and more.

It is assumed that you know at least the basics of building and installing Perl and Apache. (If you do not,
just read the INSTALL documents which are part of the distribution of each package.) However, in this
guide you will find specific Perl and Apache installation and configuration notes, which will help you
successfully complete the mod_perl installation and get the server running in a short time.

If after reading this guide and the other documentation you feel that your questions remain unanswered,
you could try asking the apache/mod_perl mailing list to help you. But first try to browse the mailing list
archive. Often you will find the answer to your question by searching the mailing list archive, since most
questions have been asked and answered already! If you ignore this advice, do not be surprised if your
question goes unanswered - it bores people when they’re asked to answer the same question repeatedly -
especially if the answer can be found in the archive or in the documentation. This does not mean that you
should avoid asking questions, just do not abuse the available help and RTFM before you call for HELP .
When asking your question, be sure to have read the email-etiquette and How to report problems

If you find errors in these documents, please contact the maintainer, after having read about how to submit
documentation patches.

2515 Feb 2014

2.3 What you will learnIntroduction and Incentives

2.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

2.5 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201426

2.4 Maintainers

http://stason.org/
http://stason.org/

3 mod_perl Installation

2715 Feb 2014

3 mod_perl Installationmod_perl Installation

3.1 Description
An in-depth explanation of the mod_perl installation process, from the basic installation (in 10 steps), to a
more complex one (with all the possible options you might want to use, including DSO build). It includes
troubleshooting tips too.

First of all:

 Apache 2.0 doesn’t work with mod_perl 1.0.
 Apache 1.0 doesn’t work with mod_perl 2.0.

3.2 A Summary of a Basic mod_perl Installation
The following 10 commands summarize the execution steps required to build and install a basic mod_perl
enabled Apache server on almost any standard flavor of Unix OS.

 % cd /usr/src
 % lwp-download http://www.apache.org/dist/httpd/apache_1.3.xx.tar.gz
 % lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz
 % tar xzvf apache_1.3.xx.tar.gz
 % tar xzvf mod_perl-1.xx.tar.gz
 % cd mod_perl-1.xx
 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_1.3.xx
 % make install

Of course you should replace 1.xx and 1.3.x with the real version numbers of mod_perl and Apache.

All that’s left is to add a few configuration lines to httpd.conf , the Apache configuration file, start the
server and enjoy mod_perl.

If you have stumbled upon a problem at any of the above steps, don’t despair, the next sections will
explain in detail each and every step.

Of course there is a way of installing mod_perl in only a couple of minutes if you are using a Linux distri-
bution that uses RPM packages:

 % rpm -i apache-1.3.xx.rpm
 % rpm -i mod_perl-1.xx.rpm

or apt system:

 % apt-get install libapache-mod-perl

These should set up both Apache and mod_perl correctly for your system. Using a packaged distribution
can make installing and reinstalling a lot quicker and easier. (Note that the filenames will vary, and xx will
differ.)

15 Feb 201428

3.1 Description

Since mod_perl can be configured in many different ways (features can be enabled or disabled, directories
can be modified, etc.) it’s preferable to use a manual installation, as a prepackaged version might not suit
your needs. Manual installation will allow you to make the fine tuning for the best performance as well.

In this chapter we will talk extensively about the prepackaged versions, and ways to prepare your own
packages for reuse on many machines. Win32 users should consult the Win32 documentation for details
on that platform.

3.3 The Gory Details
We saw that the basic mod_perl installation is quite simple and takes about 10 commands. You can copy
and paste them from these pages. The parameter EVERYTHING=1 selects a lot of options, but sometimes
you will need different ones. You may need to pass only specific parameters, to bundle other components
with mod_perl etc. You may want to build mod_perl as a loadable object instead of compiling it into
Apache, so that it can be upgraded without rebuilding Apache itself.

To accomplish this you will need to understand various techniques for mod_perl configuration and build-
ing. You need to know what configuration parameters are available to you and when and how to use them.

As with Perl, with mod_perl simple things are simple. But when you need to accomplish more compli-
cated tasks you may have to invest some time to gain a deeper understanding of the process. In this chapter
I will take the following route. I’ll start with a detailed explanation of the four stages of the mod_perl
installation process, then continue with the different paths each installation might take according to your
goal, followed by a few copy-and-paste real world installation scenarios. Towards the end of the chapter I
will show you various approaches that make the installations easier, automating most of the steps. Finally
I’ll cover some of the general issues that can cause new users to stumble while installing mod_perl.

We can clearly separate the installation process into the following stages:

Source Configuration,
Building,
Testing and
Installation.

3.3.1 Source Configuration (perl Makefile.PL ...)

Before building and installing mod_perl you have to configure it. You configure mod_perl just like any
other Perl module:

 % perl Makefile.PL [parameters]

In this section we will go through most of the parameters mod_perl can accept and explain each one of
them.

First let’s see what configuration mechanisms we have available. Basically they all define a special set of
parameters to be passed to perl Makefile.PL . Depending on the chosen configuration, the final
product might be a stand-alone httpd binary or a loadable object.

2915 Feb 2014

3.3 The Gory Detailsmod_perl Installation

The source configuration mechanism in Apache 1.3 provides four major features (which of course are
available to mod_perl):

Per-module configuration scripts (ConfigStart/End)

This is a mechanism modules can use to link themselves into the configuration process. It is useful
for automatically adjusting the configuration and build parameters from the modules sources. It is
triggered by ConfigStart /ConfigEnd sections inside modulename.module files (e.g.
libperl.module).

Apache Autoconf-style Interface (APACI)

This is the new top-level configure script from Apache 1.3 which provides a GNU Autoconf-style
interface. It is useful for configuring the source tree without manually editing any src/Configuration
files. Any parameterization can be done via command line options to the configure script. Inter-
nally this is just a nifty wrapper to the old src/Configure script.

Since Apache 1.3 this is the way to install mod_perl as cleanly as possible. Currently this is a pure
Unix-based solution because at present the complete Apache 1.3 source configuration mechanism is
only available under Unix. It doesn’t work on the Win32 platform for example.

Dynamic Shared Object (DSO) support

Besides Windows NT support this is one of most interesting features in Apache 1.3. Its a way to build
Apache modules as so-called dynamic shared objects (usually named modulename.so) which can be
loaded via the LoadModule directive in Apache’s httpd.conf file. The benefit is that the modules
are part of the httpd executable only on demand, i.e. only when the user wants a module it is loaded
into the address space of the httpd executable. This is interesting for instance in relation to memory
consumption and upgrading.

The DSO mechanism is provided by Apache’s mod_so module which needs to be compiled into the
httpd binary. This is done automatically when DSO is enabled for module mod_foo via:

 ./configure --enable-module=foo

or by explicitly adding mod_so via:

 ./configure --enable-module=so

APache eXtenSion (APXS) support tool

This is a new support tool from Apache 1.3 which can be used to build an Apache module as a DSO
even outside the Apache source-tree. One can say APXS is for Apache what MakeMaker and XS are
for Perl. It knows the platform dependent build parameters for making DSO files and provides an
easy way to run the build commands with them.

(MakeMaker allows an easy automatic configuration, build, testing and installation of the Perl
modules, and XS allows to call functions implemented in C/C++ from Perl code.)

15 Feb 201430

3.3.1 Source Configuration (perl Makefile.PL ...)

Taking these four features together provides a way to integrate mod_perl into Apache in a very clean and
smooth way. No patching of the Apache source tree is needed in the standard situation and in the APXS
situation not even the Apache source tree is needed.

To benefit from the above features a new hybrid build environment was created for the Apache side of
mod_perl. The Apache-side consists of the mod_perl C source files which have to be compiled into the
httpd program. They are usually copied to the subdirectory src/modules/perl/ in the Apache source tree.
To integrate this subtree into the Apache build process a lot of adjustments were done by mod_perl’s
Makefile.PL in the past. And additionally the Makefile.PL controlled the Apache build process.

This approach is problematic in several ways. It is very restrictive and not very clean because it assumes
that mod_perl is the only third-party module which has to be integrated into Apache.

The new approach described below avoids these problems. It prepares only the src/modules/perl/ subtree
inside the Apache source tree without adjusting or editing anything else. This way, no conflicts can occur.
Instead, mod_perl is activated later (when the Apache source tree is configured, via APACI calls) and then
it configures itself.

We will return to each of the above configuration mechanisms when describing different installation
passes, once the overview of the four building steps is completed.

3.3.1.1 Configuration parameters

The command perl Makefile.PL , which is also known as a "configuration stage", accepts various
parameters. In this section we will learn what they are, and when should they be used.

3.3.1.1.1 APACHE_SRC

If you specify neither the DO_HTTPD nor the NO_HTTPD parameters you will be asked the following
question during the configuration stage:

 Configure mod_perl with ../apache_1.3.xx/src ?

APACHE_SRC should be used to define Apache’s source tree directory. For example:

 APACHE_SRC=../apache_1.3.xx/src

Unless APACHE_SRC is specified, Makefile.PL makes an intelligent guess by looking at the directories at
the same level as the mod_perl sources and suggests a directory with the highest version of Apache found
there.

Answering ’y’ confirms either Makefile.PL’s guess about the location of the tree, or the directory you have
specified with APACHE_SRC.

If you use DO_HTTPD=1 or NO_HTTPD, the first Apache source tree found or the one you have defined
will be used for the rest of the build process.

3115 Feb 2014

3.3.1 Source Configuration (perl Makefile.PL ...)mod_perl Installation

3.3.1.1.2 DO_HTTPD, NO_HTTPD, PREP_HTTPD

Unless any of DO_HTTPD, NO_HTTPD or PREP_HTTPD is used, you will be prompted by the following
question:

 Shall I build httpd in ../apache_1.3.xx/src for you?

Answering ’y’ will make sure an httpd binary will be built in ../apache_1.3.xx/src when you run make.

To avoid this prompt when the answer is Yes specify the following argument:

 DO_HTTPD=1

Note that if you set DO_HTTPD=1, but do not use APACHE_SRC=../apache_1.3.xx/src then the
first apache source tree found will be used to configure and build against. Therefore it’s highly advised to
always use an explicit APACHE_SRC parameter, to avoid confusion.

PREP_HTTPD=1 just means default ’n’ to the latter prompt, meaning: Do not build (make) httpd in the
Apache source tree. But it will still ask you about Apache’s source location even if you have used the
APACHE_SRC parameter. Providing the APACHE_SRC parameter will just eliminate the need for perl
Makefile.PL to make a guess.

To avoid the two prompts:

 Configure mod_perl with ../apache_1.3.xx/src ?
 Shall I build httpd in ../apache_1.3.xx/src for you?

and avoid building httpd, use:

 NO_HTTPD=1

If you choose not to build the binary you will have to do that manually. We will talk about it later. In any
case you will need to run make install in the mod_perl source tree, so the Perl side of mod_perl will
be installed. Note that, make test won’t work until you have built the server.

3.3.1.1.3 Callback Hooks

A callback hook (abbrev. callback) is a reference to a subroutine. In Perl we create callbacks with the
$callback = \&subroutine syntax, where in this example, $callback contains a reference to the subrou-
tine called "subroutine". Callbacks are used when we want some action (subroutine call) to occur when
some event takes place. Since we don’t know exactly when the event will take place we give the event
handler a callback to the subroutine we want executed. The handler will call our subroutine at the right
time.

By default, most of the callback hooks except for PerlHandler ,PerlChildInitHandler ,
PerlChildExitHandler , PerlConnectionApi , and PerlServerApi are turned off. You may
enable them by editing src/modules/perl/Makefile, or when running perl Makefile.PL .

15 Feb 201432

3.3.1 Source Configuration (perl Makefile.PL ...)

The possible parameters for the appropriate hooks are:

 PERL_POST_READ_REQUEST
 PERL_TRANS
 PERL_INIT
 PERL_RESTART (experimental)

 PERL_HEADER_PARSER
 PERL_AUTHEN
 PERL_AUTHZ
 PERL_ACCESS
 PERL_TYPE
 PERL_FIXUP
 PERL_LOG
 PERL_CLEANUP
 PERL_CHILD_INIT
 PERL_CHILD_EXIT
 PERL_DISPATCH

 PERL_STACKED_HANDLERS
 PERL_METHOD_HANDLERS
 PERL_SECTIONS
 PERL_SSI

As with any parameters that are either defined or not, use PERL_hookname=1 to enable them (e.g.
PERL_AUTHEN=1).

To enable all, but the last 4 callback hooks use:

 ALL_HOOKS=1

3.3.1.1.4 EVERYTHING

To enable everything set:

 EVERYTHING=1

3.3.1.1.5 PERL_TRACE

To enable debug tracing set: PERL_TRACE=1

3.3.1.1.6 APACHE_HEADER_INSTALL

By default, the Apache source headers files are installed into the $Config{sitearch-
exp}/auto/Apache/include directory.

The reason for installing the header files is to make life simpler for module authors/users when build-
ing/installing a module that taps into some Apache C functions, e.g. Embperl , Apache::Peek , etc.

If you don’t wish to install these files use:

3315 Feb 2014

3.3.1 Source Configuration (perl Makefile.PL ...)mod_perl Installation

 APACHE_HEADER_INSTALL=0

3.3.1.1.7 PERL_STATIC_EXTS

Normally, if an extension is statically linked with Perl it is listed in Config.pm ’s
$Config{static_exts} , in which case mod_perl will also statically link this extension with httpd.
However, if an extension is statically linked with Perl after it is installed, it is not listed in Config.pm .
You may either edit Config.pm and add these extensions, or configure mod_perl like this:

 perl Makefile.PL "PERL_STATIC_EXTS=Something::Static Another::One"

3.3.1.1.8 APACI_ARGS

When you use the USE_APACI=1 parameter, you can tell Makefile.PL to pass any arguments you
want to the Apache ./configure utility, e.g:

 % perl Makefile.PL USE_APACI=1 \
 APACI_ARGS=’--sbindir=/usr/local/httpd_perl/sbin, \
 --sysconfdir=/usr/local/httpd_perl/etc, \
 --localstatedir=/usr/local/httpd_perl/var, \
 --runtimedir=/usr/local/httpd_perl/var/run, \
 --logfiledir=/usr/local/httpd_perl/var/logs, \
 --proxycachedir=/usr/local/httpd_perl/var/proxy’

Notice that all APACI_ARGS (above) must be passed as one long line if you work with t?csh !!!
However it works correctly as shown above (breaking the long lines with ’\ ’) with (ba)?sh . If you use
t?csh it does not work, since t?csh passes the APACI_ARGS arguments to ./configure leaving
the newlines untouched, but stripping the backslashes. This causes all the arguments except the first to be
ignored by the configuration process.

3.3.1.1.9 APACHE_PREFIX

Alternatively to:

 APACI_ARGS=’--prefix=/usr/local/httpd_perl’

from the previous section you can use the APACHE_PREFIX parameter. When USE_APACI is enabled,
this attribute will specify the --prefix option just like the above setting does.

In addition when the APACHE_PREFIX option is used make install be executed in the Apache
source directory, which makes these two equivalent:

15 Feb 201434

3.3.1 Source Configuration (perl Makefile.PL ...)

 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
 APACI_ARGS=’--prefix=/usr/local/httpd_perl’
 % make && make test && make install
 % cd ../apache_1.3.xx
 % make install

 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
 APACHE_PREFIX=/usr/local/httpd_perl
 % make && make test && make install

Now you can pick your favorite installation method.

3.3.1.2 Environment Variables

There are a few environment variables that influence the build/test process.

3.3.1.2.1 APACHE_USER and APACHE_GROUP

You can use the environment variables APACHE_USER and APACHE_GROUP to override the default
User and Group settings in the httpd.conf used for ’make test’ stage. (Introduced in mod_perl v1.23.)

3.3.1.3 Reusing Configuration Parameters

When you have to upgrade the server, it’s quite hard to remember what parameters were used in a
mod_perl build. So it’s better to save them in a file. For example if you create a file at
~/.mod_perl_build_options, with contents:

 APACHE_SRC=../apache_1.3.xx/src DO_HTTPD=1 USE_APACI=1 \
 EVERYTHING=1

You can build the server with the following command:

 % perl Makefile.PL ‘cat ~/.mod_perl_build_options‘
 % make && make test && make install

But mod_perl has a standard method to perform this trick. If a file named makepl_args.mod_perl is found
in the same directory as the mod_perl build location with any of these options, it will be read in by Make-
file.PL. Parameters supplied at the command line will override the parameters given in this file.

 % ls -1 /usr/src
 apache_1.3.xx/
 makepl_args.mod_perl
 mod_perl-1.xx/

 % cat makepl_args.mod_perl
 APACHE_SRC=../apache_1.3.xx/src DO_HTTPD=1 USE_APACI=1 \
 EVERYTHING=1

 % cd mod_perl-1.xx
 % perl Makefile.PL
 % make && make test && make install

3515 Feb 2014

3.3.1 Source Configuration (perl Makefile.PL ...)mod_perl Installation

Now the parameters from makepl_args.mod_perl file will be used, as if they were directly typed in.

Notice that this file can be located in your home directory or in the ../ directory relative to the mod_perl
distribution directory. This file can also start with dot (.makepl_args.mod_perl) so you can keep it nicely
hidden along with the rest of the dot files in your home directory.

There is a sample makepl_args.mod_perl in the eg/ directory of the mod_perl distribution package, in
which you might find a few options to enable experimental features to play with too!

If you are faced with a compiled Apache and no trace of the parameters used to build it, you can usually
still find them if the sources were not make clean ’d. You will find the Apache specific parameters in
apache_1.3.xx/config.status and the mod_perl parameters in
mod_perl-1.xx/apaci/mod_perl.config .

3.3.1.4 Discovering Whether Some Option Was Configured

mod_perl version 1.25 has introduced Apache::Myconfig , which provides access to the various hooks
and features set when mod_perl is built. This circumvents the need to set up a live server just to find out if
a certain callback hook is available.

To see whether some feature was built in or not, check the %Apache::MyConfig::Setup hash. For
example after installing mod_perl with the following options:

 panic% perl Makefile.PL EVERYTHING=1

but on the next day we don’t remember what callback hooks were enabled, and we want to know whether
PERL_LOG callback hook is enabled. One of the ways to find this out is to run the following code:

 panic% perl -MApache::MyConfig \
 -e ’print $Apache::MyConfig::Setup{PERL_LOG}’
 1

which prints ’1’--meaning that PERL_LOG callback hook was enabled. (That’s because EVERYTHING=1
enables them all.)

Another approach is to configure Apache::Status and run http://localhost/perl-status?hooks to check
for enabled hooks.

You also may try to look at the symbols inside the httpd executable with help of nm(1) or a similar
utility. For example if you want to see whether you enabled PERL_LOG=1 while building mod_perl, we
can search for a symbol with the same name but in lowercase:

 panic% nm httpd | grep perl_log
 08071724 T perl_logger

Indeed we can see that in our example PERL_LOG=1 was enabled. But this will only work if you have an
unstripped httpd binary. By default, make install strips the binary before installing it. Use the
--without-execstrip ./Configure option to prevent stripping during make install phase.

15 Feb 201436

3.3.1 Source Configuration (perl Makefile.PL ...)

http://localhost/perl-status?hooks

Yet another approach that will work in most of the cases is to try to use the feature in question. If it wasn’t
configured Apache will give an error message

3.3.1.5 Using an Alternative Configuration File

By default mod_perl provides its own copy of the Configuration file to Apache’s ./configure utility.
If you wish to pass it your own version, do this:

 % perl Makefile.PL CONFIG=Configuration.custom

Where Configuration.custom is the pathname of the file relative to the Apache source tree you build
against.

3.3.1.6 perl Makefile.PL Troubleshooting

3.3.1.6.1 "A test compilation with your Makefile configuration failed..."

When you see this during the perl Makefile.PL stage:

 ** A test compilation with your Makefile configuration
 ** failed. This is most likely because your C compiler
 ** is not ANSI. Apache requires an ANSI C Compiler, such
 ** as gcc. The above error message from your compiler
 ** will also provide a clue.
 Aborting!

you’ve got a problem with your compiler. It is possible that it’s improperly installed or not installed at all.
Sometimes the reason is that your Perl executable was built on a different machine, and the software
installed on your machine is not the same. Generally this happens when you install the prebuilt packages,
like RPM or deb. The dependencies weren’t properly defined in the Perl binary package and you were
allowed to install it, although some essential package is not installed.

The most frequent pitfall is a missing gdbm library. See Missing or Misconfigured libgdbm.so for more
info.

But why guess, when we can actually see the real error message and understand what the real problem is.
To get a real error message, edit the Apache src/Configure script. Down around line 2140 you will see a
line like this:

 if ./helpers/TestCompile sanity; then

change it to:

 if ./helpers/TestCompile -v sanity; then

and try again. Now you should get a useful error message.

3715 Feb 2014

3.3.1 Source Configuration (perl Makefile.PL ...)mod_perl Installation

3.3.1.6.2 Missing or Misconfigured libgdbm.so

On some Linux RedHat systems you might encounter a problem during the perl Makefile.PL stage,
when the installed from the rpm package Perl was built with the gdbm library, but the library isn’t actually
installed. If this is your situation make sure you install it before proceeding with the build process.

You can check how Perl was built by running the perl -V command:

 % perl -V | grep libs

On my machine I get:

 libs=-lnsl -lndbm -lgdbm -ldb -ldl -lm -lc -lposix -lcrypt

Sometimes the problem is even more obscure: you do have libgdbm installed but it’s not properly
installed. Do this:

 % ls /usr/lib/libgdbm.so*

If you get at least three lines like I do:

 lrwxrwxrwx /usr/lib/libgdbm.so -> libgdbm.so.2.0.0
 lrwxrwxrwx /usr/lib/libgdbm.so.2 -> libgdbm.so.2.0.0
 -rw-r--r-- /usr/lib/libgdbm.so.2.0.0

you are all set. On some installations the libgdbm.so symbolic link is missing, so you get only:

 lrwxrwxrwx /usr/lib/libgdbm.so.2 -> libgdbm.so.2.0.0
 -rw-r--r-- /usr/lib/libgdbm.so.2.0.0

To fix this problem add the missing symbolic link:

 % cd /usr/lib
 % ln -s libgdbm.so.2.0.0 libgdbm.so

Now you should be able to build mod_perl without any problems.

Note that you might need to prepare this symbolic link as well:

 lrwxrwxrwx /usr/lib/libgdbm.so.2 -> libgdbm.so.2.0.0

with:

 % ln -s libgdbm.so.2.0.0 libgdbm.so.2

Of course if when you read this a new version of the libgdbm library will be released, you will have to
adjust the version numbers. We didn’t use the usual xx version replacement here, to make it easier to
understand how the symbolic links should be set.

15 Feb 201438

3.3.1 Source Configuration (perl Makefile.PL ...)

3.3.1.6.3 About gdbm, db and ndbm libraries

Both the gdbm and db libraries offer ndbm emulation, which is the interface that Apache actually uses, so
when you build mod_perl you end up with whichever library was linked first by the perl compile. If you
build apache without mod_perl you end up with whatever appears to be your ndbm library which will vary
between systems, and especially Linux distributions. You may have to work a bit to get both Apache and
Perl to use the same library and you are likely to have trouble copying the dbm file from one system to
another or even using it after an upgrade.

3.3.1.6.4 Undefined reference to ‘PL_perl_destruct_level’

When manually building mod_perl using the shared library:

 cd mod_perl-1.xx
 perl Makefile.PL PREP_HTTPD=1
 make
 make test
 make install

 cd ../apache_1.3.xx
 ./configure --with-layout=RedHat --target=perlhttpd
 --activate-module=src/modules/perl/libperl.a

you might get:

 gcc -c -I./os/unix -I./include -DLINUX=2 -DTARGET=\"perlhttpd\" -DUSE_HSREGEX
 -DUSE_EXPAT -I./lib/expat-lite ‘./apaci‘ buildmark.c
 gcc -DLINUX=2 -DTARGET=\"perlhttpd\" -DUSE_HSREGEX -DUSE_EXPAT
 -I./lib/expat-lite ‘./apaci‘ \
 -o perlhttpd buildmark.o modules.o modules/perl/libperl.a
 modules/standard/libstandard.a main/libmain.a ./os/unix/libos.a ap/libap.a
 regex/libregex.a lib/expat-lite/libexpat.a -lm -lcrypt
 modules/perl/libperl.a(mod_perl.o): In function ‘perl_shutdown’:
 mod_perl.o(.text+0xf8): undefined reference to ‘PL_perl_destruct_level’
 mod_perl.o(.text+0x102): undefined reference to ‘PL_perl_destruct_level’
 mod_perl.o(.text+0x10c): undefined reference to ‘PL_perl_destruct_level’
 mod_perl.o(.text+0x13b): undefined reference to ‘Perl_av_undef’
 [more errors snipped]

This happens when you have a statically linked perl build (i.e. without a shared libperl.so library). Build a
dynamically linked perl (with libperl.so) and the problem will disappear. See the "Building a shared Perl
library" section from the INSTALL file that comes with Perl source.

Also see "Chapter 15.4 - Perl Build Options" from Practical mod_perl.

3.3.1.6.5 Further notes on libperl.(a|so)

Library files such as libfoo.a are archives that are used at linking time - these files are completely included
in the final application that linked it.

3915 Feb 2014

3.3.1 Source Configuration (perl Makefile.PL ...)mod_perl Installation

http://modperlbook.org/html/ch15_04.html
http://modperlbook.org/

Whereas libfoo.so indicates that it’s a shared library. At the linking time the application only knows which
library it wants. Only at the loading time (runtime) that shared library will be loaded.

One of the benefits of using a shared library, is that it’s loaded only once. If there are two application
linking to libperl.so that run at the same time, only the first application will need to load it. The second
application will share that loaded library (that service is provided by the OS kernel). In the case of static
libfoo.a, it’ll be loaded as many times as there are applications that included it, thus consuming more
memory. Of course this is not the only benefit of using shared libs.

In mod_perl 1.0, the library file is unfortunately named libperl.(so|a). So you have libperl.(so|a) which is
perl, and you have libperl.(so|a) which is modperl. You are certainly looking at the modperl version of
libperl.a if you find it in the apache directory. perl’s libperl.(so|a) lives under the perl tree (e.g. in
5.8.6/i686-linux/CORE/libperl.so).

Some distributions (notably Debian) have chosen to put libperl.so and libperl.a into the global library
loader path (e.g., /usr/lib) which will cause linking problems when compiling mod_perl (if compiling
against static perl), in which case you should move aside the libperl.a while building mod_perl or else will
likely encounter further errors. If building against the dynamic perl’s libperl.so, you may have similar
problems but at startup time. It’s the best to get rid of perl that installs its libs into /usr/lib (or similar) and
reinstall a new perl, which puts its library under the perl tree. Also see libperl.so and libperl.a.

3.3.2 mod_perl Building (make)

After completing the configuration you build the server, by calling:

 % make

which compiles the source files and creates an httpd binary and/or a separate library for each module,
which can either be inserted into the httpd binary when make is called from the Apache source directory
or loaded later, at run time.

Note: don’t put the mod_perl directory inside the Apache directory. This confuses the build process.

3.3.2.1 make Troubleshooting

3.3.2.1.1 Undefined reference to ’Perl_newAV’

This and similar error messages may show up during the make process. Generally it happens when you
have a broken Perl installation. Make sure it’s not installed from a broken RPM or another binary package.
If it is, build Perl from source or use another properly built binary package. Run perl -V to learn what
version of Perl you are using and other important details.

3.3.2.1.2 Unrecognized format specifier for...

This error usually reported due to the problems with some versions of SFIO library. Try to use the latest
version to get around this problem. Or if you don’t really need SFIO, rebuild Perl without this library.

15 Feb 201440

3.3.2 mod_perl Building (make)

3.3.3 Built Server Testing (make test)

After building the server, it’s a good idea to test it thoroughly, by calling:

 % make test

Fortunately mod_perl comes with a bunch of tests, which attempt to use all the features you asked for at
the configuration stage. If any of the tests fails, the make test stage will fail.

Running make test will start a freshly built httpd on port 8529 running under the uid and gid of the
perl Makefile.PL process. The httpd will be terminated when the tests are finished.

Each file in the testing suite generally includes more than one test, but when you do the testing, the
program will only report how many tests were passed and the total number of tests defined in the test file.
However if only some of the tests in the file fail you want to know which ones failed. To gain this infor-
mation you should run the tests in verbose mode. You can enable this mode by using the
TEST_VERBOSE parameter:

 % make test TEST_VERBOSE=1

To change the default port (8529) used for the test do this:

 % perl Makefile.PL PORT=xxxx

To start the newly built Apache:

 % make start_httpd

To shutdown Apache:

 % make kill_httpd

NOTE to Ben-SSL users: httpsd does not seem to handle /dev/null as the location of certain files (for
example some of the configuration files mentioned in httpd.conf can be ignored by reading them from
/dev/null) so you’ll have to change these by hand. The tests are run with the SSLDisable directive.

3.3.3.1 Manual Testing

Tests are invoked by running the ./TEST script located in the ./t directory. Use the -v option for verbose
tests. You might run an individual test like this:

 % t/TEST -v modules/file.t

or all tests in a test sub-directory:

 % t/TEST modules

The TEST script starts the server before the test is executed. If for some reason it fails to start, use make
start_httpd to start it manually.

4115 Feb 2014

3.3.3 Built Server Testing (make test)mod_perl Installation

3.3.3.2 make test Troubleshooting

3.3.3.2.1 make test fails

You cannot run make test before you build Apache, so if you told perl Makefile.PL not to build
the httpd executable, there is no httpd to run the test against. Go to the Apache source tree and run make,
then return to the mod_perl source tree and continue with the server testing.

3.3.3.2.2 mod_perl.c is incompatible with this version of Apache

If you had a stale old Apache header layout in one of the include paths during the build process you will
see this message when you try to execute httpd. Run the find (or locate) utility in order to locate the
file ap_mmn.h. Delete it and rebuild Apache. RedHat installed a copy of /usr/local/include/ap_mmn.h on
my system.

For all RedHat fans, before you build Apache yourself, do:

 % rpm -e apache

to remove the pre-installed RPM package first!

Users with apt systems would do:

 % apt-get remove apache

instead.

3.3.3.2.3 make test......skipping test on this platform

While doing make test you will notice that some of the tests are reported as skipped. The reason is that
you are missing some optional modules for these test to be passed. For a hint you might want to peek at
the content of each test (you will find them all in the ./t directory (mnemonic - t, tests). I’ll list a few
examples, but of course things may change in the future.

 modules/cookie......skipping test on this platform
 modules/request.....skipping test on this platform

Install libapreq package which includes among others the Apache::Request and Apache::Cookie
modules.

 modules/psections...skipping test on this platform

Install Devel::Symdump and Data::Dumper

 modules/sandwich....skipping test on this platform

Install Apache::Sandwich

15 Feb 201442

3.3.3 Built Server Testing (make test)

 modules/stage.......skipping test on this platform

Install Apache::Stage

 modules/symbol......skipping test on this platform

Install Devel::Symdump

Chances are that all of these are installed if you use CPAN.pm to install Bundle::Apache .

3.3.3.2.4 make test Fails Due to Misconfigured localhost Entry

The make test suite uses localhost to run the tests that require a network. Make sure you have this
entry in /etc/hosts:

 127.0.0.1 localhost.localdomain localhost

Also make sure that you have the loopback device [lo] configured. [Hint: try ’ifconfig lo’ to test for its
existence.]

3.3.4 Installation (make install)

After testing the server, the last step left is to install it. First install all the Perl side files:

 % make install

Then go to the Apache source tree and complete the Apache installation (installing the configuration files,
httpd and utilities):

 % cd ../apache_1.3.xx
 % make install

Now the installation should be considered complete. You may now configure your server and start using
it.

3.3.5 Building Apache and mod_perl by Hand

If you wish to build httpd separately from mod_perl, you should use the NO_HTTPD=1 option during the
perl Makefile.PL (mod_perl build) stage. Then you will need to configure various things by hand
and proceed to build Apache. You shouldn’t run perl Makefile.PL before following the steps
described in this section.

If you choose to manually build mod_perl, there are three things you may need to set up before the build
stage:

mod_perl’s Makefile

When perl Makefile.PL is executed, $APACHE_SRC/modules/perl/Makefile may need to be
modified to enable various options (e.g. ALL_HOOKS=1).

4315 Feb 2014

3.3.4 Installation (make install)mod_perl Installation

Optionally, instead of tweaking the options during perl Makefile.PL you may edit
mod_perl-1.xx/src/modules/perl/Makefile before running perl Makefile.PL .

Configuration

Add to apache_1.3.xx/src/Configuration :

 AddModule modules/perl/libperl.a

We suggest you add this entry at the end of the Configuration file if you want your callback hooks to
have precedence over core handlers.

Add the following to EXTRA_LIBS:

 EXTRA_LIBS=‘perl -MExtUtils::Embed -e ldopts‘

Add the following to EXTRA_CFLAGS:

 EXTRA_CFLAGS=‘perl -MExtUtils::Embed -e ccopts‘

mod_perl Source Files

Return to the mod_perl directory and copy the mod_perl source files into the apache build directory:

 % cp -r src/modules/perl apache_1.3.xx/src/modules/

When you have done with the configuration parts, run:

 % perl Makefile.PL NO_HTTPD=1 DYNAMIC=1 EVERYTHING=1\
 APACHE_SRC=../apache_1.3.xx/src

DYNAMIC=1 enables a build of the shared mod_perl library. Add other options if required.

 % make install

Now you may proceed with the plain Apache build process. Note that in order for your changes to the
apache_1.3.xx/src/Configuration file to take effect, you must run apache_1.3.xx/src/Configure
instead of the default apache_1.3.xx/configure script:

 % cd ../apache_1.3.xx/src
 % ./Configure
 % make
 % make install

3.4 Installation Scenarios for Standalone mod_perl
There are various ways available to build Apache with the new hybrid build environment (using
USE_APACI=1):

15 Feb 201444

3.4 Installation Scenarios for Standalone mod_perl

3.4.1 The All-In-One Way

If your goal is just to build and install Apache with mod_perl out of their source trees and have no special
interest in further adjusting or enhancing Apache proceed as before:

 % tar xzvf apache_1.3.xx.tar.gz
 % tar xzvf mod_perl-1.xx.tar.gz
 % cd mod_perl-1.xx
 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_1.3.xx
 % make install

This builds Apache statically with mod_perl, installs Apache under the default /usr/local/apache
tree and mod_perl into the site_perl hierarchy of your existing Perl installation. All in one step.

3.4.2 The Flexible Way

This is the normal situation where you want to be flexible while building. Statically building mod_perl
into the Apache binary (httpd) but via different steps, so you have a chance to include other third-party
Apache modules, etc.

1. Prepare the Apache source tree

The first step is as before, extract the distributions:

 % tar xvzf apache_1.3.xx.tar.gz
 % tar xzvf mod_perl-1.xx.tar.gz

2. Install mod_perl’s Perl-side and prepare the Apache-side

The second step is to install the Perl-side of mod_perl into the Perl hierarchy and prepare the
src/modules/perl/ subdirectory inside the Apache source tree:

 $ cd mod_perl-1.xx
 $ perl Makefile.PL \
 APACHE_SRC=../apache_1.3.xx/src \
 NO_HTTPD=1 \
 USE_APACI=1 \
 PREP_HTTPD=1 \
 EVERYTHING=1 \
 [...]
 $ make
 $ make install
 $ cd ..

The APACHE_SRC option sets the path to your Apache source tree, the NO_HTTPD option forces this
path and only this path to be used, the USE_APACI option triggers the new hybrid build environment
and the PREP_HTTPD option forces preparation of the APACHE_SRC/modules/perl/ tree but
no automatic build.

4515 Feb 2014

3.4.1 The All-In-One Waymod_perl Installation

Then the configuration process prepares the Apache-side of mod_perl in the Apache source tree but
doesn’t touch anything else in it. It then just builds the Perl-side of mod_perl and installs it into the Perl
installation hierarchy.

Important: If you use PREP_HTTPD as described above, to complete the build you must go into the
Apache source directory and run make and make install .

3. Additionally prepare other third-party modules

Now you have a chance to prepare third-party modules. For instance the PHP language can be added
in a manner similar to the mod_perl procedure.

4. Build the Apache Package

Finally it’s time to build the Apache package and thus also the Apache-side of mod_perl and any
other third-party modules you’ve prepared:

 $ cd apache_1.3.xx
 $./configure \
 --prefix=/path/to/install/of/apache \
 --activate-module=src/modules/perl/libperl.a \
 [...]
 $ make
 $ make install

The --prefix option is needed if you want to change the default target directory of the Apache
installation and the --activate-module option activates mod_perl for the configuration process
and thus also for the build process. If you choose --prefix=/usr/share/apache the Apache
directory tree will be installed in /usr/share/apache.

Note that the files activated by --activate-module do not exist at this time. They will be gener-
ated during compilation.

The last three steps build, test and install the Apache-side of the mod_perl enabled server. Presum-
ably your new server includes third-party components, otherwise you probably won’t choose this
method of building.

The method described above enables you to insert mod_perl into Apache without having to mangle the
Apache source tree for mod_perl. It also gives you the freedom to add third-party modules.

3.4.3 When DSO can be Used

Perl versions prior to 5.6.0, built with -Dusemymalloc , and versions 5.6.0 and newer, built with
-Dusemymalloc and -Dbincompat5005 , pollute the main httpd program with free and malloc
symbols. When httpd restarts (happens at startup too), any references in the main program to free and
malloc become invalid, and this causes memory leaks and segfaults.

15 Feb 201446

3.4.3 When DSO can be Used

To determine if you can use a DSO mod_perl with your version of Perl, first find out which malloc your
Perl was built with by running:

 % perl -V:usemymalloc

If you get:

 usemymalloc=’n’;

then it means that Perl is using the system malloc, so mod_perl will work fine as DSO.

If you get:

 usemymalloc=’y’;

it means that Perl is using its own malloc. If you are running Perl older than 5.6.0, you must rebuild Perl
with -Uusemymalloc in order to use it with a DSO mod_perl. If you are running Perl 5.6.0 or newer,
you must either rebuild Perl with -Uusemymalloc , or make sure that binary compatibility with Perl
5.005 turned off. To find out, run:

 % perl -V:bincompat5005

If you get:

 bincompat5005=’define’;

then you must either rebuild Perl with -Ubincompat5005 or with -Uusemymalloc to use it with a
DSO mod_perl. We recommend that you rebuild Perl with -Ubincompat5005 if Perl’s malloc is a
better choice for your OS.

Note that mod_perl’s build system issues a warning about this problem.

If you needed to rebuild Perl don’t forget to rebuild mod_perl too.

3.4.4 Build mod_perl as a DSO inside the Apache Source Tree via
APACI

We have already said that the new mod_perl build environment (USE_APACI) is a hybrid. What does it
mean? It means for instance that the same src/modules/perl/ stuff can be used to build mod_perl as
a DSO or not, without having to edit anything especially for this. When you want to build libperl.so
all you have to do is to add one single option to the above steps.

3.4.4.1 libperl.so and libperl.a

libmodperl.so would be more correct for the mod_perl file, but the name has to be libperl.so
because of prehistoric Apache issues. Don’t confuse the libperl.so for mod_perl with the file of the
same name which comes with Perl itself. They are two different things. It is unfortunate that they happen
to have the same name.

4715 Feb 2014

3.4.4 Build mod_perl as a DSO inside the Apache Source Tree via APACImod_perl Installation

There is also a libperl.a which comes with the Perl installation. That’s different too.

You have two options here, depending on which way you have chosen above: If you choose the
All-In-One way from above then add

 USE_DSO=1

to the perl Makefile.PL options. If you choose the Flexible way then add:

 --enable-shared=perl

to Apache’s ./configure options.

As you can see only an additional USE_DSO=1 or --enable-shared=perl option is needed. Every-
thing else is done automatically: mod_so is automatically enabled, the Makefiles are adjusted automati-
cally and even the install target from APACI now additionally installs libperl.so into the Apache
installation tree. And even more: the LoadModule and AddModule directives (which dynamically load
and insert mod_perl into httpd) are automatically added to httpd.conf.

3.4.5 Build mod_perl as a DSO outside the Apache Source Tree via
APXS

Above we’ve seen how to build mod_perl as a DSO inside the Apache source tree. But there is a nifty
alternative: building mod_perl as a DSO outside the Apache source tree via the new Apache 1.3 support
tool apxs (APache eXtension). The advantage is obvious: you can extend an already installed Apache
with mod_perl even if you don’t have the sources (for instance, you may have installed an Apache binary
package from your vendor).

Here are the build steps:

 % tar xzvf mod_perl-1.xx.tar.gz
 % cd mod_perl-1.xx
 % perl Makefile.PL \
 USE_APXS=1 \
 WITH_APXS=/path/to/bin/apxs \
 EVERYTHING=1 \
 [...]
 % make && make test && make install

This will build the DSO libperl.so outside the Apache source tree with the new Apache 1.3 support
tool apxs and install it into the existing Apache hierarchy.

3.5 Installation Scenarios for mod_perl and Other Compo-
nents
([ReaderMETA]: Please send more scenarios of mod_perl + other components installation guidelines.
Thanks!)

15 Feb 201448

3.5 Installation Scenarios for mod_perl and Other Components

You have now seen very detailed installation instructions for specific cases, but since mod_perl is used
with many other components that plug into Apache, you will definitely want to know how to build them
together with mod_perl.

Since all the steps are simple, and assuming that you now understand how the build process works, I’ll
show only the commands to be executed with no comments unless there is something we haven’t
discussed before.

Generally every example that I’m going to show consist of:

1. downloading the source distributions of the components to be used

2. un-packing them

3. configuring them

4. building Apache using the parameters appropriate to each component

5. make test and make install .

All these scenarios were tested on a Linux platform, you might need to refer to the specific component’s
documentation if something doesn’t work for you as described below. The intention of this section is not
to show you how to install other non-mod_perl components alone, but how to do this in a bundle with
mod_perl.

Also, notice that the links I’ve used below are very likely to have changed by the time you read this docu-
ment. That’s why I have used the x.x.x convention, instead of using hardcoded version numbers. Remem-
ber to replace the xx place-holders with the version numbers of the distributions you are about to use. To
find out the latest stable version number, visit the components’ sites. So if the instructions say:

 http://apache.org/dist/perl/mod_perl-1.xx.tar.gz

go to http://perl.apache.org/download/ in order to learn the version number of the latest stable release and
download the appropriate file.

Unless otherwise noted, all the components install themselves into a default location. When you run make
install the installation program tells you where it’s going to install the files.

3.5.1 mod_perl and mod_ssl (+openssl)

mod_ssl provides strong cryptography for the Apache 1.3 webserver via the Secure Sockets Layer (SSL
v2/v3) and Transport Layer Security (TLS v1) protocols by the help of the Open Source SSL/TLS toolkit
OpenSSL, which is based on SSLeay from Eric A. Young and Tim J. Hudson.

Download the sources:

4915 Feb 2014

3.5.1 mod_perl and mod_ssl (+openssl)mod_perl Installation

http://perl.apache.org/download/

 % lwp-download http://www.apache.org/dist/apache_1.3.xx.tar.gz
 % lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz
 % lwp-download http://www.modssl.org/source/mod_ssl-x.x.x-x.x.x.tar.gz
 % lwp-download http://www.openssl.org/source/openssl-x.x.x.tar.gz

Un-pack:

 % tar xvzf mod_perl-1.xx
 % tar xvzf apache_1.3.xx.tar.gz
 % tar xvzf mod_ssl-x.x.x-x.x.x.tar.gz
 % tar xvzf openssl-x.x.x.tar.gz

Configure, build and install openssl:

 % cd openssl-x.x.x
 % ./config
 % make && make test && make install

Configure mod_ssl:

 % cd mod_ssl-x.x.x-x.x.x
 % ./configure --with-apache=../apache_1.3.xx

Configure mod_perl:

 % cd ../mod_perl-1.xx
 % perl Makefile.PL USE_APACI=1 EVERYTHING=1 \
 DO_HTTPD=1 SSL_BASE=/usr/local/ssl \
 APACHE_PREFIX=/usr/local/apachessl \
 APACHE_SRC=../apache_1.3.xx/src \
 APACI_ARGS=’--enable-module=ssl,--enable-module=rewrite’

Note: Do not forget that if you use csh or tcsh you may need to put all the arguments to ‘perl Make-
file.PL’ on a single command line.

Note: If when specifying SSL_BASE=/usr/local/ssl Apache’s configure doesn’t find the ssl
libraries, please refer to the mod_ssl documentation to figure out what SSL_BASE argument it expects
(usually needed when ssl is not installed in the standard places). This topic is out of scope of this docu-
ment. For some setups using SSL_BASE=/usr/local does the trick.

Build, test and install:

 % make && make test && make install
 % cd ../apache_1.3.xx
 % make certificate
 % make install

Now proceed with the mod_ssl and mod_perl parts of the server configuration before starting the server.

When the server starts you should see the following or similar in the error_log file:

15 Feb 201450

3.5.1 mod_perl and mod_ssl (+openssl)

 [Fri Nov 12 16:14:11 1999] [notice] Apache/1.3.9 (Unix)
 mod_perl/1.21_01-dev mod_ssl/2.4.8 OpenSSL/0.9.4 configured
 -- resuming normal operations

3.5.2 mod_perl and mod_ssl Rolled from RPMs

As in the previous section this shows an installation of mod_perl and mod_ssl, but this time using
sources/binaries prepackaged in RPMs.

As always, replace xx with the proper version numbers. And replace i386 with the identifier for your
platform if it is different.

1.

 % get apache-mod_ssl-x.x.x.x-x.x.x.src.rpm

Source: http://www.modssl.org

2.

 % get openssl-x.x.x.i386.rpm

Source: http://www.openssl.org/

3.

 % lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz

Source: http://apache.org/dist/perl

4.

 % lwp-download http://www.engelschall.com/sw/mm/mm-x.x.xx.tar.gz

Source: http://www.engelschall.com/sw/mm/

5.

 % rpm -ivh openssl-x.x.x.i386.rpm

6.

 % rpm -ivh apache-mod_ssl-x.x.x.x-x.x.x.src.rpm

7.

 % cd /usr/src/redhat/SPECS

8.

 % rpm -bp apache-mod_ssl.spec

9.

5115 Feb 2014

3.5.2 mod_perl and mod_ssl Rolled from RPMsmod_perl Installation

http://www.modssl.org/
http://www.openssl.org/
http://apache.org/dist/perl
http://www.engelschall.com/sw/mm/

 % cd /usr/src/redhat/BUILD/apache-mod_ssl-x.x.x.x-x.x.x

10.

 % tar xvzf mod_perl-1.xx.tar.gz

11.

 % cd mod_perl-1.xx

12.

 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 \
 USE_APACI=1 \
 PREP_HTTPD=1 \
 EVERYTHING=1

Add or remove parameters if appropriate.

13.

 % make

14.

 % make install

15.

 % cd ../mm-x.x.xx/

16.

 % ./configure --disable-shared

17.

 % make

18.

 % cd ../mod_ssl-x.x.x-x.x.x

19.

 % ./configure \
 --with-perl=/usr/bin/perl \
 --with-apache=../apache_1.3.xx\
 --with-ssl=SYSTEM \
 --with-mm=../mm-x.x.x \
 --with-layout=RedHat \
 --disable-rule=WANTHSREGEX \
 --enable-module=all \
 --enable-module=define \
 --activate-module=src/modules/perl/libperl.a \
 --enable-shared=max \
 --disable-shared=perl

15 Feb 201452

3.5.2 mod_perl and mod_ssl Rolled from RPMs

20.

 % make

21.

 % make certificate

with whatever option is suitable to your configuration.

22.

 % make install

You should be all set.

Note: If you use the standard config for mod_ssl don’t forget to run Apache like this:

 % httpd -DSSL

3.5.3 mod_perl and apache-ssl (+openssl)

Apache-SSL is a secure Webserver, based on Apache and SSLeay/OpenSSL. It is licensed under a
BSD-style license which means, in short, that you are free to use it for commercial or non-commercial
purposes, so long as you retain the copyright notices.

Download the sources:

 % lwp-download http://www.apache.org/dist/apache_1.3.xx.tar.gz
 % lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz
 % lwp-download http://www.apache-ssl.org/.../apache_1.3.xx+ssl_x.xx.tar.gz
 % lwp-download http://www.openssl.org/source/openssl-x.x.x.tar.gz

Un-pack:

 % tar xvzf mod_perl-1.xx
 % tar xvzf apache_1.3.xx.tar.gz
 % tar xvzf openssl-x.x.x.tar.gz

Configure and install openssl:

 % cd openssl-x.x.x
 % ./config
 % make && make test && make install

Patch Apache with SSLeay paths

 % cd apache_x.xx
 % tar xzvf ../apache_1.3.xx+ssl_x.xx.tar.gz
 % FixPatch
 Do you want me to apply the fixed-up Apache-SSL patch for you? [n] y

5315 Feb 2014

3.5.3 mod_perl and apache-ssl (+openssl)mod_perl Installation

Now edit the src/Configuration file if needed and then configure:

 % cd ../mod_perl-1.xx
 % perl Makefile.PL USE_APACI=1 EVERYTHING=1 \
 DO_HTTPD=1 SSL_BASE=/usr/local/ssl \
 APACHE_SRC=../apache_1.3.xx/src

Build, test and install:

 % make && make test && make install
 % cd ../apache_1.3.xx/src
 % make certificate
 % make install

Note that you might need to modify the ’make test’ stage, as it takes much longer for this server to get
started and make test waits only a few seconds for Apache to start before it times out.

Now proceed with configuration of the apache_ssl and mod_perl parts of the server configuration files,
before starting the server.

3.5.4 mod_perl and Stronghold

Stronghold is a secure SSL Web server for Unix which allows you to give your web site full-strength,
128-bit encryption.

You must first build and install Stronghold without mod_perl, following Stronghold’s install procedure.
For more information visit http://www.c2.net/products/sh2/ .

Having done that, download the sources:

 % lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz

Unpack:

 % tar xvzf mod_perl-1.xx.tar.gz

Configure (assuming that you have the Stronghold sources extracted at /usr/local/stronghold):

 % cd mod_perl-1.xx
 % perl Makefile.PL APACHE_SRC=/usr/local/stronghold/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

Build:

 % make

Before running make test , you must add your StrongholdKey to t/conf/httpd.conf. If you are
configuring by hand, be sure to edit src/modules/perl/Makefile and uncomment the #APACHE_SSL direc-
tive.

15 Feb 201454

3.5.4 mod_perl and Stronghold

http://www.c2.net/products/sh2/

Test and Install:

 % make test && make install
 % cd /usr/local/stronghold
 % make install

3.5.4.1 Note For Solaris 2.5 users

There has been a report related to the REGEX library that comes with Stronghold, that after building
Apache with mod_perl it would produce core dumps. To work around this problem, in
$STRONGHOLD/src/Configuration change:

 Rule WANTHSREGEX=default

to:

 Rule WANTHSREGEX=no

3.5.5 mod_perl and mod_php

This is a simple installation scenario of the mod_perl and mod_php in Apache server:

1. Configure Apache.

 % cd apache_1.3.xx
 % ./configure --prefix=/usr/local/etc/httpd

(this step might be redundant with the recent versions of mod_php, but it’s harmless.)

2. Build mod_perl.

 % cd ../mod_perl-1.xx
 % perl Makefile.PL APACHE_SRC=../apache_1.3.xxx/src NO_HTTPD=1 \
 USE_APACI=1 PREP_HTTPD=1 EVERYTHING=1
 % make

3. Build mod_php.

 % cd ../php-x.x.xx
 % ./configure --with-apache=../apache_1.3.xxx \
 --with-mysql --enable-track-vars
 % make
 % make install

4. Build Apache:

 % cd ../apache_1.3.xxx
 % ./configure --prefix=/usr/local/etc/httpd \
 --activate-module=src/modules/perl/libperl.a \
 --activate-module=src/modules/php4/libphp4.a \
 --enable-module=stats \
 --enable-module=rewrite
 % make

5515 Feb 2014

3.5.5 mod_perl and mod_phpmod_perl Installation

Note: libperl.a and libphp4.a do not exist at this time. They will be generated during compilation.

5. Test and install mod_perl

 % cd ../mod_perl-1.xx
 % make test
 # make install.

6. Complete the Apache installation.

 % cd ../apache_1.3.xxx
 # make install

Note: If you need to build mod_ssl as well, make sure that you add the mod_ssl first.

3.6 mod_perl Installation with the CPAN.pm Interactive
Shell
Installation of mod_perl and all the required packages is much easier with help of the CPAN.pm module,
which provides you among other features with a shell interface to the CPAN repository. CPAN is the
Comprehensive Perl Archive Network, a repository of thousands of Perl modules, scripts as well as a vast
amount of documentation. See http://cpan.org for more information.

The first thing first is to download the Apache source code and unpack it into a directory -- the name of
which you will need very soon.

Now execute:

 % perl -MCPAN -eshell

If it’s the first time that you have used it, CPAN.pm will ask you about a dozen questions to configure the
module. It’s quite easy to accomplish this task, and very helpful hints come along with the questions.
When you are finished you will see the CPAN prompt:

 cpan>

It can be a good idea to install a special CPAN bundle of modules to make using the CPAN module easier.
Installation is as simple as typing:

 cpan> install Bundle::CPAN

The CPAN shell can download mod_perl for you, unpack it, check for prerequisites, detect any missing
third party modules, and download and install them. All you need to do to install mod_perl is to type at the
prompt:

 cpan> install mod_perl

15 Feb 201456

3.6 mod_perl Installation with the CPAN.pm Interactive Shell

http://cpan.org/

You will see (I’ll use x.xx as a placeholder for real version numbers, since these change very frequently):

 Running make for DOUGM/mod_perl-1.xx.tar.gz
 Fetching with LWP:
 http://www.cpan.org/authors/id/DOUGM/mod_perl-1.xx.tar.gz

 CPAN.pm: Going to build DOUGM/mod_perl-1.xx.tar.gz

 Enter ‘q’ to stop search
 Please tell me where I can find your apache src
 [../apache_1.3.xx/src]

CPAN.pm will search for the latest Apache sources and suggest a directory. Here, unless the CPAN shell
found it and suggested the right directory, you need to type the directory into which you unpacked
Apache. The next question is about the src directory, which resides at the root level of the unpacked
Apache distribution. In most cases the CPAN shell will suggest the correct directory.

 Please tell me where I can find your apache src
 [../apache_1.3.xx/src]

Answer yes to all the following questions, unless you have a reason not to do that.

 Configure mod_perl with /usr/src/apache_1.3.xx/src ? [y]
 Shall I build httpd in /usr/src/apache_1.3.xx/src for you? [y]

Now we will build Apache with mod_perl enabled. Quit the CPAN shell, or use another terminal. Go to the
Apache sources root directory and run:

 % make install

which will complete the installation by installing Apache’s headers and the binary in the appropriate direc-
tories.

The only caveat of the process I’ve described is that you don’t have control over the configuration process.
Actually, that problem is easy to solve -- you can tell CPAN.pm to pass whatever parameters you want to
perl Makefile.PL . You do this with o conf makepl_arg command:

 cpan> o conf makepl_arg ’DO_HTTPD=1 USE_APACI=1 EVERYTHING=1’

Just list all the parameters as if you were passing them to the familiar perl Makefile.PL . If you add
the APACHE_SRC=/usr/src/apache_1.3.xx/src and DO_HTTPD=1 parameters, you will not be
asked a single question. Of course you must give the correct path to the Apache source distribution.

Now proceed with install mod_perl as before. When the installation is completed, remember to
unset the makepl_arg variable by executing:

 cpan> o conf makepl_arg ’’

If you have previously set makepl_arg to some value, before you alter it for the mod_perl installation
you will probably want to save it somewhere so that you can restore it when you have finished with the
mod_perl installation. To see the original value, use:

5715 Feb 2014

3.6 mod_perl Installation with the CPAN.pm Interactive Shellmod_perl Installation

 cpan> o conf makepl_arg

You can now install all the modules you might want to use with mod_perl. You install them all by typing a
singe command:

 cpan> install Bundle::Apache

This will install mod_perl if isn’t yet installed, and many other packages such as: ExtUtils::Embed ,
MIME::Base64 , URI::URL , Digest::MD5 , Net::FTP , LWP, HTML::TreeBuilder , CGI,
Devel::Symdump , Apache::DB , Tie::IxHash , Data::Dumper etc.

A helpful hint: If you have a system with all the Perl modules you use and you want to replicate them all
elsewhere, and if you cannot just copy the whole /usr/lib/perl5 directory because of a possible
binary incompatibility on the other system, making your own bundle is a handy solution. To accomplish
this the command autobundle can be used on the CPAN shell command line. This command writes a
bundle definition file for all modules that are installed for the currently running perl interpreter.

With the clever bundle file you can then simply say

 cpan> install Bundle::my_bundle

and after answering a few questions, go out for a coffee.

3.7 Installing on multiple machines
You may wish to build httpd once, then copy it to other machines. The Perl side of mod_perl needs the
Apache headers files to compile. To avoid dragging and build Apache on all your other machines, there
are a few Makefile targets to help you out:

 % make tar_Apache

This will tar all files mod_perl installs in your Perl’s site_perl directory, into a file called Apache.tar. You
can then unpack this under the site_perl directory on another machine.

 % make offsite-tar

This will copy all the header files from the Apache source directory which you configured mod_perl
against, then it will make dist which creates a mod_perl-1.xx.tar.gz, ready to unpack on another
machine to compile and install the Perl side of mod_perl.

If you really want to make your life easy you should use one of the more advanced packaging systems. For
example, almost all Linux OS distributions use packaging tools on top of plain tar.gz, allowing you to
track prerequisites for each package, and providing easy installation, upgrade and cleanup. One of the
most widely-used packagers is RPM (Red Hat Package Manager). See http://www.rpm.org for more infor-
mation.

All you have to do is prepare a SRPM (source distribution package), then build a binary release. This can
be installed on any number of machines in a matter of seconds.

15 Feb 201458

3.7 Installing on multiple machines

http://www.rpm.org/

It will even work on live machines! If you have two identical machines (identical software and hardware,
although depending on your setup hardware may be less critical). Let’s say that one is a live server and the
other is in development. You build an RPM with a mod_perl binary distribution, install it on the develop-
ment machine and satisfy yourself that it is working and stable. You can then install the RPM package on
the live server without any fear. Make sure that httpd.conf is correct, since it generally includes parameters
such as hostname which are unique to the live machine.

When you have installed the package, just restart the server. It can be a good idea to keep a package of the
previous system, in case something goes wrong. You can then easily remove the installed package and put
the old one back.

([ReaderMETA]: Dear reader, Can you please share a step by step scenario of preparation of SRPMs for
mod_perl? Thanks!!!)

3.8 using RPM and other packages to install mod_perl
[ReaderMETA]: Currently only RPM package. Please submit info about other available packages if you
use such.

3.8.1 A word on mod_perl RPM packages

The virtues of RPM packages is a subject of much debate among mod_perl users. While RPMs do take the
pain away from package installation and maintenance for most applications, the nuances of mod_perl
make RPMs somewhat less than ideal for those just getting started. The following help and advice is for
those new to mod_perl, Apache, Linux, and RPMs. If you know what you are doing, this is probably Old
Hat - contributing your past experiences is, as always, welcomed by the community.

3.8.2 Getting Started

If you are new to mod_perl and are using this Guide and the Eagle Book to help you on your way, it is
probably better to grab the latest Apache and mod_perl sources and compile the sources yourself. Not only
will you find that this is less daunting than you suspect, but it will probably save you a few headaches
down the line for several reasons.

First, given the pace at which the open source community produces software, RPMs, especially those
found on distribution CDs, are often several versions out of date. The most recent version will not only be
more stable, but will likely incorporate some new functionality that you will eventually want to play with.

It is also unlikely that the file system layout of an RPM package will match what you see in the Eagle
Book and this Guide. If you are new to mod_perl, Apache, or both you will probably want to get familiar
with the file system layout used by the examples given here before trying something non-standard.

Finally, the RPMs found on a typical distribution’s CDs use mod_perl built with Apache’s Dynamic
Shared Objects (DSO) support. While mod_perl can be successfully used as a DSO module, it adds a layer
of complexity that you may want to live without for now.

5915 Feb 2014

3.8 using RPM and other packages to install mod_perlmod_perl Installation

All that being said, should you still feel that rolling your own mod_perl enabled Apache server is not
likely, here are a few helpful hints...

3.8.3 Compiling RPM source files

It is possible to compile the source files provided by RPM packages, but if you are using RPMs to ease
mod_perl installation, that is not the way to do it. Both Apache and mod_perl RPMs are designed to be
install-and-go. If you really want to compile mod_perl to your own specific needs, your best bet is to get
the most recent sources from CPAN.

3.8.4 Mix and Match RPM and source

It is probably not the best idea to use a self-compiled Apache with a mod_perl RPM (or vice versa). Stick-
ing with one format or the other at first will result in fewer headaches and more hair.

3.8.5 Installing a single apache+mod_perl RPM

If you use an Apache+mod_perl RPM, chances are rpm -i or glint (GUI for RPM) will have you up
and running immediately, no compilation necessary. If you encounter problems, try downloading from
another mirror site or searching http://rpmfind.net/ for a different package - there are plenty out there to
choose from.

David Harris has started an effort to build better RPM/SRPM mod_perl packages. You will find the link to
David’s site from Binary distributions.

Features of this RPM:

Installs mod_perl as an "add in" to the RedHat Apache package, but does not install mod_perl as a
DSO.

Includes the four header files required for building libapreq (Apache::Request)

Distributes plain text forms of the pod documentation files that come with mod_perl.

Checks the module magic number on the existing Apache package to see if things are compatible

Notes on this un-conventional RPM packaging of mod_perl

by David Harris <dharris (at) drh.net> on Oct 13, 1999

This package will install the mod_perl library files on your machine along with the following two Apache
files:

 /usr/lib/apache/mod_include_modperl.so
 /usr/sbin/httpd_modperl

15 Feb 201460

3.8.3 Compiling RPM source files

http://rpmfind.net/

This package does not install a complete Apache subtree built with mod_perl, but rather just the two above
files that are different for mod_perl. This conceptually thinks of mod_perl as a kind of an "add on" that we
would like to add to the regular Apache tree. However, we are prevented from distributing mod_perl as an
actual DSO, because it is not recommended by the mod_perl developers and various features must be
turned off. So, instead, we distribute an httpd binary with mod_perl statically linked (httpd_modperl) and
the special modified mod_include.so required for this binary (mod_include_modperl.so). You can use the
exact same configuration files and other DSO modules, but you just "enable" the mod_perl "add on" by
following the directions below.

To enable mod_perl, do the following:

 (1) Configure /etc/rc.d/init.d/httpd to run httpd_modperl instead of
 httpd by changing the "daemon" command line.
 (2) Replace mod_include.so with mod_include_modperl.so in the
 module loading section of /etc/httpd/conf/httpd.conf
 (3) Uncomment the "AddModule mod_perl.c" line in /etc/httpd/conf/httpd.conf

Or run the following command:

 /usr/sbin/modperl-enable on

and to disable mod_perl:

 /usr/sbin/modperl-enable off

3.8.6 Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl
RPM

Libapreq provides the Apache::Request module.

Despite many reports of libapreq not working properly with various RPM packages, it is possible to inte-
grate libapreq with mod_perl RPMs. It just requires a few additional steps.

1. Make certain you have the apache-devel-x.x.x-x.i386.rpm package installed. Also,
download the latest version of libapreq from CPAN.

2. Install the source RPM for your mod_perl RPM and then do a build prep, (with rpm -bp
apache-devel-x.x.x-x.src.rpm) which unpacks the sources. From there, copy the four
header files (mod_perl.h, mod_perl_version.h, mod_perl_xs.h, and mod_PL.h) to
/usr/include/apache .

2.1 Get the SRPM from somemir-
ror.../redhat-x.x/SRPMS/mod_perl-1.xx-x.src.rpm .

2.2 Install the SRPM. This creates files in /usr/src/redhat/SPECS and
/usr/src/redhat/SOURCES . Run:

6115 Feb 2014

3.8.6 Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl RPMmod_perl Installation

 % rpm -ih mod_perl-1.xx-x.src.rpm

2.3 Do a "prep" build of the package, which just unpackages the sources and applies any
patches.

 % rpm -bp /usr/src/redhat/SPECS/mod_perl.spec
 Executing: %prep
 + umask 022
 + cd /usr/src/redhat/BUILD
 + cd /usr/src/redhat/BUILD
 + rm -rf mod_perl-1.19
 + /bin/gzip -dc /usr/src/redhat/SOURCES/mod_perl-1.19.tar.gz
 + tar -xf -
 + STATUS=0
 + [0 -ne 0]
 + cd mod_perl-1.19
 ++ /usr/bin/id -u
 + [0 = 0]
 + /bin/chown -Rf root .
 ++ /usr/bin/id -u
 + [0 = 0]
 + /bin/chgrp -Rf root .
 + /bin/chmod -Rf a+rX,g-w,o-w .
 + echo Patch #0:
 Patch #0:
 + patch -p1 -b --suffix .rh -s
 + exit 0

NOTE: Steps 2.1 through 2.3 are just a fancy un-packing of the source tree that builds the RPM
into /usr/src/redhat/BUILD/mod_perl-1.xx . You could unpack the
mod_perl-1.xx.tar.gz file somewhere and then do the following steps on that source
tree. The method shown above is more "pure" because you’re grabbing the header files from the
same tree that built the RPM. But this does not matter because RedHat is not patching that file.
So, it might be better if you just grab the mod_perl source and unpack it to get these files. Less
fuss and mess.

2.4 Look at the files you will copy: (this is not really a step, but useful to show)

 % find /usr/src/redhat/BUILD/mod_perl-1.19 -name ’*.h’
 /usr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/mod_perl.h
 /usr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/mod_perl_xs.h
 /usr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/mod_perl_version.h
 /usr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/perl_PL.h

2.5 Copy the files into /usr/include/apache .

 % find /usr/src/redhat/BUILD/mod_perl-1.19 -name ’*.h’ \
 -exec cp {} /usr/include/apache \;

NOTE: You should not have to do:

15 Feb 201462

3.8.6 Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl RPM

 % mkdir /usr/include/apache

because that directory should be created by apache-devel.

3. Apply this patch to libapreq: http://www.davideous.com/modperl-
rpm/distrib/libapreq-0.31_include.patch

4. Follow the libapreq directions as usual:

 % perl Makefile.PL
 % make && make test && make install

3.8.7 Installing separate Apache and mod_perl RPMs

If you are trying to install separate Apache and mod_perl RPMs, like those provided by the RedHat distri-
butions, you may be in for a bit of a surprise. Installing the Apache RPM will go just fine, and http://local-
host will bring up some type of web page for you. However, after installation of the mod_perl RPM, the
How can I tell whether mod_perl is running test will show that Apache is not mod_perl enabled. This is
because mod_perl needs to be added as a separate module using Apache’s Dynamic Shared Objects.

To use mod_perl as a DSO, make the following modifications to your Apache configuration files:

 httpd.conf:

 LoadModule perl_module modules/libperl.so
 AddModule mod_perl.c

 PerlModule Apache::Registry
 Alias /perl/ /home/httpd/perl/
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 PerlSendHeader On
 Options +ExecCGI
 </Location>

After a complete shutdown and startup of the server, mod_perl should be up and running.

3.8.8 Testing the mod_perl API

Some people have reported that even when the server responds positively to the How can I tell whether
mod_perl is running tests, the mod_perl API will not function properly. You may want to run the follow-
ing script to verify the availability of the mod_perl API.

 use strict;
 my $r = shift;
 $r->send_http_header(’text/html’);
 $r->print("It worked!!!\n");

6315 Feb 2014

3.8.7 Installing separate Apache and mod_perl RPMsmod_perl Installation

http://www.davideous.com/modperlrpm/distrib/libapreq-0.31_include.patch
http://www.davideous.com/modperlrpm/distrib/libapreq-0.31_include.patch
http://localhost/
http://localhost/

3.9 Installation Without Superuser Privileges
As you have already learned, mod_perl enabled Apache consists of two main components: Perl modules
and Apache itself. Let’s tackle the tasks one at a time.

I’ll show a complete installation example using stas as a username, assuming that /home/stas is the home
directory of that user.

3.9.1 Installing Perl Modules into a Directory of Choice

Since without superuser permissions you aren’t allowed to install modules into system directories like
/usr/lib/perl5, you need to find out how to install the modules under your home directory. It’s easy.

First you have to decide where to install the modules. The simplest approach is to simulate the portion of
the / file system relevant to Perl under your home directory. Actually we need only two directories:

 /home/stas/bin
 /home/stas/lib

We don’t have to create them, since that will be done automatically when the first module is installed.
99% of the files will go into the lib directory. Occasionally, when some module distribution comes with
Perl scripts, these will go into the bin directory. This directory will be created if it doesn’t exist.

Let’s install the CGI.pm package, which includes a few other CGI::* modules. As usual, download the
package from the CPAN repository, unpack it and chdir to the newly-created directory.

Now do a standard perl Makefile.PL to prepare a Makefile, but this time tell MakeMaker to use
your Perl installation directories instead of the defaults.

 % perl Makefile.PL PREFIX=/home/stas

PREFIX=/home/stas is the only part of the installation process which is different from usual. Note
that if you don’t like how MakeMaker chooses the rest of the directories, or if you are using an older
version of it which requires an explicit declaration of all the target directories, you should do this:

 % perl Makefile.PL PREFIX=/home/stas \
 INSTALLPRIVLIB=/home/stas/lib/perl5 \
 INSTALLSCRIPT=/home/stas/bin \
 INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
 INSTALLBIN=/home/stas/bin \
 INSTALLMAN1DIR=/home/stas/lib/perl5/man \
 INSTALLMAN3DIR=/home/stas/lib/perl5/man3

The rest is as usual:

 % make
 % make test
 % make install

15 Feb 201464

3.9 Installation Without Superuser Privileges

make install installs all the files in the private repository. Note that all the missing directories are
created automatically, so there is no need to create them in first place. Here (slightly edited) is what it does
:

 Installing /home/stas/lib/perl5/CGI/Cookie.pm
 Installing /home/stas/lib/perl5/CGI.pm
 Installing /home/stas/lib/perl5/man3/CGI.3
 Installing /home/stas/lib/perl5/man3/CGI::Cookie.3
 Writing /home/stas/lib/perl5/auto/CGI/.packlist
 Appending installation info to /home/stas/lib/perl5/perllocal.pod

If you have to use the explicit target parameters, instead of a single PREFIX parameter, you will find it
useful to create a file called for example ~/.perl_dirs (where ~ is /home/stas in our example) contain-
ing:

 PREFIX=/home/stas \
 INSTALLPRIVLIB=/home/stas/lib/perl5 \
 INSTALLSCRIPT=/home/stas/bin \
 INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
 INSTALLBIN=/home/stas/bin \
 INSTALLMAN1DIR=/home/stas/lib/perl5/man \
 INSTALLMAN3DIR=/home/stas/lib/perl5/man3

From now on, any time you want to install perl modules locally you simply execute:

 % perl Makefile.PL ‘cat ~/.perl_dirs‘
 % make
 % make test
 % make install

Using this method you can easily maintain several Perl module repositories. For example, you could have
one for production Perl and another for development:

 % perl Makefile.PL ‘cat ~/.perl_dirs.production‘

or

 % perl Makefile.PL ‘cat ~/.perl_dirs.develop‘

3.9.2 Making Your Scripts Find the Locally Installed Modules

Perl modules are generally placed in four main directories. To find these directories, execute:

 % perl -V

The output contains important information about your Perl installation. At the end you will see:

6515 Feb 2014

3.9.2 Making Your Scripts Find the Locally Installed Modulesmod_perl Installation

 Characteristics of this binary (from libperl):
 Built under linux
 Compiled at Apr 6 1999 23:34:07
 @INC:
 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

It shows us the content of the Perl special variable @INC, which is used by Perl to look for its modules. It
is equivalent to the PATH environment variable in Unix shells which is used to find executable programs.

Notice that Perl looks for modules in the . directory too, which stands for the current directory. It’s the last
entry in the above output.

Of course this example is from version 5.00503 of Perl installed on my x86 architecture PC running
Linux. That’s why you see i386-linux and 5.00503. If your system runs a different version of Perl, operat-
ing system, processor or chipset architecture, then some of the directories will have different names.

I also have a perl-5.6.0 installed under /usr/local/lib/ so when I do:

 % /usr/local/bin/perl5.6.0 -V

I see:

 @INC:
 /usr/local/lib/perl5/5.6.0/i586-linux
 /usr/local/lib/perl5/5.6.0
 /usr/local/lib/site_perl/5.6.0/i586-linux
 /usr/local/lib/site_perl

Note that it’s still Linux, but the newer Perl version uses the version of my Pentium processor (thus the
i586 and not i386). This makes use of compiler optimizations for Pentium processors when the binary Perl
extensions are created.

All the platform specific files, such as compiled C files glued to Perl with XS or SWIG, are supposed to go
into the i386-linux -like directories.

Important: As we have installed the Perl modules into non-standard directories, we have to let Perl know
where to look for the four directories. There are two ways to accomplish this. You can either set the
PERL5LIB environment variable, or you can modify the @INC variable in your scripts.

Assuming that we use perl-5.00503, in our example the directories are:

 /home/stas/lib/perl5/5.00503/i386-linux
 /home/stas/lib/perl5/5.00503
 /home/stas/lib/perl5/site_perl/5.005/i386-linux
 /home/stas/lib/perl5/site_perl/5.005

15 Feb 201466

3.9.2 Making Your Scripts Find the Locally Installed Modules

As mentioned before, you find the exact directories by executing perl -V and replacing the global Perl
installation’s base directory with your home directory.

Modifying @INC is quite easy. The best approach is to use the lib module (pragma), by adding the
following snippet at the top of any of your scripts that require the locally installed modules.

 use lib qw(/home/stas/lib/perl5/5.00503/
 /home/stas/lib/perl5/site_perl/5.005);

Another way is to write code to modify @INC explicitly:

 BEGIN {
 unshift @INC,
 qw(/home/stas/lib/perl5/5.00503
 /home/stas/lib/perl5/5.00503/i386-linux
 /home/stas/lib/perl5/site_perl/5.005
 /home/stas/lib/perl5/site_perl/5.005/i386-linux);
 }

Note that with the lib module we don’t have to list the corresponding architecture specific directories,
since it adds them automatically if they exist (to be exact, when $dir/$archname/auto exists).

Also, notice that both approaches prepend the directories to be searched to @INC. This allows you to
install a more recent module into your local repository and Perl will use it instead of the older one installed
in the main system repository.

Both approaches modify the value of @INC at compilation time. The lib module uses the BEGIN block
as well, but internally.

Now, let’s assume the following scenario. I have installed the LWP package in my local repository. Now I
want to install another module (e.g. mod_perl) and it has LWP listed in its prerequisites list. I know that I
have LWP installed, but when I run perl Makefile.PL for the module I’m about to install I’m told
that I don’t have LWP installed.

There is no way for Perl to know that we have some locally installed modules. All it does is search the
directories listed in @INC, and since the latter contains only the default four directories (plus the . direc-
tory), it cannot find the locally installed LWP package. We cannot solve this problem by adding code to
modify @INC, but changing the PERL5LIB environment variable will do the trick. If you are using
t?csh for interactive work, do this:

 setenv PERL5LIB /home/stas/lib/perl5/5.00503:
 /home/stas/lib/perl5/site_perl/5.005

It should be a single line with directories separated by colons (:) and no spaces. If you are a (ba)?sh
user, do this:

 export PERL5LIB=/home/stas/lib/perl5/5.00503:
 /home/stas/lib/perl5/site_perl/5.005

6715 Feb 2014

3.9.2 Making Your Scripts Find the Locally Installed Modulesmod_perl Installation

Again make it a single line. If you use bash you can use multi-line commands by terminating split lines
with a backslash (\), like this:

 export PERL5LIB=/home/stas/lib/perl5/5.00503:\
 /home/stas/lib/perl5/site_perl/5.005

As with use lib , perl automatically prepends the architecture specific directories to @INC if those exist.

When you have done this, verify the value of the newly configured @INC by executing perl -V as
before. You should see the modified value of @INC:

 % perl -V

 Characteristics of this binary (from libperl):
 Built under linux
 Compiled at Apr 6 1999 23:34:07
 %ENV:
 PERL5LIB="/home/stas/lib/perl5/5.00503:
 /home/stas/lib/perl5/site_perl/5.005"
 @INC:
 /home/stas/lib/perl5/5.00503/i386-linux
 /home/stas/lib/perl5/5.00503
 /home/stas/lib/perl5/site_perl/5.005/i386-linux
 /home/stas/lib/perl5/site_perl/5.005
 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

When everything works as you want it to, add these commands to your .tcshrc or .bashrc file. The next
time you start a shell, the environment will be ready for you to work with the new Perl.

Note that if you have a PERL5LIB setting, you don’t need to alter the @INC value in your scripts. But if
for example someone else (who doesn’t have this setting in the shell) tries to execute your scripts, Perl will
fail to find your locally installed modules. The best example is a crontab script that might use a different
SHELL environment and therefore the PERL5LIB setting won’t be available to it.

So the best approach is to have both the PERL5LIB environment variable and the explicit @INC exten-
sion code at the beginning of the scripts as described above.

3.9.3 The CPAN.pm Shell and Locally Installed Modules

As we saw in the section describing the usage of the CPAN.pm shell to install mod_perl, it saves a great
deal of time. It does the job for us, even detecting the missing modules listed in prerequisites, fetching and
installing them. So you might wonder whether you can use CPAN.pm to maintain your local repository as
well.

When you start the CPAN interactive shell, it searches first for the user’s private configuration file and
then for the system wide one. When I’m logged as user stas the two files on my setup are:

15 Feb 201468

3.9.3 The CPAN.pm Shell and Locally Installed Modules

 /home/stas/.cpan/CPAN/MyConfig.pm
 /usr/lib/perl5/5.00503/CPAN/Config.pm

If there is no CPAN shell configured on your system, when you start the shell for the first time it will ask
you a dozen configuration questions and then create the Config.pm file for you.

If you’ve got it already system-wide configured, you should have a
/usr/lib/perl5/5.00503/CPAN/Config.pm . If you have a different Perl version, alter the path
to use your Perl’s version number, when looking up the file. Create the directory (mkdir -p creates the
whole path at once) where the local configuration file will go:

 % mkdir -p /home/stas/.cpan/CPAN

Now copy the system wide configuration file to your local one.

 % cp /usr/lib/perl5/5.00503/CPAN/Config.pm \
 /home/stas/.cpan/CPAN/MyConfig.pm

The only thing left is to change the base directory of .cpan in your local file to the one under your home
directory. On my machine I replace /usr/src/.cpan (that’s where my system’s .cpan directory
resides) with /home/stas . I use Perl of course!

 % perl -pi -e ’s|/usr/src|/home/stas|’ \
 /home/stas/.cpan/CPAN/MyConfig.pm

Now you have the local configuration file ready, you have to tell it what special parameters you need to
pass when executing the perl Makefile.PL stage.

Open the file in your favorite editor and replace line:

 ’makepl_arg’ => q[],

with:

 ’makepl_arg’ => q[PREFIX=/home/stas],

Now you’ve finished the configuration. Assuming that you are logged in as the same user you have
prepared the local installation for (stas in our example), start it like this:

 % perl -MCPAN -e shell

From now on any module you try to install will be installed locally. If you need to install some system
modules, just become the superuser and install them in the same way. When you are logged in as the supe-
ruser, the system-wide configuration file will be used instead of your local one.

If you have used more than just the PREFIX variable, modify MyConfig.pm to use them. For example if
you have used these variables:

6915 Feb 2014

3.9.3 The CPAN.pm Shell and Locally Installed Modulesmod_perl Installation

 perl Makefile.PL PREFIX=/home/stas \
 INSTALLPRIVLIB=/home/stas/lib/perl5 \
 INSTALLSCRIPT=/home/stas/bin \
 INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
 INSTALLBIN=/home/stas/bin \
 INSTALLMAN1DIR=/home/stas/lib/perl5/man \
 INSTALLMAN3DIR=/home/stas/lib/perl5/man3

then replace PREFIX=/home/stas in the line:

 ’makepl_arg’ => q[PREFIX=/home/stas],

with all the variables from above, so that the line becomes:

 ’makepl_arg’ => q[PREFIX=/home/stas \
 INSTALLPRIVLIB=/home/stas/lib/perl5 \
 INSTALLSCRIPT=/home/stas/bin \
 INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
 INSTALLBIN=/home/stas/bin \
 INSTALLMAN1DIR=/home/stas/lib/perl5/man \
 INSTALLMAN3DIR=/home/stas/lib/perl5/man3],

If you arrange all the above parameters in one line, you can remove the backslashes (\).

3.9.4 Making a Local Apache Installation

Just like with Perl modules, if you don’t have permissions to install files into the system area you have to
install them locally under your home directory. It’s almost the same as a plain installation, but you have to
run the server listening to a port number greater than 1024 since only root processes can listen to lower
numbered ports.

Another important issue you have to resolve is how to add startup and shutdown scripts to the directories
used by the rest of the system services. You will have to ask your system administrator to assist you with
this issue.

To install Apache locally, all you have to do is to tell .configure in the Apache source directory what
target directories to use. If you are following the convention that I use, which makes your home directory
look like the / (base) directory, the invocation parameters would be:

 ./configure --prefix=/home/stas

Apache will use the prefix for the rest of its target directories instead of the default
/usr/local/apache . If you want to see what they are, before you proceed add the --show-layout
option:

 ./configure --prefix=/home/stas --show-layout

You might want to put all the Apache files under /home/stas/apache following Apache’s conven-
tion:

15 Feb 201470

3.9.4 Making a Local Apache Installation

 ./configure --prefix=/home/stas/apache

If you want to modify some or all of the names of the automatically created directories:

 ./configure --prefix=/home/stas/apache \
 --sbindir=/home/stas/apache/sbin
 --sysconfdir=/home/stas/apache/etc
 --localstatedir=/home/stas/apache/var \
 --runtimedir=/home/stas/apache/var/run \
 --logfiledir=/home/stas/apache/var/logs \
 --proxycachedir=/home/stas/apache/var/proxy

That’s all!

Also remember that you can start the script only under a user and group you belong to. You must set the
User and Group directives in httpd.conf to appropriate values.

3.9.5 Manual Local mod_perl Enabled Apache Installation

Now when we have learned how to install local Apache and Perl modules separately, let’s see how to
install mod_perl enabled Apache in our home directory. It’s almost as simple as doing each one separately,
but there is one wrinkle you need to know about which I’ll mention at the end of this section.

Let’s say you have unpacked the Apache and mod_perl sources under /home/stas/src and they look like
this:

 % ls /home/stas/src
 /home/stas/src/apache_1.3.xx
 /home/stas/src/mod_perl-1.xx

where xx are the version numbers as usual. You want the Perl modules from the mod_perl package to be
installed under /home/stas/lib/perl5 and the Apache files to go under /home/stas/apache. The following
commands will do that for you:

 % perl Makefile.PL \
 PREFIX=/home/stas \
 APACHE_PREFIX=/home/stas/apache \
 APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 \
 USE_APACI=1 \
 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_1.3.xx
 % make install

If you need some parameters to be passed to the .configure script, as we saw in the previous section
use APACI_ARGS. For example:

7115 Feb 2014

3.9.5 Manual Local mod_perl Enabled Apache Installationmod_perl Installation

 APACI_ARGS=’--sbindir=/home/stas/apache/sbin, \
 --sysconfdir=/home/stas/apache/etc, \
 --localstatedir=/home/stas/apache/var, \
 --runtimedir=/home/stas/apache/var/run, \
 --logfiledir=/home/stas/apache/var/logs, \
 --proxycachedir=/home/stas/apache/var/proxy’

Note that the above multiline splitting will work only with (ba)?sh , t?csh users will have to list all the
parameters on a single line.

Basically the installation is complete. The only remaining problem is the @INC variable. This won’t be
correctly set if you rely on the PERL5LIB environment variable unless you set it explicitly in a startup
file which is require ’d before loading any other module that resides in your local repository. A much
nicer approach is to use the lib pragma as we saw before, but in a slightly different way--we use it in the
startup file and it affects all the code that will be executed under mod_perl handlers. For example:

 PerlRequire /home/stas/apache/perl/startup.pl

where startup.pl starts with:

 use lib qw(/home/stas/lib/perl5/5.00503/
 /home/stas/lib/perl5/site_perl/5.005);

Note that you can still use the hard-coded @INC modifications in the scripts themselves, but be aware that
scripts modify @INC in BEGIN blocks and mod_perl executes the BEGIN blocks only when it performs
script compilation. As a result, @INC will be reset to its original value after the scripts are compiled and
the hard-coded settings will be forgotten. See the section ’@INC and mod_perl’ for more information.

The only place you can alter the "original" value is during the server configuration stage either in the
startup file or by putting

 PerlSetEnv Perl5LIB \
 /home/stas/lib/perl5/5.00503/:/home/stas/lib/perl5/site_perl/5.005

in httpd.conf, but the latter setting will be ignored if you use the PerlTaintcheck setting, and I hope
you do use it.

The rest of the mod_perl configuration and use is just the same as if you were installing mod_perl as supe-
ruser.

3.9.5.1 Resource Usage

Another important thing to keep in mind is the consumption of system resources. mod_perl is memory
hungry. If you run a lot of mod_perl processes on a public, multiuser machine, most likely the system
administrator of this machine will ask you to use less resources and may even shut down your mod_perl
server and ask you to find another home for it. You have a few options:

Reduce resources usage (see Preventing Your Processes from Growing).

15 Feb 201472

3.9.5 Manual Local mod_perl Enabled Apache Installation

Ask your ISP’s system administrator whether they can setup a dedicated machine for you, so that you
will be able to install as much memory as you need. If you get a dedicated machine the chances are
that you will want to have root access, so you may be able to manage the administration yourself.
Then you should consider keeping on the list of the system administrator’s responsibilities the
following items: a reliable electricity supply and network link. And of course making sure that the
important security patches get applied and the machine is configured to be secure. Finally having the
machine physically protected, so no one will turn off the power or break it.

Look for another ISP with lots of resources or one that supports mod_perl. You can find a list of these
ISPs on this site.

3.9.6 Local mod_perl Enabled Apache Installation with CPAN.pm

Again, CPAN makes installation and upgrades simpler. You have seen how to install a mod_perl enabled
server using CPAN.pm’s interactive shell. You have seen how to install Perl modules and Apache locally.
Now all you have to do is to merge these techniques into a single "local mod_perl Enabled Apache Instal-
lation with CPAN.pm" technique.

Assuming that you have configured CPAN.pm to install Perl modules locally, the installation is very
simple. Start the CPAN.pm shell, set the arguments to be passed to perl Makefile.PL (modify the
example setting to suit your needs), and tell CPAN.pm to do the rest for you:

 % perl -MCPAN -eshell
 cpan> o conf makepl_arg ’DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
 PREFIX=/home/stas APACHE_PREFIX=/home/stas/apache’
 cpan> install mod_perl

When you use CPAN.pm for local installations, after the mod_perl installation is complete you must make
sure that the value of makepl_arg is restored to its original value.

The simplest way to do this is to quit the interactive shell by typing quit and reenter it. But if you insist
here is how to make it work without quitting the shell. You really want to skip this :)

If you want to continue working with CPAN *without* quitting the shell, you must:

1. remember the value of makepl_arg
2. change it to suit your new installation
3. build and install mod_perl
4. restore it after completing mod_perl installation

this is quite a cumbersome task as of this writing, but I believe that CPAN.pm will eventually be improved
to handle this more easily.

So if you are still with me, start the shell as usual:

 % perl -MCPAN -eshell

7315 Feb 2014

3.9.6 Local mod_perl Enabled Apache Installation with CPAN.pmmod_perl Installation

First, read the value of the makepl_arg :

 cpan> o conf makepl_arg

 PREFIX=/home/stas

It will be something like PREFIX=/home/stas if you configured CPAN.pm to install modules locally.
Save this value:

 cpan> o conf makepl_arg.save PREFIX=/home/stas

Second, set a new value, to be used by the mod_perl installation process. (You can add parameters to this
line, or remove them, according to your needs.)

 cpan> o conf makepl_arg ’DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
 PREFIX=/home/stas APACHE_PREFIX=/home/stas/apache’

Third, let CPAN.pm build and install mod_perl for you:

 cpan> install mod_perl

Fourth, reset the original value to makepl_arg . We do this by printing the value of the saved variable
and assigning it to makepl_arg .

 cpan> o conf makepl_arg.save

 PREFIX=/home/stas

 cpan> o conf makepl_arg PREFIX=/home/stas

Not so neat, but a working solution. You could have written the value on a piece of paper instead of saving
it to makepl_arg.save , but you are more likely to make a mistake that way.

3.10 Automating installation
Apache Builder

James G Smith wrote an Apache Builder, that can install a combination of Apache, mod_perl, and
mod_ssl -- it also has limited support for including mod_php in the mix. The builder is available from
James’ CPAN directory: $CPAN/authors/id/J/JS/JSMITH/ in the package build-apache-xx.tar.gz.

Aphid Apache Installer

Aphid provides a facility for bootstrapping SSL-enabled Apache web servers (mod_ssl) with an
embedded Perl interpreter (mod_perl). Source is downloaded from the Internet, compiled, and the
resulting system is installed in the directory you specify.

http://sourceforge.net/projects/aphid/

15 Feb 201474

3.10 Automating installation

http://sourceforge.net/projects/aphid/

3.11 How can I tell whether mod_perl is running?
There are a few ways. In older versions of apache (< 1.3.6 ?) you could check that by running httpd
-v , but it no longer works. Now you should use httpd -l . Please note that it is not enough to have it
installed, you have to configure it for mod_perl and restart the server too.

3.11.1 Checking the error_log

When starting the server, just check the error_log file for the following message:

 [Thu Dec 3 17:27:52 1998] [notice] Apache/1.3.1 (Unix) mod_perl/1.15 configured
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 -- resuming normal operations

3.11.2 Testing by viewing /perl-status

Assuming that you have configured the <Location /perl-status> section in the server configuration file
fetch: http://www.example.com/perl-status using your favorite Mozilla browser :-)

You should see something like this:

 Embedded Perl version 5.00503 for Apache/1.3.9 (Unix) mod_perl/1.21
 process 50880, running since Mon Dec 6 14:31:45 1999

3.11.3 Testing via telnet

Knowing the port you have configured apache to listen on, you can use telnet to talk directly to it.

Assuming that your mod_perl enabled server listens to port 8080, telnet to your server at port 8080, and
type HEAD / HTTP/1.0 then press the ENTER key TWICE:

 % telnet localhost 8080<ENTER>
 HEAD / HTTP/1.0<ENTER><ENTER>

You should see a response like this:

 HTTP/1.1 200 OK
 Date: Mon, 06 Dec 1999 12:27:52 GMT
 Server: Apache/1.3.9 (Unix) mod_perl/1.21
 Connection: close
 Content-Type: text/html

 Connection closed.

The line

 Server: Apache/1.3.9 (Unix) mod_perl/1.21

7515 Feb 2014

3.11 How can I tell whether mod_perl is running?mod_perl Installation

http://www.example.com/perl-status

confirms that you have mod_perl installed and its version is 1.21 .

However, just because you have got mod_perl linked in there, that does not mean that you have configured
your server to handle Perl scripts with mod_perl. You will find configuration assistance at ModPerlCon-
figuration

3.11.4 Testing via a CGI script

Another method is to invoke a CGI script which dumps the server’s environment.

I assume that you have configured the server so that scripts running under location /perl/ are handled by
the Apache::Registry handler and that you have the PerlSendHeader directive set to On.

Copy and paste the script below (no need for a shebang line!). Let’s say you name it test.pl, save it at the
root of the CGI scripts and CGI root is mapped directly to the /perl location of your server.

 print "Content-type: text/plain\r\n\r\n";
 print "Server’s environment\n";
 foreach (keys %ENV) {
 print "$_\t$ENV{$_}\n";
 }

Make it readable and executable by server (you may need to tune these permissions on a public host):

 % chmod a+rx test.pl

Now fetch the URL http://www.example.com:8080/perl/test.pl (replace 8080 with the
port your mod_perl enabled server is listening to). You should see something like this (the output has been
edited):

 SERVER_SOFTWARE Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
 GATEWAY_INTERFACE CGI-Perl/1.1
 DOCUMENT_ROOT /home/httpd/docs
 REMOTE_ADDR 127.0.0.1
 [more environment variables snipped]
 MOD_PERL mod_perl/1.21_01-dev
 [more environment variables snipped]

If you see the that the value of GATEWAY_INTERFACE is CGI-Perl/1.1 everything is OK.

If there is an error you might have to add a shebang line #!/usr/bin/perl as a first line of the CGI
script and then try it again. If you see:

 GATEWAY_INTERFACE CGI/1.1

it means that you have configured this location to run under mod_cgi and not mod_perl.

Also note that there is a MOD_PERL environment variable if you run under a mod_perl handler, it’s set to
the mod_perl/x.xx string, where x.xx is the version number of mod_perl.

15 Feb 201476

3.11.4 Testing via a CGI script

http://www.example.com:8080/perl/test.pl

Based on this difference you can write code like this:

 BEGIN {
 # perl5.004 or better is a must under mod_perl
 require 5.004 if $ENV{MOD_PERL};
 }

You might wonder why in the world you would need to know what handler you are running under. Well,
for example you will want to use Apache::exit() and not CORE::exit() in your modules, but if
you think that your script might be used in both environments (mod_cgi and mod_perl) you will have to
override the exit() subroutine and to make decision what method to use at the runtime.

Note that if you run scripts under the Apache::Registry handler, it takes care of overriding the
exit() call for you, so it’s not an issue. For reasons and implementations see: Terminating requests and
processes, exit() function and also Writing Mod Perl scripts and Porting plain CGIs to it.

3.11.5 Testing via lwp-request

Yet another one. Why do I show all these approaches? While here they serve a very simple purpose, they
can be helpful in other situations.

Assuming you have the libwww-perl (LWP) package installed (you will need it installed in order to
pass mod_perl’s make test anyway):

 % lwp-request -e -d http://www.example.com

Will show you all the headers. The -d option disables printing the response content.

 % lwp-request -e -d http://www.example.com | egrep ’^Server:’

To see the server version only.

Specify the port number if your server is listening to a port other than port 80. For example:
http://www.example.com:8080 .

This technique works only if ServerTokens directive is set to Full or not specified in httpd.conf.
That’s because this directive controls whether the components information is displayed or not.

3.12 General Notes

3.12.1 Is it possible to run mod_perl enabled Apache as suExec?

The answer is No. The reason is that you can’t "suid" a part of a process. mod_perl lives inside the Apache
process, so its UID and GID are the same as the Apache process.

You have to use mod_cgi if you need this functionality.

7715 Feb 2014

3.12 General Notesmod_perl Installation

http://www.example.com:8080/

Another solution is to use a crontab to call some script that will check whether there is something to do
and will execute it. The mod_perl script will be able to create and update this todo list.

3.12.2 Should I Rebuild mod_perl if I have Upgraded Perl?

Yes, you should. You have to rebuild the mod_perl enabled server since it has a hard-coded @INC vari-
able. This points to the old Perl and it is probably linked to an old libperl library. If for some reason
you need to keep the old Perl version around you can modify @INC in the startup script, but it is better to
build afresh to save you getting into a mess.

3.12.3 Perl installation requirements

Make sure you have Perl installed! The latest stable version if possible. Minimum perl 5.004! If you don’t
have it, install it. Follow the instructions in the distribution’s INSTALL file.

During the configuration stage (while running ./Configure), to be able to dynamically load Perl
module extensions, make sure you answer YES to the question:

 Do you wish to use dynamic loading? [y]

3.12.4 mod_auth_dbm nuances

If you are a mod_auth_dbm or mod_auth_db user you may need to edit Perl’s Config module.
When Perl is configured it attempts to find libraries for ndbm, gdbm, db, etc., for the DB*_File modules.
By default, these libraries are linked with Perl and remembered by the Config module. When mod_perl
is configured with apache, the ExtUtils::Embed module requires these libraries to be linked with
httpd so Perl extensions will work under mod_perl. However, the order in which these libraries are stored
in Config.pm may confuse mod_auth_db* . If mod_auth_db* does not work with mod_perl, take a
look at the order with the following command:

 % perl -V:libs

Here’s an example:

 libs=’-lnet -lnsl_s -lgdbm -lndbm -ldb -ldld -lm -lc -lndir -lcrypt’;

If -lgdbm or -ldb is before -lndbm (as it is in the example) edit Config.pm and move -lgdbm and
-ldb to the end of the list. Here’s how to find Config.pm:

 % perl -MConfig -e ’print "$Config{archlibexp}/Config.pm\n"’

Under Solaris, another solution for building Apache/mod_perl+mod_auth_dbm is to remove the DBM and
NDBM "emulation" from libgdbm.a. It seems that Solaris already provides its own DBM and NDBM, and
in our installation we found there’s no reason to build GDBM with them.

In our Makefile for GDBM, we changed

15 Feb 201478

3.12.2 Should I Rebuild mod_perl if I have Upgraded Perl?

 OBJS = $(DBM_OF) $(NDBM_OF) $(GDBM_OF)

to

 OBJS = $(GDBM_OF)

Rebuild libgdbm before Apache/mod_perl.

3.12.5 Stripping Apache to make it almost a Perl-server

Since most of the functionality that various apache mod_* modules provide is implemented in the
Apache::{*} Perl modules, it was reported that one can build an Apache server with mod_perl only. If
you can reduce the requirements to whatever mod_perl can handle, you can eliminate almost every other
module. Then basically you will have a Perl-server, with C code to handle the tricky HTTP bits. The only
module you will need to leave in is mod_actions .

3.12.6 Saving the config.status Files with mod_perl, php, ssl and Other
Components

Typically, when building the bloated Apache that sits behind Squid or whatever, you need mod_perl, php,
mod_ssl and the rest. As you install each they typically overwrite each other’s config.status files.
Save them after each step, so you will be able to reuse them later.

3.12.7 What Compiler Should Be Used to Build mod_perl?

All Perl modules that use C extensions must be compiled using the same compiler that your copy of Perl
was built with and the same compile options.

When you run perl Makefile.PL , a Makefile is created. This Makefile includes the same compilation
options that were used to build Perl itself. They are stored in the Config.pm module and can be displayed
with the Perl -V command. All these options are re-applied when compiling Perl modules.

If you use a different compiler to build Perl extensions, chances are that the options that a different
compiler uses won’t be the same, or they might be interpreted in a completely different way. So the code
either won’t compile or it will dump core when run or maybe it will behave in most unexpected ways.

Since mod_perl uses Perl, Apache and third party modules, and they all work together, it’s essential to use
the same compiler while building each of the components.

You shouldn’t worry about this when compiling Perl modules since Perl will choose what’s right automat-
ically. Unless you override things. If you do that, you are on your own...

Similarly, if you compile a non-Perl component separately, you should make sure to use both the same
compiler and the same options used to build Perl.

7915 Feb 2014

3.12.5 Stripping Apache to make it almost a Perl-servermod_perl Installation

3.12.8 Unescaping error_log

Starting from 1.3.30, the Apache logging API escapes everything that goes to error_log, therefore if
you’re annoyed by this feature during the development phase (as your error messages will be all messed
up) you can disable the escaping during the Apache build time:

 % CFLAGS="-DAP_UNSAFE_ERROR_LOG_UNESCAPED" ./configure ...

Or if you build a static perl

 % perl Makefile.PL ... PERL_EXTRA_CFLAGS=-DAP_UNSAFE_ERROR_LOG_UNESCAPED

Do not use that CFLAGS in production unless you know what you are doing.

3.13 OS Related Notes
Gary Shea <shea (at) xmission.com> discovered a nasty BSDI bug (seen in versions 2.1 and 3.0)
related to dynamic loading and found two workarounds:

It turns out that they use argv[0] to determine where to find the link tables at run-time, so if a
program either changes argv[0] , or does a chdir() (like Apache!) it can easily confuse the dynamic
loader. The short-term solutions to the problem are simple. Either of the following will work:

1) Call httpd with a full path, e.g. /opt/www/bin/httpd

2) Put the httpd you wish to run in a directory in your PATH before any other directory containing a
version of httpd, then call it as ’httpd’. Don’t use a relative path!

3.14 Pros and Cons of Building mod_perl as DSO
On modern Unix derivatives there is a nifty mechanism usually called dynamic linking/loading of
Dynamic Shared Objects (DSO), which provides a way to build a piece of program code in a special
format for loading in at run-time into the address space of an executable program.

As of Apache 1.3, the configuration system supports two optional features for taking advantage of the
modular DSO approach: compilation of the Apache core program into a DSO library for shared usage and
compilation of the Apache modules into DSO files for explicit loading at run-time.

Should you use this method? Read the pros and cons and decide for yourself.

Pros:

The server package is more flexible at run-time because the actual server process can be assembled at
run-time via LoadModule httpd.conf configuration commands instead of Configuration AddMod-
ule commands at build-time. For instance this way one is able to run different server instances (stan-
dard & SSL version, with and without mod_perl) with only one Apache installation.

15 Feb 201480

3.13 OS Related Notes

The server package can be easily extended with third-party modules even after installation. This is at
least a great benefit for vendor package maintainers who can create an Apache core package and
additional packages containing extensions like PHP4, mod_perl, mod_fastcgi, etc.

Easier Apache module prototyping because with the DSO/apxs pair you can both work outside the
Apache source tree and only need an apxs -i command followed by an apachectl restart to bring a new
version of your currently developed module into the running Apache server.

Cons:

The DSO mechanism cannot be used on every platform because not all operating systems support
dynamic loading of code into the address space of a program.

The server starts up approximately 20% slower because of the symbol resolving overhead the Unix
loader now has to do.

The server runs approximately 5% slower on some platforms because position independent code
(PIC) sometimes needs complicated assembler tricks for relative addressing which are not necessarily
as fast as absolute addressing.

Because DSO modules cannot be linked against other DSO-based libraries (ld -lfoo) on all platforms
(for instance a.out-based platforms usually don’t provide this functionality while ELF-based plat-
forms do) you cannot use the DSO mechanism for all types of modules. Or in other words, modules
compiled as DSO files are restricted to only use symbols from the Apache core, from the C library
(libc) and all other dynamic or static libraries used by the Apache core, or from static library archives
(libfoo.a) containing position independent code. The only way you can use other code is to either
make sure the Apache core itself already contains a reference to it, loading the code yourself via
dlopen() or enabling the SHARED_CHAIN rule while building Apache when your platform supports
linking DSO files against DSO libraries.

Under some platforms (many SVR4 systems) there is no way to force the linker to export all global
symbols for use in DSO’s when linking the Apache httpd executable program. But without the visi-
bility of the Apache core symbols no standard Apache module could be used as a DSO. The only
workaround here is to use the SHARED_CORE feature because this way the global symbols are
forced to be exported. As a consequence the Apache src/Configure script automatically enforces
SHARED_CORE on these platforms when DSO features are used in the Configuration file or on the
configure command line.

3.15 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

8115 Feb 2014

3.15 Maintainersmod_perl Installation

http://stason.org/

3.16 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201482

3.16 Authors

http://stason.org/

4 mod_perl Configuration

8315 Feb 2014

4 mod_perl Configurationmod_perl Configuration

4.1 Description
This section documents the various configuration options available for Apache and mod_perl, as well as
the Perl startup files, and more esoteric possibilites such as configuring Apache with Perl.

4.2 Server Configuration
The next step after building and installing your new mod_perl enabled Apache server is to configure the
server. There are two separate parts to configure: Apache and mod_perl. Each has its own set of directives.

To configure your mod_perl enabled Apache server, the only file that you should need to edit is httpd.conf.
By default, httpd.conf is put into the conf directory under the server root directory. The default server root
is /usr/local/apache/ on many UNIX platforms, but within reason it can be any directory you choose. If
you are new to Apache and mod_perl, you will probably find it helpful to keep to the directory layouts we
use in this Guide if you can.

Apache versions 1.3.4 and later are distributed with the configuration directives in a single file --
httpd.conf. This Guide uses the same approach in its examples. Prior to version 1.3.4, the default Apache
installation used three configuration files -- httpd.conf, srm.conf, and access.conf. If you wish you can still
use all three files, by setting the AccessConfig and ResourceConfig directives in httpd.conf. You will also
see later on that we use other files, for example perl.conf and startup.pl. This is just for our convenience,
you could still do everything in httpd.conf if you wished.

4.3 Apache Configuration
Apache configuration can be confusing. To minimize the number of things that can go wrong, it can be a
good idea first to configure Apache itself without mod_perl. This will give you the confidence that it
works and maybe that you have some idea how to configure it.

There is a warning in the httpd.conf distributed with Apache about simply editing httpd.conf and running
the server, without understanding all the implications. This is another warning. Modifying the configura-
tion file and adding new directives can introduce security problems, and have performance implications.

The Apache distribution comes with an extensive configuration manual, and in addition each section of the
distributed configuration file includes helpful comments explaining how every directive should be config-
ured and what the defaults values are.

If you haven’t moved Apache’s directories around, the installation program will have configured every-
thing for you. You can just start the server and test it. To start the server use the apachectl utility
which comes bundled with the Apache distribution. It resides in the same directory as httpd , the Apache
server itself. Execute:

 /usr/local/apache/bin/apachectl start

15 Feb 201484

4.1 Description

Now you can test the server, for example by accessing http://localhost from a browser running on the same
host.

4.3.1 Configuration Directives

For a basic setup there are just a few things to configure. If you have moved any directories you have to
update them in httpd.conf. There are many of them, here are just a couple of examples:

 ServerRoot "/usr/local/apache"
 DocumentRoot "/home/httpd/docs"

If you want to run it on a port other than port 80 edit the Port directive:

 Port 8080

You might want to change the user and group names the server will run under. Note that if started as the
root user (which is generally the case), the parent process will continue to run as root, but its children will
run as the user and group you have specified. For example:

 User httpd
 Group httpd

There are many other directives that you might need to configure as well. In addition to directives which
take a single value there are whole sections of the configuration (such as the <Directory> and
<Location> sections) which apply only to certain areas of your Web space. As mentioned earlier you
will find them all in httpd.conf.

4.3.2 .htaccess files

If there is a file with the name .htaccess in any directory, Apache scans it for further configuration direc-
tives which it then applies only to that directory (and its subdirectories). The name .htaccess is confusing
because it can contain any configuration directives, not just those related to access to resources. You will
not be surprised to find that a configuration directive can change the names of the files used in this way.

Note that if there is a

 <Directory />
 AllowOverride None
 </Directory>

directive in httpd.conf, Apache will not try to look for .htaccess at all.

4.3.3 <Directory>, <Location> and <Files> Sections

I’ll explain just the basics of the <Directory> , <Location> and <Files> sections. Remember that
there is more to know and the rest of the information is available in the Apache documentation. The infor-
mation I’ll present here is just what is important for understanding the mod_perl configuration sections.

8515 Feb 2014

4.3.1 Configuration Directivesmod_perl Configuration

http://localhost/

Apache considers directories and files on your machine all to be resources. For each resource you can
determine a particular behaviour which will apply to every request for information from that particular
resource.

Obviously the directives in <Directory> sections apply to specific directories on your host machine,
and those in <Files> sections apply only to specific files (actually groups of files with names which
have something in common). In addition to these sections, Apache has the concept of a <Location> ,
which is also just a resource. <Location> sections apply to specific URIs. Locations are based at the
document root, directories are based at the filesystem root. For example, if you have the default server
directory layout where the server root is /usr/local/apache and the document root is
/usr/local/apache/htdocs then static files in the directory /usr/local/apache/htdocs/pub are in the location
/pub.

It is up to you to decide which directories on your host machine are mapped to which locations. You
should be careful how you do it, because the security of your server may be at stake.

Locations do not necessarily have to refer to existing physical directories, but may refer to virtual
resources which the server creates for the duration of a single browser request. As you will see, this is
often the case for a mod_perl server.

When a browser asks for a resource from your server, Apache determines from its configuration whether
or not to serve the request, whether to pass the request to another server, what (if any) authorization is
required for access to the resource, and how to reply. For any given resource, the various sections in your
configuration may provide conflicting information. For example you may have a <Directory> section
which tells Apache that authorization is required for access to the resource but you may have a <Files>
section which says that it is not. It is not always obvious which directive takes precedence in these cases.
This can be a trap for the unwary.

<Directory directoryPath> ... </Directory>

Can appear in server and virtual host configurations.

<Directory> and </Directory> are used to enclose a group of directives which will apply
only to the named directory and sub-directories of that directory. Any directive which is allowed in a
directory context (see the Apache documentation) may be used.

The path given in the <Directory> directive is either the full path to a directory, or a wild-card
string. In a wild-card string, ? matches any single character, * matches any sequence of characters,
and [] matches character ranges. (This is similar to the shell’s file globs.) None of the wildcards will
match a / character. For example:

 <Directory /home/httpd/docs>
 Options Indexes
 </Directory>

If you want to use a regular expression to match then you should use the syntax <Directory-
Match regex> ... </DirectoryMatch> .

15 Feb 201486

4.3.3 <Directory>, <Location> and <Files> Sections

If multiple (non-regular expression) directory sections match the directory (or its parents) containing
a document, then the directives are applied in the order of shortest match first, interspersed with the
directives from any .htaccess files. For example, with

 <Directory />
 AllowOverride None
 </Directory>

 <Directory /home/httpd/docs/*>
 AllowOverride FileInfo
 </Directory>

for access to the document /home/httpd/docs/index.html the steps are:

Apply directive AllowOverride None (disabling .htaccess files).
Apply directive AllowOverride FileInfo for directory /home/httpd/docs/ (which now
enables .htaccess in /home/httpd/docs/ and its sub-directories).
Apply any FileInfo directives in /home/httpd/docs/.htaccess.

<Files filename> ... </Files>

Can appear in server and virtual host configurations, and .htaccess files as well.

The <Files> directive provides for access control by filename. It is comparable to the <Direc-
tory> and <Location> directives. It should be closed with the </Files> directive. The direc-
tives given within this section will be applied to any object with a basename (last component of file-
name) matching the specified filename.

<Files> sections are processed in the order they appear in the configuration file, after the
<Directory> sections and .htaccess files are read, but before <Location> sections. Note that
<Files> can be nested inside <Directory> sections to restrict the portion of the filesystem they
apply to. <Files> cannot be nested inside <Location> sections however.

The filename argument should include a filename, or a wild-card string, where ? matches any single
character, and * matches any sequence of characters. Extended regular expressions can also be used,
simply place a tilde character ~ between the directive and the regular expression. The regular expres-
sion should be in quotes. The dollar symbol refers to the end of the string. The pipe character indi-
cates alternatives. Special characters in extended regular expressions must escaped with a backslash.
For example:

 <Files ~ "\.(gif|jpe?g|png)$">

would match most common Internet graphics formats. Alternatively you can use the <FilesMatch
regex> ... </FilesMatch> syntax.

<Location URL> ... </Location>

Can appear in server and virtual host configurations.

8715 Feb 2014

4.3.3 <Directory>, <Location> and <Files> Sectionsmod_perl Configuration

The <Location> directive provides for access control by URL. It is similar to the <Directory>
directive, and starts a section which is terminated with the </Location> directive.

<Location> sections are processed in the order they appear in the configuration file, after the
<Directory> sections, .htaccess files and <Files> sections are read.

The <Location> section is the directive that is used most often with mod_perl.

URLs do not have to refer to real directories or files within the filesystem at all, <Location> oper-
ates completely outside the filesystem. Indeed it may sometimes be wise to ensure that <Loca-
tion> s do not match real paths to avoid confusion.

The URL may use wildcards. In a wild-card string, ? matches any single character, and * matches
any sequences of characters, [] groups characters to match. For regular expression matches use the
<LocationMatch regex> ... </LocationMatch> syntax.

The <Location> functionality is especially useful when combined with the SetHandler direc-
tive. For example to enable status requests, but allow them only from browsers at example.com, you
might use:

 <Location /status>
 SetHandler server-status
 order deny,allow
 deny from all
 allow from .example.com
 </Location>

4.3.4 How Directory, Location and Files Sections are Merged

When configuring the server, it’s important to understand the order in which the rules of each section
apply to requests. The order of merging is:

1. <Directory> (except regular expressions) and .htaccess are processed simultaneously, with
.htaccess overriding <Directory>

2. <DirectoryMatch>, and <Directory> with regular expressions
3. <Files> and <FilesMatch> are processed simultaneously
4. <Location> and <LocationMatch> are processed simultaneously

Apart from <Directory> , each group is processed in the order that it appears in the configuration files.
<Directory> (group 1 above) is processed in the order shortest directory component to longest. If
multiple <Directory> sections apply to the same directory then they are processed in the configuration
file order.

Sections inside <VirtualHost> sections are applied as if you were running several independent
servers. The directives inside <VirtualHost> sections do not interact with each other. They are
applied after first processing any sections outside the virtual host definition. This allows virtual host
configurations to override the main server configuration.

15 Feb 201488

4.3.4 How Directory, Location and Files Sections are Merged

Later sections override earlier ones.

4.3.5 Sub-Grouping of <Location>, <Directory> and <Files> Sections

Let’s say that you want all files, except for a few of the files in a specific directory and below, to be
handled in the same way. For example if you want all the files in /home/http/docs to be served as plain
files, but any files with ending .html and .txt to be processed by the content handler of your
Apache::MyFilter module.

 <Directory /home/httpd/docs>
 <FilesMatch "\.(html|txt)$">
 SetHandler perl-script
 PerlHandler Apache::MyFilter
 </FilesMatch>
 </Directory>

Thus it is possible to embed sections inside sections to create subgroups which have their own distinct
behavior. Alternatively you could use a <Files> section inside an .htaccess file.

Note that you can’t put <Files> or <FilesMatch> sections inside a <Location> section, but you
can put them inside a <Directory> section.

4.3.6 Options Directive

Normally, if multiple Options directives apply to a directory, then the most specific one is taken
complete; the options are not merged.

However if all the options on the Options directive are preceded by a + or - symbol, the options are
merged. Any options preceded by + are added to the options currently in force, and any options preceded
by - are removed.

For example, without any + and - symbols:

 <Directory /home/httpd/docs>
 Options Indexes FollowSymLinks
 </Directory>
 <Directory /home/httpd/docs/shtml>
 Options Includes
 </Directory>

then only Includes will be set for the /home/httpd/docs/shtml directory. However if the second
Options directive uses the + and - symbols:

 <Directory /home/httpd/docs>
 Options Indexes FollowSymLinks
 </Directory>
 <Directory /home/httpd/docs/shtml>
 Options +Includes -Indexes
 </Directory>

8915 Feb 2014

4.3.5 Sub-Grouping of <Location>, <Directory> and <Files> Sectionsmod_perl Configuration

then the options FollowSymLinks and Includes are set for the /home/httpd/docs/shtml directory.

4.4 mod_perl Configuration
When you have tested that the Apache server works on your machine, it’s time to configure mod_perl.
Some of the configuration directives are already familiar to you, but mod_perl introduces a few new ones.

It can be a good idea to keep all the mod_perl related configuration at the end of the configuration file,
after the native Apache configuration directives.

To ease maintenance and to simplify multiple server installations, the Apache/mod_perl configuration
system allows you several alternative ways to keep your configuration directives in separate places. The
Include directive in httpd.conf allow you to include the contents of other files, just as if the information
were all contained in httpd.conf. This is a feature of Apache itself. For example if you want all your
mod_perl configuration to be placed in a separate file mod_perl.conf you can do that by adding to
httpd.conf this directive:

 Include conf/mod_perl.conf

If you want to include this configuration conditionally, depending on whether your apache has been
compiled with mod_perl, you can use the IfModule directive:

 <IfModule mod_perl.c>
 Include conf/mod_perl.conf
 </IfModule>

mod_perl adds two further directives: <Perl> sections allow you to execute Perl code from within any
configuration file at server startup time, and as you will see later, a file containing any Perl program can be
executed (also at server startup time) simply by mentioning its name in a PerlRequire or PerlMod-
ule directive.

4.4.1 Alias Configurations

The ScriptAlias and Alias directives provide a mapping of a URI to a file system directory. The
directive:

 Alias /foo /home/httpd/foo

will map all requests starting with /foo onto the files starting with /home/httpd/foo/. So when Apache gets
a request http://www.example.com/foo/test.pl the server will map this into the file test.pl in the directory
/home/httpd/foo/.

In addition ScriptAlias assigns all the requests that match the URI (i.e. /cgi-bin) to be executed under
mod_cgi.

 ScriptAlias /cgi-bin /home/httpd/cgi-bin

15 Feb 201490

4.4 mod_perl Configuration

http://www.example.com/foo/test.pl

is actually the same as:

 Alias /cgi-bin /home/httpd/cgi-bin
 <Location /cgi-bin>
 SetHandler cgi-script
 Options +ExecCGI
 </Location>

where latter directive invokes mod_cgi. You shouldn’t use the ScriptAlias directive unless you want
the request to be processed under mod_cgi. Therefore when you configure mod_perl sections use Alias
instead.

Under mod_perl the Alias directive will be followed by two further directives. The first is the
SetHandler perl-script directive, which tells Apache to invoke mod_perl to run the script. The second
directive (for example PerlHandler) tells mod_perl which handler (Perl module) the script should be
run under, and hence for which phase of the request. Refer to the section Perl*Handlers for more informa-
tion about handlers for the various request phases.

When you have decided which methods to use to run your scripts and where you will keep them, you can
add the configuration directive(s) to httpd.conf. They will look like those below, but they will of course
reflect the locations of your scripts in your file-system and the decisions you have made about how to run
the scripts:

 ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/
 Alias /perl/ /home/httpd/perl/

In the examples above all the requests issued for URIs starting with /cgi-bin will be served from the direc-
tory /home/httpd/cgi-bin/, and starting with /perl from the directory /home/httpd/perl/.

4.4.1.1 Running CGI, PerlRun, and Registry Scripts Located in the Same Directory

 # Typical for plain cgi scripts:
 ScriptAlias /cgi-bin/ /home/httpd/perl/

 # Typical for Apache::Registry scripts:
 Alias /perl/ /home/httpd/perl/

 # Typical for Apache::PerlRun scripts:
 Alias /cgi-perl/ /home/httpd/perl/

In the examples above we have mapped the three different URIs (http://www.example.com/perl/test.pl
http://www.example.com/cgi-bin/test.pl and http://www.example.com/cgi-perl/test.pl) all to the same file
/home/httpd/perl/test.pl. This means that we can have all our CGI scripts located at the same place in the
file-system, and call the script in any of three ways simply by changing one component of the URI
(cgi-bin|perl|cgi-perl).

This technique makes it easy to migrate your scripts to mod_perl. If your script does not seem to be
working while running under mod_perl, then in most cases you can easily call the script in straight
mod_cgi mode or under Apache::PerlRun without making any script changes. Simply change the
URL you use to invoke it.

9115 Feb 2014

4.4.1 Alias Configurationsmod_perl Configuration

http://www.example.com/perl/test.pl
http://www.example.com/cgi-bin/test.pl
http://www.example.com/cgi-perl/test.pl

Although in the configuration above we have configured all three Aliases to point to the same directory
within our file system, you can of course have them point to different directories if you prefer.

You should remember that it is undesirable to run scripts in plain mod_cgi mode from a mod_perl-enabled
server--the resource consumption is too high. It is better to run these on a plain Apache server. See Stan-
dalone mod_perl Enabled Apache Server.

4.4.2 <Location> Configuration

The <Location> section assigns a number of rules which the server should follow when the request’s
URI matches the Location. Just as it is the widely accepted convention to use /cgi-bin for your mod_cgi
scripts, it is conventional to use /perl as the base URI of the perl scripts which you are running under
mod_perl. Let’s review the following very widely used <Location> section:

 Alias /perl/ /home/httpd/perl/
 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

This configuration causes all requests for URIs starting with /perl to be handled by the mod_perl Apache
module with the handler from the Apache::Registry Perl module. Let’s review the directives inside
the <Location> section in the example:

 <Location /perl>

Remember the Alias from the above section? We use the same Alias here; if you were to use a
<Location> that does not have the same Alias , the server would fail to locate the script in the file
system. You need the Alias setting only if the code that should be executed is located in the file. So
Alias just provides the URI to filepath translation rule.

Sometimes there is no script to be executed. Instead there is some module whose method is being
executed, similar to /perl-status, where the code is stored in an Apache module. In such cases we don’t
need Alias settings for those <Location> s.

 SetHandler perl-script

This assigns the mod_perl Apache module to handle the content generation phase.

 PerlHandler Apache::Registry

Here we tell Apache to use the Apache::Registry Perl module for the actual content generation.

 Options ExecCGI

15 Feb 201492

4.4.2 <Location> Configuration

The Options directive accepts various parameters (options), one of which is ExecCGI . This tells the
server that the file is a program and should be executed, instead of just being displayed like a static file
(like HTML file). If you omit this option then the script will either be rendered as plain text or else it will
trigger a Save-As dialog, depending on the client’s configuration.

 allow from all

This directive is used to set access control based on domain. The above settings allow clients from any
domain to run the script.

 PerlSendHeader On

PerlSendHeader On tells the server to send an HTTP headers to the browser on every script invoca-
tion. You will want to turn this off for nph (non-parsed-headers) scripts.

The PerlSendHeader On setting invokes the Apache’s ap_send_http_header() method after
parsing the headers generated by the script. It is only meant for emulation of mod_cgi behavior with
regard to headers.

To send the HTTP headers it’s always better either to use the $r->send_http_header method using
the Apache Perl API or to use the $q->header method from the CGI.pm module.

 </Location>

Closes the <Location> section definition.

Note that sometimes you will have to preload the module before using it in the <Location> section. In
the case of Apache::Registry the configuration will look like this:

 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

PerlModule is equivalent to Perl’s native use() function call.

No changes are required to the /cgi-bin location (mod_cgi), since it has nothing to do with mod_perl.

Here is another very similar example, this time using Apache::PerlRun (For more information see
Apache::PerlRun):

 <Location /cgi-perl>
 SetHandler perl-script
 PerlHandler Apache::PerlRun
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

9315 Feb 2014

4.4.2 <Location> Configurationmod_perl Configuration

The only difference from the Apache::Registry configuration is the argument of the PerlHan-
dler directive, where Apache::Registry has been replaced with Apache::PerlRun .

4.4.3 Overriding <Location> Setting in "Sub-Location"

So if you have:

 <Location /foo>
 SetHandler perl-script
 PerlHandler My::Module
 </Location>

If you want to remove a mod_perl handler setting from a location beneath a location where the handler
was set (i.e. /foo/bar), all you have to do is to reset it, like this:

 <Location /foo/bar>
 SetHandler default-handler
 </Location>

Now, all the requests starting with /foo/bar would be served by Apache’s default handler.

4.4.4 PerlModule and PerlRequire Directives

As we saw earlier, a module should be loaded before it is used. PerlModule and PerlRequire are
the two mod_perl directives which are used to load modules and code. They are almost equivalent to
Perl’s use() and require() functions respectively and called from the Apache configuration file. You
can pass one or more module names as arguments to PerlModule :

 PerlModule Apache::DBI CGI DBD::Mysql

Generally the modules are preloaded from the startup script, which is usually called startup.pl. This is a
file containing plain Perl code which is executed through the PerlRequire directive. For example:

 PerlRequire /home/httpd/perl/lib/startup.pl

A PerlRequire file name can be absolute or relative to ServerRoot or a path in @INC.

As with any file with Perl code that gets use() ’d or require() ’d, it must return a true value. To
ensure that this happens don’t forget to add 1; at the end of startup.pl.

Notice that unless mod_perl is compiled as DSO and unless PerlFreshRestart is set to On, one
needs to fully stop and start Apache for any changes to take affect, if the files and modules have been
modified.

4.4.5 Perl*Handlers

As you probably know Apache traverses a loop for each HTTP request it receives.

15 Feb 201494

4.4.3 Overriding <Location> Setting in "Sub-Location"

After you have compiled and installed mod_perl, your Apache mod_perl configuration directives tell
Apache to invoke the module mod_perl as the handler for some request which it receives. Although it
could in fact handle all the phases of the request loop, usually it does not. You tell mod_perl which phases
it is to handle (and so which to leave to other modules, or to the default Apache routines) by putting
Perl*Handler directives in the configuration files.

Because you need the Perl interpreter to be present for your Perl script to do any processing at all, there is
a slight difference between the way that you configure Perl and C handlers to handle parts of the request
loop. Ordinarily a C module is written, compiled and configured to hook into a specific phase of the
request loop. For a Perl handler you compile mod_perl itself to hook into the appropriate phases, as if it
were to handle the phases itself. Then you put Perl*Handler directives in your configuration file to
tell mod_perl that it is to pass the responsibility for handling that part of the request phase to your Perl
module.

mod_perl is an Apache module written in C. As most programmers will only need to handle the response
phase, in the default compilation most of the Perl*Handler s are disabled. When you configure the
Makefile.PL file for its compilation, you must specify whether or not you will want to handle parts of the
request loop other than the usual content generation phase. If so you need to specify which parts. See the
"Callback Hooks" section for how to do this.

Apache specifies about eleven phases of the request loop, namely (and in order of processing):
Post-Read-Request, URI Translation, Header Parsing, Access Control, Authentication, Authorization,
MIME type checking, FixUp, Response (also known as the Content handling phase), Logging and finally
Cleanup. These are the stages of a request where the Apache API allows a module to step in and do some-
thing. There is a dedicated Perl*Handler for each of these stages plus a couple of others which don’t
correspond to parts of the request loop.

We call them Perl*Handler directives because the names of the many mod_perl handler directives for
the various phases of the request loop all follow the same format. The * in Perl*Handler is a place-
holder to be replaced by something which identifies the phase to be handled. For example PerlLogHan-
dler is a Perl Handler which (fairly obviously) handles the logging phase.

The slight exception is PerlHandler , which you can think of as PerlResponseHandler . It is the
content generation handler and so it is probably the one that you will use most frequently.

Note that it is mod_perl which recognizes these directives, and not Apache. They are mod_perl directives,
and an ordinary Apache does not recognize them. If you get error messages about these directives being
"perhaps mis-spelled" it is a sure sign that the appropriate part of mod_perl (or the entire mod_perl
module!) is not present in your copy of Apache executable.

The full list of Perl*Handler s follows. They are in the order that they are processed by Apache and
mod_perl:

 PerlChildInitHandler
 PerlPostReadRequestHandler
 PerlInitHandler
 PerlTransHandler
 PerlHeaderParserHandler
 PerlAccessHandler

9515 Feb 2014

4.4.5 Perl*Handlersmod_perl Configuration

 PerlAuthenHandler
 PerlAuthzHandler
 PerlTypeHandler
 PerlFixupHandler
 PerlHandler
 PerlLogHandler
 PerlCleanupHandler
 PerlChildExitHandler
 PerlDispatchHandler
 PerlRestartHandler

PerlChildInitHandler and PerlChildExitHandler do not refer to parts of the request loop,
they are to allow your modules to initialize data structures and to clean up at the child process start-up and
shutdown respectively, for example by allocating and deallocating memory.

All <Location> , <Directory> and <Files> sections contain a physical path specification. Like
PerlChildInitHandler and PerlChildExitHandler , the directives PerlPostRead-
RequestHandler and PerlTransHandler cannot be used in these sections, nor in .htaccess files,
because it is not until the end of the Translation Handler (PerlTransHandler) phase that the path
translation is completed and a physical path is known.

PerlInitHandler changes its behaviour depending upon where it is used. In any case it is the first
handler to be invoked in serving a request. If found outside any <Location> , <Directory> or
<Files> section (at the top level), it is an alias for PerlPostReadRequestHandler . When inside
any such section it is an alias for PerlHeaderParserHandler .

Starting from PerlHeaderParserHandler the requested URI has been mapped to a physical server
pathname, and thus it can be used to match a <Location> , <Directory> or <Files> configuration
section, or to look in a .htaccess file if such a file exists in the specified directory in the translated path.

PerlDispatchHandler and PerlRestartHandler do not correspond to parts of the Apache API,
but allow you to fine-tune the mod_perl API.

The Apache documentation will tell you all about these stages and what your modules can do. By default,
most of these hooks are disabled at compile time, see the"Callback Hooks" section for information on
enabling them.

4.4.6 The handler subroutine

By default the mod_perl API expects a subroutine called handler() to handle the request in the regis-
tered Perl*Handler module. Thus if your module implements this subroutine, you can register the
handler with mod_perl like this:

 Perl*Handler Apache::Foo

Replace Perl*Handler with the name of a specific handler from the list given above. mod_perl will
preload the specified module for you. Please note that this approach will not preload the module at startup.
To make sure it gets loaded you have three options: you can explicitly preload it with the PerlModule
directive:

15 Feb 201496

4.4.6 The handler subroutine

 PerlModule Apache::Foo

You can preload it at the startup file:

 use Apache::Foo ();

Or you can use a nice shortcut that the Perl*Handler syntax provides:

 Perl*Handler +Apache::Foo

Note the leading + character. This directive is equivalent to:

 PerlModule Apache::Foo
 Perl*Handler Apache::Foo

If you decide to give the handler routine a name other than handler , for example my_handler , you
must preload the module and explicitly give the name of the handler subroutine:

 PerlModule Apache::Foo
 Perl*Handler Apache::Foo::my_handler

As you have seen, this will preload the module at server startup.

If a module needs to know which handler is currently being run, it can find out with the current_callback
method. This method is most useful to PerlDispatchHandlers which wish to take action for certain phases
only.

 if ($r->current_callback eq "PerlLogHandler") {
 $r->warn("Logging request");
 }

4.4.7 Stacked Handlers

With the mod_perl stacked handlers mechanism, during any stage of a request it is possible for more than
one Perl*Handler to be defined and run.

Perl*Handler directives (in your configuration files) can define any number of subroutines. For
example:

 PerlTransHandler OneTrans TwoTrans RedTrans BlueTrans

With the method Apache->push_handlers() , callbacks (handlers) can be added to a stack at
runtime by mod_perl scripts.

Apache->push_handlers() takes the callback hook name as its first argument and a subroutine
name or reference as its second.

Here’s an example:

9715 Feb 2014

4.4.7 Stacked Handlersmod_perl Configuration

 use Apache::Constants qw(:common);
 sub my_logger {
 #some code here
 return OK;
 }
 Apache->push_handlers("PerlLogHandler", \&my_logger);

Here’s another one:

 use Apache::Constants qw(:common);
 $r->push_handlers("PerlLogHandler", sub {
 print STDERR "__ANON__ called\n";
 return OK;
 });

After each request, this stack is erased.

All handlers will be called unless a handler returns a status other than OK or DECLINED.

Example uses:

CGI.pm maintains a global object for its plain function interface. Since the object is global, it does not go
out of scope, DESTROY is never called. CGI->new can call:

 Apache->push_handlers("PerlCleanupHandler", \&CGI::_reset_globals);

This function will be called during the final stage of a request, refreshing CGI.pm ’s globals before the
next request comes in.

Apache::DCELogin establishes a DCE login context which must exist for the lifetime of a request, so
the DCE::Login object is stored in a global variable. Without stacked handlers, users must set

 PerlCleanupHandler Apache::DCELogin::purge

in the configuration files to destroy the context. This is not "user-friendly". Now, Apache::DCELo-
gin::handler can call:

 Apache->push_handlers("PerlCleanupHandler", \&purge);

Persistent database connection modules such as Apache::DBI could push a PerlCleanupHandler
handler that iterates over %Connected , refreshing connections or just checking that connections have not
gone stale. Remember, by the time we get to PerlCleanupHandler , the client has what it wants and
has gone away, so we can spend as much time as we want here without slowing down response time to the
client (although the process itself is unavailable for serving new requests before the operation is
completed).

PerlTransHandlers (e.g. Apache::MsqlProxy) may decide, based on the URI or some arbitrary
condition, whether or not to handle a request. Without stacked handlers, users must configure it them-
selves:

15 Feb 201498

4.4.7 Stacked Handlers

 PerlTransHandler Apache::MsqlProxy::translate
 PerlHandler Apache::MsqlProxy

PerlHandler is never actually invoked unless translate() sees that the request is a proxy request
($r->proxyreq). If it is a proxy request, translate() sets $r->handler("perl-script") ,
and only then will PerlHandler handle the request. Now users do not have to specify PerlHandler
Apache::MsqlProxy , the translate() function can set it with push_handlers() .

Imagine that you want to include footers, headers, etc., piecing together a document, without using SSI.
The following example shows how to implement it. First we prepare the code as follows:

 Test/Compose.pm

 package Test::Compose;
 use Apache::Constants qw(:common);

 sub header {
 my $r = shift;
 $r->content_type("text/plain");
 $r->send_http_header;
 $r->print("header text\n");
 return OK;
 }
 sub body { shift->print("body text\n") ; return OK}
 sub footer { shift->print("footer text\n") ; return OK}
 1;
 __END__

 # in httpd.conf or perl.conf
 PerlModule Test::Compose
 <Location /foo>
 SetHandler "perl-script"
 PerlHandler Test::Compose::header Test::Compose::body Test::Compose::footer
 </Location>

Parsing the output of another PerlHandler? This is a little more tricky, but consider:

 <Location /foo>
 SetHandler "perl-script"
 PerlHandler OutputParser SomeApp
 </Location>

 <Location /bar>
 SetHandler "perl-script"
 PerlHandler OutputParser AnotherApp
 </Location>

Now, OutputParser goes first, but it untie() ’s *STDOUT and re-tie() ’s it to its own package
like so:

 package OutputParser;

 sub handler {
 my $r = shift;
 untie *STDOUT;

9915 Feb 2014

4.4.7 Stacked Handlersmod_perl Configuration

 tie *STDOUT => ’OutputParser’, $r;
 }

 sub TIEHANDLE {
 my ($class, $r) = @_;
 bless { r => $r}, $class;
 }

 sub PRINT {
 my $self = shift;
 for (@_) {
 #do whatever you want to $_ for example:
 $self->{r}->print($_ . "[insert stuff]");
 }
 }

 1;
 __END__

To build in this feature, configure with:

 % perl Makefile.PL PERL_STACKED_HANDLERS=1 [...]

If you want to test whether your running mod_perl Apache can stack handlers, the method
Apache->can_stack_handlers will return TRUE if mod_perl was configured with
PERL_STACKED_HANDLERS=1, and FALSE otherwise.

4.4.8 Perl Method Handlers

If a Perl*Handler is prototyped with $$, this handler will be invoked as a method. For example:

 package MyClass;
 @ISA = qw(BaseClass);

 sub handler ($$) {
 my ($class, $r) = @_;
 ...;
 }

 package BaseClass;

 sub method ($$) {
 my ($class, $r) = @_;
 ...;
 }

 1;

Configuration:

 PerlHandler MyClass

15 Feb 2014100

4.4.8 Perl Method Handlers

or

 PerlHandler MyClass->handler

Since the handler is invoked as a method, it may inherit from other classes:

 PerlHandler MyClass->method

In this case, the MyClass class inherits this method from BaseClass . This means that any method of
MyClass or any of its parent classes can serve as a mod_perl handler, and that you can apply good OO
methodology within your mod_perl handlers.

For instance, you could have this base class:

 package ServeContent;

 use Apache::Constants qw(OK);

 sub handler($$) {
 my ($class, $r) = @_;

 $r->send_http_header(’text/plain’);
 $r->print($class->get_content());

 return OK;
 }

 sub get_content {
 return ’Hello World’;
 }

 1;

And then use the same base class for different contents:

 package HelloWorld;

 use ServeContent;
 @ISA = qw(ServeContent);

 sub get_content {
 return ’Hello, happy world!’;
 }

 package GoodbyeWorld;

 use ServeContent;
 @ISA = qw(ServeContent);

 sub get_content {
 return ’Goodbye, cruel world!’;
 }

 1;

10115 Feb 2014

4.4.8 Perl Method Handlersmod_perl Configuration

Now you can keep the same handler subroutine for a group of modules which are similiar. The following
configuration will enable the handlers from the subclasses:

 <Location /hello>
 SetHandler perl-script
 PerlHandler HelloWorld->handler
 </Location>

 <Location /bye>
 SetHandler perl-script
 PerlHandler GoodbyeWorld->handler
 </Location>

To build in this feature, configure with:

 % perl Makefile.PL PERL_METHOD_HANDLERS=1 [...]

4.4.9 PerlFreshRestart

To reload PerlRequire , PerlModule and other use() ’d modules, and to flush the
Apache::Registry cache on server restart, add to httpd.conf:

 PerlFreshRestart On

Make sure you read Evil things might happen when using PerlFreshRestart.

Starting from mod_perl version 1.22 PerlFreshRestart is ignored when mod_perl is compiled as a
DSO. But it almost doesn’t matter, since mod_perl as a DSO will do a full tear-down (perl_destruct()). So
it’s still a FreshRestart, just fresher than static (non-DSO) mod_perl :)

But note that even if you have

 PerlFreshRestart Off

and mod_perl as a DSO you will still get a FreshRestart.

4.4.10 PerlSetEnv and PerlPassEnv
 PerlSetEnv key val
 PerlPassEnv key

PerlPassEnv passes, PerlSetEnv sets and passes ENVironment variables to your scripts. You can
access them in your scripts through %ENV (e.g. $ENV{"key"}). These commands are useful to pass
information to your handlers or scripts, or to any modules you use that require some additional configura-
tion.

For example, the Oracle RDBMS requires a number of ORACLE_* environment variables to be set so that
you can connect to it through DBI . So you might want to put this in your httpd.conf:

15 Feb 2014102

4.4.9 PerlFreshRestart

 PerlSetEnv ORACLE_BASE /oracle
 PerlSetEnv ORACLE_HOME /oracle
 : :

You can then use DBI to access your oracle server without having to set the environment variables in your
handlers.

PerlPassEnv proposes another approach: you might want to set the corresponding environment vari-
ables in your shell, and not reproduce the information in your httpd.conf. For example, you might have this
in your .bash_profile:

 ORACLE_BASE=/oracle
 ORACLE_HOME=/oracle
 export ORACLE_BASE ORACLE_HOME

However, Apache (or mod_perl) don’t pass on environment variables from the shell by default; you’ll
have to specify these using either the standard PassEnv or mod_perl’s PerlPassEnv directives.

 PerlPassEnv ORACLE_BASE ORACLE_HOME

One thing to be aware of is that when you start Apache under a shell different than the one you are logged
in from, the environment variables could be totally different, so don’t be surprised if you get a different
value when using Passenv /PerlPassEnv or none at all. Check the environment Apache is started
from. Often it’s started from a special account like apache, or nobody, and can be anything else. Check the
value of User variable in httpd.conf to find out the right answer. Once you figure that out, make sure that
the shell Apache starts from has the desired environment variables right. And may be it’s a better idea not
to rely on the shell variables, but instead set those explicitly using Setenv /PerlSetEnv .

Regarding the setting of PerlPassEnv PERL5LIB in httpd.conf: if you turn on taint checks (Perl-
TaintCheck On), $ENV{PERL5LIB} will be ignored (unset). See the ’Switches -w, -T’ section.

While the Apache’s SetEnv /PassEnv and mod_perl’s PerlSetEnv /PerlPassEnv apparently do
the same thing, the former doesn’t happen until the fixup phase, the latter happens as soon as possible, so
those variables are available before then, e.g. in PerlAuthenHandler for $ENV{ORACLE_HOME} (or
another environment variable that you need in these early request processing stages).

4.4.11 PerlSetVar and PerlAddVar

PerlSetVar is very similar to PerlSetEnv ; however, variables set using PerlSetVar are only
available through the mod_perl API, and is thus more suitable for configuration. For example, environ-
ment variables are available to all, and might show up on casual "print environment" scripts, which you
might not like. PerlSetVar is well-suited for modules needing some configuration, but not wanting to
implement first-class configuration handlers just to get some information.

 PerlSetVar foo bar

or

10315 Feb 2014

4.4.11 PerlSetVar and PerlAddVarmod_perl Configuration

 <Perl>
 push @{ $Location{"/"}->{PerlSetVar} }, [foo => ’bar’];
 </Perl>

and in the code you read it with:

 my $r = Apache->request;
 print $r->dir_config(’foo’);

The above prints:

 bar

Note that you cannot do this:

 push @{ $Location{"/"}->{PerlSetVar} }, [foo => \%bar];

All values are treated as strings, so you will get a stringified reference to a hash as a value (something
which will look like "HASH(0x87a5108) "). This cannot be turned back into a reference and therefore
into the original hash upon retrieval.

However you can use the PerlAddVar directive to push more values into the variable, emulating arrays.
For example:

 PerlSetVar foo bar
 PerlAddVar foo bar1
 PerlAddVar foo bar2

or the equivalent:

 PerlAddVar foo bar
 PerlAddVar foo bar1
 PerlAddVar foo bar2

To retrieve the values use the $r->dir_config->get() method:

 my @foo = $r->dir_config->get(’foo’);

or

 my %foo = $r->dir_config->get(’foo’);

Make sure that you use an even number of elements if you store the retrieved values in a hash, like this:

 PerlAddVar foo key1
 PerlAddVar foo value1
 PerlAddVar foo key2
 PerlAddVar foo value2

Then %foo will have a structure like this:

15 Feb 2014104

4.4.11 PerlSetVar and PerlAddVar

 %foo = (
 key1 => ’value1’,
 key2 => ’value2’,
);

There are some things you should know about sub requests and $r->dir_config . For
$r->lookup_uri , everything works as expected, because all normal phases are run. You can then
retrieve variables set in the server scope of the configuration, in <VirtualHost> sections, in <Loca-
tion> sections, etc.

However, when using the $r->lookup_file method, you are effectively skipping the URI translation
phase. This means that the URI won’t be known by Apache, only the file name to retrieve. As such,
<Location> sections won’t be applied. This means that if you were using:

 Alias /perl-subr/ /home/httpd/perl-subr/
 <Location /perl-subr>
 PerlSetVar foo bar
 PerlSetVar foo2 bar2
 </Location>

And issue a subrequest using $r->lookup_file and try to retrieve its directory configuration
(Apache::SubRequest class is just a subclass of Apache):

 my $subr = $r->lookup_file(’/home/httpd/perl-subr/script.pl’);
 print $subr->dir_config(’foo’);

You won’t get the results you wanted.

As a side note: the issue we discussed here means that /perl-subr/script.pl won’t even run under mod_perl
if configured in the normal Apache::Registry way (using a <Location> section), because the <Loca-
tion> blocks won’t be applied. You’d have to use a <Directory> or <Files> section configuration
to achieve the desired effect. As to the PerlSetVar discussion, using <Directory> or <Files>
section would solve the problem.

4.4.12 PerlSetupEnv

PerlSetupEnv On will allow you to access the environment variables like $ENV{REQUEST_URI},
which are available under CGI. However, when programming handlers, there are always better ways to
access these variables through the Apache API. Therefore, it is recommended to turn it Off except for
scripts which absolutely require it. See PerlSetupEnv Off.

4.4.13 PerlWarn and PerlTaintCheck

For PerlWarn and PerlTaintCheck directives see the ’Switches -w, -T’ section.

10515 Feb 2014

4.4.12 PerlSetupEnvmod_perl Configuration

4.4.14 MinSpareServers MaxSpareServers StartServers MaxClients
MaxRequestsPerChild

MinSpareServers , MaxSpareServers , StartServers and MaxClients are standard Apache
configuration directives that control the number of servers that will be launched at server startup and kept
alive during the server’s operation.

MaxRequestsPerChild lets you specify the maximum number of requests which each child will be
allowed to serve. When a process has served MaxRequestsPerChild requests the parent kills it and
replaces it with a new one. There may also be other reasons why a child is killed, so it does not mean that
each child will in fact serve this many requests, only that it will not be allowed to serve more than that
number.

These five directives are very important for achieving the best performance from your server. The section
’ Performance Tuning by Tweaking Apache Configuration’ provides all the details.

4.5 The Startup File
At server startup, before child processes are spawned to receive incoming requests, there is more that can
be done than just preloading files. You might want to register code that will initialize a database connec-
tion for each child when it is forked, tie read-only dbm files, etc.

The startup.pl file is an ideal place to put the code that should be executed when the server starts. Once
you have prepared the code, load it in httpd.conf before the rest of the mod_perl configuration directives
like this:

 PerlRequire /home/httpd/perl/lib/startup.pl

I must stress that all the code that is run at server initialization time is run with root privileges if you are
executing it as the root user (which you have to do unless you choose to run the server on an unprivileged
port, above 1024). This means that anyone who has write access to a script or module that is loaded by
PerlModule or PerlRequire effectively has root access to the system. You might want to take a
look at the new and experimental PerlOpmask directive and PERL_OPMASK_DEFAULT compile time
option to try to disable some of the more dangerous operations.

Since the startup file is a file written in plain Perl, one can validate its syntax with:

 % perl -c /home/httpd/perl/lib/startup.pl

4.5.1 The Sample Startup File

Let’s look at a real world startup file:

 startup.pl

 use strict;

 # Extend @INC if needed

15 Feb 2014106

4.5 The Startup File

 use lib qw(/dir/foo /dir/bar);

 # Make sure we are in a sane environment.
 $ENV{MOD_PERL} or die "not running under mod_perl!";

 # For things in the "/perl" URL
 use Apache::Registry;

 # Load Perl modules of your choice here
 # This code is interpreted *once* when the server starts
 use LWP::UserAgent ();
 use Apache::DBI ();
 use DBI ();

 # Tell me more about warnings
 use Carp ();
 $SIG{__WARN__} = \&Carp::cluck;

 # Load CGI.pm and call its compile() method to precompile
 # (but not to import) its autoloaded methods.
 use CGI ();
 CGI->compile(’:all’);

 # Initialize the database connections for each child
 Apache::DBI->connect_on_init
 ("DBI:mysql:database=test;host=localhost",
 "user","password",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
);

 1;

Now we’ll review the code explaining why each line is used.

 use strict;

This pragma is worth using in every script longer than half a dozen lines. It will save a lot of time and
debugging later on.

 use lib qw(/dir/foo /dir/bar);

The only chance to permanently modify @INC before the server is started is with this command. Later the
running code can modify @INC just for the moment it require() ’s some file, and then @INC’s value
gets reset to what it was originally.

 $ENV{MOD_PERL} or die "not running under mod_perl!";

A sanity check, if Apache/mod_perl wasn’t properly built, the above code will abort the server startup.

10715 Feb 2014

4.5.1 The Sample Startup Filemod_perl Configuration

 use Apache::Registry;
 use LWP::UserAgent ();
 use Apache::DBI ();
 use DBI ();

Preload the modules that get used by our Perl code serving the requests. Unless you need the symbols
(variables and subroutines) exported by the modules you preload to accomplish something within the
startup file, don’t import them, since it’s just a waste of startup time. Instead use the empty list () to tell
the import() function not to import anything.

 use Carp ();
 $SIG{__WARN__} = \&Carp::cluck;

This is a useful snippet to enable extended warnings logged in the error_log file. In addition to basic warn-
ings, a trace of calls is added. This makes the tracking of the potential problem a much easier task, since
you know who called whom. For example, with normal warnings you might see:

 Use of uninitialized value at
 /usr/lib/perl5/site_perl/5.005/Apache/DBI.pm line 110.

but you have no idea where it was called from. When we use Carp as shown above we might see:

 Use of uninitialized value at
 /usr/lib/perl5/site_perl/5.005/Apache/DBI.pm line 110.
 Apache::DBI::connect(undef, ’mydb::localhost’, ’user’,
 ’passwd’, ’HASH(0x87a5108)’) called at
 /usr/lib/perl5/site_perl/5.005/i386-linux/DBI.pm line 382
 DBI::connect(’DBI’, ’DBI:mysql:mydb::localhost’, ’user’,
 ’passwd’, ’HASH(0x8375e4c)’) called at
 /usr/lib/perl5/site_perl/5.005/Apache/DBI.pm line 36
 Apache::DBI::__ANON__(’Apache=SCALAR(0x87a50c0)’) called at
 PerlChildInitHandler subroutine
 ‘Apache::DBI::__ANON__’ line 0
 eval {...} called at PerlChildInitHandler subroutine
 ‘Apache::DBI::__ANON__’ line 0

we clearly see that the warning was triggered by eval()’uating the Apache::DBI::__ANON__ which
called DBI::connect (with the arguments that we see as well), which in turn called the
Apache::DBI::connect method. Now we know where to look for our problem.

 use CGI ();
 CGI->compile(’:all’);

Some modules create their subroutines at run time to improve their load time. This helps when the module
includes many subroutines, but only a few are actually used. CGI.pm falls into this category. Since with
mod_perl the module is loaded only once, it might be a good idea to precompile all or a part of its
methods.

CGI.pm ’s compile() method performs this task. Notice that this is a proprietary function of this
module, other modules can implement this feature or not and use this or some other name for this func-
tionality. As with all modules we preload in the startup file, we don’t import symbols from them as they
will be lost when they go out of the file’s scope.

15 Feb 2014108

4.5.1 The Sample Startup File

Note that starting with CGI.pm version 2.46, the recommended method to precompile the code in
CGI.pm is:

 use CGI qw(-compile :all);

But the old method is still available for backward compatibility.

 1;

As startup.pl is run through Perl’s require() , it has to return a true value so that Perl can make sure it
has been successfully loaded. Don’t forget this (it’s very easy to forget it).

See also the ’Apache::Status -- Embedded interpreter status information’ section.

4.5.2 What Modules You Should Add to the Startup File and Why

Every module loaded at server startup will be shared among the server children, saving a lot of RAM on
your machine. Usually I put most of the code I develop into modules and preload them.

You can even preload your CGI script with Apache::RegistryLoader (See Preload Perl modules at
server startup) and you can get the children to preopen their database connections with Apache::DBI .

4.5.3 The Confusion with use() in the Server Startup File

Some people wonder why you need to duplicate the use() clause in the startup file and in the script
itself. The confusion arises due to misunderstanding the use() function. use() normally performs two
operations, namely require() and import() , called within a BEGIN block. See the section "use()"
for a detailed explanation of the use(), require() and import() functions.

In the startup file we don’t want to import any symbols since they will be lost when we leave the scope of
the startup file anyway, i.e. they won’t be visible to any of the child processes which run our mod_perl
scripts. Instead we want to preload the module in the startup file and then import any symbols that we
actually need in each script individually.

Normally when we write use MyModule; , use() will both load the module and import its symbols;
so for the startup file we write use MyModule (); and the empty parentheses will ensure that the
module is loaded but that no symbols are imported. Then in the actual mod_perl script we write use() in
the standard way, e.g. use MyModule; . Since the module has already been preloaded, the only action
taken is to import the symbols. For example in the startup file you write:

 use CGI ();

since you probably don’t need any symbols to be imported there. But in your code you would probably
write:

 use CGI qw(:html);

10915 Feb 2014

4.5.2 What Modules You Should Add to the Startup File and Whymod_perl Configuration

For example, if you have use() ’d Apache::Constants in the startup file, it does not mean you can
have the following handler:

 package MyModule;
 sub handler {
 my $r = shift;
 ## Cool stuff goes here
 return OK;
 }
 1;

You would either need to add:

 use Apache::Constants qw(OK);

Or use the fully qualified name:

 return Apache::Constants::OK;

If you want to use the function interface without exporting the symbols, use fully qualified function
names, e.g. CGI::param . The same rule applies to variables, you can import variables and you can
access them by their full name. e g. $My::Module::bar . When you use the object oriented (method)
interface you don’t need to export the method symbols.

Technically, you aren’t required to supply the use() statement in your (handler?) code if it was already
loaded during server startup (i.e. by ’PerlRequire startup.pl ’). When writing your code,
however, you should not assume the module code has been preloaded. In the future, you or someone else
will revisit this code and will not understand how it is possible to use a module’s methods without first
loading the module itself.

Read the Exporter and perlmod manpages for more information about import() .

4.6 Apache Configuration in Perl
With <Perl> ...</Perl> sections, it is possible to configure your server entirely in Perl.

4.6.1 Usage

<Perl> sections can contain any and as much Perl code as you wish. These sections are compiled into a
special package whose symbol table mod_perl can then walk and grind the names and values of Perl vari-
ables/structures through the Apache core configuration gears. Most of the configuration directives can be
represented as scalars ($scalar) or lists (@list). A @list inside these sections is simply converted
into a space delimited string for you. Here is an example:

 httpd.conf

 <Perl>
 @PerlModule = qw(Mail::Send Devel::Peek);

 #run the server as whoever starts it

15 Feb 2014110

4.6 Apache Configuration in Perl

 $User = getpwuid($>) || $>;
 $Group = getgrgid($)) || $);

 $ServerAdmin = $User;

 </Perl>

Block sections such as <Location> ..</Location> are represented in a %Location hash, e.g.:

 <Perl>

 $Location{"/~dougm/"} = {
 AuthUserFile => ’/tmp/htpasswd’,
 AuthType => ’Basic’,
 AuthName => ’test’,
 DirectoryIndex => [qw(index.html index.htm)],
 Limit => {
 METHODS => ’GET POST’,
 require => ’user dougm’,
 },
 };

 </Perl>

If an Apache directive can take two or three arguments you may push strings (the lowest number of argu-
ments will be shifted off the @list) or use an array reference to handle any number greater than the
minimum for that directive:

 push @Redirect, "/foo", "http://www.foo.com/";

 push @Redirect, "/imdb", "http://www.imdb.com/";

 push @Redirect, [qw(temp "/here" "http://www.there.com")];

Other section counterparts include %VirtualHost , %Directory and %Files .

To pass all environment variables to the children with a single configuration directive, rather than listing
each one via PassEnv or PerlPassEnv , a <Perl> section could read in a file and:

 push @PerlPassEnv, [$key => $val];

or

 Apache->httpd_conf("PerlPassEnv $key $val");

These are somewhat simple examples, but they should give you the basic idea. You can mix in any Perl
code you desire. See eg/httpd.conf.pl and eg/perl_sections.txt in the mod_perl distribution for more exam-
ples.

Assume that you have a cluster of machines with similar configurations and only small distinctions
between them: ideally you would want to maintain a single configuration file, but because the configura-
tions aren’t exactly the same (e.g. the ServerName directive) it’s not quite that simple.

11115 Feb 2014

4.6.1 Usagemod_perl Configuration

<Perl> sections come to rescue. Now you have a single configuration file and the full power of Perl to
tweak the local configuration. For example to solve the problem of the ServerName directive you might
have this <Perl> section:

 <Perl>
 $ServerName = ‘hostname‘;
 </Perl>

For example if you want to allow personal directories on all machines except the ones whose names start
with secure:

 <Perl>
 $ServerName = ‘hostname‘;
 if ($ServerName !~ /^secure/) {
 $UserDir = "public.html";
 } else {
 $UserDir = "DISABLED";
 }
 </Perl>

Behind the scenes, mod_perl defines a package called Apache::ReadConfig . Here it keeps all the
variables that you define inside the <Perl> sections. Therefore it’s not necessarily to configure the server
within the <Perl> sections. Actually what you can do is to write the Perl code to configure the server just
like you’d do in the <Perl> sections, but instead place it into a separate file that should be called during
the configuration parsing with either PerlModule or PerlRequire directives, or from within the
startup file. All you have to do is to declare the package Apache::ReadConfig within this file. Using
the last example:

 apache_config.pl

 package Apache::ReadConfig;

 $ServerName = ‘hostname‘;
 if ($ServerName !~ /^secure/) {
 $UserDir = "public.html";
 } else {
 $UserDir = "DISABLED";
 }

 1;

 httpd.conf

 PerlRequire /home/httpd/perl/lib/apache_config.pl

4.6.2 Enabling

To enable <Perl> sections you should build mod_perl with perl Make-
file.PL PERL_SECTIONS=1 [...].

15 Feb 2014112

4.6.2 Enabling

4.6.3 Caveats

Be careful when you declare package names inside <Perl> sections, for example this code has a
problem:

 <Perl>
 package My::Trans;
 use Apache::Constants qw(:common);
 sub handler{ OK }

 $PerlTransHandler = "My::Trans";
 </Perl>

When you put code inside a <Perl> section, by default it actually goes into the Apache::ReadCon-
fig package, which is already declared for you. This means that the PerlTransHandler we have
tried to define above is actually undefined. If you define a different package name within a <Perl>
section you must make sure to close the scope of that package and return to the Apache::ReadConfig
package when you want to define the configuration directives, like this:

 <Perl>
 package My::Trans;
 use Apache::Constants qw(:common);
 sub handler{ OK }

 package Apache::ReadConfig;
 $PerlTransHandler = "My::Trans";
 </Perl>

4.6.4 Verifying

This section shows how to check and dump the configuration you have made with the help of <Perl>
sections in httpd.conf.

To check the <Perl> section syntax outside of httpd, we make it look like a Perl script:

 <Perl>
 # !perl
 # ... code here ...
 __END__
 </Perl>

Now you may run:

 perl -cx httpd.conf

In a running httpd you can see how you have configured the <Perl> sections through the URI
/perl-status, by choosing Perl Section Configuration from the menu. In order to make this item show up in
the menu you should set $Apache::Server::SaveConfig to a true value. When you do that the
Apache::ReadConfig namespace (in which the configuration data is stored) will not be flushed, making
configuration data available to Perl modules at request time.

11315 Feb 2014

4.6.3 Caveatsmod_perl Configuration

Example:

 <Perl>
 $Apache::Server::SaveConfig = 1;

 $DocumentRoot = ...
 ...
 </Perl>

At request time, the value of $DocumentRoot can be accessed with the fully qualified name
$Apache::ReadConfig::DocumentRoot.

You can dump the configuration of <Perl> sections like this:

 <Perl>
 use Apache::PerlSections();
 ...
 # Configuration Perl code here
 ...
 print STDERR Apache::PerlSections->dump();
 </Perl>

Alternatively you can store it in a file:

 Apache::PerlSections->store("httpd_config.pl");

You can then require() that file in some other <Perl> section.

4.6.5 Strict <Perl> Sections

If the Perl code doesn’t compile, the server won’t start. If the generated Apache config is invalid, <Perl>
sections have always just logged an error and carried on, since there might be globals in the section that
are not intended for the config.

The variable $Apache::Server::StrictPerlSections has been added in mod_perl version
1.22. If you set this variable to a true value, for example

 $Apache::Server::StrictPerlSections = 1;

then mod_perl will not tolerate invalid Apache configuration syntax and will croak (die) if this is the
case. At the time of writing the default value is 0.

4.6.6 Debugging

If you compile mod_perl with PERL_TRACE=1 and set the environment variable MOD_PERL_TRACE
then you should see some useful diagnostics when mod_perl is processing <Perl> sections.

15 Feb 2014114

4.6.5 Strict <Perl> Sections

4.6.7 Perl Section Tricks

The Perl %ENV is cleared during startup, but the C environment is left intact and so you can use it to
set @PassEnv.

4.6.8 References

For more info see Writing Apache Modules with Perl and C, Chapter 8:
http://modperl.com:9000/book/chapters/ch8.html

4.7 Validating the Configuration Syntax
apachectl configtest tests the configuration file without starting the server. You can safely vali-
date the configuration file on your production server, if you run this test before you restart the server with
apachectl restart . Of course it is not 100% perfect, but it will reveal any syntax errors you might
have made while editing the file.

’apachectl configtest ’ is the same as ’httpd -t ’ and it doesn’t just parse the code in
startup.pl, it actually executes it. <Perl> configuration has always started Perl during the configuration
read, and Perl{Require,Module} do so as well.

Of course we assume that the code that gets called during this test cannot cause any harm to your running
production environment. The following hint shows how to prevent the code in the startup script and
<Perl> from being executed during the syntax check, if that’s what you want.

If you want your startup code to get control over the -t (configtest) server launch, start the server
configuration test with:

 httpd -t -Dsyntax_check

and, if for example you want to prevent your startup code from being executed, at the top of the code add:

 return if Apache->define(’syntax_check’);

4.8 Enabling Remote Server Configuration Reports
The nifty mod_info module displays the complete server configuration in your browser. In order to use it
you have compile it in or, if the server was compiled with DSO mode enabled, load it as an object. Then
just uncomment the ready-prepared section in the httpd.conf file:

 <Location /server-info>
 SetHandler server-info
 Order deny,allow
 Deny from all
 Allow from www.example.com
 </Location>

11515 Feb 2014

4.7 Validating the Configuration Syntaxmod_perl Configuration

http://modperl.com:9000/book/chapters/ch8.html

Now restart the server and issue the request:

 http://www.example.com/server-info

4.9 Publishing Port Numbers other than 80
If you are using a two-server setup, with a mod_perl server listening on a high port, it is advised that you
do not publish the number of the high port number in URLs. Rather use a proxying rewrite rule in the
non-mod_perl server:

 RewriteEngine On
 RewriteLogLevel 0
 RewriteRule ^/perl/(.*) http://localhost:8080/perl/$1 [P]
 ProxyPassReverse / http://localhost/

I was told one problem with publishing high port numbers is that IE 4.x has a bug when re-posting data to
a non-port-80 URL. It drops the port designator, and uses port 80 anyway.

Another reason is that firewalls probably will have the high port closed, therefore users behind the fire-
walls will be unable to reach your service, running on the blocked port.

4.10 Configuring Apache + mod_perl with mod_macro
mod_macro is an Apache module written by Fabien Coelho that lets you define and use macros in the
Apache configuration file.

mod_macro can be really useful when you have many virtual hosts, and where each virtual host has a
number of scripts/modules, most of them with a moderately complex configuration setup.

First download the latest version of mod_macro from http://www.cri.ensmp.fr/~coelho/mod_macro/ , and
configure your Apache server to use this module.

Here are some useful macros for mod_perl users:

 # set up a registry script
 <Macro registry>
 SetHandler "perl-script"
 PerlHandler Apache::Registry
 Options +ExecCGI
 </Macro>

 # example
 Alias /stuff /usr/www/scripts/stuff
 <Location /stuff>
 Use registry
 </Location>

If your registry scripts are all located in the same directory, and your aliasing rules consistent, you can use
this macro:

15 Feb 2014116

4.9 Publishing Port Numbers other than 80

http://www.cri.ensmp.fr/~coelho/mod_macro/

 # set up a registry script for a specific location
 <Macro registry $location $script>
 Alias /$location /home/httpd/perl/scripts/$script
 <Location /$location>
 SetHandler "perl-script"
 PerlHandler Apache::Registry
 Options +ExecCGI
 </Location>
 </Macro>

 # example
 Use registry stuff stuff.pl

If you’re using content handlers packaged as modules, you can use the following macro:

 # set up a mod_perl content handler module
 <Macro modperl $module>
 SetHandler "perl-script"
 Options +ExecCGI
 PerlHandler $module
 </Macro>

 #examples
 <Location /perl-status>
 PerlSetVar StatusPeek On
 PerlSetVar StatusGraph On
 PerlSetVar StatusDumper On
 Use modperl Apache::Status
 </Location>

The following macro sets up a Location for use with HTML::Embperl . Here we define all ".html" files
to be processed by Embperl .

 <Macro embperl>
 SetHandler "perl-script"
 Options +ExecCGI
 PerlHandler HTML::Embperl
 PerlSetEnv EMBPERL_FILESMATCH \.html$
 </Macro>

 # examples
 <Location /mrtg>
 Use embperl
 </Location>

Macros are also very useful for things that tend to be verbose, such as setting up Basic Authentication:

 # Sets up Basic Authentication
 <Macro BasicAuth $realm $group>
 Order deny,allow
 Satisfy any
 AuthType Basic
 AuthName $realm
 AuthGroupFile /usr/www/auth/groups
 AuthUserFile /usr/www/auth/users
 Require group $group

11715 Feb 2014

4.10 Configuring Apache + mod_perl with mod_macromod_perl Configuration

 Deny from all
 </Macro>

 # example of use
 <Location /stats>
 Use BasicAuth WebStats Admin
 </Location>

Finally, here is a complete example that uses macros to set up simple virtual hosts. It uses the Basi-
cAuth macro defined previously (yes, macros can be nested!).

 <Macro vhost $ip $domain $docroot $admingroup>
 <VirtualHost $ip>
 ServerAdmin webmaster@$domain
 DocumentRoot /usr/www/htdocs/$docroot
 ServerName www.$domain
 <Location /stats>
 Use BasicAuth Stats-$domain $admingroup
 </Location>
 </VirtualHost>
 </Macro>

 # define some virtual hosts
 Use vhost 10.1.1.1 example.com example example-admin
 Use vhost 10.1.1.2 example.net examplenet examplenet-admin

mod_macro is also useful in a non vhost setting. Some sites for example have lots of scripts which people
use to view various statistics, email settings and etc. It is much easier to read things like:

 use /forwards email/showforwards
 use /webstats web/showstats

The actual macros for the last example are left as an exercise to reader. These can be easily constructed
based on the examples presented in this section.

4.11 General Pitfalls

4.11.1 My CGI/Perl Code Gets Returned as Plain Text Instead of
Being Executed by the Webserver

Check your configuration files and make sure that the ExecCGI is turned on in your configurations.

 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

15 Feb 2014118

4.11 General Pitfalls

4.11.2 My Script Works under mod_cgi, but when Called via mod_perl
I Get a ’Save-As’ Prompt

Did you put PerlSendHeader On in the configuration part of the <Location foo></Location> .

4.11.3 Is There a Way to Provide a Different startup.pl File for Each
Individual Virtual Host

No. Any virtual host will be able to see the routines from a startup.pl loaded for any other virtual host.

4.11.4 Is There a Way to Modify @INC on a Per-Virtual-Host or
Per-Location Basis.

You can use PerlSetEnv PERL5LIB ... or a PerlFixupHandler with the lib pragma (use
lib qw(...)).

A better way is to use Apache::PerlVINC

4.11.5 A Script From One Virtual Host Calls a Script with the Same
Path From the Other Virtual Host

This has been a bug before, last fixed in 1.15_01, i.e. if you are running 1.15, that could be the problem.
You should set this variable in a startup file (which you load with PerlRequire in httpd.conf):

 $Apache::Registry::NameWithVirtualHost = 1;

But, as we know sometimes a bug turns out to be a feature. If the same script is running for more than one
Virtual host on the same machine, this can be a waste, right? Set it to 0 in a startup script if you want to
turn it off and have this bug as a feature. (Only makes sense if you are sure that there will be no other
scripts with the same path/name). It also saves you some memory as well.

 $Apache::Registry::NameWithVirtualHost = 0;

4.11.6 the Server no Longer Retrieves the DirectoryIndex Files for a
Directory

The problem was reported by users who declared mod_perl configuration inside a <Directory> section
for all files matching *.pl. The problem went away after placing the directives in a <Files> section.

The mod_alias and mod_rewrite are both Trans handlers in the normal case. So in the setup where both are
used, if mod_alias runs first and matches it will return OK and mod_rewrite won’t see the request.

11915 Feb 2014

4.11.2 My Script Works under mod_cgi, but when Called via mod_perl I Get a ’Save-As’ Promptmod_perl Configuration

The opposite can happen as well, where mod_rewrite rules apply but the Alias directives are completely
ignored.

The behavior is not random, but depends on the Apache modules loading order. Apache modules are being
executed in reverse order, i.e. module that was Added first will be executed last.

The solution is not to mix mod_rewrite and mod_alias. mod_rewrite does everything mod_alias
does--except for ScriptAlias which is not really relevant to mod_perl anyway. Don’t rely on the
module ordering, but use explicitly disjoint URL namespaces for Alias and Rewrite . In other words
any URL regex that can potentially match a Rewrite rule should not be used in an Alias , and vice
versa. Given that mod_rewrite can easily do what mod_alias does, it’s no problem.

Here is one of the examples where Alias is replaced with RedirectMatch . This is a snippet of
configuration at the light non-mod_perl Apache server:

 RewriteEngine on
 RewriteLogLevel 0
 RewriteRule ^/(perl.*)$ http://127.0.0.1:8045/$1 [P,L]
 RewriteRule ^/(mail.*)$ http://127.0.0.1:8045/$1 [P,L]
 NoCache *
 ProxyPassReverse / http://www.example.com/

 RedirectMatch permanent ^/$ /pages/index
 RedirectMatch permanent ^/foo$ /pages/bar

This configuration works fine because any URI that matches one of the redirects will never match one of
the rewrite rules.

In the above setup we proxy requests starting with /perl or /mail to the mod_perl server, forbid proxy
requests to the external sites, and make sure that the proxied requests will use the
http://www.example.com/ as their URL on the way back to the client.

The RedirectMatch settings work exactly like if you’d write:

 Alias / /pages/index
 Alias /foo /pages/bar

But as we told before we don’t want to mix the two.

Here is another example where the redirect is done by a rewrite rule:

 RewriteEngine on
 RewriteLogLevel 0
 RewriteMap lowercase int:tolower
 RewriteRule ^/(perl.*)$ http://127.0.0.1:8042/$1 [P,L]
 RewriteRule ^/$ /pages/welcome.htm [R=301,L]
 RewriteRule ^(.*)$ ${lowercase:$1}
 NoCache *
 ProxyPassReverse / http://www.example.com/

15 Feb 2014120

4.11.6 the Server no Longer Retrieves the DirectoryIndex Files for a Directory

http://www.example.com/

If we omit the rewrite rule that matches ^/$, and instead use a redirect, it will never be called, because the
URL is still matched by the last rule ^(.*)$. This is a somewhat contrived example because that last
regex could be rewritten as ^(/.+)$ and all would be well.

4.11.7 Do Perl* Directives Affect Code Running under mod_cgi?

No, they don’t.

So for example if you do:

 PerlSetEnv foo bar

It’ll be seen from mod_perl, but not mod_cgi or any other module.

4.12 Configuration Security Concerns
The more modules you have in your web server, the more complex the code.

The more complex the code in your web server, the more chances for bugs.

The more chances for bugs, the more chance that some of those bugs may involve security breaches.

4.12.1 Choosing User and Group

Because mod_perl runs within an httpd child process, it runs with the User ID and Group ID specified in
the httpd.conf file. This User /Group should have the lowest possible privileges. It should only have
access to world readable files, even better only files that belongs to this user. Even so, careless scripts can
give away information. You would not want your /etc/passwd file to be readable over the net, for instance,
even if you use shadow passwords.

When a handler needs write permissions, make sure that only the user, the server is running under, has
write permissions to the files. Sometimes you need group write permissions, but be very careful, because a
buggy or malicious code run in the server may destroy files writable by the server.

4.12.2 Taint Checking

Make sure to run the server under:

 PerlTaintCheck On

setting in the httpd.conf file. Taint checking doesn’t ensure that your code is completely safe from external
hacks, but it does forces you to improve your code to prevent many potential security problems.

12115 Feb 2014

4.12 Configuration Security Concernsmod_perl Configuration

4.12.3 Exposing Information About the Server’s Component

It is better not to expose the mod_perl server to the outside world, for it creates a potential security risk by
revealing which Apache modules used by the server and the OS the server is running on.

You can see what information is revealed by your server, by telneting to it and issuing some request. For
example:

 % telnet localhost 8080
 Trying 127.0.0.1
 Connected to localhost
 Escape character is ’^]’.
 HEAD / HTTP1.0

 HTTP/1.1 200 OK
 Date: Sun, 16 Apr 2000 11:06:25 GMT
 Server: Apache/1.3.12 (Unix) mod_perl/1.22 mod_ssl/2.6.2 OpenSSL/0.9.5
 [more lines snipped]

So as you see that a lot of information is revealed and a Full ServerTokens has been used.

We never were completely sure why the default of the ServerTokens directive in Apache is Full
rather than Minimal . Seems like you would only make it Full if you are debugging. Probably the
reason for using the ServerTokens Full is for a show-off, so Netcraft (http://netcraft.com) and other
similar survey services will count more Apache servers, which is good for all of us, but you really want to
reveal as little information as possible to the potential crackers.

Another approach is to modify httpd sources to reveal no unwanted information, so all responses will
return an empty or phony Server: field.

From the other point of view, security by obscurity is a lack of security. Any determined cracker will
eventually figure out what version of Apache run and what third party modules you have built in.

An even better approach is to completely hide the mod_perl server behind a front-end or a proxy server, so
the server cannot be accessed directly.

4.13 Apache Restarts Twice On Start
When the server is restarted, the configuration and module initialization phases are called twice in total
before the children are forked. The second restart is done in order to ensure that future restarts will work
correctly, by making sure that all modules can survive a restart (SIGHUP). This is very important if you
restart a production server.

You can control what code will be executed on the start or restart by checking the value of
$Apache::Server::Starting and $Apache::Server::ReStarting respectively. The
former variable is true when the server is starting and the latter is true when it’s restarting.

15 Feb 2014122

4.13 Apache Restarts Twice On Start

http://netcraft.com/

For example:

 <Perl>
 print STDERR "Server is Starting\n" if $Apache::Server::Starting;
 print STDERR "Server is ReStarting\n" if $Apache::Server::ReStarting;
 </Perl>

The startup.pl file and similar loaded via PerlModule or PerlRequire are compiled only once.
Because once the module is compiled it enters the special %INC hash. When Apache restarts--Perl checks
whether the module or script in question is already registered in %INC and won’t try to compile it again.

So the only code that you might need to protect from running on restart is the one in the <Perl> sections.
But since one usually uses the <Perl> sections mainly for on the fly configuration creation, there
shouldn’t be a reason why it’d be undesirable to run the code more than once.

4.14 Knowing the proxy_pass’ed Connection Type
Let’s say that you have a frontend server running mod_ssl, mod_rewrite and mod_proxy. You want to
make sure that your user is using a secure connection for some specific actions like login information
submission. You don’t want to let the user login unless the request was submitted through a secure port.

Since you have to proxy_pass the request between front and backend servers, you cannot know where the
connection has come from. Neither is using the HTTP headers reliable.

A possible solution for this problem is to have the mod_perl server listen on two different ports (e.g. 8000
and 8001) and have the mod_rewrite proxy rule in the regular server redirect to port 8000 and the
mod_rewrite proxy rule in the SSL virtual host redirect to port 8001. In the mod_perl server just check the
PORT variable to tell if the connection is secure.

4.15 Adding Custom Configuration Directives
This is covered in the Eagle Book in a great detail. This is just a simple example, showing how to add your
own Configuration directives.

 Makefile.PL

 package Apache::TestDirective;

 use ExtUtils::MakeMaker;

 use Apache::ExtUtils qw(command_table);
 use Apache::src ();

 my @directives = ({
 name => ’Directive4’,
 errmsg => ’Anything’,
 args_how => ’RAW_ARGS’,
 req_override=> ’OR_ALL’,
 });

12315 Feb 2014

4.14 Knowing the proxy_pass’ed Connection Typemod_perl Configuration

 command_table(\@directives);

 WriteMakefile(
 NAME => ’Apache::TestDirective’,
 VERSION_FROM => ’TestDirective.pm’,
 INC => Apache::src->new->inc,
);

 TestDirective.pm

 package Apache::TestDirective;

 use strict;
 use Apache::ModuleConfig ();
 use DynaLoader ();

 if ($ENV{MOD_PERL}) {
 no strict;
 $VERSION = ’0.01’;
 @ISA = qw(DynaLoader);
 __PACKAGE__->bootstrap($VERSION); #command table, etc.
 }

 sub Directive4 {

 warn "Directive4 @_\n";
 }

 1;
 __END__

In the mod_perl source tree, add this to t/docs/startup.pl:

 use blib qw(/home/dougm/test/Apache/TestDirective);

and at the bottom of t/conf/httpd.conf:

 PerlModule Apache::TestDirective
 Directive4 hi

Test it:

 % make start_httpd
 % make kill_httpd

You should see:

 Directive4 Apache::TestDirective=HASH(0x83379d0)
 Apache::CmdParms=SCALAR(0x862b80c) hi

And in the error log file:

 % grep Directive4 t/logs/error_log
 Directive4 Apache::TestDirective=HASH(0x83119dc)
 Apache::CmdParms=SCALAR(0x8326878) hi

15 Feb 2014124

4.15 Adding Custom Configuration Directives

If it didn’t work as expected try building mod_perl with PERL_TRACE=1, then do:

 setenv MOD_PERL_TRACE all

before starting the server. Now you should get some useful diagnostics.

4.16 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

4.17 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

12515 Feb 2014

4.16 Maintainersmod_perl Configuration

http://stason.org/
http://stason.org/

5 CGI to mod_perl Porting. mod_perl Coding guide-
lines.

15 Feb 2014126

5 CGI to mod_perl Porting. mod_perl Coding guidelines.

5.1 Description
This chapter is relevant both to writing a new CGI script or perl handler from scratch and to migrating an
application from plain CGI to mod_perl.

It also addresses the situation where the CGI script being ported does the job, but is too dirty to be altered
easily to run as a mod_perl program. (Apache::PerlRun mode)

If you are at the porting stage, you can use this chapter as a reference for possible problems you might
encounter when running an existing CGI script in the new mode.

If your project schedule is tight, I would suggest converting to mod_perl in the following steps: Initially,
run all the scripts in the Apache::PerlRun mode. Then as time allows, move them into
Apache::Registry mode. Later if you need Apache Perl API functionality you can always add it.

If you are about to write a new CGI script from scratch, it would be a good idea to learn about possible
mod_perl related pitfalls and to avoid them in the first place.

If you don’t need mod_cgi compatibility, it’s a good idea to start writing using the mod_perl API in first
place. This will make your application a little bit more efficient and it will be easier to use the full
mod_perl feature set, which extends the core Perl functionality with Apache specific functions and over-
ridden Perl core functions that were reimplemented to work better in mod_perl environment.

5.2 Before you start to code
It can be a good idea to tighten up some of your Perl programming practices, since mod_perl doesn’t toler-
ate sloppy programming.

This chapter relies on a certain level of Perl knowledge. Please read through the Perl Reference chapter
and make sure you know the material covered there. This will allow me to concentrate on pure mod_perl
issues and make them more prominent to the experienced Perl programmer, which would otherwise be lost
in the sea of Perl background notes.

Additional resources:

Perl Module Mechanics

This page describes the mechanics of creating, compiling, releasing, and maintaining Perl modules.
http://world.std.com/~swmcd/steven/perl/module_mechanics.html

The information is very relevant to a mod_perl developer.

The Eagle Book

"Writing Apache Modules with Perl and C" is a "must have" book!

12715 Feb 2014

5.1 DescriptionCGI to mod_perl Porting. mod_perl Coding guidelines.

http://world.std.com/~swmcd/steven/perl/module_mechanics.html

See the details at http://www.modperl.com .

"Programming Perl" Book
"Perl Cookbook" Book
"Object Oriented Perl" Book

5.3 Exposing Apache::Registry secrets
Let’s start with some simple code and see what can go wrong with it, detect bugs and debug them, discuss
possible pitfalls and how to avoid them.

I will use a simple CGI script, that initializes a $counter to 0, and prints its value to the browser while
incrementing it.

 counter.pl:

 #!/usr/bin/perl -w
 use strict;

 print "Content-type: text/plain\r\n\r\n";

 my $counter = 0; # Explicit initialization technically redundant

 for (1..5) {
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }

You would expect to see the output:

 Counter is equal to 1 !
 Counter is equal to 2 !
 Counter is equal to 3 !
 Counter is equal to 4 !
 Counter is equal to 5 !

And that’s what you see when you execute this script the first time. But let’s reload it a few times... See,
suddenly after a few reloads the counter doesn’t start its count from 1 any more. We continue to reload and
see that it keeps on growing, but not steadily starting almost randomly at 10, 10, 10, 15, 20... Weird...

 Counter is equal to 6 !
 Counter is equal to 7 !
 Counter is equal to 8 !
 Counter is equal to 9 !
 Counter is equal to 10 !

15 Feb 2014128

5.3 Exposing Apache::Registry secrets

http://www.modperl.com/

We saw two anomalies in this very simple script: Unexpected increment of our counter over 5 and incon-
sistent growth over reloads. Let’s investigate this script.

5.3.1 The First Mystery

First let’s peek into the error_log file. Since we have enabled the warnings what we see is:

 Variable "$counter" will not stay shared
 at /home/httpd/perl/conference/counter.pl line 13.

The Variable "$counter" will not stay shared warning is generated when the script contains a named
nested subroutine (a named - as opposed to anonymous - subroutine defined inside another subroutine)
that refers to a lexically scoped variable defined outside this nested subroutine. This effect is explained in
my () Scoped Variable in Nested Subroutines.

Do you see a nested named subroutine in my script? I don’t! What’s going on? Maybe it’s a bug? But
wait, maybe the perl interpreter sees the script in a different way, maybe the code goes through some
changes before it actually gets executed? The easiest way to check what’s actually happening is to run the
script with a debugger.

But since we must debug it when it’s being executed by the webserver, a normal debugger won’t help,
because the debugger has to be invoked from within the webserver. Luckily Doug MacEachern wrote the
Apache::DB module and we will use this to debug my script. While Apache::DB allows you to debug
the code interactively, we will do it non-interactively.

Modify the httpd.conf file in the following way:

 PerlSetEnv PERLDB_OPTS "NonStop=1 LineInfo=/tmp/db.out AutoTrace=1 frame=2"
 PerlModule Apache::DB
 <Location /perl>
 PerlFixupHandler Apache::DB
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 </Location>

Restart the server and issue a request to counter.pl as before. On the surface nothing has changed--we still
see the correct output as before, but two things happened in the background:

Firstly, the file /tmp/db.out was written, with a complete trace of the code that was executed.

Secondly, if you have loaded the Carp module already, error_log now contains the real code that was
actually executed. This is produced as a side effect of reporting the Variable "$counter" will not stay
shared at... warning that we saw earlier. To load the Carp module, you can add:

 use Carp;

12915 Feb 2014

5.3.1 The First MysteryCGI to mod_perl Porting. mod_perl Coding guidelines.

in your startup.pl file or in the executed code.

Here is the code that was actually executed:

 package Apache::ROOT::perl::conference::counter_2epl;
 use Apache qw(exit);
 sub handler {
 BEGIN {
 $^W = 1;
 };
 $^W = 1;

 use strict;

 print "Content-type: text/plain\r\n\r\n";

 my $counter = 0; # Explicit initialization technically redundant

 for (1..5) {
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }
 }

The code in the error_log wasn’t indented. I’ve indented it for you to stress that the code was wrapped
inside the handler() subroutine.

What do we learn from this?

Well firstly that every CGI script is cached under a package whose name is formed from the
Apache::ROOT:: prefix and the relative part of the script’s URL (perl::confer-
ence::counter_2epl) by replacing all occurrences of / with :: and . with _2e . That’s how
mod_perl knows what script should be fetched from the cache--each script is just a package with a single
subroutine named handler .

If we were to add use diagnostics to the script we would also see a reference in the error text to an
inner (nested) subroutine--increment_counter is actually a nested subroutine.

With mod_perl, each subroutine in every Apache::Registry script is nested inside the handler
subroutine.

It’s important to understand that the inner subroutine effect happens only with code that
Apache::Registry wraps with a declaration of the handler subroutine. If you put all your code
into modules, which the main script use() s, this effect doesn’t occur.

Do not use Perl4-style libraries. Subroutines in such libraries will only be available to the first script in any
given interpreter thread to require() a library of any given name. This can lead to confusing sporadic
failures.

15 Feb 2014130

5.3.1 The First Mystery

The easiest and the fastest way to solve the nested subroutines problem is to switch every lexically scoped
variable foe which you get the warning for to a package variable. The handler subroutines are never
called re-entrantly and each resides in a package to itself. Most of the usual disadvantates of package
scoped variables are, therefore, not a concern. Note, however, that whereas explicit initialization is not
always necessary for lexical variables it is usually necessary for these package variables as they persist in
subsequent executions of the handler and unlike lexical variables, don’t get automatically destroyed at the
end of each handler.

 counter.pl:

 #!/usr/bin/perl -w
 use strict;

 print "Content-type: text/plain\r\n\r\n";

 # In Perl <5.6 our() did not exist, so:
 # use vars qw($counter);
 our $counter = 0; # Explicit initialization now necessary

 for (1..5) {
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\r\n";
 }

If the variable contains a reference it may hold onto lots of unecessary memory (or worse) if the reference
is left to hang about until the next call to the same handler. For such variables you should use local so
that the value is removed when the handler subroutine exits.

 my $query = CGI->new;

becomes:

 local our $query = CGI->new;

All this is very interesting but as a general rule of thumb, unless the script is very short, I tend to write all
the code in external libraries, and to have only a few lines in the main script. Generally the main script
simply calls the main function of my library. Usually I call it init() or run() . I don’t worry about
nested subroutine effects anymore (unless I create them myself :).

The section ’Remedies for Inner Subroutines’ discusses many other possible workarounds for this
problem.

You shouldn’t be intimidated by this issue at all, since Perl is your friend. Just keep the warnings mode On
and Perl will gladly tell you whenever you have this effect, by saying:

 Variable "$counter" will not stay shared at ...[snipped]

13115 Feb 2014

5.3.1 The First MysteryCGI to mod_perl Porting. mod_perl Coding guidelines.

Just don’t forget to check your error_log file, before going into production!

By the way, the above example was pretty boring. In my first days of using mod_perl, I wrote a simple
user registration program. I’ll give a very simple representation of this program.

 use CGI;
 $q = CGI->new;
 my $name = $q->param(’name’);
 print_response();

 sub print_response{
 print "Content-type: text/plain\r\n\r\n";
 print "Thank you, $name!";
 }

My boss and I checked the program at the development server and it worked OK. So we decided to put it
in production. Everything was OK, but my boss decided to keep on checking by submitting variations of
his profile. Imagine the surprise when after submitting his name (let’s say "The Boss" :), he saw the
response "Thank you, Stas Bekman!".

What happened is that I tried the production system as well. I was new to mod_perl stuff, and was so
excited with the speed improvement that I didn’t notice the nested subroutine problem. It hit me. At first I
thought that maybe Apache had started to confuse connections, returning responses from other people’s
requests. I was wrong of course.

Why didn’t we notice this when we were trying the software on our development server? Keep reading
and you will understand why.

5.3.2 The Second Mystery

Let’s return to our original example and proceed with the second mystery we noticed. Why did we see
inconsistent results over numerous reloads?

That’s very simple. Every time a server gets a request to process, it hands it over one of the children,
generally in a round robin fashion. So if you have 10 httpd children alive, the first 10 reloads might seem
to be correct because the effect we’ve just talked about starts to appear from the second re-invocation.
Subsequent reloads then return unexpected results.

Moreover, requests can appear at random and children don’t always run the same scripts. At any given
moment one of the children could have served the same script more times than any other, and another may
never have run it. That’s why we saw the strange behavior.

Now you see why we didn’t notice the problem with the user registration system in the example. First, we
didn’t look at the error_log . (As a matter of fact we did, but there were so many warnings in there that
we couldn’t tell what were the important ones and what were not). Second, we had too many server chil-
dren running to notice the problem.

15 Feb 2014132

5.3.2 The Second Mystery

A workaround is to run the server as a single process. You achieve this by invoking the server with the -X
parameter (httpd -X). Since there are no other servers (children) running, you will see the problem on
the second reload.

But before that, let the error_log help you detect most of the possible errors--most of the warnings can
become errors, so you should make sure to check every warning that is detected by perl, and probably you
should write your code in such a way that no warnings appear in the error_log . If your error_log
file is filled up with hundreds of lines on every script invocation, you will have difficulty noticing and
locating real problems--and on a production server you’ll soon run out of disk space if your site is popular.

Of course none of the warnings will be reported if the warning mechanism is not turned On. Refer to the
section "Tracing Warnings Reports" to learn about warnings in general and to the "Warnings" section to
learn how to turn them on and off under mod_perl.

5.4 Sometimes it Works, Sometimes it Doesn’t
When you start running your scripts under mod_perl, you might find yourself in a situation where a script
seems to work, but sometimes it screws up. And the more it runs without a restart, the more it screws up.
Often the problem is easily detectable and solvable. You have to test your script under a server running in
single process mode (httpd -X).

Generally the problem is the result of using global variables. Because global variables don’t change from
one script invocation to another unless you change them, you can find your scripts do strange things.

Let’s look at three real world examples:

5.4.1 An Easy Break-in

The first example is amazing--Web Services. Imagine that you enter some site where you have an account,
perhaps a free email account. Having read your own mail you decide to take a look at someone else’s.

You type in the username you want to peek at and a dummy password and try to enter the account. On
some services this will work!!!

You say, why in the world does this happen? The answer is simple: Global Variables. You have entered
the account of someone who happened to be served by the same server child as you. Because of sloppy
programming, a global variable was not reset at the beginning of the program and voila, you can easily
peek into someone else’s email! Here is an example of sloppy code:

 use vars ($authenticated);
 my $q = new CGI;
 my $username = $q->param(’username’);
 my $passwd = $q->param(’passwd’);
 authenticate($username,$passwd);
 # failed, break out
 unless ($authenticated){
 print "Wrong passwd";
 exit;
 }

13315 Feb 2014

5.4 Sometimes it Works, Sometimes it Doesn’tCGI to mod_perl Porting. mod_perl Coding guidelines.

 # user is OK, fetch user’s data
 show_user($username);

 sub authenticate{
 my ($username,$passwd) = @_;
 # some checking
 $authenticated = 1 if SOME_USER_PASSWD_CHECK_IS_OK;
 }

Do you see the catch? With the code above, I can type in any valid username and any dummy password
and enter that user’s account, provided she has successfully entered her account before me using the same
child process! Since $authenticated is global--if it becomes 1 once, it’ll stay 1 for the remainder of
the child’s life!!! The solution is trivial--reset $authenticated to 0 at the beginning of the program.

A cleaner solution of course is not to rely on global variables, but rely on the return value from the func-
tion.

 my $q = CGI->new;
 my $username = $q->param(’username’);
 my $passwd = $q->param(’passwd’);
 my $authenticated = authenticate($username,$passwd);
 # failed, break out
 unless ($authenticated){
 print "Wrong passwd";
 exit;
 }
 # user is OK, fetch user’s data
 show_user($username);

 sub authenticate{
 my ($username,$passwd) = @_;
 # some checking
 return (SOME_USER_PASSWD_CHECK_IS_OK) ? 1 : 0;
 }

Of course this example is trivial--but believe me it happens!

5.4.2 Thinking mod_cgi

Just another little one liner that can spoil your day, assuming you forgot to reset the $allowed variable.
It works perfectly OK in plain mod_cgi:

 $allowed = 1 if $username eq ’admin’;

But using mod_perl, and if your system administrator with superuser access rights has previously used the
system, anybody who is lucky enough to be served later by the same child which served your administra-
tor will happen to gain the same rights.

The obvious fix is:

15 Feb 2014134

5.4.2 Thinking mod_cgi

 $allowed = $username eq ’admin’ ? 1 : 0;

5.4.3 Regular Expression Memory

Another good example is usage of the /o regular expression modifier, which compiles a regular expres-
sion once, on its first execution, and never compiles it again. This problem can be difficult to detect, as
after restarting the server each request you make will be served by a different child process, and thus the
regex pattern for that child will be compiled afresh. Only when you make a request that happens to be
served by a child which has already cached the regex will you see the problem. Generally you miss that.
When you press reload, you see that it works (with a new, fresh child). Eventually it doesn’t, because you
get a child that has already cached the regex and won’t recompile because of the /o modifier.

An example of such a case would be:

 my $pat = $q->param("keyword");
 foreach(@list) {
 print if /$pat/o;
 }

To make sure you don’t miss these bugs always test your CGI in single process mode.

To solve this particular /o modifier problem refer to Compiled Regular Expressions.

5.5 Script’s name space
Scripts under Apache::Registry do not run in package main , they run in a unique name space based
on the requested URI. For example, if your URI is /perl/test.pl the package will be called
Apache::ROOT::perl::test_2epl .

5.6 @INC and mod_perl
The basic Perl @INC behaviour is explained in section use(), require(), do(), %INC and @INC Explained.

When running under mod_perl, once the server is up @INC is frozen and cannot be updated. The only
opportunity to temporarily modify @INC is while the script or the module are loaded and compiled for the
first time. After that its value is reset to the original one. The only way to change @INC permanently is to
modify it at Apache startup.

Two ways to alter @INC at server startup:

In the configuration file. For example add:

 PerlSetEnv PERL5LIB /home/httpd/perl

or

13515 Feb 2014

5.5 Script’s name spaceCGI to mod_perl Porting. mod_perl Coding guidelines.

 PerlSetEnv PERL5LIB /home/httpd/perl:/home/httpd/mymodules

Note that this setting will be ignored if you have the PerlTaintCheck mode turned on.

In the startup file directly alter the @INC. For example

 startup.pl

 use lib qw(/home/httpd/perl /home/httpd/mymodules);
 1;

and load the startup file from the configuration file by:

 PerlRequire /path/to/startup.pl

5.7 Reloading Modules and Required Files
You might want to read the "use(), require(), do(), %INC and @INC Explained" before you proceed with
this section.

When you develop plain CGI scripts, you can just change the code, and rerun the CGI from your browser.
Since the script isn’t cached in memory, the next time you call it the server starts up a new perl process,
which recompiles it from scratch. The effects of any modifications you’ve applied are immediately
present.

The situation is different with Apache::Registry , since the whole idea is to get maximum perfor-
mance from the server. By default, the server won’t spend time checking whether any included library
modules have been changed. It assumes that they weren’t, thus saving a few milliseconds to stat() the
source file (multiplied by however many modules/libraries you use() and/or require() in your script.)

The only check that is done is to see whether your main script has been changed. So if you have only
scripts which do not use() or require() other perl modules or packages, there is nothing to worry about. If,
however, you are developing a script that includes other modules, the files you use() or require() aren’t
checked for modification and you need to do something about that.

So how do we get our mod_perl-enabled server to recognize changes in library modules? Well, there are a
couple of techniques:

5.7.1 Restarting the server

The simplest approach is to restart the server each time you apply some change to your code. See Server
Restarting techniques.

After restarting the server about 100 times, you will tire of it and you will look for other solutions.

15 Feb 2014136

5.7 Reloading Modules and Required Files

5.7.2 Using Apache::StatINC for the Development Process

Help comes from the Apache::StatINC module. When Perl pulls a file via require(), it stores the full
pathname as a value in the global hash %INC with the file name as the key. Apache::StatINC looks
through %INC and immediately reloads any files that have been updated on disk.

To enable this module just add two lines to httpd.conf .

 PerlModule Apache::StatINC
 PerlInitHandler Apache::StatINC

To be sure it really works, turn on debug mode on your development box by adding PerlSetVar
StatINCDebug On to your config file. You end up with something like this:

 PerlModule Apache::StatINC
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 PerlInitHandler Apache::StatINC
 PerlSetVar StatINCDebug On
 </Location>

Be aware that only the modules located in @INC are reloaded on change, and you can change @INC only
before the server has been started (in the startup file).

Nothing you do in your scripts and modules which are pulled in with require() after server startup will
have any effect on @INC.

When you write:

 use lib qw(foo/bar);

@INC is changed only for the time the code is being parsed and compiled. When that’s done, @INC is
reset to its original value.

To make sure that you have set @INC correctly, configure /perl-status location, fetch
http://www.example.com/perl-status?inc and look at the bottom of the page, where the contents of @INC
will be shown.

Notice the following trap:

While ". " is in @INC, perl knows to require() files with pathnames given relative to the current (script)
directory. After the script has been parsed, the server doesn’t remember the path!

So you can end up with a broken entry in %INC like this:

13715 Feb 2014

5.7.2 Using Apache::StatINC for the Development ProcessCGI to mod_perl Porting. mod_perl Coding guidelines.

http://www.example.com/perl-status?inc

 $INC{bar.pl} eq "bar.pl"

If you want Apache::StatINC to reload your script--modify @INC at server startup, or use a full path in the
require() call.

5.7.3 Using Apache::Reload

Apache::Reload comes as a drop-in replacement for Apache::StatINC . It provides extra func-
tionality and better flexibility.

If you want Apache::Reload to check all the loaded modules on each request, you just add to
httpd.conf:

 PerlInitHandler Apache::Reload

If you want to reload only specific modules when these get changed, you have two ways to do that.

5.7.3.1 Register Modules Implicitly

The first way is to turn Off the ReloadAll variable, which is On by default

 PerlInitHandler Apache::Reload
 PerlSetVar ReloadAll Off

and add:

 use Apache::Reload;

to every module that you want to be reloaded on change.

5.7.3.2 Register Modules Explicitly

The second way is to explicitly specify modules to be reloaded in httpd.conf:

 PerlInitHandler Apache::Reload
 PerlSetVar ReloadModules "My::Foo My::Bar Foo::Bar::Test"

Note that these are split on whitespace, but the module list must be in quotes, otherwise Apache tries to
parse the parameter list.

You can register groups of modules using the metacharacter (*).

 PerlSetVar ReloadModules "Foo::* Bar::*"

In the above example all modules starting with Foo:: and Bar:: will become registered. This features
allows you to assign the whole project modules tree in one pattern.

15 Feb 2014138

5.7.3 Using Apache::Reload

5.7.3.3 Special "Touch" File

You can also set a file that you can touch(1) that causes the reloads to be performed. If you set this, and
don’t touch(1) the file, the reloads don’t happen (no matter how have you registered the modules to be
reloaded).

 PerlSetVar ReloadTouchFile /tmp/reload_modules

Now when you’re happy with your changes, simply go to the command line and type:

 % touch /tmp/reload_modules

This feature is very convenient in a production server environment, but compared to a full restart, the
benefits of preloaded modules memory sharing are lost, since each child will get it’s own copy of the
reloaded modules.

5.7.3.4 Caveats

This module might have a problem with reloading single modules that contain multiple packages that all
use pseudo-hashes.

Also if you have modules loaded from directories which are not in @INC, Apache::Reload will fail to
find the files, due the fact that @INC is reset to its original value even if it gets temporary modified in the
script. The solution is to extend @INC at the server startup to include directories you load the files from
which aren’t in @INC.

For example, if you have a script which loads MyTest.pm from /home/stas/myproject:

 use lib qw(/home/stas/myproject);
 require MyTest;

Apache::Reload won’t find this file, unless you alter @INC in startup.pl (or httpd.conf):

 startup.pl

 use lib qw(/home/stas/myproject);

and restart the server. Now the problem is solved.

5.7.3.5 Availability

This module is available from CPAN.

5.7.4 Configuration Files: Writing, Dynamically Updating and
Reloading

Checking all the modules in %INC on every request can add a large overhead to server response times, and
you certainly would not want the Apache::StatINC module to be enabled in your production site’s
configuration. But sometimes you want a configuration file reloaded when it is updated, without restarting

13915 Feb 2014

5.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

the server.

This is an especially important feature if for example you have a person that is allowed to modify some of
the tool configuration, but for security reasons it’s undesirable for him to telnet to the server to restart it.

5.7.4.1 Writing Configuration Files

Since we are talking about configuration files, I would like to show you some good and bad approaches to
configuration file writing.

If you have a configuration file of just a few variables, it doesn’t really matter how you do it. But generally
this is not the case. Configuration files tend to grow as a project grows. It’s very relevant to projects that
generate HTML files, since they tend to demand many easily configurable parameters, like headers,
footers, colors and so on.

So let’s start with the approach that is most often taken by CGI scripts writers. All configuration variables
are defined in a separate file.

For example:

 $cgi_dir = "/home/httpd/perl";
 $cgi_url = "/perl";
 $docs_dir = "/home/httpd/docs";
 $docs_url = "/";
 $img_dir = "/home/httpd/docs/images";
 $img_url = "/images";
 ... many more config params here ...
 $color_hint = "#777777";
 $color_warn = "#990066";
 $color_normal = "#000000";

The use strict; pragma demands that all the variables be declared. When we want to use these vari-
ables in a mod_perl script we must declare them with use vars in the script. (Under Perl v5.6.0 our()
has replaced use vars .)

So we start the script with:

 use strict;
 use vars qw($cgi_dir $cgi_url $docs_dir $docs_url
 ... many more config params here
 $color_hint $color_warn $color_normal
);

It is a nightmare to maintain such a script, especially if not all the features have been coded yet. You have
to keep adding and removing variable names. But that’s not a big deal.

Since we want our code clean, we start the configuration file with use strict; as well, so we have to
list the variables with use vars pragma here as well. A second list of variables to maintain.

15 Feb 2014140

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

If you have many scripts, you may get collisions between configuration files. One of the best solutions is
to declare packages, with unique names of course. For example for our configuration file we might declare
the following package name:

 package My::Config;

The moment you add a package declaration and think that you are done, you realize that the nightmare has
just begun. When you have declared the package, you cannot just require() the file and use the variables,
since they now belong to a different package. So you have either to modify all your scripts to use a fully
qualified notation like $My::Config::cgi_url instead of just $cgi_url or to import the needed
variables into any script that is going to use them.

Since you don’t want to do the extra typing to make the variables fully qualified, you’d go for importing
approach. But your configuration package has to export them first. That means that you have to list all the
variables again and now you have to keep at least three variable lists updated when you make some
changes in the naming of the configuration variables. And that’s when you have only one script that uses
the configuration file, in the general case you have many of them. So now our example configuration file
looks like this:

 package My::Config;
 use strict;

 BEGIN {
 use Exporter ();

 @My::HTML::ISA = qw(Exporter);
 @My::HTML::EXPORT = qw();
 @My::HTML::EXPORT_OK = qw($cgi_dir $cgi_url $docs_dir $docs_url
 ... many more config params here
 $color_hint $color_warn $color_normal);
 }

 use vars qw($cgi_dir $cgi_url $docs_dir $docs_url
 ... many more config params here
 $color_hint $color_warn $color_normal
);

 $cgi_dir = "/home/httpd/perl";
 $cgi_url = "/perl";
 $docs_dir = "/home/httpd/docs";
 $docs_url = "/";
 $img_dir = "/home/httpd/docs/images";
 $img_url = "/images";
 ... many more config params here ...
 $color_hint = "#777777";
 $color_warn = "#990066";
 $color_normal = "#000000";

And in the code:

14115 Feb 2014

5.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

 use strict;
 use My::Config qw($cgi_dir $cgi_url $docs_dir $docs_url
 ... many more config params here
 $color_hint $color_warn $color_normal
);
 use vars qw($cgi_dir $cgi_url $docs_dir $docs_url
 ... many more config params here
 $color_hint $color_warn $color_normal
);

This approach is especially bad in the context of mod_perl, since exported variables add a memory over-
head. The more variables exported the more memory you use. If we multiply this overhead by the number
of servers we are going to run, we get a pretty big number which could be used to run a few more servers
instead.

As a matter of fact things aren’t so bad. You can group your variables, and call the groups by special
names called tags, which can later be used as arguments to the import() or use() calls. You are probably
familiar with:

 use CGI qw(:standard :html);

We can implement this quite easily, with the help of export_ok_tags() from Exporter . For example:

 BEGIN {
 use Exporter ();
 use vars qw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
 @ISA = qw(Exporter);
 @EXPORT = qw();
 @EXPORT_OK = qw();

 %EXPORT_TAGS = (
 vars => [qw($fname $lname)],
 subs => [qw(reread_conf untaint_path)],
);
 Exporter::export_ok_tags(’vars’);
 Exporter::export_ok_tags(’subs’);
 }

You export subroutines exactly like variables, since what’s actually being exported is a symbol. The defi-
nition of these subroutines is not shown here.

Notice that we didn’t use export_tags(), as it exports the variables automatically without the user asking
for them in first place, which is considered bad style. If a module automatically exports variables with
export_tags() you can stop this by not exporting at all:

 use My::Config ();

In your code you can now write:

 use My::Config qw(:subs :vars);

15 Feb 2014142

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

Groups of group tags:

The :all tag from CGI.pm is a group tag of all other groups. It will require a little more effort to imple-
ment, but you can always save time by looking at the solution in CGI.pm ’s code. It’s just a matter of a
little code to expand all the groups recursively.

After going through the pain of maintaining a list of variables in a big project with a huge configuration
file (more than 100 variables) and many files actually using them, I came up with a much simpler solution:
keeping all the variables in a single hash, which is built from references to other anonymous scalars, arrays
and hashes.

Now my configuration file looks like this:

 package My::Config;
 use strict;

 BEGIN {
 use Exporter ();

 @My::Config::ISA = qw(Exporter);
 @My::Config::EXPORT = qw();
 @My::Config::EXPORT_OK = qw(%c);
 }

 use vars qw(%c);

 %c = (
 dir => {
 cgi => "/home/httpd/perl",
 docs => "/home/httpd/docs",
 img => "/home/httpd/docs/images",
 },
 url => {
 cgi => "/perl",
 docs => "/",
 img => "/images",
 },
 color => {
 hint => "#777777",
 warn => "#990066",
 normal => "#000000",
 },
);

Good perl style suggests keeping a comma at the end of lists. That’s because additional items tend to be
added to the end of the list. If you keep that last comma in place, you don’t have to remember to add one
when you add a new item.

So now the script looks like this:

14315 Feb 2014

5.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

 use strict;
 use My::Config qw(%c);
 use vars qw(%c)
 print "Content-type: text/plain\r\n\r\n";
 print "My url docs root: $c{url}{docs}\n";

Do you see the difference? The whole mess has gone, there is only one variable to worry about.

There is one small downside to taking this approach: auto-vivification. For example, if we wrote
$c{url}{doc} by mistake, perl would silently create this element for us with the value undef. When we
use strict; Perl will tell us about any misspelling of this kind for a simple scalar, but this check is
not performed for hash elements. This puts the onus of responsibility back on us since we must take
greater care. A possible solution to this is to use pseudo-hashes, but they are still considered experimental
so we won’t cover them here.

The benefits of the hash approach are significant and we can make do even better. I would like to get rid of
the Exporter stuff completely. I remove all the exporting code so my config file now looks like:

 package My::Config;
 use strict;
 use vars qw(%c);

 %c = (
 dir => {
 cgi => "/home/httpd/perl",
 docs => "/home/httpd/docs",
 img => "/home/httpd/docs/images",
 },
 url => {
 cgi => "/perl",
 docs => "/",
 img => "/images",
 },
 color => {
 hint => "#777777",
 warn => "#990066",
 normal => "#000000",
 },
);

And the code:

 use strict;
 use My::Config ();
 print "Content-type: text/plain\r\n\r\n";
 print "My url docs root: $My::Config::c{url}{docs}\n";

Since we still want to save lots of typing, and since now we need to use a fully qualified notation like
$My::Config::c{url}{docs} , let’s use the magical Perl aliasing feature. I’ll modify the code to
be:

15 Feb 2014144

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

 use strict;
 use My::Config ();
 use vars qw(%c);
 *c = \%My::Config::c;
 print "Content-type: text/plain\r\n\r\n";
 print "My url docs root: $c{url}{docs}\n";

I have aliased the *c glob with \%My::Config::c , a reference to a hash. From now on,
%My::Config::c and %c are the same hash and you can read from or modify either of them.

Just one last little point. Sometimes you see a lot of redundancy in the configuration variables, for
example:

 $cgi_dir = "/home/httpd/perl";
 $docs_dir = "/home/httpd/docs";
 $img_dir = "/home/httpd/docs/images";

Now if you want to move the base path "/home/httpd" into a new place, it demands lots of typing. Of
course the solution is:

 $base = "/home/httpd";
 $cgi_dir = "$base/perl";
 $docs_dir = "$base/docs";
 $img_dir = "$docs_dir/images";

You cannot do the same trick with a hash, since you cannot refer to its values before the definition is
finished. So this wouldn’t work:

 %c =
 (
 base => "/home/httpd",
 dir => {
 cgi => "$c{base}/perl",
 docs => "$c{base}/docs",
 img => "$c{base}{docs}/images",
 },
);

But nothing stops us from adding additional variables, which are lexically scoped with my (). The follow-
ing code is correct.

 my $base = "/home/httpd";
 %c =
 (
 dir => {
 cgi => "$base/perl",
 docs => "$base/docs",
 img => "$base/docs/images",
 },
);

You have just learned how to make configuration files easily maintainable, and how to save memory by
avoiding the export of variables into a script’s namespace.

14515 Feb 2014

5.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

5.7.4.2 Reloading Configuration Files

First, lets look at a simple case, when we just have to look after a simple configuration file like the one
below. Imagine a script that tells you who is the patch pumpkin of the current Perl release.

Sidenote: Pumpkin A humorous term for the token (notional or real) that gives its possessor (the "pump-
king" or the "pumpkineer") exclusive access to something, e.g. applying patches to a master copy of some
source (for which the token is called the "patch pumpkin").

 use CGI ();
 use strict;

 my $fname = "Larry";
 my $lname = "Wall";
 my $q = CGI->new;

 print $q->header(-type=>’text/html’);
 print $q->p("$fname $lname holds the patch pumpkin" .
 "for this Perl release.");

The script has a hardcoded value for the name. It’s very simple: initialize the CGI object, print the proper
HTTP header and tell the world who is the current patch pumpkin.

When the patch pumpkin changes we don’t want to modify the script. Therefore, we put the $fname and
$lname variables into a configuration file.

 $fname = "Gurusamy";
 $lname = "Sarathy";
 1;

Please note that there is no package declaration in the above file, so the code will be evaluated in the
caller’s package or in the main:: package if none was declared. This means that the variables $fname
and $lname will override (or initialize if they weren’t yet) the variables with the same names in the
caller’s namespace. This works for global variables only--you cannot update variables defined lexically
(with my ()) using this technique.

You have started the server and everything is working properly. After a while you decide to modify the
configuration. How do you let your running server know that the configuration was modified without
restarting it? Remember we are in production and server restarting can be quite expensive for us. One of
the simplest solutions is to poll the file’s modification time by calling stat() before the script starts to do
real work. If we see that the file was updated, we force a reconfiguration of the variables located in this
file. We will call the function that reloads the configuration reread_conf() and have it accept a single argu-
ment, which is the relative path to the configuration file.

Apache::Registry calls a chdir() to the script’s directory before it starts the script’s execution. So if
your CGI script is invoked under the Apache::Registry handler you can put the configuration file in
the same directory as the script. Alternatively you can put the file in a directory below that and use a path
relative to the script directory. You have to make sure that the file will be found, somehow. Be aware that
do() searches the libraries in the directories in @INC.

15 Feb 2014146

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

 use vars qw(%MODIFIED);
 sub reread_conf{
 my $file = shift;
 return unless defined $file;
 return unless -e $file and -r _;
 my $mod = -M _;
 unless (exists $MODIFIED{$file} and $MODIFIED{$file} == $mod) {
 my $result;
 unless ($result = do $file) {
 warn "couldn’t parse $file: $@" if $@;
 warn "couldn’t do $file: $!" unless defined $result;
 warn "couldn’t run $file" unless $result;
 }
 $MODIFIED{$file} = $mod; # Update the MODIFICATION times
 }
 } # end of reread_conf

Notice that we use the == comparison operator when checking file’s modification timestamp, because all
we want to know whether the file was changed or not.

When the require(), use() and do() operators successfully return, the file that was passed as an argument is
inserted into %INC (the key is the name of the file and the value the path to it). Specifically, when Perl
sees require() or use() in the code, it first tests %INC to see whether the file is already there and thus
loaded. If the test returns true, Perl saves the overhead of code re-reading and re-compiling; however
calling do() will (re)load regardless.

You generally don’t notice with plain perl scripts, but in mod_perl it’s used all the time; after the first
request served by a process all the files loaded by require() stay in memory. If the file is preloaded at
server startup, even the first request doesn’t have the loading overhead.

We use do() to reload the code in this file and not require() because while do() behaves almost identically
to require(), it reloads the file unconditionally. If do() cannot read the file, it returns undef and sets $! to
report the error. If do() can read the file but cannot compile it, it returns undef and sets an error message
in $@. If the file is successfully compiled, do() returns the value of the last expression evaluated.

The configuration file can be broken if someone has incorrectly modified it. We don’t want the whole
service that uses that file to be broken, just because of that. We trap the possible failure to do() the file and
ignore the changes, by the resetting the modification time. If do() fails to load the file it might be a good
idea to send an email to the system administrator about the problem.

Notice however, that since do() updates %INC like require() does, if you are using Apache::StatINC
it will attempt to reload this file before the reread_conf() call. So if the file wouldn’t compile, the request
will be aborted. Apache::StatINC shouldn’t be used in production (because it slows things down by
stat()’ing all the files listed in %INC) so this shouldn’t be a problem.

Note that we assume that the entire purpose of this function is to reload the configuration if it was
changed. This is fail-safe, because if something goes wrong we just return without modifying the server
configuration. The script should not be used to initialize the variables on its first invocation. To do that,
you would need to replace each occurrence of return() and warn() with die(). If you do that, take a look at
the section "Redirecting Errors to the Client instead of error_log".

14715 Feb 2014

5.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

I used the above approach when I had a huge configuration file that was loaded only at server startup, and
another little configuration file that included only a few variables that could be updated by hand or through
the web interface. Those variables were initialized in the main configuration file. If the webmaster breaks
the syntax of this dynamic file while updating it by hand, it won’t affect the main (write-protected) config-
uration file and so stop the proper execution of the programs. Soon we will see a simple web interface
which allows us to modify the configuration file without actually breaking it.

A sample script using the presented subroutine would be:

 use vars qw(%MODIFIED $fname $lname);
 use CGI ();
 use strict;

 my $q = CGI->new;
 print $q->header(-type=>’text/plain’);
 my $config_file = "./config.pl";
 reread_conf($config_file);
 print $q->p("$fname $lname holds the patch pumpkin" .
 "for this Perl release.");

 sub reread_conf{
 my $file = shift;
 return unless defined $file;
 return unless -e $file and -r _;
 my $mod = -M _;
 unless ($MODIFIED{$file} and $MODIFIED{$file} == $mod) {
 my $result;
 unless ($result = do $file) {
 warn "couldn’t parse $file: $@" if $@;
 warn "couldn’t do $file: $!" unless defined $result;
 warn "couldn’t run $file" unless $result;
 }
 $MODIFIED{$file} = $mod; # Update the MODIFICATION times
 }
 } # end of reread_conf

Remember that you should be using (stat $file)[9] instead of -M $file if you are modifying
the $^T variable. In some of my scripts, I reset $^T to the time of the script invocation with "$^T =
time()" . That way I can perform -M and the similar (-A , -C) file status tests relative to the script invo-
cation time, and not the time the process was started.

If your configuration file is more sophisticated and it declares a package and exports variables, the above
code will work just as well. Even if you think that you will have to import() variables again, when do()
recompiles the script the originally imported variables get updated with the values from the reloaded code.

5.7.4.3 Dynamically updating configuration files

The CGI script below allows a system administrator to dynamically update a configuration file through the
web interface. Combining this with the code we have just seen to reload the modified files, you get a
system which is dynamically reconfigurable without needing to restart the server. Configuration can be
performed from any machine having just a web interface (a simple browser connected to the Internet).

15 Feb 2014148

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

Let’s say you have a configuration file like this:

 package MainConfig;

 use strict;
 use vars qw(%c);

 %c = (
 name => "Larry Wall",
 release => "5.000",
 comments => "Adding more ways to do the same thing :)",

 other => "More config values",

 hash => { foo => "ouch",
 bar => "geez",
 },

 array => [qw(a b c)],

);

You want to make the variables name, release and comments dynamically configurable. You want to
have a web interface with an input form that allows you to modify these variables. Once modified you
want to update the configuration file and propagate the changes to all the currently running processes.
Quite a simple task.

Let’s look at the main stages of the implementation. Create a form with preset current values of the vari-
ables. Let the administrator modify it and submit the changes. Validate the submitted information
(numeric fields should carry numbers, literals--words, etc). Update the configuration file. Update the
modified value in the memory of the current process. Present the form as before but with updated fields if
any.

The only part that seems to be complicated to implement is a configuration file update, for a couple of
reasons. If updating the file breaks it, the whole service won’t work. If the file is very big and includes
comments and complex data structures, parsing the file can be quite a challenge.

So let’s simplify the task. If all we want is to update a few variables, why don’t we create a tiny configura-
tion file with just those variables? It can be modified through the web interface and overwritten each time
there is something to be changed. This way we don’t have to parse the file before updating it. If the main
configuration file is changed we don’t care, we don’t depend on it any more.

The dynamically updated variables are duplicated, they will be in the main file and in the dynamic file. We
do this to simplify maintenance. When a new release is installed the dynamic configuration file won’t exist
at all. It will be created only after the first update. As we just saw, the only change in the main code is to
add a snippet to load this file if it exists and was changed.

This additional code must be executed after the main configuration file has been loaded. That way the
updated variables will override the default values in the main file.

14915 Feb 2014

5.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

META: extend on the comments:

 # remember to run this code in taint mode

 use strict;
 use vars qw($q %c $dynamic_config_file %vars_to_change %validation_rules);

 use CGI ();

 use lib qw(.);
 use MainConfig ();
 *c = \%MainConfig::c;

 $dynamic_config_file = "./config.pl";

 # load the dynamic configuration file if it exists, and override the
 # default values from the main configuration file
 do $dynamic_config_file if -e $dynamic_config_file and -r _;

 # fields that can be changed and their titles
 %vars_to_change =
 (
 ’name’ => "Patch Pumpkin’s Name",
 ’release’ => "Current Perl Release",
 ’comments’ => "Release Comments",
);

 %validation_rules =
 (
 ’name’ => sub { $_[0] =~ /^[\w\s\.]+$/; },
 ’release’ => sub { $_[0] =~ /^\d+\.[\d_]+$/; },
 ’comments’ => sub { 1; },
);

 $q = CGI->new;
 print $q->header(-type=>’text/html’),
 $q->start_html();

 my %updates = ();

 # We always rewrite the dynamic config file, so we want all the
 # vars to be passed, but to save time we will only do checking

 # of vars that were changed. The rest will be retrieved from
 # the ’prev_foo’ values.
 foreach (keys %vars_to_change) {
 # copy var so we can modify it
 my $new_val = $q->param($_) || ’’;

 # strip a possible ^M char (DOS/WIN)
 $new_val =~ s/\cM//g;

 # push to hash if was changed
 $updates{$_} = $new_val
 if defined $q->param("prev_".$_)
 and $new_val ne $q->param("prev_".$_);
 }

15 Feb 2014150

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

 # Note that we cannot trust the previous values of the variables
 # since they were presented to the user as hidden form variables,
 # and the user can mangle those. We don’t care: it cannot do any
 # damage, as we verify each variable by rules which we define.

 # Process if there is something to process. Will be not called if
 # it’s invoked a first time to display the form or when the form
 # was submitted but the values weren’t modified (we know that by
 # comparing with the previous values of the variables, which are
 # the hidden fields in the form)

 # process and update the values if valid
 process_change_config(%updates) if %updates;

 # print the update form
 conf_modification_form();

 # update the config file but first validate that the values are correct ones
 #########################
 sub process_change_config{
 my %updates = @_;

 # we will list here all the malformatted vars
 my %malformatted = ();

 print $q->b("Trying to validate these values
");
 foreach (keys %updates) {
 print "<DT>$_ => <PRE>$updates{$_}</PRE>";

 # now we have to handle each var to be changed very carefully
 # since this file goes immediately into production!
 $malformatted{$_} = delete $updates{$_}
 unless $validation_rules{$_}->($updates{$_});

 } # end of foreach (keys %updates)

 # print warnings if there are any invalid changes
 print $q->hr,
 $q->p($q->b(qq{Warning! These variables were changed
 but found malformed, thus the original
 values will be preserved.})
),
 join(",
",
 map { $q->b($vars_to_change{$_}) . " : $malformatted{$_}\n"
 } keys %malformatted)
 if %malformatted;

 # Now complete the vars that weren’t changed from the
 # $q->param(’prev_var’) values
 map { $updates{$_} = $q->param(’prev_’.$_) unless exists $updates{$_}
 } keys %vars_to_change;

 # Now we have all the data that should be written into the dynamic
 # config file

 # escape single quotes "’" while creating a file

15115 Feb 2014

5.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

 my $content = join "\n",
 map { $updates{$_} =~ s/([’\\])/\\$1/g;
 ’$c{’ . $_ . "} = ’" . $updates{$_} . "’;\n"
 } keys %updates;

 # now add ’1;’ to make require() happy
 $content .= "\n1;";

 # keep the dummy result in $res so it won’t complain

 eval {my $res = $content};
 if ($@) {
 print qq{Warning! Something went wrong with config file
 generation!<P> The error was :
<PRE>$@</PRE>};
 return;
 }

 print $q->hr;

 # overwrite the dynamic config file
 use Symbol ();
 my $fh = Symbol::gensym();
 open $fh, ">$dynamic_config_file.bak"
 or die "Can’t open $dynamic_config_file.bak for writing :$! \n";
 flock $fh,2; # exclusive lock
 seek $fh,0,0; # rewind to the start
 truncate $fh, 0; # the file might shrink!
 print $fh $content;
 close $fh;

 # OK, now we make a real file
 rename "$dynamic_config_file.bak",$dynamic_config_file
 or die "Failed to rename: $!";

 # rerun it to update variables in the current process! Note that
 # it won’t update the variables in other processes. Special
 # code that watches the timestamps on the config file will do this
 # work for each process. Since the next invocation will update the
 # configuration anyway, why do we need to load it here? The reason
 # is simple: we are going to fill the form’s input fields with
 # the updated data.
 do $dynamic_config_file;

 } # end sub process_change_config

 ##########################
 sub conf_modification_form{

 print $q->center($q->h3("Update Form"));

 print $q->hr,
 $q->p(qq{This form allows you to dynamically update the current
 configuration. You don\’t need to restart the server in
 order for changes to take an effect}
);

 # set the previous settings in the form’s hidden fields, so we

15 Feb 2014152

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

 # know whether we have to do some changes or not
 map {$q->param("prev_$_",$c{$_}) } keys %vars_to_change;

 # rows for the table, go into the form
 my @configs = ();

 # prepare one textfield entries
 push @configs,
 map {
 $q->td(
 $q->b("$vars_to_change{$_}:"),
),
 $q->td(
 $q->textfield(-name => $_,
 -default => $c{$_},
 -override => 1,
 -size => 20,
 -maxlength => 50,
)
),
 } qw(name release);

 # prepare multiline textarea entries
 push @configs,
 map {
 $q->td(
 $q->b("$vars_to_change{$_}:"),
),
 $q->td(
 $q->textarea(-name => $_,
 -default => $c{$_},
 -override => 1,
 -rows => 10,

 -columns => 50,
 -wrap => "HARD",
)
),
 } qw(comments);

 print $q->startform(’POST’,$q->url),"\n",
 $q->center($q->table(map {$q->Tr($_),"\n",} @configs),
 $q->submit(’’,’Update!’),"\n",
),
 map ({$q->hidden("prev_".$_, $q->param("prev_".$_))."\n" }
 keys %vars_to_change), # hidden previous values
 $q->br,"\n",
 $q->endform,"\n",
 $q->hr,"\n",
 $q->end_html;

 } # end sub conf_modification_form

Once updated the script generates a file like:

15315 Feb 2014

5.7.4 Configuration Files: Writing, Dynamically Updating and ReloadingCGI to mod_perl Porting. mod_perl Coding guidelines.

 $c{release} = ’5.6’;

 $c{name} = ’Gurusamy Sarathy’;

 $c{comments} = ’Perl rules the world!’;

 1;

5.7.5 Reloading handlers

If you want to reload a perlhandler on each invocation, the following trick will do it:

 PerlHandler "sub { do ’MyTest.pm’; MyTest::handler(shift) }"

do() reloads MyTest.pm on every request.

5.8 Name collisions with Modules and libs
This section requires an in-depth understanding of use(), require(), do(), %INC and @INC .

To make things clear before we go into details: each child process has its own %INC hash which is used to
store information about its compiled modules. The keys of the hash are the names of the modules and files
passed as arguments to require() and use(). The values are the full or relative paths to these modules and
files.

Suppose we have my-lib.pl and MyModule.pm both located at /home/httpd/perl/my/ .

/home/httpd/perl/my/ is in @INC at server startup.

 require "my-lib.pl";
 use MyModule;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

prints:

 /home/httpd/perl/my/my-lib.pl
 /home/httpd/perl/my/MyModule.pm

Adding use lib :

 use lib qw(.);
 require "my-lib.pl";
 use MyModule;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

prints:

15 Feb 2014154

5.8 Name collisions with Modules and libs

 my-lib.pl
 MyModule.pm

/home/httpd/perl/my/ isn’t in @INC at server startup.

 require "my-lib.pl";
 use MyModule;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

wouldn’t work, since perl cannot find the modules.

Adding use lib :

 use lib qw(.);
 require "my-lib.pl";
 use MyModule;
 print $INC{"my-lib.pl"},"\n";
 print $INC{"MyModule.pm"},"\n";

prints:

 my-lib.pl
 MyModule.pm

Let’s look at three scripts with faults related to name space. For the following discussion we will consider
just one individual child process.

Scenario 1

First, You can’t have two identical module names running on the same server! Only the first one
found in a use() or require() statement will be compiled into the package, the request for the other
module will be skipped, since the server will think that it’s already compiled. This is a direct result of
using %INC, which has keys equal to the names of the modules. Two identical names will refer to the
same key in the hash. (Refer to the section ’Looking inside the server’ to find out how you can know
what is loaded and where.)

So if you have two different Foo modules in two different directories and two scripts script1.pl
and script2.pl , placed like this:

 ./tool1/Foo.pm
 ./tool1/tool1.pl
 ./tool2/Foo.pm
 ./tool2/tool2.pl

Where some sample code could be:

 ./tool1/tool1.pl

 use Foo;
 print "Content-type: text/plain\r\n\r\n";
 print "I’m Script number One\n";
 foo();

15515 Feb 2014

5.8 Name collisions with Modules and libsCGI to mod_perl Porting. mod_perl Coding guidelines.

 ./tool1/Foo.pm

 sub foo{
 print "I’m Tool Number One!\n";
 }
 1;

 ./tool2/tool2.pl

 use Foo;
 print "Content-type: text/plain\r\n\r\n";
 print "I’m Script number Two\n";
 foo();

 ./tool2/Foo.pm

 sub foo{
 print "I’m Tool Number Two!\n";
 }
 1;

Both scripts call use Foo; . Only the first one called will know about Foo. When you call the
second script it will not know about Foo at all--it’s like you’ve forgotten to write use Foo; . Run
the server in single server mode to detect this kind of bug immediately.

You will see the following in the error_log file:

 Undefined subroutine
 &Apache::ROOT::perl::tool2::tool2_2epl::foo called at
 /home/httpd/perl/tool2/tool2.pl line 4.

Scenario 2

If the files do not declare a package, the above is true for libraries (i.e. my-lib.pl") you require() as
well:

Suppose that you have a directory structure like this:

 ./tool1/config.pl
 ./tool1/tool1.pl
 ./tool2/config.pl
 ./tool2/tool2.pl

and both scripts contain:

 use lib qw(.);
 require "config.pl";

while ./tool1/config.pl can be something like this:

 $foo = 0;
 1;

15 Feb 2014156

5.8 Name collisions with Modules and libs

and ./tool2/config.pl:

 $foo = 1;
 1;

The second scenario is not different from the first, there is almost no difference between use() and
require() if you don’t have to import some symbols into a calling script. Only the first script served
will actually do the require(), for the same reason as the example above. %INC already includes the
key "config.pl"!

Scenario 3

It is interesting that the following scenario will fail too!

 ./tool/config.pl
 ./tool/tool1.pl
 ./tool/tool2.pl

where tool1.pl and tool2.pl both require() the same config.pl .

There are three solutions for this:

Solution 1

The first two faulty scenarios can be solved by placing your library modules in a subdirectory struc-
ture so that they have different path prefixes. The file system layout will be something like:

 ./tool1/Tool1/Foo.pm
 ./tool1/tool1.pl
 ./tool2/Tool2/Foo.pm
 ./tool2/tool2.pl

And modify the scripts:

 use Tool1::Foo;
 use Tool2::Foo;

For require() (scenario number 2) use the following:

 ./tool1/tool1-lib/config.pl
 ./tool1/tool1.pl
 ./tool2/tool2-lib/config.pl
 ./tool2/tool2.pl

And each script contains respectively:

 use lib qw(.);
 require "tool1-lib/config.pl";

 use lib qw(.);
 require "tool2-lib/config.pl";

15715 Feb 2014

5.8 Name collisions with Modules and libsCGI to mod_perl Porting. mod_perl Coding guidelines.

This solution isn’t good, since while it might work for you now, if you add another script that wants
to use the same module or config.pl file, it would fail as we saw in the third scenario.

Let’s see some better solutions.

Solution 2

Another option is to use a full path to the script, so it will be used as a key in %INC;

 require "/full/path/to/the/config.pl";

This solution solves the problem of the first two scenarios. I was surprised that it worked for the third
scenario as well!

With this solution you lose some portability. If you move the tool around in the file system you will
have to change the base directory or write some additional script that will automatically update the
hardcoded path after it was moved. Of course you will have to remember to invoke it.

Solution 3

Make sure you read all of this solution.

Declare a package name in the required files! It should be unique in relation to the rest of the package
names you use. %INC will then use the unique package name for the key. It’s a good idea to use at
least two-level package names for your private modules, e.g. MyProject::Carp and not Carp ,
since the latter will collide with an existing standard package. Even though a package may not exist
in the standard distribution now, a package may come along in a later distribution which collides with
a name you’ve chosen. Using a two part package name will help avoid this problem.

Even a better approach is to use three level naming, like CompanyName::Project-
Name::Module , which is most unlikely to have conflicts with later Perl releases. Foresee problems
like this and save yourself future trouble.

What are the implications of package declaration?

Without package declarations, it is very convenient to use() or require() files because all the variables
and subroutines are part of the main:: package. Any of them can be used as if they are part of the
main script. With package declarations things are more awkward. You have to use the
Package::function() method to call a subroutine from Package and to access a global vari-
able $foo inside the same package you have to write $Package::foo .

Lexically defined variables, those declared with my () inside Package will be inaccessible from
outside the package.

You can leave your scripts unchanged if you import the names of the global variables and subroutines
into the namespace of package main:: like this:

15 Feb 2014158

5.8 Name collisions with Modules and libs

 use Module qw(:mysubs sub_b $var1 :myvars);

You can export both subroutines and global variables. Note however that this method has the disad-
vantage of consuming more memory for the current process.

See perldoc Exporter for information about exporting other variables and symbols.

This completely covers the third scenario. When you use different module names in package declara-
tions, as explained above, you cover the first two as well.

A Hack

The following solution should be used only as a short term bandaid. You can force reloading of the
modules by either fiddling with %INC or replacing use() and require() calls with do().

If you delete the module entry from the %INC hash, before calling require() or use() the module will
be loaded and compiled again. For example:

 ./project/runA.pl

 BEGIN {
 delete $INC{"MyConfig.pm"};
 }
 use lib qw(.);
 use MyConfig;
 print "Content-type: text/plain\n\n";
 print "Script A\n";
 print "Inside project: ", project_name();

Apply the same fix to runB.pl.

Another alternative is to force module reload via do():

 ./project/runA.pl

 use lib qw(.);
 do "MyConfig.pm";
 print "Content-type: text/plain\n\n";
 print "Script B\n";
 print "Inside project: ", project_name();

Apply the same fix to runB.pl.

If you needed to import() something from the loaded module, call the import() method explicitly. For
example if you had:

 use MyConfig qw(foo bar);

now the code will look as:

15915 Feb 2014

5.8 Name collisions with Modules and libsCGI to mod_perl Porting. mod_perl Coding guidelines.

 do "MyConfig.pm";
 MyConfig->import(qw(foo bar));

Both presented solutions are ineffective, since the modules in question will be reloaded on each
request, slowing down the response times. Therefore use these only when a very quick fix is needed
and provide one of the more robust solutions discussed in the previous sections.

See also the perlmodlib and perlmod manpages.

From the above discussion it should be clear that you cannot run development and production versions of
the tools using the same apache server! You have to run a separate server for each. They can be on the
same machine, but the servers will use different ports.

5.9 More package name related issues
If you have the following:

 PerlHandler Apache::Work::Foo
 PerlHandler Apache::Work::Foo::Bar

And you make a request that pulls in Apache/Work/Foo/Bar.pm first, then the
Apache::Work::Foo package gets defined, so mod_perl does not try to pull in
Apache/Work/Foo.pm

5.10 __END__ and __DATA__ tokens
Apache::Registry scripts cannot contain __END__ or __DATA__ tokens.

Why? Because Apache::Registry scripts are being wrapped into a subroutine called handler , like
the script at URI /perl/test.pl :

 print "Content-type: text/plain\r\n\r\n";
 print "Hi";

When the script is being executed under Apache::Registry handler, it actually becomes:

 package Apache::ROOT::perl::test_2epl;
 use Apache qw(exit);
 sub handler {
 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 }

So if you happen to put an __END__ tag, like:

 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 __END__
 Some text that wouldn’t be normally executed

15 Feb 2014160

5.9 More package name related issues

it will be turned into:

 package Apache::ROOT::perl::test_2epl;
 use Apache qw(exit);
 sub handler {
 print "Content-type: text/plain\r\n\r\n";
 print "Hi";
 __END__
 Some text that wouldn’t be normally executed
 }

and you try to execute this script, you will receive the following error:

 Missing right bracket at line 4, at end of line

Perl cuts everything after the __END__ tag. The same applies to the __DATA__ tag.

Also, remember that whatever applies to Apache::Registry scripts, in most cases applies to
Apache::PerlRun scripts.

5.11 Output from system calls
The output of system() , exec() , and open(PIPE,"|program") calls will not be sent to the
browser unless your Perl was configured with sfio .

You can use backticks as a possible workaround:

 print ‘command here‘;

But you’re throwing performance out the window either way. It’s best not to fork at all if you can avoid it.
See the "Forking or Executing subprocesses from mod_perl" section to learn about implications of
forking.

Also read about Apache::SubProcess for overridden system() and exec() implementations that work with
mod_perl.

5.12 Using format() and write()
The interface to filehandles which are linked to variables with Perl’s tie() function is not yet complete. The
format() and write() functions are missing. If you configure Perl with sfio , write() and format() should
work just fine.

Otherwise you could use sprintf() to replace format(): ##.## becomes %2.2f and ####.## becomes
%4.2f .

Pad all strings with (" " x 80) before using, and set their length with: %.25s for a max 25 char string. Or
prefix the string with (" " x 80) for right-justifying.

16115 Feb 2014

5.11 Output from system callsCGI to mod_perl Porting. mod_perl Coding guidelines.

Another alternative is to use the Text::Reform module.

5.13 Terminating requests and processes, the exit() and
child_terminate() functions
Perl’s exit() built-in function (all versions prior to 5.6) cannot be used in mod_perl scripts. Calling it
causes the mod_perl process to exit (which defeats the purpose of using mod_perl). The
Apache::exit() function should be used instead. Starting from Perl version 5.6 mod_perl will over-
ride exit() behind the scenes, using CORE::GLOBAL:: , a new magical package.

You might start your scripts by overriding the exit() subroutine (if you use Apache::exit() directly,
you will have a problem testing the script from the shell, unless you put use Apache (); into your
code.) I use the following code:

 use constant IS_MODPERL => $ENV{MOD_PERL};
 use subs qw(exit);
 # Select the correct exit function
 *exit = IS_MODPERL ? \&Apache::exit : sub { CORE::exit };

Now the correct exit() is always chosen, whether the script is running under mod_perl, ordinary CGI or
from the shell. Notice that since we are using the constant pragma, there is no runtime overhead to select
one of the code references, since IS_MODPERL constant is folded, that block is optimized away at
compile time outside of mod_perl.

Note that if you run the script under Apache::Registry , The Apache function exit() overrides
the Perl core built-in function. While you see exit() listed in the @EXPORT_OK list of the Apache
package, Apache::Registry does something you don’t see and imports this function for you. This
means that if your script is running under the Apache::Registry handler you don’t have to worry
about exit(). The same applies to Apache::PerlRun .

If you use CORE::exit() in scripts running under mod_perl, the child will exit, but neither a proper
exit nor logging will happen on the way. CORE::exit() cuts off the server’s legs.

Note that Apache::exit(Apache::Constants::DONE) will cause the server to exit gracefully,
completing the logging functions and protocol requirements etc. (Apache::Constants::DONE == -2,
Apache::Constants::OK == 0.)

If you need to shut down the child cleanly after the request was completed, use the
$r->child_terminate method. You can call it anywhere in the code, and not just at the "end". This
sets the value of the MaxRequestsPerChild configuration variable to 1 and clears the keepalive
flag. After the request is serviced, the current connection is broken, because of the keepalive flag, and
the parent tells the child to cleanly quit, because MaxRequestsPerChild is smaller than the number
of requests served.

In an Apache::Registry script you would do:

15 Feb 2014162

5.13 Terminating requests and processes, the exit() and child_terminate() functions

 Apache->request->child_terminate;

or in httpd.conf:

 PerlFixupHandler "sub { shift->child_terminate }"

You would want to use the latter example only if you wanted the child to terminate every time the regis-
tered handler is called. Probably this is not what you want.

Even if you don’t need to call child_terminate() at the end of the request if you want the process to quit
afterwards, here is an example of assigning the postprocessing handler. You might do this if you wanted to
execute your own code a moment before the process quits.

 my $r = shift;
 $r->post_connection(\&exit_child);
 sub exit_child{
 # some logic here if needed
 $r->child_terminate;
 }

The above is the code that is used by the Apache::SizeLimit module which terminates processes
that grow bigger than a value you choose.

Apache::GTopLimit (based on libgtop and GTop.pm) is a similar module. It does the same thing, plus
you can configure it to terminate processes when their shared memory shrinks below some specified size.

5.14 die() and mod_perl
When you write:

 open FILE, "foo" or die "Cannot open foo file for reading: $!";

in a perl script and execute it--the script would die() if it is unable to open the file, by aborting the script
execution, printing the death reason and quitting the Perl interpreter.

You will hardly find a properly written Perl script that doesn’t have at least one die() statement in it, if it
has to cope with system calls and the like.

A CGI script running under mod_cgi exits on its completion. The Perl interperter exits as well. So it
doesn’t really matter whether the interpreter quits because the script died by natural death (when the last
statement was executed) or was aborted by a die() statement.

In mod_perl we don’t want the interpreter to quit. We already know that when the script completes its
chores the interpeter won’t quit. There is no reason why it should quit when the script has stopped because
of die(). As a result calling die() won’t quit the process.

And this is how it works--when the die() gets triggered, it’s mod_perl’s $SIG{__DIE__} handler that
logs the error message and calls Apache::exit() instead of CORE::die(). Thus the script stops, but the
process doesn’t quit.

16315 Feb 2014

5.14 die() and mod_perlCGI to mod_perl Porting. mod_perl Coding guidelines.

Here is an example of such trapping code, although it isn’t the real code:

 $SIG{__DIE__} = sub { print STDERR @_; Apache::exit(); }

5.15 Return Codes
Apache::Registry normally assumes a return code of OK (200). If you want to send another return
code, use $r->status() :

 use Apache::Constants qw(NOT_FOUND);
 $r->status(NOT_FOUND);

Of course if you do that, you don’t have to call $r->send_http_header() (assuming that you have
PerlSendHeader Off).

5.16 Testing the Code from the Shell
Your CGI scripts will not yet run from the command line unless you use CGI::Switch or CGI.pm and
have Perl 5.004 or later. They must not make any direct calls to Apache’s Perl API methods.

5.17 I/O is different
If you are using Perl 5.004 or later, most CGI scripts can run under mod_perl untouched.

If you’re using 5.003, Perl’s built-in read() and print() functions do not work as they do under CGI.
If you’re using CGI.pm , use $query->print instead of plain ol’ print() .

5.18 STDIN, STDOUT and STDERR streams
In mod_perl both STDIN and STDOUT are tied to the socket the request came from. Because the C level
STDOUT is not hooked up to the client, you can re-open the STDOUT filehandler using tie(). For
example if you want to dup an STDOUT filehandler and for the code to work with mod_perl and without
it, the following example will do:

 use constant IS_MODPERL => $ENV{MOD_PERL};
 if (IS_MODPERL) {
 tie *OUT, ’Apache’;
 } else {
 open (OUT, ">-");
 }

Note that OUT was picked just as an example -- there is nothing special about it. If you are looking to redi-
rect the STDOUT stream into a scalar, see the Redirecting STDOUT into a String section.

STDERR is tied to the file defined by the ErrorLog directive.

15 Feb 2014164

5.15 Return Codes

5.19 Redirecting STDOUT into a Scalar
Sometimes you have a situation where a black box functions prints the output to STDOUT and you want to
get this output into a scalar. This is just as valid under mod_perl, where you want the STDOUT to be tied
to the Apache object. So that’s where the IO::String package comes to help. You can re-tie() the
STDOUT (or any other filehandler to a string) by doing a simple select() on the IO::String object and
at the end to re-tie() the STDOUT back to its original stream:

 my $str;
 my $str_fh = IO::String->new($str);
 my $old_fh = select($str_fh);

 # some function that prints to currently selected file handler.
 print_stuff()

 # reset default fh to previous value
 select($old_fh) if defined $old_fh;

5.20 Apache::print() and CORE::print()
Under mod_perl CORE::print() will redirect its data to Apache::print() since the STDOUT
filehandle is tied to the Apache module. This allows us to run CGI scripts unmodified under
Apache::Registry by chaining the output of one content handler to the input of the other handler.

Apache::print() behaves mostly like the built-in print() function. In addition it sets a timeout so that
if the client connection is broken the handler won’t wait forever trying to print data downstream to the
client.

There is also an optimization built into Apache::print() . If any of the arguments to the method are
scalar references to strings, they are automatically dereferenced for you. This avoids needless copying of
large strings when passing them to subroutines. For example:

 $long_string = "A" x 10000000;
 $r->print(\$long_string);

If you still want to print the reference you can always call:

 $r->print(\\$foo);

or by forcing it into a scalar context:

 print(scalar($foo));

5.21 Global Variables Persistence
Since the child process generally doesn’t exit before it has serviced several requests, global variables
persist inside the same process from request to request. This means that you must never rely on the value
of the global variable if it wasn’t initialized at the beginning of the request processing. See "Variables
globally, lexically scoped and fully qualified" for more information.

16515 Feb 2014

5.19 Redirecting STDOUT into a ScalarCGI to mod_perl Porting. mod_perl Coding guidelines.

You should avoid using global variables unless it’s impossible without them, because it will make code
development harder and you will have to make certain that all the variables are initialized before they are
used. Use my () scoped variables wherever you can.

You should be especially careful with Perl Special Variables which cannot be lexically scoped. You have
to use local() instead.

Here is an example with Perl hash variables, which store the iteration state in the hash variable and that
state persists between requests unless explicitly reset. Consider the following registry script:

 #file:hash_iteration.pl
 #----------------------
 our %hash;
 %hash = map {$_ => 1 } ’a’..’c’ unless %hash;

 print "Content-type: text/plain\n\n";

 for (my ($k, $v) = each %hash) {
 print "$k $v\n";
 last;
 }

That script prints different values on the first 3 invocations and prints nothing on the 4th, and then repeats
the loop. (when you run with httpd -X). There are 3 hash key/value pairs in the global variable %hash.

In order to get the iteration state to its initial state at the beginning of each request, you need to reset the
iterator as explained in the manpage for the each() operator. So adding:

 keys %hash;

before using %hash solves the problem for the current example.

5.22 Generating correct HTTP Headers
A HTTP response header consists of at least two fields. HTTP response and MIME type header
Content-type :

 HTTP/1.0 200 OK
 Content-Type: text/plain

After adding one more new line, you can start printing the content. A more complete response includes the
date timestamp and server type, for example:

 HTTP/1.0 200 OK
 Date: Tue, 28 Dec 1999 18:47:58 GMT
 Server: Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
 Content-Type: text/plain

To notify that the server was configured with KeepAlive Off, you need to tell the client that the connection
was closed, with:

15 Feb 2014166

5.22 Generating correct HTTP Headers

 Connection: close

There can be other headers as well, like caching control and others specified by the HTTP protocol. You
can code the response header with a single print():

 print qq{HTTP/1.1 200 OK
 Date: Tue, 28 Dec 1999 18:49:41 GMT
 Server: Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
 Connection: close
 Content-type: text/plain

 };

or with a "here" style print:

 print <<EOT;
 HTTP/1.1 200 OK
 Date: Tue, 28 Dec 1999 18:49:41 GMT
 Server: Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
 Connection: close
 Content-type: text/plain

 EOT

Notice the double new line at the end. But you have to prepare a timestamp string
(Apache::Util::ht_time() does just this) and to know what server you are running under. You
needed to send only the response MIME type (Content-type) under mod_cgi, so why would you want
to do this manually under mod_perl?

Actually sometimes you do want to set some headers manually, but not every time. So mod_perl gives you
the default set of headers, just like in the example above. And if you want to override or add more headers
you can do that as well. Let’s see how to do that.

When writing your own handlers and scripts with the Perl Apache API the proper way to send the HTTP
header is with the send_http_header() method. If you need to add or override methods you can use the
header_out() method:

 $r->header_out("Server" => "Apache Next Generation 10.0");
 $r->header_out("Date" => "Tue, 28 Dec 1999 18:49:41 GMT");

When you have prepared all the headers you send them with:

 $r->send_http_header;

Some headers have special aliases:

 $r->content_type(’text/plain’);

is the same as:

16715 Feb 2014

5.22 Generating correct HTTP HeadersCGI to mod_perl Porting. mod_perl Coding guidelines.

 $r->header_out("Content-type" => "text/plain");

A typical handler looks like this:

 $r->content_type(’text/plain’);
 $r->send_http_header;
 return OK if $r->header_only;

If the client issues an HTTP HEAD request rather than the usual GET, to be compliant with the HTTP
protocol we should not send the document body, but only the HTTP header. When Apache receives a
HEAD request, header_only() returns true. If we see that this has happened, we return from the handler
immediately with an OK status code.

Generally, you don’t need the explicit content type setting, since Apache does this for you, by looking up
the MIME type of the request and by matching the extension of the URI in the MIME tables (from the
mime.types file). So if the request URI is /welcome.html, the text/html content-type will be picked.
However for CGI scripts or URIs that cannot be mapped by a known extension, you should set the appro-
priate type by using content_type() method.

The situation is a little bit different with Apache::Registry and similar handlers. If you take a basic
CGI script like this:

 print "Content-type: text/plain\r\n\r\n";
 print "Hello world";

it wouldn’t work, because the HTTP header will not be sent out. By default, mod_perl does not send any
headers itself. You may wish to change this by adding

 PerlSendHeader On

in the Apache::Registry <Location> section of your configuration. Now, the response line and
common headers will be sent as they are by mod_cgi. Just as with mod_cgi, PerlSendHeader will not
send the MIME type and a terminating double newline. Your script must send that itself, e.g.:

 print "Content-type: text/html\r\n\r\n";

According to HTTP specs, you should send "\cM\cJ", "\015\012" or "\0x0D\0x0A" string. The "\r\n" is the
way to do that on UNIX and MS-DOS/Windows machines. However, on a Mac "\r\n" eq "\012\015",
exactly the other way around.

Note, that in most UNIX CGI scripts, developers use a simpler "\n\n" and not "\r\n\r\n". There are occa-
sions where sending "\n" without "\r" can cause problems, make it a habit to always send "\r\n" every time.

If you use an OS which uses the EBCDIC as character set (e.g. BS2000-Posix), you should use this
method to send the Content-type header:

 shift->send_http_header(’text/html’);

15 Feb 2014168

5.22 Generating correct HTTP Headers

The PerlSendHeader On directive tells mod_perl to intercept anything that looks like a header line
(such as Content-Type: text/plain) and automatically turn it into a correctly formatted
HTTP/1.0 header, the same way it happens with CGI scripts running under mod_cgi. This allows you to
keep your CGI scripts unmodified.

You can use $ENV{PERL_SEND_HEADER} to find out whether PerlSendHeader is On or Off . You
use it in your module like this:

 if($ENV{PERL_SEND_HEADER}) {
 print "Content-type: text/html\r\n\r\n";
 }
 else {
 my $r = Apache->request;
 $r->content_type(’text/html’);
 $r->send_http_header;
 }

Note that you can always use the code in the else part of the above example, no matter whether the
PerlSendHeader directive is On or Off.

If you use CGI.pm ’s header() function to generate HTTP headers, you do not need to activate this
directive because CGI.pm detects mod_perl and calls send_http_header() for you.

There is no free lunch--you get the mod_cgi behavior at the expense of the small but finite overhead of
parsing the text that is sent. Note that mod_perl makes the assumption that individual headers are not split
across print statements.

The Apache::print() routine has to gather up the headers that your script outputs, in order to pass
them to $r->send_http_header . This happens in src/modules/perl/Apache.xs (print)
and Apache/Apache.pm (send_cgi_header). There is a shortcut in there, namely the assumption
that each print statement contains one or more complete headers. If for example you generate a
Set-Cookie header by multiple print() statements, like this:

 print "Content-type: text/plain\n";
 print "Set-Cookie: iscookietext\; ";
 print "expires=Wednesday, 09-Nov-1999 00:00:00 GMT\; ";
 print "path=\/\; ";
 print "domain=\.mmyserver.com\; ";
 print "\r\n\r\n";
 print "hello";

Your generated Set-Cookie header is split over a number of print() statements and gets lost. The above
example wouldn’t work! Try this instead:

 my $cookie = "Set-Cookie: iscookietext\; ";
 $cookie .= "expires=Wednesday, 09-Nov-1999 00:00:00 GMT\; ";
 $cookie .= "path=\/\; ";
 $cookie .= "domain=\.mmyserver.com\; ";
 print "Content-type: text/plain\n",
 print "$cookie\r\n\r\n";
 print "hello";

16915 Feb 2014

5.22 Generating correct HTTP HeadersCGI to mod_perl Porting. mod_perl Coding guidelines.

Of course using a special purpose cookie generator modules, like Apache::Cookie , CGI::Cookie
etc is an even cleaner solution.

Sometimes when you call a script you see an ugly "Content-Type: text/html" displayed at the top of the
page, and of course the rest of the HTML code won’t be rendered correctly by the browser. As you have
seen above, this generally happens when your code has already sent the header so you see the duplicate
header rendered into the browser’s page. This might happen when you call the CGI.pm $q->header
method or mod_perl’s $r->send_http_header .

If you have a complicated application where the header might be generated from many different places,
depending on the calling logic, you might want to write a special subroutine that sends a header, and keeps
track of whether the header has been already sent. Of course you can use a global variable to flag that the
header has already been sent:

 use strict;
 use vars qw{$header_printed};
 $header_printed = 0;

 print_header("text/plain");
 print "It worked!\n";
 print_header("text/plain");

 sub print_header {
 my $type = shift || "text/html";
 unless ($header_printed) {
 $header_printed = 1;
 my $r = Apache->request;
 $r->content_type($type);
 $r->send_http_header;
 }
 }

$header_printed is the variable that flags whether the header was sent or not and it gets initialized to
false (0) at the beginning of each code invocation. Note that the second invocation of print_header() within
the same code, will do nothing, since $header_printed will become true after print_header() will be
executed for the first time.

A solution that is a little bit more memory friendly is to use a fully qualified variable instead:

 use strict;
 $main::header_printed = 0;

 print_header("text/plain");
 print "It worked!\n";
 print_header("text/plain");

 sub print_header {
 my $type = shift || "text/html";
 unless ($main::header_printed) {
 $main::header_printed = 1;
 my $r = Apache->request;

15 Feb 2014170

5.22 Generating correct HTTP Headers

 $r->content_type($type);
 $r->send_http_header;
 }
 }

We just removed the global variable predeclaration, which allowed us to use $header_printed under
"use strict" and replaced $header_printed with $main::header_printed ;

You may become tempted to use a more elegant Perl solution--the nested subroutine effect which seems to
be a natural approach to take here. Unfortunately it will not work. If the process was starting fresh for each
script or handler, like with plain mod_cgi scripts, it would work just fine:

 use strict;

 print_header("text/plain");
 print "It worked!\n";
 print_header("text/plain");

 {
 my $header_printed = 0;
 sub print_header {
 my $type = shift || "text/html";
 unless ($header_printed) {
 $header_printed = 1;
 my $r = Apache->request;
 $r->content_type($type);
 $r->send_http_header;
 }
 }
 }

In this code $header_printed is declared as lexically scoped (with my ()) outside the subroutine
print_header() and modified inside of it. Curly braces define the block which limits the scope of the lexi-
cally variable.

This means that once print_header() sets it to 1, it will stay 1 as long as the code is running. So all subse-
quent calls to this subroutine will just return without doing a thing. This would serve our purpose, but
unfortunately it will work only for the first time the script is invoked within a process. When the script is
executed for the second or subsequent times and is served by the same process--the header will not be
printed anymore, since print_header() will remember that the value of $header_printed is equal to
1--it won’t be reinitialized, since the subroutine won’t be recompiled.

Why can’t we use a lexical without hitting the nested subroutine effect? Because when we’ve discussed
Apache::Registry secrets we have seen that the code is wrapped in a handler routine, effectively turning
any subroutines within the file a script resides in into nested subroutines. Hence we are forced to use a
global in this situation.

Let’s make our smart method more elaborate with respect to the PerlSendHeader directive, so that it
always does the right thing. It’s especially important if you write an application that you are going to
distribute, hopefully under one of the Open Source or GPL licenses.

17115 Feb 2014

5.22 Generating correct HTTP HeadersCGI to mod_perl Porting. mod_perl Coding guidelines.

You can continue to improve this subroutine even further to handle additional headers, such as cookies.

See also Correct Headers--A quick guide for mod_perl users

5.23 NPH (Non Parsed Headers) scripts
To run a Non Parsed Header CGI script under mod_perl, simply add to your code:

 local $| = 1;

And if you normally set PerlSendHeader On , add this to your server’s configuration file:

 <Files */nph-*>
 PerlSendHeader Off
 </Files>

5.24 BEGIN blocks
Perl executes BEGIN blocks as soon as possible, at the time of compiling the code. The same is true under
mod_perl. However, since mod_perl normally only compiles scripts and modules once, either in the parent
server or once per-child, BEGIN blocks in that code will only be run once. As the perlmod manpage
explains, once a BEGIN block has run, it is immediately undefined. In the mod_perl environment, this
means that BEGIN blocks will not be run during the response to an incoming request unless that request
happens to be the one that causes the compilation of the code.

BEGIN blocks in modules and files pulled in via require() or use() will be executed:

Only once, if pulled in by the parent process.

Once per-child process if not pulled in by the parent process.

An additional time, once per child process if the module is pulled in off disk again via
Apache::StatINC .

An additional time, in the parent process on each restart if PerlFreshRestart is On.

Unpredictable if you fiddle with %INC yourself.

BEGIN blocks in Apache::Registry scripts will be executed, as above plus:

Only once, if pulled in by the parent process via

Apache::RegistryLoader .

Once per-child process if not pulled in by the parent process.

15 Feb 2014172

5.23 NPH (Non Parsed Headers) scripts

An additional time, once per child process, each time the script file changes on disk.

An additional time, in the parent process on each restart if pulled in by the parent process via
Apache::RegistryLoader and PerlFreshRestart is On.

Make sure you read Evil things might happen when using PerlFreshRestart.

5.25 END blocks
As the perlmod manpage explains, an END subroutine is executed as late as possible, that is, when the
interpreter exits. In the mod_perl environment, the interpreter does not exit until the server shuts down.
However, mod_perl does make a special case for Apache::Registry scripts.

Normally, END blocks are executed by Perl during its perl_run() function. This is called once each
time the Perl program is executed, i.e. under mod_cgi, once per invocation of the CGI script. However,
mod_perl only calls perl_run() once, during server startup. Any END blocks encountered during main
server startup, i.e. those pulled in by PerlRequire , PerlModule and the startup file, are suspended.

Except during the cleanup phase, any END blocks encountered during compilation of
Apache::Registry scripts (including those defined in the packages use() ’d by the script), including
subsequent invocations when the script is cached in memory, are called after the script has completed.

All other END blocks encountered during other Perl*Handler call-backs, e.g. PerlChil-
dInitHandler , will be suspended while the process is running and called during child_exit()
when the process is shutting down. Module authors might wish to use $r->register_cleanup() as
an alternative to END blocks if this behavior is not desirable. $r->register_cleanup() is called at
the CleanUp processing phase of each request and thus can be used to emulate plain perl’s END{} block
behavior.

The last paragraph is very important for handling the case of ’User Pressed the Stop Button’.

If you only want something to run once in the parent on shutdown or restart you can use $r->regis-
ter_cleanup() in the startup.pl.

 #PerlRequire startup.pl
 warn "parent pid is $$\n";
 Apache->server->register_cleanup
 (sub { warn "server cleanup in $$\n"});

This is usually useful when some server wide cleanup should be performed when the server is stopped or
restarted.

5.26 CHECK And INIT Blocks
These blocks run when compilation is complete, but before the program starts. CHECK can mean "check-
point" or "double-check" or even just "stop". INIT stands for "initialization". The difference is subtle;
CHECK blocks are run just after the compilation ends, INIT just before the runtime begins. (Hence the -c
command-line flag to perl runs CHECK blocks but not INIT blocks.)

17315 Feb 2014

5.25 END blocksCGI to mod_perl Porting. mod_perl Coding guidelines.

Perl only calls these blocks during perl_parse(), which mod_perl calls once at startup time. Therefore
CHECK and INIT blocks don’t work for the same reason these don’t:

 % perl -e ’eval qq(CHECK { print "ok\n" })’
 % perl -e ’eval qq(INIT { print "ok\n" })’

5.27 Command Line Switches (-w, -T, etc)
Normally when you run perl from the command line, you have the shell invoke it with #!/bin/perl
(sometimes referred to as the shebang line). In scripts running under mod_cgi, you may use perl execution
switch arguments as described in the perlrun manpage, such as -w , -T or -d . Since scripts running
under mod_perl don’t need the shebang line, all switches except -w are ignored by mod_perl. This feature
was added for a backward compatibility with CGI scripts.

Most command line switches have a special variable equivalent which allows them to be set/unset in code.
Consult the perlvar manpage for more details.

5.27.1 Warnings

There are three ways to enable warnings:

Globally to all Processes

Setting:

 PerlWarn On

in httpd.conf will turn warnings On in any script.

You can then fine tune your code, turning warnings Off and On by using the warnings pragma in
your scripts (or by setting the $^W variable, if you prefer to be compatible with older, pre-5.6, perls).

Locally to a script

 #!/usr/bin/perl -w

will turn warnings On for the scope of the script. You can turn them Off and On in the script with
no warnings; and use warnings; as noted above.

Locally to a block

This code turns warnings mode On for the scope of the block.

 {
 use warnings;
 # some code
 }
 # back to the previous mode here

15 Feb 2014174

5.27 Command Line Switches (-w, -T, etc)

This turns it Off :

 {
 no warnings;
 # some code
 }
 # back to the previous mode here

This turns Off only the warnings from the listed categories : (warnings categories are explicited in
the perldiag manpage.)

 {
 no warnings qw(uninitialized unopened);
 # some code
 }
 # back to the previous mode here

If you want to turn warnings On for the scope of the whole file, you can do this by adding:

 use warnings;

at the beginning of the file.

While having warning mode turned On is essential for a development server, you should turn it globally
Off in a production server, since, for example, if every served request generates only one warning, and
your server serves millions of requests per day, your log file will eat up all of your disk space and your
system will die.

5.27.2 Taint Mode

Perl’s -T switch enables Taint mode. (META: Link to security chapter). If you aren’t forcing all your
scripts to run under Taint mode you are looking for trouble from malicious users. (See the perlsec
manpage for more information. Also read the re pragma’s manpage.)

If you have some scripts that won’t run under Taint mode, run only the ones that run under mod_perl with
Taint mode enabled and the rest on another server with Taint mode disabled -- this can be either a
mod_cgi in the front-end server or another back-end mod_perl server. You can use the mod_rewrite
module and redirect requests based on the file extensions. For example you can use .tcgi for the taint-clean
scripts, and cgi for the rest.

When you have this setup you can start working toward cleaning the rest of the scripts, to make them run
under the Taint mode. Just because you have a few dirty scripts doesn’t mean that you should jeopardize
your whole service.

Since the -T switch doesn’t have an equivalent perl variable, mod_perl provides the PerlTaintCheck
directive to turn on taint checks. In httpd.conf , enable this mode with:

 PerlTaintCheck On

17515 Feb 2014

5.27.2 Taint ModeCGI to mod_perl Porting. mod_perl Coding guidelines.

Now any code compiled inside httpd will be taint checked.

If you use the -T switch, Perl will warn you that you should use the PerlTaintCheck configuration
directive and will otherwise ignore it.

5.27.3 Other switches

Finally, if you still need to set additional perl startup flags such as -d and -D , you can use an environment
variable PERL5OPT. Switches in this variable are treated as if they were on every Perl command line.

Only the -[DIMUdmw] switches are allowed.

When the PerlTaintCheck variable is turned on, the value of PERL5OPT will be ignored.

[META: verify]

See also Apache::PerlRun.

5.28 The strict pragma
It’s _absolutely_ mandatory (at least for development) to start all your scripts with:

 use strict;

If needed, you can always turn off the ’strict’ pragma or a part of it inside the block, e.g:

 {
 no strict ’refs’;
 ... some code
 }

It’s more important to have the strict pragma enabled under mod_perl than anywhere else. While it’s
not required by the language, its use cannot be too strongly recommended. It will save you a great deal of
time. And, of course, clean scripts will still run under mod_cgi (plain CGI)!

5.29 Passing ENV variables to CGI
To pass an environment variable from httpd.conf, add to it:

 PerlSetEnv key val
 PerlPassEnv key

e.g.:

 PerlSetEnv PERLDB_OPTS "NonStop=1 LineInfo=/tmp/db.out AutoTrace=1"

15 Feb 2014176

5.28 The strict pragma

will set $ENV{PERLDB_OPTS}, and it will be accessible in every child.

%ENV is only set up for CGI emulation. If you are using the API, you should use $r->subpro-
cess_env , $r->notes or $r->pnotes for passing data around between handlers. %ENV is slow
because it must update the underlying C environment table. It also insecure since its use exposes the data
on systems which allow users to see the environment with ps .

In any case, %ENV and the tables used by those methods are all cleared after the request is served.

The Perl %ENV is cleared during startup, but the C environment is left intact. With a combo of forking
‘env‘ and <Perl> sections you can do even do wildcards matching. For example, this passes all envi-
ronment variables that begin with the letter H:

 <Perl>
 local $ENV{PATH} = ’/usr/bin’;
 local $_;

 for (‘env‘) {
 next unless /^(H.*)=/;
 push @PassEnv, $1;
 }
 </Perl>

See also PerlSetupEnv which can enable/disable environment variables settings.

5.30 -M and other time() file tests under mod_perl
Under mod_perl, files that have been created after the server’s (child) startup are reported as having a
negative age with -M (-C -A) test. This is obvious if you remember that you will get the negative result if
the server was started before the file was created. It’s normal behavior with perl.

If you want to have -M report the time relative to the current request, you should reset the $^T variable
just as with any other perl script. Add:

 local $^T = time;

at the beginning of the script.

Another even simpler solution would be to specify a fixup handler, which will be executed before each
script is run:

 sub Apache::PerlBaseTime::handler {
 $^T = shift->request_time;
 return Apache::Constants::DECLINED;
 }

and then in the httpd.conf:

17715 Feb 2014

5.30 -M and other time() file tests under mod_perlCGI to mod_perl Porting. mod_perl Coding guidelines.

 PerlFixupHandler Apache::PerlBaseTime

This technique is better performance-wise as it skips the time() system call, and uses the already available
time of the request has been started at via $r->request_time method.

5.31 Apache and syslog
When native syslog support is enabled, the stderr stream will be redirected to /dev/null !

It has nothing to do with mod_perl (plain Apache does the same). Doug wrote the Apache::LogSTDERR
module to work around this.

5.32 File tests operators
Remember that with mod_perl you might get negative times when you use file test operators like -M -- last
modification time, -A -- last access time, -C -- last inode-change time, and others. -M returns the differ-
ence in time between the modification time of the file and the time the script was started. Because the ^T
variable is not reset on each script invocation, and is equal to the time when the process was forked, you
might want to perform:

 $^T = time;

at the beginning of your scripts to simulate the regular perl script behaviour of file tests.

META: Above is near duplicate of "-M and other time() file tests under mod_perl" make a link instead

5.33 Filehandlers and locks leakages
META: duplication at debug.pod: =head3 Safe Resource Locking

When you write a script running under mod_cgi, you can get away with sloppy programming, like
opening a file and letting the interpreter close it for you when the script had finished its run:

 open IN, "in.txt" or die "Cannot open in.txt for reading : $!\n";

For mod_perl, before the end of the script you must close() any files you opened!

 close IN;

If you forget to close() , you might get file descriptor leakage and (if you flock()ed on this file
descriptor) also unlock problems.

Even if you do call close(), if for some reason the interpreter was stopped before the close() call, the
leakage will still happen. See for example Handling the ’User pressed Stop button’ case. After a long run
without restarting Apache your machine might run out of file descriptors, and worse, files might be left
locked and unusable.

15 Feb 2014178

5.31 Apache and syslog

What can you do? Use IO::File (and the other IO::* modules). This allows you to assign the file
handler to variable which can be my () (lexically) scoped. When this variable goes out of scope the file
or other file system entity will be properly closed (and unlocked if it was locked). Lexically scoped vari-
ables will always go out of scope at the end of the script’s invocation even if it was aborted in the middle.
If the variable was defined inside some internal block, it will go out of scope at the end of the block. For
example:

 {
 my $fh = IO::File->new("filename") or die $!;
 # read from $fh
 } # ...$fh is closed automatically at end of block, without leaks.

As I have just mentioned, you don’t have to create a special block for this purpose. A script in a file is
effectively written in a block with the same scope as the file, so you can simply write:

 my $fh = IO::File->new("filename") or die $!;
 # read from $fh
 # ...$fh is closed automatically at end of script, without leaks.

Using a { BLOCK }) makes sure is that the file is closed the moment that the end of the block is reached.

An even faster and lighter technique is to use Symbol.pm :

 my $fh = Symbol::gensym();
 open $fh, "filename" or die $!;

Use these approaches to ensure you have no leakages, but don’t be too lazy to write close() statements.
Make it a habit.

Under perl 5.6.0 we can do this instead:

 open my $fh, $filename or die $! ;

5.34 Code has been changed, but it seems the script is
running the old code
Files pulled in via use or require statements are not automatically reloaded when they change on disk.
See Reloading Modules and Required Files for more information.

5.35 The Script Is Too Dirty, But It Does The Job And I
Cannot Afford To Rewrite It.
You still can win from using mod_perl.

One approach is to replace the Apache::Registry handler with Apache::PerlRun and define a
new location. The script can reside in the same directory on the disk.

17915 Feb 2014

5.34 Code has been changed, but it seems the script is running the old codeCGI to mod_perl Porting. mod_perl Coding guidelines.

 # httpd.conf
 Alias /cgi-perl/ /home/httpd/cgi/

 <Location /cgi-perl>
 #AllowOverride None
 SetHandler perl-script
 PerlHandler Apache::PerlRun
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

See Apache::PerlRun--a closer look

Another "bad", but workable method is to set MaxRequestsPerChild to 1, which will force each
child to exit after serving only one request. You will get the preloaded modules, etc., but the script will be
compiled for each request, then be thrown away. This isn’t good for "high-traffic" sites, as the parent
server will need to fork a new child each time one is killed. You can fiddle with MaxStartServers
and MinSpareServers , so that the parent pre-spawns more servers than actually required and the
killed one will immediately be replaced with a fresh one. Probably that’s not what you want.

5.36 Apache::PerlRun--a closer look
Apache::PerlRun gives you the benefit of preloaded Perl and its modules. This module’s handler
emulates the CGI environment, allowing programmers to write scripts that run under CGI or mod_perl
without any change. Unlike Apache::Registry , the Apache::PerlRun handler does not cache the
script inside a subroutine. Scripts will be "compiled" on each request. After the script has run, its name
space is flushed of all variables and subroutines. Still, you don’t have the overhead of loading the Perl
interpreter and the compilation time of the standard modules. If your script is very light, but uses lots of
standard modules, you will see no difference between Apache::PerlRun and
Apache::Registry !.

Be aware though, that if you use packages that use internal variables that have circular references, they
will be not flushed!!! Apache::PerlRun only flushes your script’s name space, which does not include
any other required packages’ name spaces. If there’s a reference to a my () scoped variable that’s
keeping it from being destroyed after leaving the eval scope (of Apache::PerlRun), that cleanup
might not be taken care of until the server is shutdown and perl_destruct() is run, which always
happens after running command line scripts. Consider this example:

 package Foo;
 sub new { bless {} }
 sub DESTROY {
 warn "Foo->DESTROY\n";
 }

 eval <<’EOF’;
 package my_script;
 my $self = Foo->new;
 #$self->{circle} = $self;

15 Feb 2014180

5.36 Apache::PerlRun--a closer look

 EOF

 print $@ if $@;
 print "Done with script\n";

When executed as a plain script you’ll see:

 Foo->DESTROY
 Done with script

Then, uncomment the line where $self makes a circular reference, and you’ll see:

 Done with script
 Foo->DESTROY

If you run this example with the circular reference enabled under mod_perl you won’t see
Foo->DESTROY until server shutdown, or until your module properly takes care of things. Note that the
warn() call logs its messages to the error_log file, so you should expect the output there and not together
with STDOUT.

5.37 Sharing variables between processes
META: to be completed

Global variables initialized at server startup, through the Perl startup file, can be shared between
processes, until modified by some of the processes. e.g. when you write:

 $My::debug = 1;

all processes will read the same value. If one of the processes changes that value to 0, it will still be
equal to 1 for any other process, but not for the one which actually made the change. When a process
modifies a shared variable, it becomes the process’ private copy.

IPC::Shareable can be used to share variables between children.

libmm

other methods?

5.38 Preventing Apache::Constants Stringification
In mod_perl, you are going to use a certain number of constants in your code, mainly exported from
Apache::Constants . However, in some cases, Perl will not understand that the constant you’re trying
to call is really a constant, but interprets it as a string. This is the case with the hash notation =>, which
automatically stringifies the key.

For example:

18115 Feb 2014

5.37 Sharing variables between processesCGI to mod_perl Porting. mod_perl Coding guidelines.

 $r->custom_response(FORBIDDEN => "File size exceeds quota.");

This will not set a custom response for FORBIDDEN, but for the string "FORBIDDEN", which clearly
isn’t what is expected. You’ll get an error like this:

 [Tue Apr 23 19:46:14 2002] null: Argument "FORBIDDEN" isn’t numeric
 in subroutine entry at ...

Therefore, you can avoid this by not using the hash notation for things that don’t require it.

 $r->custom_response(FORBIDDEN, "File size exceeds quota.");

There are other workarounds, which you should avoid using unless you really have to use hash notation:

 my %hash = (
 FORBIDDEN() => ’this is forbidden’,
 +AUTH_REQUIRED => "You aren’t authorized to enter!",
);

Another important note is that you should be using the correct constants defined here, and not direct HTTP
codes. For example:

 sub handler {
 return 200;
 }

Is not correct. The correct use is:

 use Apache::Constants qw(OK);

 sub handler {
 return OK;
 }

Also remember that OK != HTTP_OK .

5.39 Transitioning from Apache::Registry to Apache
handlers
Even if you are a CGI script die-hard at some point you might want to move a few or all your scripts to
Apache Perl handlers. Actually this is an easy task, since we saw already what Apache::Registry
makes our scripts appear to Apache to be Perl handlers.

When you no longer need backward mod_cgi compatibility you can benefit from the Perl libraries
working only under mod_perl. We will see why in a moment.

Let’s see an example. We will start with a mod_cgi compatible CGI script running under
Apache::Registry , transpose it into a Perl content handler and then convert it to use
Apache::Request and Apache::Cookie .

15 Feb 2014182

5.39 Transitioning from Apache::Registry to Apache handlers

5.39.1 Starting with mod_cgi Compatible Script

This is the original script’s code we are going to work with:

 cookie_script.pl

 use strict;
 use CGI;
 use CGI::Cookie;
 use vars qw($q $switch $status $sessionID);

 init();
 print_header();
 print_status();

 ### <-- subroutines --> ###

 # the init code
 ###########
 sub init{
 $q = new CGI;

 $switch = $q->param("switch") ? 1 : 0;

 # try to retrieve the session ID
 # fetch existing cookies
 my %cookies = CGI::Cookie->fetch;
 $sessionID = exists $cookies{’sessionID’}
 ? $cookies{’sessionID’}->value : ’’;

 # 0 = not running, 1 = running
 $status = $sessionID ? 1 : 0;

 # switch status if asked to
 $status = ($status+1) % 2 if $switch;

 if ($status){
 # preserve sessionID if exists or create a new one
 $sessionID ||= generate_sessionID() if $status;
 } else {
 # delete the sessionID
 $sessionID = ’’;
 }

 } # end of sub init

 #################
 sub print_header{
 # prepare a cookie
 my $c = CGI::Cookie->new
 (’-name’ => ’sessionID’,
 ’-value’ => $sessionID,
 ’-expires’ => ’+1h’);

 print $q->header
 (-type => ’text/html’,

18315 Feb 2014

5.39.1 Starting with mod_cgi Compatible ScriptCGI to mod_perl Porting. mod_perl Coding guidelines.

 -cookie => $c);

 } # end of sub print_header

 # print the current Session status and a form to toggle the status
 #################
 sub print_status{

 print qq{<HTML><HEAD><TITLE>Cookie</TITLE></HEAD><BODY>};

 # print status
 print "Status: ",
 $status
 ? "Session is running with ID: $sessionID"
 : "No session is running";

 # change status form
 my $button_label = $status ? "Stop" : "Start";
 print qq{<HR>
 <FORM>
 <INPUT TYPE=SUBMIT NAME=switch VALUE=" $button_label ">
 </FORM>
 };

 print qq{</BODY></HTML>};

 } # end of sub print_status

 # A dummy ID generator
 # Replace with a real session ID generator
 ########################
 sub generate_sessionID {
 return scalar localtime;
 } # end of sub generate_sessionID

The code is very simple. It creates a session if you’ve pressed the ’Start’ button or deletes it if you’ve
pressed the ’Stop’ button. The session is stored and retrieved using the cookies technique.

Note that we have split the obviously simple and short code into three logical units, by putting the code
into three subroutines. init() to initialize global variables and parse incoming data, print_header() to print
the HTTP headers including the cookie header, and finally print_status() to generate the output. Later we
will see that this logical separation will allow us an easy conversion to Perl content handler code.

We have used global variables for a few variables since we didn’t want to pass them from function to
function. In a big project you should be very restrictive about what variables should be allowed to be
global, if any at all. In any case, the init() subroutine makes sure all these variables are re-initialized for
each code reinvocation.

Note that we have used a very simple generate_sessionID() function that returns a date string (i.e.
Wed Apr 12 15:02:23 2000) as a session ID. You want to replace this one with code which generates a
unique session every time it was called. And it should be secure, i.e. users will not be able to forge one and
do nasty things.

15 Feb 2014184

5.39.1 Starting with mod_cgi Compatible Script

5.39.2 Converting into Perl Content Handler

Now let’s convert this script into a content handler. There are two parts to this task; the first one is to
configure Apache to run the new code as a Perl handler, the second one is to modify the code itself.

First we add the following snippet to httpd.conf:

 PerlModule Test::Cookie
 <Location /test/cookie>
 SetHandler perl-script
 PerlHandler Test::Cookie
 </Location>

After we restart the server, when there is a request whose URI starts with /test/cookie, Apache will execute
the Test::Cookie::handler() subroutine as a content handler. We made sure to preload the
Test::Cookie module at server start-up, with the PerlModule directive.

Now we are going to modify the script itself. We copy the content to the file Cookie.pm and place it into
one of the directories listed in @INC. For example if /home/httpd/perl is a part of @INC and since we want
to call this package Test::Cookie , we can put Cookie.pm into the /home/httpd/perl/Test/ directory.

So this is the new code. Notice that all the subroutines were left unmodified from the original script, so to
make the differences clear we do not repeat them here.

 Test/Cookie.pm

 package Test::Cookie;
 use Apache::Constants qw(:common);

 use strict;
 use CGI;
 use CGI::Cookie;
 use vars qw($q $switch $status $sessionID);

 sub handler{
 my $r = shift;
 Apache->request($r);

 init();
 print_header();
 print_status();

 return OK;
 }

 ### <-- subroutines --> ###
 # all subroutines as before

 1;

As you see there are two lines added to the beginning of the code:

18515 Feb 2014

5.39.2 Converting into Perl Content HandlerCGI to mod_perl Porting. mod_perl Coding guidelines.

 package Test::Cookie;
 use Apache::Constants qw(:common);

The first one declares the package name and the second one imports some symbols commonly used in Perl
handlers to return status codes.

 use strict;
 use CGI;
 use CGI::Cookie;
 use vars qw($q $switch $status $sessionID);

This code is left unchanged just as before.

 sub handler{
 my $r = shift;
 Apache->request($r);

 init();
 print_header();
 print_status();

 return OK;
 }

Each content handler (and any other handler) should begin with a subroutine called handler(). This subrou-
tine is called when a request’s URI starts with /test/cookie as per our configuration. Of course you can
choose a different name, for example execute(), but then you must explicitly use it in the configuration
directives in the following way:

 PerlModule Test::Cookie
 <Location /test/cookie>
 SetHandler perl-script
 PerlHandler Test::Cookie::execute
 </Location>

But we will use the default name, handler().

The handler() subroutine is just like any other subroutine, but generally it has the following structure:

 sub handler{
 my $r = shift;

 # the code

 # status (OK, DECLINED or else)
 return OK;
 }

First we get the request object by shifting it from @_ and assigning it to the $r variable.

Second we write the code that does the processing of the request.

15 Feb 2014186

5.39.2 Converting into Perl Content Handler

Third we return the status of the execution. There are many possible statuses, the most commonly used are
OK and DECLINED, which tell the server whether they have completed the request phase that the handler
was assigned to do or not. If not, another handler must complete the processing. Apache::Constants
imports these two and other some commonly used status codes.

So in our example all we had to do was to wrap the three calls:

 init();
 print_header();
 print_status();

inside:

 sub handler{
 my $r = shift;
 Apache->request($r);

 return OK;
 }

There is one line we didn’t discuss:

 Apache->request($r);

Since we use CGI.pm , it relies on the fact that $r was set in the Apache module.
Apache::Registry did that behind the scenes. Since we don’t use Apache::Registry here, we
have to do that ourselves.

The one last thing we should do is to add 1; at the end of the module, just like with any Perl module, so
PerlModule will not fail when it tries to load Test::Cookie .

So to summarize, we took the original script’s code and added the following eight lines:

 package Test::Cookie;
 use Apache::Constants qw(:common);

 sub handler{
 my $r = shift;
 Apache->request($r);

 return OK;
 }
 1;

and now we have a fully fledged Perl Content Handler.

5.39.3 Converting to use Apache Perl Modules

So now we have a complete PerlHandler, let’s convert it to use Apache Perl modules. This breaks the
backward compatibility, but gives us better performance, mainly because the internals of many of these
Perl modules are implemented in C, therefore we should get a significant improvement in speed. The
section "TMTOWTDI: Convenience and Performance" compares the three approaches.

18715 Feb 2014

5.39.3 Converting to use Apache Perl ModulesCGI to mod_perl Porting. mod_perl Coding guidelines.

What we are going to do is to replace CGI.pm and CGI::Cookie with Apache::Request and
Apache::Cookie respectively. The two modules are written in C with the XS interface to Perl, which
makes code much faster if it utilizes any of these modules a lot. Apache::Request uses an API similar
to the one CGI uses, the same goes for Apache::Cookie and CGI::Cookie . This allows an easy
porting process. Basically we just replace:

 use CGI;
 $q = new CGI;

with:

 use Apache::Request ();
 my $q = Apache::Request->new($r);

and

 use CGI::Cookie ();
 my $cookie = CGI::Cookie->new(...)

with

 use Apache::Cookie ();
 my $cookie = Apache::Cookie->new($r, ...);

This is the new code for Test::Cookie2 :

 Test/Cookie2.pm

 package Test::Cookie2;
 use Apache::Constants qw(:common);

 use strict;
 use Apache::Request;
 use Apache::Cookie ();
 use vars qw($r $q $switch $status $sessionID);

 sub handler{
 $r = shift;

 init();
 print_header();
 print_status();

 return OK;
 }

 ### <-- subroutines --> ###

 # the init code
 ###########
 sub init{

 $q = Apache::Request->new($r);
 $switch = $q->param("switch") ? 1 : 0;

15 Feb 2014188

5.39.3 Converting to use Apache Perl Modules

 # fetch existing cookies
 my %cookies = Apache::Cookie->fetch;
 # try to retrieve the session ID
 $sessionID = exists $cookies{’sessionID’}
 ? $cookies{’sessionID’}->value : ’’;

 # 0 = not running, 1 = running
 $status = $sessionID ? 1 : 0;

 # switch status if asked to
 $status = ($status+1) % 2 if $switch;

 if ($status){
 # preserve sessionID if exists or create a new one
 $sessionID ||= generate_sessionID() if $status;
 } else {
 # delete the sessionID
 $sessionID = ’’;
 }

 } # end of sub init

 #################
 sub print_header{
 # prepare a cookie
 my $c = Apache::Cookie->new
 ($r,
 -name => ’sessionID’,
 -value => $sessionID,
 -expires => ’+1h’);

 # Add a Set-Cookie header to the outgoing headers table
 $c->bake;

 $r->send_http_header(’text/html’);

 } # end of sub print_header

 # print the current Session status and a form to toggle the status
 #################
 sub print_status{

 print qq{<HTML><HEAD><TITLE>Cookie</TITLE></HEAD><BODY>};

 # print status
 print "Status: ",
 $status
 ? "Session is running with ID: $sessionID"

 : "No session is running";

 # change status form

18915 Feb 2014

5.39.3 Converting to use Apache Perl ModulesCGI to mod_perl Porting. mod_perl Coding guidelines.

 my $button_label = $status ? "Stop" : "Start";
 print qq{<HR>
 <FORM>
 <INPUT TYPE=SUBMIT NAME=switch VALUE=" $button_label ">
 </FORM>
 };

 print qq{</BODY></HTML>};

 } # end of sub print_status

 # replace with a real session ID generator
 ########################
 sub generate_sessionID {
 return scalar localtime;
 }

 1;

The only other changes are in the print_header() function, where instead of passing the cookie code to the
CGI’s header() to return a proper HTTP header:

 print $q->header
 (-type => ’text/html’,
 -cookie => $c);

we do it in two stages.

 $c->bake;

Adds a Set-Cookie header to the outgoing headers table, and:

 $r->send_http_header(’text/html’);

sends out the header itself. We have also eliminated:

 Apache->request($r);

since we don’t rely on CGI.pm any more and in this case we don’t need it.

The rest of the code is unchanged.

Of course we add the following snippet to httpd.conf:

 PerlModule Test::Cookie2
 <Location /test/cookie2>
 SetHandler perl-script
 PerlHandler Test::Cookie2
 </Location>

So now the magic URI that will trigger the above code execution will be the one starting with /test/cookie2
. We save the code in the file /home/httpd/perl/Test/Cookie2.pm since we have called this package
Test::Cookie2 .

15 Feb 2014190

5.39.3 Converting to use Apache Perl Modules

5.39.4 Conclusion

If your took care to write the original plain CGI script’s code in a clean and modular way, you can see that
the transition is a very simple one and doesn’t take a lot of effort. Almost no code was modified.

5.40 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

5.41 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

19115 Feb 2014

5.40 MaintainersCGI to mod_perl Porting. mod_perl Coding guidelines.

http://stason.org/
http://stason.org/

6 How to use mod_perl’s Method Handlers

15 Feb 2014192

6 How to use mod_perl’s Method Handlers

6.1 Description
Described here are a few examples and hints on how to use method handlers with mod_perl.

This document assumes familiarity with at least the perltoot manpage and "normal" usage of the
Perl*Handlers .

It isn’t strictly mod_perl related, more like "what I use objects for in my mod_perl environment".

6.2 Synopsis
If a Perl*Handler is prototyped with ’$$ ’, this handler will be invoked as method, being passed a class
name or blessed object as its first argument and the blessed request_rec as the second argument, e.g.

 package My;
 @ISA = qw(BaseClass);

 sub handler ($$) {
 my ($class, $r) = @_;
 ...;
 }

 package BaseClass;

 sub method ($$) {
 my ($class, $r) = @_;
 ...;
 }

 __END__

Configuration:

 PerlHandler My

or

 PerlHandler My->handler

Since the handler is invoked as a method, it may inherit from other classes:

 PerlHandler My->method

In this case, the ’My’ class inherits this method from ’BaseClass ’.

To build in this feature, configure with:

 % perl Makefile.PL PERL_METHOD_HANDLERS=1 [PERL_FOO_HOOK=1,etc]

19315 Feb 2014

6.1 DescriptionHow to use mod_perl’s Method Handlers

6.3 Why?
The short version: For pretty much the same reasons we’re using OO perl everywhere else. :-) See the
perltoot manpage.

The slightly longer version would include some about code reusage and more clean interface between
modules.

6.4 Simple example
Let’s start with a simple example.

In httpd.conf:

 <Location /obj-handler>
 SetHandler perl-script
 PerlHandler $My::Obj->method
 </Location>

In startup.pl or another PerlRequire’d file:

 package This::Class;

 $My::Obj = bless {};

 sub method ($$) {
 my ($obj, $r) = @_;
 $r->send_http_header("text/plain");
 print "$obj isa ", ref($obj);
 0;
 }

which displays:

 This::Class=HASH(0x8411edc) isa This::Class

6.5 A little more advanced
That wasn’t really useful, so let’s try something little more advanced.

I’ve a little module which creates a graphical ’datebar’ for a client. It’s reading a lot of small gifs with
numbers and weekdays, and keeping them in memory in GD.pm’s native format, ready to be copied
together and served as gifs.

Now I wanted to use it at another site too, but with a different look. Obviously something to do with a
object. Hence I changed the module to a object, and can now do a

15 Feb 2014194

6.3 Why?

 $Client1::Datebar = new Datebar(
 -imagepath => ’/home/client1/datebar/’,
 -size => [131,18],
 -elements => ’wday mday mon year hour min’,
);

 $Client2::Datebar = new Datebar
 -imagepath => ’/home/client2/datebar/’,
 -size => [90,14],
 -elements => ’wday hour min’,
);

And then use $Client1::Datebar and $Client2::Datebar as PerlHandlers in my Apache
configuration. Remember to pass them in literal quotes (’’) and not "" which will be interpolated!

I’ve a webinterface system to our content-database. I’ve created objects to handle the administration of
articles, banners, images and other content. It’s then very easy (a few lines of code) to enable certain
modules for each client, depending on their needs.

Another area where I use objects with great success in my modperl configurations is database abstraction.
All our clients using the webinterface to handle f.x. articles will use a simple module to handle everything
related to the database. Each client have

 $Client::Article = new WebAjour::Article(-host => ’www.client.com’);

in a module what will be run at server startup.

I can then use some simple methods from the $Client::Article object in my embperl documents, like:

 [- $c = $Client::Article->GetCursor(-layout=>’Frontpage’) -]
 [$ while($c->Fetch) $]
 <h2>[+ $c->f(’header’) +]</h2>
 [+ $c->f(’textfield’) +]
 [$ endwhile $]

Very very useful!

6.6 Traps
mod_perl expects object handlers to be in the form of a string, which it will thaw for you. That means that
something like

 $r->push_handlers(PerlHandler => ’$self->perl_handler_method’);

This doesn’t work as you might expect, since Perl isn’t able to see $self once it goes to PerlHandler.

The best solution to this is to use an anonymous subroutine and pass it $r yourself, like this:

19515 Feb 2014

6.6 TrapsHow to use mod_perl’s Method Handlers

 $r->push_handlers(PerlHandler =>
 sub {
 my $r = shift;
 $self->perl_handler_method($r);
 }
);

6.7 Author
This document is written by Ask Bjoern Hansen <ask@netcetera.dk> or <ask@apache.org>. Corrections
and suggestions are most welcome. In particular would more examples be appreciated, most of my own
code is way too integrated with our system, which isn’t suitable for public release.

Some codesnippets is from Doug MacEachern.

6.8 See Also
The Apache, the perltoot manpages (also available at
http://www.perl.com/CPAN/doc/FMTEYEWTK/perltoot.html)

6.9 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

modperl docs list

6.10 Authors
Ask Bjoern Hansen, <ask (at) netcetera.dk> or <ask (at) apache.org>.

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014196

6.7 Author

http://www.perl.com/CPAN/doc/FMTEYEWTK/perltoot.html

7 mod_perl and Relational Databases

19715 Feb 2014

7 mod_perl and Relational Databasesmod_perl and Relational Databases

7.1 Description
Creating dynamic websites with mod_perl often involves using relational databases. Apache::DBI ,
which provides a database connections persistence which boosts the mod_perl performance, is explained
in this chapter.

7.2 Why Relational (SQL) Databases
Nowadays millions of people surf the Internet. There are millions of Terabytes of data lying around. To
manipulate the data new smart techniques and technologies were invented. One of the major inventions
was the relational database, which allows us to search and modify huge stores of data very quickly. We
use SQL (Structured Query Language) to access and manipulate the contents of these databases.

7.3 Apache::DBI - Initiate a persistent database connection
When people started to use the web, they found that they needed to write web interfaces to their databases.
CGI is the most widely used technology for building such interfaces. The main limitation of a CGI script
driving a database is that its database connection is not persistent - on every request the CGI script has to
re-connect to the database, and when the request is completed the connection is closed.

Apache::DBI was written to remove this limitation. When you use it, you have a database connection
which persists for the process’ entire life. So when your mod_perl script needs to use a database,
Apache::DBI provides a valid connection immediately and your script starts work right away without
having to initiate a database connection first.

This is possible only with CGI running under a mod_perl enabled server, since in this model the child
process does not quit when the request has been served.

It’s almost as straightforward as is it sounds; there are just a few things to know about and we will cover
them in this section.

7.3.1 Introduction

The DBI module can make use of the Apache::DBI module. When it loads, the DBI module tests if the
environment variable $ENV{MOD_PERL} is set, and if the Apache::DBI module has already been
loaded. If so, the DBI module will forward every connect() request to the Apache::DBI module.
Apache::DBI uses the ping() method to look for a database handle from a previous connect() request,
and tests if this handle is still valid. If these two conditions are fulfilled it just returns the database handle.

If there is no appropriate database handle or if the ping() method fails, Apache::DBI establishes a new
connection and stores the handle for later re-use. When the script is run again by a child that is still
connected, Apache::DBI just checks the cache of open connections by matching the host, username and
password parameters against it. A matching connection is returned if available or a new one is initiated
and then returned.

15 Feb 2014198

7.1 Description

There is no need to delete the disconnect() statements from your code. They won’t do anything because
the Apache::DBI module overloads the disconnect() method with an empty one.

7.3.2 When should this module be used and when shouldn’t it be
used?

You will want to use this module if you are opening several database connections to the server.
Apache::DBI will make them persistent per child, so if you have ten children and each opens two
different connections (with different connect() arguments) you will have in total twenty opened and persis-
tent connections. After the initial connect() you will save the connection time for every connect() request
from your DBI module. This can be a huge benefit for a server with a high volume of database traffic.

You must not use this module if you are opening a special connection for each of your users (meaning that
the login arguments are different for each user). Each connection will stay persistent and after a certain
period the number of open connections will reach the allowed limit (configured by the database server)
and new database connection opening requests will be refused, rendering your service unusable for some
of your users.

If you want to use Apache::DBI but you have both situations on one machine, at the time of writing the
only solution is to run two Apache/mod_perl servers, one which uses Apache::DBI and one which does
not.

7.3.3 Configuration

After installing this module, the configuration is simple - add the following directive to httpd.conf

 PerlModule Apache::DBI

Note that it is important to load this module before any other Apache*DBI module and before the DBI
module itself!

You can skip preloading DBI , since Apache::DBI does that. But there is no harm in leaving it in, as
long as it is loaded after Apache::DBI .

7.3.4 Preopening DBI connections

If you want to make sure that a connection will already be opened when your script is first executed after a
server restart, then you should use the connect_on_init() method in the startup file to preload every
connection you are going to use. For example:

19915 Feb 2014

7.3.2 When should this module be used and when shouldn’t it be used?mod_perl and Relational Databases

 Apache::DBI->connect_on_init
 ("DBI:mysql:myDB:myserver",
 "username",
 "passwd",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
);

As noted above, use this method only if you want all of apache to be able to connect to the database server
as one user (or as a very few users), i.e. if your user(s) can effectively share the connection. Do not use
this method if you want for example one unique connection per user.

Be warned though, that if you call connect_on_init() and your database is down, Apache children
will be delayed at server startup, trying to connect. They won’t begin serving requests until either they are
connected, or the connection attempt fails. Depending on your DBD driver, this can take several minutes!

7.3.5 Debugging Apache::DBI

If you are not sure if this module is working as advertised, you should enable Debug mode in the startup
script by:

 $Apache::DBI::DEBUG = 1;

Starting with ApacheDBI-0.84 , setting $Apache::DBI::DEBUG = 1 will produce only minimal
output. For a full trace you should set $Apache::DBI::DEBUG = 2 .

After setting the DEBUG level you will see entries in the error_log both when Apache::DBI initial-
izes a connection and when it returns one from its cache. Use the following command to view the log in
real time (your error_log might be located at a different path, it is set in the Apache configuration
files):

 tail -f /usr/local/apache/logs/error_log

I use alias (in tcsh) so I do not have to remember the path:

 alias err "tail -f /usr/local/apache/logs/error_log"

7.3.6 Database Locking Risks

Be very careful when locking the database (LOCK TABLE ...) or singular rows if you use
Apache::DBI or similar persistent connections. MySQL threads keep tables locked until the thread ends
(connection is closed) or the tables are unlocked. If your session die()’s while tables are locked, they will
stay neatly locked as your connection won’t be closed either.

See the section Handling the ’User pressed Stop button’ case for more information on prevention.

15 Feb 2014200

7.3.5 Debugging Apache::DBI

7.3.7 Troubleshooting

7.3.7.1 The Morning Bug

The SQL server keeps a connection to the client open for a limited period of time. In the early days of
Apache::DBI developers were bitten by so called Morning bug, when every morning the first users to
use the site received a No Data Returned message, but after that everything worked fine.

The error was caused by Apache::DBI returning a handle of the invalid connection (the server closed it
because of a timeout), and the script was dying on that error. The ping() method was introduced to
solve this problem, but it didn’t worked properly till Apache::DBI version 0.82 was released. In that
version and afterwards ping() was called inside the eval block, which resolved the problem.

It’s possible that some DBD:: drivers don’t have the ping() method implemented. The Apache::DBI
manpage explains how to write one.

Another solution was found - to increase the timeout parameter when starting the database server.
Currently we startup MySQL server with a script safe_mysql , so we have modified it to use this option:

 nohup $ledir/mysqld [snipped other options] -O wait_timeout=172800

172800 seconds is equal to 48 hours. This change solves the problem, but the ping() method works prop-
erly in DBD::mysql as well.

7.3.7.2 Opening Connections With Different Parameters

When Apache::DBI receives a connection request, before it decides to use an existing cached connec-
tion it insists that the new connection be opened in exactly the same way as the cached connection. If you
have one script that sets AutoCommit and one that does not, Apache::DBI will make two different
connections. So if for example you have limited Apache to 40 servers at most, instead of having a
maximum of 40 open connections you may end up with 80.

So these two connect() calls will create two different connections:

 my $dbh = DBI->connect
 ("DBI:mysql:test:localhost", ’’, ’’,
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
) or die "Cannot connect to database: $DBI::errstr";

 my $dbh = DBI->connect
 ("DBI:mysql:test:localhost", ’’, ’’,
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 0, # don’t commit executes immediately
 }
) or die "Cannot connect to database: $DBI::errstr";

20115 Feb 2014

7.3.7 Troubleshootingmod_perl and Relational Databases

Notice that the only difference is in the value of AutoCommit .

However, you are free to modify the handle immediately after you get it from the cache. So always initiate
connections using the same parameters and set AutoCommit (or whatever) afterwards. Let’s rewrite the
second connect call to do the right thing (not to create a new connection):

 my $dbh = DBI->connect
 ("DBI:mysql:test:localhost", ’’, ’’,
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
) or die "Cannot connect to database: $DBI::errstr";
 $dbh->{AutoCommit} = 0; # don’t commit if not asked to

When you aren’t sure whether you’re doing the right thing, turn debug mode on.

However, when the $dbh attribute is altered after connect() it affects all other handlers retrieving this
database handle. Therefore it’s best to restore the modified attributes to their original value at the end of
database handle usage. As of Apache::DBI version 0.88 the caller has to do it manually. The simplest
way to handle this is to localize the attributes when modifying them:

 my $dbh = DBI->connect(...) ...
 {
 local $dbh->{LongReadLen} = 40;
 }

Here the LongReadLen attribute overrides the value set in the connect() call or its default value only
within the enclosing block.

The problem with this approach is that prior to Perl version 5.8.0 this causes memory leaks. So the only
clean alternative for older Perl versions is to manually restore the dbh ’s values:

 my @attrs = qw(LongReadLen PrintError);
 my %orig = ();

 my $dbh = DBI->connect(...) ...
 # store the values away
 $orig{$_} = $dbh->{$_} for @attrs;
 # do local modifications
 $dbh->{LongReadLen} = 40;
 $dbh->{PrintError} = 1;
 # do something with the filehandle
 # ...
 # now restore the values
 $dbh->{$_} = $orig{$_} for @attrs;

Another thing to remember is that with some database servers it’s possible to access more than one
database using the same database connection. MySQL is one of those servers. It allows you to use a fully
qualified table specification notation. So if there is a database foo with a table test and database bar with
its own table test, you can always use:

15 Feb 2014202

7.3.7 Troubleshooting

 SELECT from foo.test ...

or:

 SELECT from bar.test ...

So no matter what database you have used in the database name string in the connect() call (e.g.:
DBI:mysql:foo:localhost) you can still access both tables by using a fully qualified syntax.

Alternatively you can switch databases with USE foo and USE bar , but this approach seems less
convenient, and therefore error-prone.

7.3.7.3 Cannot find the DBI handler

You must use DBI::connect() as in normal DBI usage to get your $dbh database handler. Using the
Apache::DBI does not eliminate the need to write proper DBI code. As the Apache::DBI man page
states, you should program as if you are not using Apache::DBI at all. Apache::DBI will override
the DBI methods where necessary and return your cached connection. Any disconnect() call will be
just ignored.

7.3.7.4 Apache:DBI does not work

Make sure you have it installed.

Make sure you configured mod_perl with either:

 PERL_CHILD_INIT=1 PERL_STACKED_HANDLERS=1

or

 EVERYTHING=1

Use the example script eg/startup.pl (in the mod_perl distribution). Remove the comment from the line.

 # use Apache::DebugDBI;

and adapt the connect string. Do not change anything in your scripts for use with Apache::DBI .

7.3.7.5 Skipping connection cache during server startup

Does your error_log look like this?

 10169 Apache::DBI PerlChildInitHandler
 10169 Apache::DBI skipping connection cache during server startup
 Database handle destroyed without explicit disconnect at
 /usr/lib/perl5/site_perl/5.005/Apache/DBI.pm line 29.

If so you are trying to open a database connection in the parent httpd process. If you do, children will each
get a copy of this handle, causing clashes when the handle is used by two processes at the same time. Each
child must have its own, unique, connection handle.

20315 Feb 2014

7.3.7 Troubleshootingmod_perl and Relational Databases

To avoid this problem, Apache::DBI checks whether it is called during server startup. If so the module
skips the connection cache and returns immediately without a database handle.

You must use the Apache::DBI->connect_on_init() method in the startup file.

7.3.7.6 Debugging code which deploys DBI

To log a trace of DBI statement execution, you must set the DBI_TRACE environment variable. The
PerlSetEnv DBI_TRACE directive must appear before you load Apache::DBI and DBI .

For example if you use Apache::DBI , modify your httpd.conf with:

 PerlSetEnv DBI_TRACE "3=/tmp/dbitrace.log"
 PerlModule Apache::DBI

Replace 3 with the TRACE level you want. The traces from each request will be appended to
/tmp/dbitrace.log . Note that the logs might interleave if requests are processed concurrently.

Within your code you can control trace generation with the trace() method:

 DBI->trace($trace_level)
 DBI->trace($trace_level, $trace_filename)

DBI trace information can be enabled for all handles using this DBI class method. To enable trace infor-
mation for a specific handle use the similar $h->trace method.

Using the handle trace option with a $dbh or $sth is handy for limiting the trace info to the specific bit
of code that you are interested in.

Trace Levels:

0 - trace disabled.
1 - trace DBI method calls returning with results.
2 - trace method entry with parameters and exit with results.
3 - as above, adding some high-level information from the driver and also adding some internal
information from the DBI.
4 - as above, adding more detailed information from the driver and also including DBI mutex
information when using threaded perl.
5 and above - as above but with more and more obscure information.

7.4 mysql_use_result vs. mysql_store_result.
Since many mod_perl developers use mysql as their preferred SQL engine, these notes explain the differ-
ence between mysql_use_result() and mysql_store_result() . The two influence the speed
and size of the processes.

15 Feb 2014204

7.4 mysql_use_result vs. mysql_store_result.

The DBD::mysql (version 2.0217) documentation includes the following snippet:

 mysql_use_result attribute: This forces the driver to use
 mysql_use_result rather than mysql_store_result. The former is
 faster and less memory consuming, but tends to block other
 processes. (That’s why mysql_store_result is the default.)

Think about it in client/server terms. When you ask the server to spoon-feed you the data as you use it, the
server process must buffer the data, tie up that thread, and possibly keep any database locks open for a
long time. So if you read a row of data and ponder it for a while, the tables you have locked are still
locked, and the server is busy talking to you every so often. That is mysql_use_result() .

If you just suck down the whole dataset to the client, then the server is free to go about its business serving
other requests. This results in parallelism since the server and client are doing work at the same time,
rather than blocking on each other doing frequent I/O. That is mysql_store_result() .

As the mysql manual suggests: you should not use mysql_use_result() if you are doing a lot of
processing for each row on the client side. This can tie up the server and prevent other threads from updat-
ing the tables.

7.5 Transactions Not Committed with MySQL InnoDB
Tables
Sometimes, when using MySQL’s InnoDB table type, you may notice that changes you committed in one
process don’t seem to be visible to other processes. You may not be aware that InnoDB tables use a
default approach to transactions that is actually more cautious than PostgreSQL or Oracle’s default. It’s
called "repeatable read", and the gist of it is that you don’t see updates made in other processes since your
last commit. There is an explanation of this here: http://dev.mysql.com/doc/mysql/en/InnoDB_Consis-
tent_read_example.html

This is actually not directly related to mod_perl, but you wouldn’t notice this issue when using CGI
because reconecting to the database on each request resets things just as doing a commit does. It is the
persistent connections used with mod_perl that make this issue visible.

If you suspect this is causing you problems, the simplest way to deal with it is to change the isolation level
to "read committed" -- which is more like what PostgreSQL and Oracle do by default -- with the "set
transaction" command, described here: http://dev.mysql.com/doc/mysql/en/InnoDB_transaction_isola-
tion.html

7.6 Optimize: Run Two SQL Engine Servers
Sometimes you end up running many databases on the same machine. These might have very varying
database needs (such as one db with sessions, very frequently updated but tiny amounts of data, and
another with large sets of data that’s hardly ever updated) you might be able to gain a lot by running two
differently configured databases on one server. One would benefit from lots of caching, the other would
probably reduce the efficiency of the cache but would gain from fast disk access. Different usage profiles
require vastly different performance needs.

20515 Feb 2014

7.5 Transactions Not Committed with MySQL InnoDB Tablesmod_perl and Relational Databases

http://dev.mysql.com/doc/mysql/en/InnoDB_Consistent_read_example.html
http://dev.mysql.com/doc/mysql/en/InnoDB_Consistent_read_example.html
http://dev.mysql.com/doc/mysql/en/InnoDB_transaction_isolation.html
http://dev.mysql.com/doc/mysql/en/InnoDB_transaction_isolation.html

This is basically a similar idea to having two Apache servers, each optimized for its specific requirements.

7.7 Some useful code snippets to be used with relational
Databases
In this section you will find scripts, modules and code snippets to help you get started using relational
Databases with mod_perl scripts. Note that I work with mysql (http://www.mysql.com), so the code you
find here will work out of box with mysql. If you use some other SQL engine, it might work for you or it
might need some changes. YMMV.

7.7.1 Turning SQL query writing into a short and simple task

Having to write many queries in my CGI scripts, persuaded me to write a stand alone module that saves
me a lot of time in coding and debugging my code. It also makes my scripts much smaller and easier to
read. I will present the module here, with examples following:

Notice the DESTROY block at the end of the module, which makes various cleanups and allows this
module to be used under mod_perl and mod_cgi as well. Note that you will not get the benefit of persis-
tent database handles with mod_cgi.

7.7.2 The My::DB module

The code/My-DB.pm:

package My::DB;

use strict;
use 5.004;

use DBI;

use vars qw(%c);
use constant DEBUG => 0;

%c =
 (
 db => {
 DB_NAME => ’foo’,
 SERVER => ’localhost’,
 USER => ’put_username_here’,
 USER_PASSWD => ’put_passwd_here’,
 },

);

use Carp qw(croak verbose);
#local $SIG{__WARN__} = \&Carp::cluck;

untaint the path by explicit setting
local $ENV{PATH} = ’/bin:/usr/bin’;

15 Feb 2014206

7.7 Some useful code snippets to be used with relational Databases

http://www.mysql.com/

#######
sub new {
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my $self = {};

 # connect to the DB, Apache::DBI takes care of caching the connections
 # save into a dbh - Database handle object
 $self->{dbh} = DBI->connect("DBI:mysql:$c{db}{DB_NAME}::$c{db}{SERVER}",
 $c{db}{USER},
 $c{db}{USER_PASSWD},
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
)
 or die "Cannot connect to database: $DBI::errstr";

 # we want to die on errors if in debug mode
 $self->{dbh}->{RaiseError} = 1 if DEBUG;

 # init the sth - Statement handle object
 $self->{sth} = ’’;

 bless ($self, $class);

 $self;

} # end of sub new

##
 ###################################
 ### ###
 ### SQL Functions ###
 ### ###
 ###################################
##

print debug messages
sub d{
 # we want to print the trace in debug mode
 print " ".join("", @_)."\n" if DEBUG;

} # end of sub d

##
return a count of matched rows, by conditions
#
$count = sql_count_matched($table_name,\@conditions,\@restrictions);
#
conditions must be an array so we can pass more than one column with
the same name.
#
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],

20715 Feb 2014

7.7.2 The My::DB modulemod_perl and Relational Databases

foo => [’<’,30],
);
#
The sub knows automatically to detect and quote strings
#
Restrictions are the list of restrictions like (’order by email’)
#
##########################
sub sql_count_matched{
 my $self = shift;
 my $table = shift || ’’;
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print the trace in debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT COUNT(*) FROM $table ";
 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= "WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
 $self->{sth} = $self->{dbh}->prepare($do_sql);
 $self->{sth}->execute();
 my ($count) = $self->{sth}->fetchrow_array;

 d("Result: $count") if DEBUG;

 $self->{sth}->finish;

 return $count;

} # end of sub sql_count_matched

##
return a count of matched distinct rows, by conditions
#
$count = sql_count_matched_distinct($table_name,\@conditions,\@restrictions);
#
conditions must be an array so we can path more than one column with
the same name.
#
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],

15 Feb 2014208

7.7.2 The My::DB module

);
#
The sub knows automatically to detect and quote strings
#
Restrictions are the list of restrictions like (’order by email’)
#
This a slow implementation - because it cannot use select(*), but
brings all the records in first and then counts them. In the next
version of mysql there will be an operator ’select (distinct *)’
which will make things much faster, so we will just change the
internals of this sub, without changing the code itself.
#
##############################
sub sql_count_matched_distinct{
 my $self = shift;
 my $table = shift || ’’;
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print the trace in debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT DISTINCT * FROM $table ";
 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= "WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
$self->{sth} = $self->{dbh}->prepare($do_sql);
$self->{sth}->execute();

 my $count = @{$self->{dbh}->selectall_arrayref($do_sql)};

my ($count) = $self->{sth}->fetchrow_array;

 d("Result: $count") if DEBUG;

$self->{sth}->finish;

 return $count;

} # end of sub sql_count_matched_distinct

##
return a single (first) matched value or undef, by conditions and

20915 Feb 2014

7.7.2 The My::DB modulemod_perl and Relational Databases

restrictions
#
sql_get_matched_value($table_name,$column,\@conditions,\@restrictions);
#
column is a name of the column
#
conditions must be an array so we can path more than one column with
the same name.
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
The sub knows automatically to detect and quote strings
#
restrictions is a list of restrictions like (’order by email’)
#
##########################
sub sql_get_matched_value{
 my $self = shift;
 my $table = shift || ’’;
 my $column = shift || ’’;
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT $column FROM $table ";

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
 return $self->{dbh}->selectrow_array($do_sql);

} # end of sub sql_get_matched_value

##
return a single row of first matched rows, by conditions and
restrictions. The row is being inserted into @results_row array
(value1,value2,...) or empty () if none matched
#
sql_get_matched_row(\@results_row,$table_name,\@columns,\@conditions,\@restrictions);

15 Feb 2014210

7.7.2 The My::DB module

#
columns is a list of columns to be returned (username, fname,...)
#
conditions must be an array so we can path more than one column with
the same name.
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
The sub knows automatically to detect and quote strings
#
restrictions is a list of restrictions like (’order by email’)
#
##########################
sub sql_get_matched_row{
 my $self = shift;
 my $r_row = shift || {};
 my $table = shift || ’’;
 my $r_cols = shift || [];
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT ";
 $do_sql .= join ",", @{$r_cols} if @{$r_cols};
 $do_sql .= " FROM $table ";

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
 @{$r_row} = $self->{dbh}->selectrow_array($do_sql);

} # end of sub sql_get_matched_row

##
return a ref to hash of single matched row, by conditions
and restrictions. return undef if nothing matched.
(column1 => value1, column2 => value2) or empty () if non matched
#
sql_get_hash_ref($table_name,\@columns,\@conditions,\@restrictions);
#

21115 Feb 2014

7.7.2 The My::DB modulemod_perl and Relational Databases

columns is a list of columns to be returned (username, fname,...)
#
conditions must be an array so we can path more than one column with
the same name.
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
The sub knows automatically to detect and quote strings
#
restrictions is a list of restrictions like (’order by email’)
#
##########################
sub sql_get_hash_ref{
 my $self = shift;
 my $table = shift || ’’;
 my $r_cols = shift || [];
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT ";
 $do_sql .= join ",", @{$r_cols} if @{$r_cols};
 $do_sql .= " FROM $table ";

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
 $self->{sth} = $self->{dbh}->prepare($do_sql);
 $self->{sth}->execute();

 return $self->{sth}->fetchrow_hashref;

} # end of sub sql_get_hash_ref

##
returns a reference to an array, matched by conditions and
restrictions, which contains one reference to array per row. If
there are no rows to return, returns a reference to an empty array:

15 Feb 2014212

7.7.2 The My::DB module

[
[array1],
......
[arrayN],
];
#
$ref = sql_get_matched_rows_ary_ref($table_name,\@columns,\@conditions,\@restrictions);
#
columns is a list of columns to be returned (username, fname,...)
#
conditions must be an array so we can path more than one column with
the same name. @conditions are being cancatenated with AND
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
results in
WHERE foo > 15 AND foo < 30
#
to make an OR logic use (then ANDed)
@conditions = (column => [’comp_sign’,[’value1’,’value2’]],
foo => [’=’,[15,24]],
bar => [’=’,[16,21]],
);
results in
WHERE (foo = 15 OR foo = 24) AND (bar = 16 OR bar = 21)
#
The sub knows automatically to detect and quote strings
#
restrictions is a list of restrictions like (’order by email’)
#
##########################
sub sql_get_matched_rows_ary_ref{
 my $self = shift;
 my $table = shift || ’’;
 my $r_cols = shift || [];
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT ";
 $do_sql .= join ",", @{$r_cols} if @{$r_cols};
 $do_sql .= " FROM $table ";

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {

 if (ref $$r_conds[$i+1][1] eq ’ARRAY’) {
 # multi condition for the same field/comparator to be ORed
 push @where, map {"($_)"} join " OR ",
 map { join " ",
 $r_conds->[$i],
 $r_conds->[$i+1][0],
 sql_quote(sql_escape($_));
 } @{$r_conds->[$i+1][1]};
 } else {

21315 Feb 2014

7.7.2 The My::DB modulemod_perl and Relational Databases

 # single condition for the same field/comparator
 push @where, join " ",
 $r_conds->[$i],
 $r_conds->[$i+1][0],
 sql_quote(sql_escape($r_conds->[$i+1][1]));
 }
 } # end of for(my $i=0;$i<@{$r_conds};$i=$i+2

 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
 return $self->{dbh}->selectall_arrayref($do_sql);

} # end of sub sql_get_matched_rows_ary_ref

##
insert a single row into a DB
#
sql_insert_row($table_name,\%data,$delayed);
#
data is hash of type (column1 => value1 ,column2 => value2 ,)
#
$delayed: 1 => do delayed insert, 0 or none passed => immediate
#
* The sub knows automatically to detect and quote strings
#
* The insert id delayed, so the user will not wait untill the insert
will be completed, if many select queries are running
#
##########################
sub sql_insert_row{
 my $self = shift;
 my $table = shift || ’’;
 my $r_data = shift || {};
 my $delayed = (shift) ? ’DELAYED’ : ’’;

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "INSERT $delayed INTO $table ";
 $do_sql .= "(".join(",",keys %{$r_data}).")";
 $do_sql .= " VALUES (";
 $do_sql .= join ",", sql_quote(sql_escape(values %{$r_data}));
 $do_sql .= ")";

 d("SQL: $do_sql") if DEBUG;

 # do query
 $self->{sth} = $self->{dbh}->prepare($do_sql);

15 Feb 2014214

7.7.2 The My::DB module

 $self->{sth}->execute();

} # end of sub sql_insert_row

##
update rows in a DB by condition
#
sql_update_rows($table_name,\%data,\@conditions,$delayed);
#
data is hash of type (column1 => value1 ,column2 => value2 ,)
#
conditions must be an array so we can path more than one column with
the same name.
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
#
$delayed: 1 => do delayed insert, 0 or none passed => immediate
#
* The sub knows automatically to detect and quote strings
#
#
##########################
sub sql_update_rows{
 my $self = shift;
 my $table = shift || ’’;
 my $r_data = shift || {};
 my $r_conds = shift || [];
 my $delayed = (shift) ? ’LOW_PRIORITY’ : ’’;

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "UPDATE $delayed $table SET ";
 $do_sql .= join ",",
 map { "$_=".join "",sql_quote(sql_escape($$r_data{$_})) } keys %{$r_data};

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where if @where;

 d("SQL: $do_sql") if DEBUG;

 # do query
 $self->{sth} = $self->{dbh}->prepare($do_sql);

 $self->{sth}->execute();

my ($count) = $self->{sth}->fetchrow_array;

21515 Feb 2014

7.7.2 The My::DB modulemod_perl and Relational Databases

#
d("Result: $count") if DEBUG;

} # end of sub sql_update_rows

##
delete rows from DB by condition
#
sql_delete_rows($table_name,\@conditions);
#
conditions must be an array so we can path more than one column with
the same name.
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
#
* The sub knows automatically to detect and quote strings
#
#
##########################
sub sql_delete_rows{
 my $self = shift;
 my $table = shift || ’’;
 my $r_conds = shift || [];

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "DELETE FROM $table ";

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }

 # Must be very careful with deletes, imagine somehow @where is
 # not getting set, "DELETE FROM NAME" deletes the contents of the table
 warn("Attempt to delete a whole table $table from DB\n!!!"),return unless @where;

 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where;

 d("SQL: $do_sql") if DEBUG;

 # do query
 $self->{sth} = $self->{dbh}->prepare($do_sql);
 $self->{sth}->execute();

} # end of sub sql_delete_rows

##
executes the passed query and returns a reference to an array which

15 Feb 2014216

7.7.2 The My::DB module

contains one reference per row. If there are no rows to return,
returns a reference to an empty array.
#
$r_array = sql_execute_and_get_r_array($query);
#
#
##########################
sub sql_execute_and_get_r_array{
 my $self = shift;
 my $do_sql = shift || ’’;

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 d("SQL: $do_sql") if DEBUG;

 $self->{dbh}->selectall_arrayref($do_sql);

} # end of sub sql_execute_and_get_r_array

##
lock the passed tables in the requested mode (READ|WRITE) and set
internal flag to handle possible user abortions, so the tables will
be unlocked thru the END{} block
#
sql_lock_tables(’table1’,’lockmode’,..,’tableN’,’lockmode’
lockmode = (READ | WRITE)
#
_side_effect_ $self->{lock} = ’On’;
#
##########################
sub sql_lock_tables{
 my $self = shift;
 my %modes = @_;

 return unless %modes;

 my $do_sql = ’LOCK TABLES ’;
 $do_sql .= join ",", map {"$_ $modes{$_}"} keys %modes;

 # we want to print the trace in debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 d("SQL: $do_sql") if DEBUG;

 $self->{sth} = $self->{dbh}->prepare($do_sql);
 $self->{sth}->execute();

 # Enough to set only one lock, unlock will remove them all
 $self->{lock} = ’On’;

} # end of sub sql_lock_tables

##
unlock all tables, unset internal flag to handle possible user
abortions, so the tables will be unlocked thru the END{} block

21715 Feb 2014

7.7.2 The My::DB modulemod_perl and Relational Databases

#
sql_unlock_tables()
#
_side_effect_: delete $self->{lock}
#
##########################
sub sql_unlock_tables{
 my $self = shift;

 # we want to print the trace in debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 $self->{dbh}->do("UNLOCK TABLES");

 # Enough to set only one lock, unlock will remove them all
 delete $self->{lock};

} # end of sub sql_unlock_tables

#
#
return current date formatted for a DATE field type
YYYYMMDD
#
Note: since this function actually doesn’t need an object it’s being
called without parameter as well as procedural call
############
sub sql_date{
 my $self = shift;

 my ($mday,$mon,$year) = (localtime)[3..5];
 return sprintf "%0.4d%0.2d%0.2d",1900+$year,++$mon,$mday;

} # end of sub sql_date

#
#
return current date formatted for a DATE field type
YYYYMMDDHHMMSS
#
Note: since this function actually doesn’t need an object it’s being
called without parameter as well as procedural call
############
sub sql_datetime{
 my $self = shift;

 my ($sec,$min,$hour,$mday,$mon,$year) = localtime();
 return sprintf "%0.4d%0.2d%0.2d%0.2d%0.2d%0.2d",1900+$year,++$mon,$mday,$hour,$min,$sec;

} # end of sub sql_datetime

Quote the list of parameters. Parameters consisting entirely of
digits (i.e. integers) are unquoted.
print sql_quote("one",2,"three"); => ’one’, 2, ’three’
#############
sub sql_quote{ map{ /^(\d+|NULL)$/ ? $_ : "\’$_\’" } @_ }

Escape the list of parameters (all unsafe chars like ",’ are escaped)

15 Feb 2014218

7.7.2 The My::DB module

We make a copy of @_ since we might try to change the passed values,
producing an error when modification of a read-only value is attempted
##############
sub sql_escape{ my @a = @_; map { s/([\’\\])/\\$1/g;$_} @a }

DESTROY makes all kinds of cleanups if the fuctions were interuppted
before their completion and haven’t had a chance to make a clean up.
###########
sub DESTROY{
 my $self = shift;

 $self->sql_unlock_tables() if $self->{lock};
 $self->{sth}->finish if $self->{sth};
 $self->{dbh}->disconnect if $self->{dbh};

} # end of sub DESTROY

Don’t remove
1;

module

(Note that you will not find this on CPAN. at least not yet :)

7.7.3 My::DB Module’s Usage Examples

To use My::DB in your script, you first have to create a My::DB object:

 use vars qw($db_obj);
 my $db_obj = new My::DB or croak "Can’t initialize My::DB object: $!\n";

Now you can use any of My::DB ’s methods. Assume that we have a table called tracker where we store
the names of the users and what they are doing at each and every moment (think about an online commu-
nity program).

I will start with a very simple query--I want to know where the users are and produce statistics. tracker
is the name of the table.

 # fetch the statistics of where users are
 my $r_ary = $db_obj->sql_get_matched_rows_ary_ref
 ("tracker",
 [qw(where_user_are)],
);

 my %stats = ();
 my $total = 0;
 foreach my $r_row (@$r_ary){
 $stats{$r_row->[0]}++;
 $total++;
 }

21915 Feb 2014

7.7.3 My::DB Module’s Usage Examplesmod_perl and Relational Databases

Now let’s count how many users we have (in table users):

 my $count = $db_obj->sql_count_matched("users");

Check whether a user exists:

 my $username = ’stas’;
 my $exists = $db_obj->sql_count_matched
 ("users",
 [username => ["=",$username]]
);

Check whether a user is online, and get the time since she went online (since is a column in the
tracker table, it tells us when a user went online):

 my @row = ();
 $db_obj->sql_get_matched_row
 (\@row,
 "tracker",
 [’UNIX_TIMESTAMP(since)’],
 [username => ["=",$username]]
);

 if (@row) {
 my $idle = int((time() - $row[0]) / 60);
 return "Current status: Is Online and idle for $idle minutes.";
 }

A complex query. I join two tables, and I want a reference to an array which will store a slice of the
matched query (LIMIT $offset,$hits) sorted by username . Each row in the array is to include
the fields from the users table, but only those listed in @verbose_cols . Then we print it out.

 my $r_ary = $db_obj->sql_get_matched_rows_ary_ref
 (
 "tracker STRAIGHT_JOIN users",
 [map {"users.$_"} @verbose_cols],
 [],
 ["WHERE tracker.username=users.username",
 "ORDER BY users.username",
 "LIMIT $offset,$hits"],
);

 foreach my $r_row (@$r_ary){
 print ...
 }

Another complex query. The user checks checkboxes to be queried by, selects from lists and types in
match strings, we process input and build the @where array. Then we want to get the number of matches
and the matched rows as well.

 my @search_keys = qw(choice1 choice2);
 my @where = ();
 # Process the checkboxes - we turn them into a regular expression
 foreach (@search_keys) {
 next unless defined $q->param($_) and $q->param($_);

15 Feb 2014220

7.7.3 My::DB Module’s Usage Examples

 my $regexp = "[".join("",$q->param($_))."]";
 push @where, ($_ => [’REGEXP’,$regexp]);
 }

 # Add the items selected by the user from our lists
 # selected => exact match
 push @where,(country => [’=’,$q->param(’country’)]) if $q->param(’country’);

 # Add the parameters typed by the user
 foreach (qw(city state)) {
 push @where,($_ => [’LIKE’,$q->param($_)]) if $q->param($_);
 }

 # Count all that matched the query
 my $total_matched_users = $db_obj->sql_count_matched
 (
 "users",
 \@where,
);

 # Now process the orderby
 my $orderby = $q->param(’orderby’) || ’username’;

 # Do the query and fetch the data
 my $r_ary = $db_obj->sql_get_matched_rows_ary_ref
 (
 "users",
 \@display_columns,
 \@where,
 ["ORDER BY $orderby",
 "LIMIT $offset,$hits"],
);

sql_get_matched_rows_ary_ref knows to handle both ORed and ANDed params. This example
shows how to use OR on parameters:

This snippet is an implementation of a watchdog. Our users want to know when their colleagues go online.
They register the usernames of the people they want to know about. We have to make two queries: one to
get a list of usernames, the second to find out whether any of these users is online. In the second query we
use the OR keyword.

 # check who we are looking for
 $r_ary = $db_obj->sql_get_matched_rows_ary_ref
 ("watchdog",
 [qw(watched)],
 [username => [’=’,$username)],
],
);

 # put them into an array
 my @watched = map {$_->[0]} @{$r_ary};

 my %matched = ();
 # Does the user have some registered usernames?
 if (@watched) {

22115 Feb 2014

7.7.3 My::DB Module’s Usage Examplesmod_perl and Relational Databases

 # Try to fetch all the users who match the usernames exactly.
 # Put it into an array and compare it with a hash!
 $r_ary = $db_obj->sql_get_matched_rows_ary_ref
 ("tracker",
 [qw(username)],
 [username => [’=’,\@watched],
]
);

 map {$matched{$_->[0]} = 1} @{$r_ary};
 }

 # Now %matched includes the usernames of the users who are being
 # watched by $username and currently are online.

7.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

7.9 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014222

7.8 Maintainers

http://stason.org/
http://stason.org/

8 mod_perl and dbm files

22315 Feb 2014

8 mod_perl and dbm filesmod_perl and dbm files

8.1 Description
Small databases can be implemented pretty efficiently using dbm files, but there are still some precautions
that must be taken to use them properly under mod_perl.

8.2 Where and Why to use dbm files
Some of the earliest databases implemented on Unix were dbm files, and many are still in use today. As of
this writing the Berkeley DB is the most powerful dbm implementation (http://www.sleepycat.com).

If you need a light database, with an easy API, using simple key-value pairs to store and manipulate a rela-
tively small number of records, this is a solution that should be amongst the first you consider.

With dbm, it is rare to read the whole database into memory. Combine this feature with the use of smart
storage techniques, and dbm files can be manipulated much faster than flat files. Flat file databases can be
very slow on insert, update and delete operations, when the number of records starts to grow into the thou-
sands. Sort algorithms on flat files can be very time-consuming.

The maximum practical size of a dbm database depends on many factors--your data, your hardware and
the desired response times of course included--but as a rough guide consider 5,000 to 10,000 records to be
reasonable.

We will talk mostly about the Berkley DB version 1.x, as it provides the best functionality while having a
good speed and almost no limitations. Other implementations might be faster in some cases, but they are
either limited in the length of the maximum value or the total number of records.

There is a number of Perl interfaces to the major dbm implementations, to list a few: DB_File ,
NDBM_File , ODBM_File , GDBM_File , and SDBM_File . The original Perl module for Berkeley DB
was DB_File, which was written to interface to Berkeley DB version 1.85. The newer Perl module for
Berkeley DB is BerkeleyDB , which was written to interface to version 2.0 and subsequent releases.
Because Berkeley DB version 2.X has a compatibility API for version 1.85, you can (and should!) build
DB_File using version 2.X of Berkeley DB, although DB_File will still only support the 1.85 function-
ality.

Several different indexing algorithms (known also as access methods) can be used with dbm implementa-
tions:

The HASH access method gives an 0(1) complexity of search and update, fast insert and delete, but
a slow sort (which you have to implement yourself). (Used by almost all dbm implementations)

The BTREE access method allows arbitrary key/value pairs to be stored in a sorted, balanced binary
tree. This allows us to get a sorted sequence of data pairs in 0(1) , but at the expense of much slower
insert, update, delete operations than is the case with HASH. (Available mostly in Berkeley DB)

The RECNO access method is more complicated, and enables both fixed-length and variable-length
flat text files to be manipulated using the same key/value pair interface as in HASH and BTREE. In
this case the key will consist of a record (line) number. (Available mostly in Berkeley DB)

15 Feb 2014224

8.1 Description

http://www.sleepycat.com/

The QUEUE access method stores fixed-length records with logical record numbers as keys. It is
designed for fast inserts at the tail and has a special cursor consume operation that deletes and returns
a record from the head of the queue. The QUEUE access method uses record level locking. (Available
only in Berkeley DB version 3.x)

Most often you will want to use the HASH method, but there are many considerations and your choice may
be dictated by your application.

In recent years dbm databases have been extended to allow you to store more complex values, including
data structures. The MLDBM module can store and restore the whole symbol table of your script, including
arrays and hashes.

It is important to note that you cannot simply switch a dbm file from one storage algorithm to another. The
only way to change the algorithm is to copy all the records one by one into a new dbm file, which was
initialized according to a desired access method. You can use a script like this:

 #!/usr/bin/perl -w

 #
 # This script takes as its parameters a list of Berkeley DB
 # file(s) which are stored with the DB_BTREE algorithm. It
 # will back them up using the .bak extension and create
 # instead dbms with the same records but stored using the
 # DB_HASH algorithm
 #
 # Usage: btree2hash.pl filename(s)

 use strict;
 use DB_File;
 use Fcntl;

 # Do checks
 die "Usage: btree2hash.pl filename(s))\n" unless @ARGV;

 foreach my $filename (@ARGV) {

 die "Can’t find $filename: $!\n"
 unless -e $filename and -r $filename;

 # First backup the file
 rename "$filename", "$filename.btree"
 or die "can’t rename $filename $filename.btree:$!\n";

 # tie both dbs (db_hash is a fresh one!)
 tie my %btree , ’DB_File’,"$filename.btree", O_RDWR|O_CREAT,
 0660, $DB_BTREE or die "Can’t tie $filename.btree: $!";
 tie my %hash , ’DB_File’,"$filename" , O_RDWR|O_CREAT,
 0660, $DB_HASH or die "Can’t tie $filename: $!";

 # copy DB
 %hash = %btree;

22515 Feb 2014

8.2 Where and Why to use dbm filesmod_perl and dbm files

 # untie
 untie %btree ;
 untie %hash ;
 }

Note that some dbm implementations come with other conversion utilities as well.

8.3 mod_perl and dbm
Where does mod_perl fit into the picture?

If you need to access a dbm file in your mod_perl code in the read only mode the operation would be
much faster if you keep the dbm file open (tied) all the time and therefore ready to be used. This will work
with dynamic (read/write) databases accesses as well, but you need to use locking and data flushing to
avoid data corruption.

Although mod_perl and dbm can give huge performance gains compared to the use of flat file databases
you should be very careful. In addition to the need for locking, you need to consider the consequences of
die() and unexpected process death.

If your locking mechanism cannot handle dropped locks, a stale lock can deactivate your whole site. You
can enter a deadlock situation if two processes simultaneously try to acquire locks on two separate
databases. Each has locked only one of the databases, and cannot continue without locking the second. Yet
this will never be freed because it is locked by the other process. If your processes all ask for their DB files
in the same order, this situation cannot occur.

If you modify the DB you should be make very sure that you flush the data and synchronize it, especially
when the process serving your handler unexpectedly dies. In general your application should be tested
very thoroughly before you put it into production to handle important data.

8.4 Locking dbm Handlers and Write Lock Starvation
Hazards
One has to deploy dbm file locking if there is chance that some process will want to write to it. Note that
once you need to do locking you do it even when all you want is to read from the file. Since if you don’t,
it’s possible that someone writes to the file at this very moment and you may read partly updated data.

Therefore we should distinguish between READ and WRITE locks. Before doing an operation on the dbm
file, we first issue either a READ or a WRITE lock request, according to our needs.

If we are making a READ lock request, it is granted as soon as the WRITE lock on the file is removed if
any or if it is already READ locked. The lock status becomes READ on success.

If we make a WRITE lock request, it is granted as soon as the file becomes unlocked. The lock status
becomes WRITE on success.

15 Feb 2014226

8.3 mod_perl and dbm

The treatment of the WRITE lock request is most important.

If the DB is READ locked, a process that makes a WRITE request will poll until there are no reading or
writing processes left. Lots of processes can successfully read the file, since they do not block each other.
This means that a process that wants to write to the file may never get a chance to squeeze in, since it
needs to obtain an exclusive lock.

The following diagram represents a possible scenario where everybody can read but no one can write
(pX’s represent different processes running for different times and all acquiring the read lock on the dbm
file):

 [-p1-] [--p1--]
 [--p2--] [--p2--]
 [---------p3---------] [--------p3----....
 [------p4-----]

The result is a starving process, which will timeout the request, and it will fail to update the DB. Ken
Williams solved the above problem with his Tie::DB_Lock module, which is discussed in one of the
following sections.

There are several locking wrappers for DB_File in CPAN right now. Each one implements locking
differently and has different goals in mind. It is therefore worth knowing the difference, so that you can
pick the right one for your application.

8.5 Flawed Locking Methods Which Must Not Be Used
Caution: The suggested locking methods in the Camel book and DB_File man page (before version
1.72, fixed in 1.73) are flawed. If you use them in an environment where more than one process can
modify the dbm file, it can get corrupted!!! The following is an explanation of why this happens.

You may not use a tied file’s filehandle for locking, since you get the filehandle after the file has been
already tied. It’s too late to lock. The problem is that the database file is locked after it is opened. When
the database is opened, the first 4k (in Berkley dbm library) is read and then cached in memory. Therefore,
a process can open the database file, cache the first 4k, and then block while another process writes to the
file. If the second process modifies the first 4k of the file, when the original process gets the lock is now
has an inconsistent view of the database. If it writes using this view it may easily corrupt the database on
disk.

This problem can be difficult to trace because it does not cause corruption every time a process has to wait
for a lock. One can do quite a bit of writing to a database file without actually changing the first 4k. But
once you suspect this problem you can easily reproduce it by making your program modify the records in
the first 4k of the DB.

You better resort to using the standard modules for locking instead of inventing your own.

If your dbm file is used only in the read-only mode generally there is no need for locking at all. If you
access the dbm file in read/write mode, the safest method is to tie() the dbm file after acquiring an external
lock and untie() before the lock is released. So to access the file in shared mode (FLOCK_SH) one should

22715 Feb 2014

8.5 Flawed Locking Methods Which Must Not Be Usedmod_perl and dbm files

following this pseudo-code:

 flock FLOCK_SH <===== start critical section
 tie()
 read...
 untie()
 flock FLOCK_UN <===== end critical section

Similar for the exclusive (EX), write access:

 flock FLOCK_EX <===== start critical section
 tie()
 write...
 sync()
 untie()
 flock FLOCK_UN <===== end critical section

However you might want to save a few tie()/untie() calls if the same request accesses the dbm file more
than once. You should be careful though. Based on the caching effect explained above, a process can
perform an atomic downgrade of an exclusive lock to a shared one without re-tie()ing the file:

 flock FLOCK_EX <===== start critical section
 tie()
 write...
 sync()
 <===== end critical section
 flock FLOCK_SH <===== start critical section
 read...
 untie()
 flock FLOCK_UN <===== end critical section

because it has the updated data in its cache. By atomic, we mean it’s ensured that the lock status gets
changed, without any other process getting an exclusive access in between.

If you can ensure that one process safely upgrades a shared lock with an exclusive lock, one can save on
tie()/untie(). But this operation might lead to a dead-lock if two processes try to upgrade a shared lock with
exclusive at the same time. Remember that in order to acquire an exclusive lock, all other processes need
to release *all* locks. If your OS locking implementation resolves this deadlock by denying one of the
upgrade requests, make sure your program handles that appropriately. The process that were denied has to
untie() the dbm file and then ask for an exclusive lock.

A dbm file has always to be untie()’ed before the locking is released (unless you do an atomic downgrade
from exclusive to shared as we have just explained). Remember that if at any given moment a process
wants to lock and access the dbm file it has to re-tie() this file, if it was tied already. If this is not done, the
integrity of the dbm file is not ensured.

To conclude, the safest method of reading from dbm file is to lock the file before tie()-ing it, untie() it
before releasing the lock, and in the case of write to call sync() before untie()-ing it.

15 Feb 2014228

8.5 Flawed Locking Methods Which Must Not Be Used

8.6 Locking Wrappers Overview
Here are some of the correctly working dbm locking wrappers on (three of them are available from
CPAN):

Tie::DB_Lock -- DB_File wrapper which creates copies of the dbm file for read access, so that
you have kind of a multiversioning concurrent read system. However, updates are still serial. After
each update the read-only copies of the dbm file are recreated. Use this wrapper in situations where
reads may be very lengthy and therefore write starvation problem may occur. On the other hand if
you have big dbm files, it may create a big load on the system if the updates are quite frequent. More
information.

Tie::DB_FileLock -- DB_File wrapper that has the ability to lock and unlock the database
while it is being used. Avoids the tie-before-flock problem by simply re-tie-ing the database when
you get or drop a lock. Because of the flexibility in dropping and re-acquiring the lock in the middle
of a session, this can be used in a system that will work with long updates and/or reads. Refer to the
Tie::DB_FileLock manpage for more information.

DB_File::Lock -- extremely lightweight DB_File wrapper that simply flocks an external lock-
file before tie-ing the database and drops the lock after untie. Allows one to use the same lockfile for
multiple databases to avoid deadlock problems, if desired. Use this for databases where updates and
reads are quick and simple flock locking semantics are enough. Refer to DB_File::Lock manpage
for more information.

DB_File::Lock2 -- does the same thing as DB_File::Lock , but has a slightly different imple-
mentation. I wrote it before David Harris released his DB_File::Lock and I didn’t want to kill
mine, so I’ll keep it here for a while :).

On some Operating Systems (FreeBSD is one example) it is possible to lock on tie:

 tie my %t, ’DB_File’, $TOK_FILE, O_RDWR | O_EXLOCK, 0664;

and only release the lock by un-tie()-ing the file. Check if the O_EXLOCK flag is available on your
operating system before you try to use this method!

8.7 Tie::DB_Lock
Tie::DB_Lock ties hashes to databases using shared and exclusive locks. This module, by Ken
Williams, solves the problems raised in the previous section.

The main difference from what I have described above is that Tie::DB_Lock copies a dbm file on read.
Reading processes do not have to keep the file locked while they read it, and writing processes can still
access the file while others are reading. This works best when you have lots of long-duration reading, and
a few short bursts of writing.

22915 Feb 2014

8.6 Locking Wrappers Overviewmod_perl and dbm files

The drawback of this module is the heavy IO performed when every reader makes a fresh copy of the DB.
With big dbm files this can be quite a disadvantage and can slow the server down considerably.

An alternative would be to have one copy of the dbm image shared by all the reading processes. This can
cut the number of files that are copied, and puts the responsibility of copying the read-only file on the
writer, not the reader. It would need some care to make sure it does not disturb readers when putting a new
read-only copy into place.

8.8 DB_File::Lock2
Here is code/DB_File-Lock2.pm:

package DB_File::Lock2;
require 5.004;

use strict;

BEGIN {
 # RCS/SVN compliant: must be all one line, for MakeMaker
 $DB_File::Lock2::VERSION = do { my @r = (q$Revision: 420028 $ =~ /\d+/g); sprintf "%d."."%02d" x $#r, @r };

}

use DB_File ();
use Fcntl qw(:flock O_RDWR O_CREAT);
use Carp qw(croak carp verbose);
use Symbol ();

@DB_File::Lock2::ISA = qw(DB_File);
%DB_File::Lock2::lockfhs = ();

use constant DEBUG => 0;

 # file creation permissions mode
use constant PERM_MODE => 0660;

 # file locking modes
%DB_File::Lock2::locks =
 (
 read => LOCK_SH,
 write => LOCK_EX,
);

SYNOPSIS:
tie my %mydb, ’DB_File::Lock2’, $filepath,
[’read’ || ’write’, ’HASH’ || ’BTREE’]
while (my ($k,$v) = each %mydb) {
print "$k => $v\n";
}
untie %mydb;
#########
sub TIEHASH {
 my $class = shift;
 my $file = shift;
 my $lock_mode = lc shift || ’read’;
 my $db_type = shift || ’HASH’;

 die "Dunno about lock mode: [$lock_mode].\n
 Valid modes are ’read’ or ’write’.\n"
 unless $lock_mode eq ’read’ or $lock_mode eq ’write’;

 # Critical section starts here if in write mode!

 # create an external lock
 my $lockfh = Symbol::gensym();

15 Feb 2014230

8.8 DB_File::Lock2

 open $lockfh, ">$file.lock" or die "Cannot open $file.lock for writing: $!\n";
 unless (flock $lockfh, $DB_File::Lock2::locks{$lock_mode}) {
 croak "cannot flock: $lock_mode => $DB_File::Lock2::locks{$lock_mode}: $!\n";
 }

 my $self = $class->SUPER::TIEHASH
 ($file,
 O_RDWR|O_CREAT,
 PERM_MODE,
 ($db_type eq ’BTREE’ ? $DB_File::DB_BTREE : $DB_File::DB_HASH)
);

 # remove the package name in case re-blessing occurs
 (my $id = "$self") =~ s/^[^=]+=//;

 # cache the lock fh
 $DB_File::Lock2::lockfhs{$id} = $lockfh;

 return $self;

} # end of sub new

DESTROY is automatically called when a tied variable
goes out of scope, on explicit untie() or when the program is
interrupted, e.g. with a die() call.

It unties the db by forwarding it to the parent class,
unlocks the file and removes it from the cache of locks.
###########
sub DESTROY{
 my $self = shift;

 $self->SUPER::DESTROY(@_);

 # now it safe to unlock the file, (close() unlocks as well). Since
 # the object has gone we remove its lock filehandler entry
 # from the cache.
 (my $id = "$self") =~ s/^[^=]+=//; # see ’sub TIEHASH’
 close delete $DB_File::Lock2::lockfhs{$id};

 # Critical section ends here if in write mode!

 print "Destroying ".__PACKAGE__."\n" if DEBUG;

}

####
END {
 print "Calling the END from ".__PACKAGE__."\n" if DEBUG;

}

1;

which does the locking by using an external lockfile.

This allows you to gain the lock before the file is tied. Note that it’s not yet on CPAN and so is linked
from here in its entirety. Note also that this code still needs some testing, so be careful if you use it on a
production machine.

You use it like this:

 use DB_File::Lock2 ();

23115 Feb 2014

8.8 DB_File::Lock2mod_perl and dbm files

A simple tie, READ lock and untie

 use DB_File::Lock2 ();
 my $dbfile = "/tmp/test";
 tie my %mydb, ’DB_File::Lock2’, $dbfile, ’read’;
 print $mydb{foo} if exists $mydb{foo};
 untie %mydb;

You can even skip the untie() call. When $mydb goes out of scope everything will be done automati-
cally. However it is better to use the explicit call, to make sure the critical sections between lock and
unlock are as short as possible. This is especially important when requesting an exclusive (write) lock.

The following example shows how it might be convenient to skip the explicit untie() . In this example,
we don’t need to save the intermediate result, we just return and the cleanup is done automatically.

 use DB_File::Lock2 ();
 my $dbfile = "/tmp/test";
 print user_exists("stas") ? "Yes" : "No";
 sub user_exists{
 my $username = shift || ’’;

 warn("No username passed\n"), return 0 unless $username;

 tie my %mydb, ’DB_File::Lock2’, $dbfile, ’read’;

 # if we match the username return 1, else 0
 return $mydb{$username} ? 1 : 0;

 } # end of sub user_exists

Now let’s write all the upper case characters and their respective ASCII values to a dbm file. Then read the
file and print the contents of the DB, unsorted.

 use DB_File::Lock2 ();
 my $dbfile = "/tmp/test";

 # write
 tie my %mydb, ’DB_File::Lock2’, $dbfile,’write’;
 for (0..26) {
 $mydb{chr 65+$_} = $_;
 }
 untie %mydb;

 # now, read them and printout (unsorted)
 # notice that ’read’ is a default lock mode
 tie %mydb, ’DB_File::Lock2’, $dbfile;
 while (my ($k,$v) = each %mydb) {
 print "$k => $v\n";
 }
 untie %mydb;

If your CGI script is interrupted, the DESTROY block will take care of unlocking the dbm file and flush
any changes. So your DB will be safe against possible corruption because of unclean program termination.

15 Feb 2014232

8.8 DB_File::Lock2

8.9 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

8.10 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

23315 Feb 2014

8.9 Maintainersmod_perl and dbm files

http://stason.org/
http://stason.org/

9 Protecting Your Site

15 Feb 2014234

9 Protecting Your Site

9.1 Description
Securing your site should be your first priority, because of the consequences a break-in might have. We
discuss the various authentication and authorization techniques available, a very interesting use of
mod_perl.

9.2 The Importance of Your site’s Security
Let’s face it, your site or service can easily become a target for Internet "terrorists". It can be because of
something you said, the success of your site, or for no obvious reason whatever. If your site security is
compromised, all your data can be deleted or important information can be stolen. You may risk legal
action or the sack if this happens.

Your site can be paralyzed through a _simple_ denial of service (DoS) attack.

Whatever you do, as long as you are connected to the network your site will be vulnerable. Cut the
connections, turn off your machine and put it into a safe. Now it is protected--but useless.

So what can you do?

Let’s first get acquainted with some security related terminology:

Authentication

When you want to make sure that a user is who he claims to be, you generally ask her for a username
and a password. Once you have both, you can check them against your database of username/pass-
word pairs. If they match, the user has passed the Authentication stage. From now on if you keep the
session open all you need to do is to remember the username.

Authorization

You might want to allow user foo to have access to some resource, but restrict her from accessing
another resource, which in turn is accessible only for user bar. The process of checking access rights
is called Authorization . For Authorization all you need is an authenticated username or some other
attribute which you can authorize against. For example, you can authorize against IP number, allow-
ing only your local users to use some service. But be warned that IP numbers or session_ids can be
spoofed (forged), and that is why you should not do Authorization without Authentication.

Actually you’ve been familiar with both these concepts for a while.

When you telnet to your account on some machine you go through a login process (Authentication).

When you try to read some file from your file systems, the kernel checks the permissions on this file
(Authorization). You may hear about Access control which is another name for the same thing.

23515 Feb 2014

9.1 DescriptionProtecting Your Site

9.3 Illustrated Security Scenarios
I am going to present some real world security requirements and their implementations.

9.3.1 Non authenticated access for internal IPs, Authenticated for
external IPs

An Extranet is very similar to an Intranet , but at least partly accessible from outside your organization. If
you run an Extranet you might want to let your internal users have unrestricted access to your web server.
If these same users call from outside your organization you might want to make sure that they are in fact
your employees.

These requirements are achieved very simply by putting the IP patterns of the organization in a Perl
Access Handler in an .htaccess file. This sets the REMOTE_USER environment variable to the orga-
nization’s generic username. Scripts can test the REMOTE_USER environment variable to determine
whether to allow unrestricted access or else to require authentication.

Once a user passes the authentication stage, either bypassing it because of his IP address or after entering a
correct login/password pair, the REMOTE_USER variable is set. Then we can talk about authorization.

Let’s see the implementation of the authentication stage. First we modify httpd.conf:

 PerlModule My::Auth

 <Location /private>
 PerlAccessHandler My::Auth::access_handler
 PerlSetVar Intranet "10.10.10.1 => userA, 10.10.10.2 => userB"
 PerlAuthenHandler My::Auth::authen_handler
 AuthName realm
 AuthType Basic
 Require valid-user
 Order deny, allow
 Deny from all
 </Location>

Now the code of My/Auth.pm:

 sub access_handler {

 my $r = shift;

 unless ($r->some_auth_required) {
 $r->log_reason("No authentication has been configured");
 return FORBIDDEN;
 }
 # get list of IP addresses
 my %ips = split /\s*(?:=>|,)\s*/, $r->dir_config("Intranet");

 if (my $user = $ips{$r->connection->remote_ip}) {

 # update connection record

15 Feb 2014236

9.3 Illustrated Security Scenarios

 $r->connection->user($user);

 # do not ask for a password
 $r->set_handlers(PerlAuthenHandler => [\&OK]);
 }
 return OK;
 }

 sub authen_handler {

 my $r = shift;

 # get user’s authentication credentials
 my ($res, $sent_pw) = $r->get_basic_auth_pw;
 return $res if $res != OK;
 my $user = $r->connection->user;

 # authenticate through DBI
 my $reason = authen_dbi($r, $user, $sent_pw);

 if ($reason) {
 $r->note_basic_auth_failure;
 $r->log_reason($reason, $r->uri);
 return AUTH_REQUIRED;
 }
 return OK;

 }

 sub authen_dbi{
 my ($r, $user, $sent_pw) = @_;

 # validate username/passwd

 return 0 if (*PASSED*) # replace with real code!!!

 return "Failed for X reason";

 }
 # don’t forget 1;
 1;

You can implement your own authen_dbi() routine, or you can replace authen_handler() with
an existing authentication handler such as Apache::AuthenDBI .

If one of the IP addresses is matched, access_handler() sets REMOTE_USER to be either userA or
userB .

If neither IP address is matched, PerlAuthenHandler will not be set to OK, and the Authentication
stage will ask the user for a login and password.

23715 Feb 2014

9.3.1 Non authenticated access for internal IPs, Authenticated for external IPsProtecting Your Site

9.4 Authentication code snippets

9.4.1 Forcing re-authentication

To force an authenticated user to reauthenticate just send the following header to the browser:

 WWW-Authenticate: Basic realm="My Realm"
 HTTP/1.0 401 Unauthorized

This will pop-up (in Netscape at least) a window saying Authorization Failed. Retry? with OK and a
Cancel buttons. When that window pops up you know that the password has been discarded. If the user
hits the Cancel button the username will also be discarded. If she hits the OK button, the authentication
window will be brought up again with the previous username already in place.

In the Perl API you would use the note_basic_auth_failure() method to force reauthentication.

This may not work! The browser’s behaviour is in no way guaranteed.

9.4.2 OK, AUTH_REQUIRED and FORBIDDEN in Authentication
handlers

When your authentication handler returns OK, it means that user has correctly authenticated and now
$r->connection->user will have the username set for subsequent requests. For
Apache::Registry and friends, where the environment variable settings weren’t erased, an equivalent
$ENV{REMOTE_USER} variable will be available.

The password is available only through the Perl API with the help of the get_basic_auth_pw() method.

If there is a failure, unless it’s the first time, the AUTH_REQUIRED flag will tell the browser to pop up an
authentication window, to try again. For example:

 my ($status, $sent_pw) = $r->get_basic_auth_pw;
 unless($r->connection->user and $sent_pw) {
 $r->note_basic_auth_failure;
 $r->log_reason("Both a username and password must be provided");
 return AUTH_REQUIRED;
 }

Let’s say that you have a mod_perl authentication handler, where the user’s credentials are checked
against a database. It returns either OK or AUTH_REQUIRED. One of the possible authentication failure
case might happen when the username/password are correct, but the user’s account has been suspended
temporarily.

If this is the case you would like to make the user aware of this, by displaying a page, instead of having the
browser pop up the authentication dialog again. You will also refuse authentication, of course.

15 Feb 2014238

9.4 Authentication code snippets

The solution is to return FORBIDDEN, but before that you should set a custom error page for this specific
handler, with help of $r->custom_response . It looks something like this:

 use Apache::Constants qw(:common);
 $r->custom_response(SERVER_ERROR, "/errors/suspended_account.html");

 return FORBIDDEN if $suspended;

9.5 Apache::Auth* modules
PerlAuthenHandler’s

 Apache::AuthAny Authenticate with any username/password
 Apache::AuthenCache Cache authentication credentials
 Apache::AuthCookie Authen + Authz via cookies
 Apache::AuthenDBI Authenticate via Perl’s DBI
 Apache::AuthExpire Expire Basic auth credentials
 Apache::AuthenGSS Generic Security Service (RFC 2078)
 Apache::AuthenIMAP Authentication via an IMAP server
 Apache::AuthenPasswdSrv External authentication server
 Apache::AuthenPasswd Authenticate against /etc/passwd
 Apache::AuthLDAP LDAP authentication module
 Apache::AuthPerLDAP LDAP authentication module (PerLDAP)
 Apache::AuthenNIS NIS authentication
 Apache::AuthNISPlus NIS Plus authentication/authorization
 Apache::AuthenRaduis Authentication via a Radius server
 Apache::AuthenSmb Authenticate against NT server
 Apache::AuthenURL Authenticate via another URL
 Apache::DBILogin Authenticate to backend database
 Apache::DCELogin Obtain a DCE login context
 Apache::PHLogin Authenticate via a PH database
 Apache::TicketAccess Ticket based access/authentication

PerlAuthzHandler’s

 Apache::AuthCookie Authen + Authz via cookies
 Apache::AuthzAge Authorize based on age
 Apache::AuthzDCE DFS/DCE ACL based access control
 Apache::AuthzDBI Group authorization via Perl’s DBI
 Apache::AuthzGender Authorize based on gender
 Apache::AuthzNIS NIS authorization
 Apache::AuthzPasswd Authorize against /etc/passwd
 Apache::AuthzSSL Authorize based on client cert
 Apache::RoleAuthz Role-based authorization

PerlAccessHandler’s

 Apache::AccessLimitNum Limit user access by number of requests
 Apache::BlockAgent Block access from certain agents
 Apache::DayLimit Limit access based on day of week
 Apache::IPThrottle Limit bandwith consumption by IP
 Apache::RobotLimit Limit access of robots
 Apache::SpeedLimit Control client request rate

23915 Feb 2014

9.5 Apache::Auth* modulesProtecting Your Site

9.6 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

9.7 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014240

9.6 Maintainers

http://stason.org/
http://stason.org/

10 Code Snippets

24115 Feb 2014

10 Code SnippetsCode Snippets

10.1 Description
A collection of mod_perl code snippets which you can either adapt to your own use or integrate directly
into your own code.

10.2 File Upload with Apache::Request
The Apache::Request module gives you an easy way to get form content, including uploaded files. In
order to add file upload functionality to your form, you need to add two things.

First, you’ll need to add a form field which is type file. This will put a browse button on the form that
will allow the user to choose a file to upload.

Second, you’ll neet to make sure to add, to the form tag the following:

 enctype="multipart/form-data"

You won’t be able to upload a file unless you have added this to the form tag.

In your code, you’ll need to take a few extra steps to actually retrieve that file that has been uploaded.
Using the following form() method will allow you to have a standard function that handles all of your
forms, and does the right thing in the event that there was a file uploaded. You can put this function in
your mod_perl handler, or in whatever module you want.

 sub form {
 use Apache::Request;
 my $r = Apache->request();
 my $apr = Apache::Request->new($r);
 my @keys = $apr->param;

 my %form;
 foreach my $key(@keys) {

 my @value = $apr->param($key);
 next unless scalar @value;

 if (@value > 1) {
 $form{$key} = \@value;
 } else {
 $form{$key} = $value[0];
 }
 }

 my $upload = $apr->upload;
 if ($upload) {
 $form{UPLOAD} = $upload;
 }

 return \%form;
 }

15 Feb 2014242

10.1 Description

In your code, you can get the contents of the form by calling this function:

 my $form = Your::Class::form(); # Wherever you put this function

The value returned from this function is compatible with CGI.pm and other modules such as
CGI::Lite Which is to say, the function returns a hashref. The keys of the hash are the names in your
form. The values in the hash are the values entered in those fields, with the exception that a multiple select
list with multiple things selected will return a listref of the selected values.

If your form contained a file upload element, then $form{UPLOAD} will contain a file upload object,
which you can make calls back into.

For example:

 my $form = Your::Class::form(); # Wherever you put this function
 if (my $file = $form->{UPLOAD}) {
 my $filename = $file->filename; # If you need the name

 # And, if you want to save the file at $filelocation ...
 open F, ">$filelocation";
 my $filehandle = $file->fh;
 while (my $d = <$filehandle>) {
 print F $d;
 }
 close F;
 }

That should give you the general idea of how this works. This lets you have a generic form handler that
does "normal" forms as well as file upload forms, in mod_perl, without having to mess with CGI.pm , and
without having to do custom things when you have a file upload.

You will need to see the documentation for Apache::Upload for more information about how to deal
with the file upload object once you have it. Note that the Apache::Upload docs are embeded in the
Apache::Request documentation, so you’ll need to look there for that information.

10.3 Redirecting Errors to the Client Instead of error_log
Many error conditions result in an exception (or signal -- same thing) which is raised in order to tell the
operating system that a condition has arisen which needs more urgent attention than can be given by other
means. One of the most familiar ways of raising a signal is to hit Ctrl-C on your terminal’s keyboard.
The signal interrupts the processor. In the case of Ctrl-C the INT signal is generated and the interrupt is
usually trapped by a default signal handler supplied by OS, which causes the operating system to stop the
process currently attached to the terminal.

Under mod_perl, a Perl runtime error causes an exception. By default this exception is trapped by default
mod_perl handler. The handler logs information about the error (such as the date and time that the error
occurred) to error_log. If you want to redirect this information to the client instead of to error_log you
have to take the responsibility yourself, by writing your own exception handler to implement this
behaviour. See the section "Exception Handling for mod_perl" for more information.

24315 Feb 2014

10.3 Redirecting Errors to the Client Instead of error_logCode Snippets

The code examples below can be useful with your own exception handlers as well as with the default
handlers.

META: Integrate the 2 sections

The CGI::Carp package implements handlers for signals. To trap (almost) all Perl run-time errors and send
the output to the client instead of to Apache’s error_log add this line to your script:

 use CGI::Carp qw(fatalsToBrowser);

Refer to the CGI::Carp man page for more detailed information.

You can trap individual exceptions: for example you can write custom __DIE__ and __WARN__ signal
handlers. The special %SIG hash contains references to signal handlers. The signal handler is just a
subroutine, in the example below it is called "mydie". To install the handler we assign a reference to our
handler to the appropriate element of the %SIG hash. This causes the signal handler to call
mydie(error_message) whenever the die() sub is called as a result of something which happened when
our script was executing.

Do not forget the local keyword! If you do, then after the signal handler has been loaded it will be
called whenever die() is called by any script executed by the same process. Probably that’s not what
you want. If it is, you can put the assignment statement in any module, as long as it will be executed at the
right time.

Here is an example of a handler which I wrote because I wanted users to know that there was an error,
without displaying the error message, but instead email it to me. If the error is caused by user (e.g. upload-
ing image whose size is bigger than the limit I had set) I want to tell them about it. I wrote this handler for
the mod_perl environment, but it works correctly when called from the shell. The code shown below is a
stripped-down version with additional comments.

The following code must be added to the script:

 # Using the local() keyword restricts the scope of the directive to
 # the block in which it is found, so this line must be added at the
 # right place in the right script. It will not affect other blocks
 # unless the local() keyword is removed. Usually you will want the
 # directive to affect the entire script, so you just place it near
 # the beginning of the file, where the innermost enclosing block is
 # the file itself.
 local $SIG{__DIE__} = \&mydie;

 # The line above assumes that the subroutine "mydie" is in the same script.
 # Alternatively you can create a separate module for the error handler.
 # If you put the signal handler in a separate module, e.g. Error.pm,
 # you must explicitly give the package name to set the handler in your
 # script, using a line like this instead of the one above:
 local $SIG{__DIE__} = \&Error::mydie;
 # again within the script!

 # Do not forget the C<local()>, unless you want this signal handler to
 # be invoked every time any scripts dies (including events where this
 # treatment may be undesirable).

15 Feb 2014244

10.3 Redirecting Errors to the Client Instead of error_log

 my $max_image_size = 100*1024; # 100k
 my $admin_email = ’foo@example.com’;

 # and the handler itself
 # Here is the handler itself:
 # The handler is called with a text message in a scalar argument
 sub mydie{
 my $why = shift;

 chomp $why;
 my $orig_why = $why; # an ASCII copy for email report

 # handle the shell execution case (so we will not get all the HTML)
 print("Error: $why\n"), exit unless $ENV{MOD_PERL};

 my $should_email = 0;
 my $message = ’’;

 $why =~ s/[<&>]/"&#".ord($&).";"/ge; # entity escape

 # Now we need to trap various kinds of errors that come from CGI.pm
 # We don’t want these errors to be emailed to us, since
 # they aren’t programmatical errors
 if ($orig_why =~ /Client attempted to POST (\d+) bytes/o) {

 $message = qq{
 You cannot POST messages bigger than
 @{[1024*$max_image_size]} bytes.

 You have tried to post $1 bytes

 If you are trying to upload an image, make sure its
 size is no bigger than @{[1024*$max_image_size]}
 bytes.<P>
 Thank you!
 };

 } elsif ($orig_why =~ /Malformed multipart POST/o) {

 $message = qq{
 Have you tried to upload an image in the wrong way?<P>
 To successfully upload an image you must use a browser that supports
 image upload and use the ’Browse’ button to select that image.
 DO NOT type the path to the image into the upload field.<P>
 Thank you!
 };

 } elsif ($orig_why =~ /closed socket during multipart read/o) {

 $message = qq{
 Have you pressed a ’STOP’ button?

 Please try again!<P>
 Thank you!
 };

 } else {

24515 Feb 2014

10.3 Redirecting Errors to the Client Instead of error_logCode Snippets

 $message = qq{
 You need take no action since
 the error report has already been
 sent to the webmaster.
<P>

 Thank you for your patience!
 };

 $should_email = 1;
 }

 print qq{Content-type: text/html

 <HTML><BODY BGCOLOR="white">
 Oops, Something went wrong.<P>
 $message
 </BODY></HTML>};

 # send email report if appropriate
 if ($should_email){

 # import sendmail subs
 use Mail ();
 # prepare the email error report:
 my $subject ="Error Report";
 my $body = qq|
 An error has happened:

 $orig_why

 |;

 # send error reports to admin
 send_mail($admin_email,$admin_email,$subject,$body);
 print STDERR "[".scalar localtime()."] [SIGDIE] Sending Error Email\n";
 }

 # print to error_log so we will know there was an error
 print STDERR "[".scalar localtime()."] [SIGDIE] $orig_why \n";

 exit 1;
 } # end of sub mydie

You may have noticed that I trap the CGI.pm’s die() calls here, I don’t see any reason why my users
should see ugly error messages, but that’s the way CGI.pm written. The workaround is to trap them your-
self.

Please note that as of version 2.49, CGI.pm provides the cgi_error() method to print the errors and won’t
die() unless you want it to.

15 Feb 2014246

10.3 Redirecting Errors to the Client Instead of error_log

10.4 Reusing Data from POST request
What happens if you need to access the POSTed data more than once, say to reuse it in subsequent
handlers of the same request? POSTed data comes directly from the socket, and at the low level data can
only be read from a socket once. So you have to store it to make it available for reuse.

There is an experimental option for Makefile.PL called PERL_STASH_POST_DATA. If you turn it
on, you can get at it again with $r->subprocess_env("POST_DATA") . This is not enabled by
default because it adds a processing overhead for each POST request.

But what do we do with large multipart file uploads? Because POST data is not all read in one clump, it’s
a problem that’s not easy to solve in a general way. A transparent way to do this is to switch the request
method from POST to GET, and store the POST data in the query string. This handler does exactly this:

 Apache/POST2GET.pm

 package Apache::POST2GET;
 use Apache::Constants qw(M_GET OK DECLINED);

 sub handler {
 my $r = shift;
 return DECLINED unless $r->method eq "POST";
 $r->args(scalar $r->content);
 $r->method(’GET’);
 $r->method_number(M_GET);
 $r->headers_in->unset(’Content-length’);
 return OK;
 }
 1;
 __END__

In httpd.conf add:

 PerlInitHandler Apache::POST2GET

or even this:

 <Limit POST>
 PerlInitHandler Apache::POST2GET
 </Limit>

To save a few more cycles, so the handler will be called only for POST requests.

Effectively, this trick turns the POST request into a GET request internally. Now when CGI.pm ,
Apache::Request or whatever module parses the client data, it can do so more than once since
$r->args doesn’t go away (unless you make it go away by resetting it).

If you are using Apache::Request , it solves this problem for you with its instance() class method,
which allows Apache::Request to be a singleton. This means that whenever you call
Apache::Request ->instance() within a single request you always get the same Apache::Request
object back.

24715 Feb 2014

10.4 Reusing Data from POST requestCode Snippets

10.5 Redirecting POST Requests
Under mod_cgi it’s not easy to redirect POST requests to some other location. With mod_perl you can
easily redirect POST requests. All you have to do is read in the content, set the method to GET, populate
args() with the content to be forwarded and finally do the redirect:

 use Apache::Constants qw(M_GET);
 my $r = shift;
 my $content = $r->content;
 $r->method("GET");
 $r->method_number(M_GET);
 $r->headers_in->unset("Content-length");
 $r->args($content);
 $r->internal_redirect_handler("/new/url");

Of course that last line can be any other kind of redirect.

10.6 Redirecting While Maintaining Environment Variables
Let’s say you have a module that sets some environment variables.

If you redirect, that’s most likely telling the web browser to fetch the new page. This makes it a totally
new request, so no environment variables are preserved.

However, if you’re using internal_redirect(), you can make the environment variables seen in the
sub-process via subprocess_env(). The only nuance is that the %ENV keys will be prefixed with REDI-
RECT_.

10.7 Terminating a Child Process on Request Completion
If you want to terminate the child process serving the current request, upon completion of processing
anywhere in the code call:

 $r->child_terminate;

Apache won’t actually terminate the child until everything it needs to do is done and the connection is
closed.

10.8 Setting Content-type and Content-encoding headers in
non-OK responses
You cannot set Content-type and Content-encoding headers in non-OK responses, since Apache overrides
these in http_protocol.c, ap_send_error_response():

15 Feb 2014248

10.5 Redirecting POST Requests

 r->content_type = "text/html; charset=iso-8859-1";

10.9 More on Relative Paths
Many people use relative paths for require , use , etc., and when they open files in their scripts they
make assumptions about the current directory. This will fail if you don’t chdir() to the correct directory
first (as could easily happen if you have another script which calls the first script by its full path).

For example:

 /home/httpd/perl/test.pl:

 #!/usr/bin/perl
 open IN, "./foo.txt";

This snippet would work if we call the script like this:

 % chdir /home/httpd/perl
 % ./test.pl

since foo.txt is located in the current directory. But when the current directory isn’t /home/httpd/perl,
if we call the script like this:

 % /home/httpd/perl/test.pl

then the script will fail to find foo.txt . Think about crontab s!

Notice that you cannot use the FindBin.pm package, something that you’d do in the regular Perl scripts,
because it relies on the BEGIN block it won’t work under mod_perl. It’s loaded and executed only for the
first script executed inside the process, all the others will use the cached value, which would be probably
incorrect if they reside in different directories. Perl 5.9.1 provides a new function FindBin::again
which will do the right thing. Also the CPAN module FindBin::Real provides a working alternative
working under mod_perl.

10.10 Watching the error_log File Without Telneting to the
Server
I wrote this script a long time ago, when I had to debug my CGI scripts but didn’t have access to the
error_log file. I asked the admin to install this script and have used it happily since then.

If your scripts are running on these ’Get-free-site’ servers, and you cannot debug your script because you
can’t telnet to the server or can’t see the error_log , you can ask your sysadmin to install this script.

Note, that it was written for plain Apache, and isn’t prepared to handle the complex multiline error and
warning messages generated by mod_perl. It also uses a system() call to do the main work with the tail()
utility, probably a more efficient perl implementation is due (take a look at File::Tail module). You
are welcome to fix it and contribute it back to mod_perl community. Thank you!

24915 Feb 2014

10.9 More on Relative PathsCode Snippets

Here is the code:

 # !/usr/bin/perl -Tw

 use strict;

 my $default = 10;
 my $error_log = "/usr/local/apache/logs/error_log";
 use CGI;

 # untaint $ENV{PATH}
 $ENV{’PATH’} = ’/bin:/usr/bin’;
 delete @ENV{’IFS’, ’CDPATH’, ’ENV’, ’BASH_ENV’};

 my $q = new CGI;

 my $counts = (defined $q->param(’count’) and $q->param(’count’))
 ? $q->param(’count’) : $default;

 print $q->header,
 $q->start_html(-bgcolor => "white",
 -title => "Error logs"),
 $q->start_form,
 $q->center(
 $q->b(’How many lines to fetch? ’),
 $q->textfield(’count’,10,3,3),
 $q->submit(’’, ’Fetch’),
 $q->reset,
),
 $q->end_form,
 $q->hr;

 # untaint $counts
 $counts = ($counts =~ /(\d+)/) ? $1 : 0;

 print($q->b("$error_log doesn’t exist!!!")),exit unless -e $error_log;

 open LOG, "tail -$counts $error_log|"
 or die "Can’t tail $error_log :$!\n";
 my @logs = <LOG>;
 close LOG;
 # format and colorize each line nicely

 foreach (@logs) {
 s{
 \[(.*?)\]\s* # date
 \[(.*?)\]\s* # type of error
 \[(.*?)\]\s* # client part
 (.*) # the message
 }
 {
 "[$1]
 [".
 colorize($2,$2).
 "]
 [$3] <PRE>".
 colorize($2,$4).
 "</PRE>"
 }ex;

15 Feb 2014250

10.10 Watching the error_log File Without Telneting to the Server

 print "
$_
";
 }

 #############
 sub colorize{
 my ($type,$context) = @_;

 my %colors =
 (
 error => ’red’,
 crit => ’black’,
 notice => ’green’,
 warn => ’brown’,
);

 return exists $colors{$type}
 ? qq{$context}
 : $context;
 }

10.11 Accessing Variables from the Caller’s Package
Sometimes you want to access variables from the caller’s package. One way is to do something like this:

 {
 no strict ’vars’ ;
 my $caller = caller;
 print qq[$caller --- ${"${caller}::var"}];
 }

10.12 Handling Cookies
Unless you use some well known module like CGI::Cookie or Apache::Cookie , you need to
handle cookies yourself.

Cookies come in the $ENV{HTTP_COOKIE} variable. You can print the raw cookie string as
$ENV{HTTP_COOKIE}.

Here is a fairly well-known bit of code to take cookie values and put them into a hash:

 sub get_cookies {
 # cookies are separated by a semicolon and a space, this will
 # split them and return a hash of cookies
 local(@rawCookies) = split (/; /,$ENV{’HTTP_COOKIE’});
 local(%cookies);

 foreach(@rawCookies){
 ($key, $val) = split (/=/,$_);
 $cookies{$key} = $val;

25115 Feb 2014

10.11 Accessing Variables from the Caller’s PackageCode Snippets

 }

 return %cookies;
 }

Or a slimmer version:

 sub get_cookies {
 map { split /=/, $_, 2 } split /; /, $ENV{’HTTP_COOKIE’} ;
 }

10.13 Sending Multiple Cookies with the Perl API
Given that you have prepared your cookies in @cookies , the following code will submit all the cookies:

 for (@cookies){
 $r->headers_out->add(’Set-Cookie’ => $_);
 }

10.14 Sending Cookies in REDIRECT Response
You should use err_headers_out() and not headers_out() when you want to send cookies in the REDI-
RECT response.

 use Apache::Constants qw(REDIRECT OK);
 my $r = shift;
 # prepare the cookie in $cookie
 $r->err_headers_out->add(’Set-Cookie’ => $cookie);
 $r->headers_out->set(Location => $location);
 $r->status(REDIRECT);
 $r->send_http_header;
 return OK;

10.15 Apache::Cookie example: Login Pages by Setting
Cookies and Refreshing
On occassion you will need to set a cookie and then redirect the user to another page. This is probably
most common when you want a Location to be password protected, and if the user is unauthenticated,
display to them a login page, otherwise display another page, but both at the same URL.

10.15.1 Logic

The logic goes something like this:

Check for login cookie

15 Feb 2014252

10.13 Sending Multiple Cookies with the Perl API

If found, display the page

If not found, display a login page

Get username/password from a POST

Authenticate username/password

If the authentication failed, re-display the login page

If the authentication passed, set a cookie and redirect to the same page, and display

10.15.2 Example Situation

Let’s say that we are writing a handler for the location /dealers which is a protected area to be accessed
only by people who can pass a username / password authentication check.

We will use Apache::Cookie here as it runs pretty fast under mod_perl, but CGI::Cookie has
pretty much the same syntax, so you can use that if you prefer.

For the purposes of this example, we’ll assume that we already have any passed parameters in a %params
hash, the authenticate() routine returns true or false, display_login() shows the username and pass-
word prompt, and display_main_page() displays the protected content.

10.15.2.1 Code

 if($params{user} and $params{pass}) {
 if(!authenticate(%params)) {

Authentication failed, send them back to the login page. NOTE: It’s a good idea to use no_cache() to
make sure that the client browser doesn’t cache the login page.

 $r->content_type(’text/html’);
 $r->no_cache(1);
 $r->send_http_header;
 display_login();
 } else {

The user is authenticated, create the cookie with Apache::Cookie

 my $c = Apache::Cookie->new($r,
 -name => ’secret’,
 -value => ’foo’
 -expires => ’+3d’,
 -path => ’/dealers’
);

NOTE: when setting the ’expires’ tag you must set it with either a leading + or -, as if either of these is
missing, it will be put literally into the cookie header.

25315 Feb 2014

10.15.2 Example SituationCode Snippets

Now send them on their way via the authenticated page

 $r->content_type(’text/html’);
 $c->bake;
 $r->header_out("Refresh"=>"0;url=/dealers");
 $r->no_cache(1);
 $r->send_http_header;
 $r->print("Authenticated... heading to main page!);

The above code will set the headers to refresh (this is the same syntax as for the HTML meta tag) after 0
seconds. The page that is flashed on the screen will have the text in the $r->print

 }
 }
 elsif($cookies{secret}) {

If they already have a secret cookie, display the main (protected) page. Don’t forget to check the validity
of cookie data!

 display_main_page();
 }

10.16 Passing and Preserving Custom Data Structures
Between Handlers
Let’s say that you wrote a few handlers to process a request, and they all need to share some custom Perl
data structure. The pnotes() method comes to your rescue.

 # a handler that gets executed first
 my %my_data = (foo => ’mod_perl’, bar => ’rules’);
 $r->pnotes(’my_data’ => \%my_data);

The handler prepares the data in hash %my_data and calls pnotes() method to store the data internally for
other handlers to re-use. All the subsequently called handlers can retrieve the stored data in this way:

 my $info = $r->pnotes(’my_data’);
 print $info->{foo};

prints:

 mod_perl

The stored information will be destroyed at the end of the request.

10.17 Passing Notes Between mod_perl and other (non-Perl)
Apache Modules

15 Feb 2014254

10.16 Passing and Preserving Custom Data Structures Between Handlers

The notes() method can be used to make various Apache modules talk to each other. In the following
snippet the PHP module talks to the mod_perl code (PHP code):

 if (isset($user) && substr($user,0,1) == "+") {
 apache_note("user", substr($user,1));
 virtual("/internal/getquota");
 $quota = apache_note("quota");
 $usage_pp = apache_note("usage_pp");
 $percent_pp = apache_note("percent_pp");
 if ($quota)
 $message .= " | Using $percent_pp% of $quota_pp limit";
 }

The PHP code sets the user and the username pair using the notes mechanism. Then issuing a sub-request
to a perl handler:

 use Apache::Constants qw(REDIRECT OK);
 my $r = shift;
 my $notes = $r->main->notes();
 my ($quota,usage_pp,percent_pp) = getquota($notes->{user}||’’);
 $r->notes(’quota’,$quota);
 $r->notes(’usage_pp’,$usage_pp);
 $r->notes(’percent_pp’,$percent_pp);
 return OK;

which retrieves the username from the notes (using $r->main->notes), uses some getquota() function
to get the quota related data and then sets the acquired data in the notes for the PHP code. Now the PHP
code reads the data from the notes and proceeds with setting $message if $quota is set.

So any Apache modules can communicate with each other over the Apache notes() mechanism.

You can use notes along with the sub-request methods lookup_uri() and lookup_filename() too. To make it
work, you need to set a note in the sub-request. For example if you want to call a php sub-request from
within mod_perl and pass it a note, you can do it in the following way:

 my $subr = $r->lookup_uri(’wizard.php3’);
 $subr->notes(’answer’ => 42);
 $subr->run;

As of the time of this writing you cannot access the parent request tables from a PHP handler, therefore
you must set this note for the sub-request. Whereas if the sub-request is running in the mod_perl domain,
you can always keep the notes in the parent request notes table and access them via the method main():

 $r->main->notes(’answer’);

10.18 Passing Environment Variables Between Handlers
This is a simple example of passing environment variables between handlers:

25515 Feb 2014

10.18 Passing Environment Variables Between HandlersCode Snippets

Having a configuration:

 PerlAccessHandler My::Access
 PerlLogHandler My::Log

and in startup.pl:

 sub My::Access::handler {
 my $r = shift;
 $r->subprocess_env(TICKET => $$);
 $r->notes(TICKET => $$);
 }

 sub My::Log::handler {
 my $r = shift;
 my $env = $r->subprocess_env(’TICKET’);
 my $note = $r->notes(’TICKET’);
 warn "env=$env, note=$note\n";
 }

Adding %{TICKET}e and %{TICKET}n to the LogFormat for access_log works fine too.

10.19 Verifying Whether A Request Was Received Over An
SSL Connection
Just like $ENV{MODPERL} is checked to see whether the code is run under mod_perl, $ENV{HTTPS} is
set by ssl modules and therefore can be used to check whether a request is running over SSL connection.
For example:

 print "SSL" if $ENV{HTTPS};

If PerlSetupEnv Off setting is in effect, $ENV{HTTPS} won’t be available, and then:

 print "SSL" if $r->subprocess_env(’https’);

should be used instead.

Note that it’s also possible to check the scheme:

 print "SSL" if Apache::URI->parse($r)->scheme =~ m/^https/;

but it’s not one hundred percent certain unless you control the server and you know that you run a secure
server on the port 443.

10.20 CGI::params in the mod_perl-ish Way
You can retrieve the request parameters in a similar to CGI::params way using this technique:

15 Feb 2014256

10.19 Verifying Whether A Request Was Received Over An SSL Connection

 my $r = shift; # or $r = Apache->request
 my %params = $r->method eq ’POST’ ? $r->content : $r->args;

assuming that all your variables are single key-value pairs.

Also take a look at Apache::Request which has the same API as CGI.pm for extracting and setting
request parameters.

10.21 Subclassing Apache::Request
To subclass a package you simply modify @ISA, for example:

 package My::TestAPR;

 use strict;
 use vars qw/@ISA/;
 @ISA = qw/Apache::Request/;

 sub new {
 my ($proto, $apr) = @_;
 my $class = ref($proto) || $proto;
 bless { _r => $apr }, $class;
 }

 sub param {
 my ($self, $key) = @_;
 my $apr = $self->{_r};
 # Here we are calling the Apache::Request object’s param method
 $apr->param($key);
 }

 sub sum {
 my ($self, $key) = @_;
 my $apr = $self->{_r};
 my @values = $apr->param($key);
 my $sum = 0;
 for (@values) {
 $sum += $_;
 }
 $sum;
 }
 1;
 __END__

10.22 Sending Email from mod_perl
There is nothing special about sending email from mod_perl, it’s just that we do it a lot. There are a few
important issues. The most widely used approach is starting a sendmail process and piping the headers
and the body to it. The problem is that sendmail is a very heavy process and it makes mod_perl
processes less efficient.

25715 Feb 2014

10.21 Subclassing Apache::RequestCode Snippets

If you don’t want your process to wait until delivery is complete, you can tell sendmail not to deliver
the email straight away, but either do it in the background or just queue the job until the next queue run.
This can significantly reduce the delay for the mod_perl process which would otherwise have to wait for
the sendmail process to complete. This can be specified for all deliveries in sendmail.cf or on each
invocation on the sendmail command line:

-odb (deliver in the background)

-odq (queue-only) or

-odd (queue, and also defer the DNS/NIS lookups).

The trend is to move away from sendmail(1) and switch to using lighter mail delivery programs like
qmail(1) or postfix(1). You should check the manpage of your favorite mailer application for equivalent
configuration presented for sendmail(1).

The most efficient approach is to talk directly to the SMTP server. Luckily Net::SMTP modules makes
this very easy. The only problem is when Net::SMTP fails to deliver the mail, because the destination
peer server is temporarily down. But from the other side Net::SMTP allows you to send email much
faster, since you don’t have to invoke a dedicated process. Here is an example of a subroutine that sends
email.

 use Net::SMTP ();
 use Carp qw(carp verbose);

 #
 # Sends email by using the SMTP Server
 #
 # The SMTP server as defined in Net::Config
 # Alternatively you can hardcode it here, look for $smtp_server below
 #
 sub send_mail{
 my ($from, $to, $subject, $body) = @_;

 carp "From missing" unless defined $from ; # Prefer to exit early if errors
 carp "To missing" unless defined $to ;

 my $mail_message = <<__END_OF_MAIL__;
 To: $to
 From: $from
 Subject: $subject

 $body

 __END_OF_MAIL__

 # Set this parameter if you don’t have a valid Net/Config.pm
 # entry for SMTP host and uncomment it in the Net::SMTP->new
 # call
 # my $smtp_server = ’localhost’;

 # init the server
 my $smtp = Net::SMTP->new(

15 Feb 2014258

10.22 Sending Email from mod_perl

 # $smtp_server,
 Timeout => 60,
 Debug => 0,
);

 $smtp->mail($from) or carp ("Failed to specify a sender [$from]\n");
 $smtp->to($to) or carp ("Failed to specify a recipient [$to]\n");
 $smtp->data([$mail_message]) or carp ("Failed to send a message\n");

 $smtp->quit or carp ("Failed to quit\n");

 } # end of sub send_mail

10.23 A Simple Handler To Print The Environment Vari-
ables
The code:

 package MyEnv;
 use Apache;
 use Apache::Constants;
 sub handler{
 my $r = shift;
 print $r->send_http_header("text/plain");
 print map {"$_ => $ENV{$_}\n"} keys %ENV;
 return OK;
 }
 1;

The configuration:

 PerlModule MyEnv
 <Location /env>
 SetHandler perl-script
 PerlHandler MyEnv
 </Location>

The invocation:

 http://localhost/env

10.24 mod_rewrite in Perl
We can easily implement everything mod_rewrite does in Perl. We do this with help of PerlTransHandler,
which is invoked at the beginning of request processing. For example consider that we need to perform a
redirect based on query string and URI, the following handler does that.

 package Apache::MyRedirect;
 use Apache::Constants qw(OK REDIRECT);
 use constant DEFAULT_URI => ’http://www.example.org’;

 sub handler {

25915 Feb 2014

10.23 A Simple Handler To Print The Environment VariablesCode Snippets

 my $r = shift;
 my %args = $r->args;
 my $path = $r->uri;

 my $uri = (($args{’uri’}) ? $args{’uri’} : DEFAULT_URI) . $path;

 $r->header_out(Location => $uri);
 $r->status(REDIRECT);
 $r->send_http_header;

 return OK;
 }

Set it up in httpd.conf as:

 PerlTransHandler Apache::MyRedirect

The code consists of three parts: request data retrieval, deciding what to do based on this data and finally
setting the headers and the status and issuing redirect.

So if a client submits a request of this kind:

 http://www.example.com/news/?uri=http://www2.example.com/

$uri will hold http://www2.example.com/news/ and that’s where the request will be redirected.

10.25 URI Rewrite in PerlTransHandler
Suppose that before a content handler is invoked you want to make this translation:

 /articles/10/index.html => /articles/index.html?id=10

This TransHandler will do that for you:

 My/Trans.pm

 package My::Trans;
 use Apache::Constants qw(:common);
 sub handler {
 my $r = shift;
 my $uri = $r->uri;
 my ($id) = ($uri =~ m|^/articles/(.*?)/|);
 $r->uri("/articles/index.html");
 $r->args("id=$id");
 return DECLINED;
 }
 1;

and in httpd.conf:

 PerlModule My::Trans
 PerlTransHandler My::Trans

15 Feb 2014260

10.25 URI Rewrite in PerlTransHandler

http://www2.example.com/news/

The handler code retrieves the request object and the URI. Then it retrieves the id using the regular expres-
sion. Finally it sets the new value of the URI and the arguments string. The handler returns DECLINED so
the default Apache transhandler will take care of URI to filename remapping.

Notice the technique to set the arguments. By the time the Apache-request object has been created, argu-
ments are handled in a separate slot, so you cannot just push them into the original URI. Therefore the
args() method should be used.

10.26 Setting PerlHandler Based on MIME Type
It’s very easy to implement a dispatching module based on the MIME type of request. So a different
content handler will be called for a different MIME type. This is an example of such a dispatcher:

 package My::MimeTypeDispatch;
 use Apache::Constants qw(DECLINED);

 my %mime_types = (
 ’text/html’ => \&HTML::Template::handler,
 ’text/plain’ => \&My::Text::handler,
);

 sub handler {
 my $r = shift;
 if (my $h = $mime_types{$r->content_type}) {
 $r->push_handlers(PerlHandler => $h);
 $r->handler(’perl-script’);
 }
 return DECLINED;
 }
 1;
 __END__

And in httpd.conf we add:

 PerlFixupHandler My::MimeTypeDispatch

After declaring the package name and importing constants, we set a translation table of MIME types and
corresponding handlers to be called. Then comes the handler, where the request object is retrieved and if
its MIME type is found in our translation table we set the handler that should handle this request. Other-
wise we do nothing. At the end we return DECLINED so some other fixup handler could take over.

10.27 SSI and Embperl -- Doing Both
This handler lets you use both SSI and Embperl in the same request:

Use it in a <FilesMatch> Section or similar:

 PerlModule Apache::EmbperlFilter Apache::SSI
 <FilesMatch "\.epl">
 PerlSetVar Filter On
 PerlHandler Apache::EmbperlFilter Apache::SSI

26115 Feb 2014

10.26 Setting PerlHandler Based on MIME TypeCode Snippets

 </FilesMatch>

 package Apache::EmbperlFilter;

 use Apache::Util qw(parsedate);
 use HTML::Embperl;
 use Apache::SSI ();
 use Apache::Constants;

 use strict;
 use vars qw($VERSION);

 $VERSION = ’0.03’;
 my ($r, %param, $input, $output);

 sub handler {
 $r = shift;
 my ($fh, $status) = $r->filter_input();
 unless ($status == OK) {
 return $status
 }
 local $/ = undef;
 $input = scalar(<$fh>);
 %param = ();
 $param{input} = \$input;
 $param{req_rec} = $r;
 $param{output} = \$output;
 $param{mtime} = mtime();
 $param{inputfile} = $r->filename();
 HTML::Embperl::ScanEnvironement(\%param);
 HTML::Embperl::Execute(\%param);
 print $output;
 return OK;
 }

 sub mtime {

 my $mtime = undef;
 if (my $last_modified = $r->headers_out->{’Last-Modified’}) {
 $mtime = parsedate $last_modified;
 }
 $mtime;
 }

 1;
 __END__

10.28 Getting the Front-end Server’s Name in the Back-end
Server
Assume that you have more than one front-end server, and you want to dynamically figure out the
front-end server name in the back-end server. mod_proxy and mod_rewrite provide the solution.

15 Feb 2014262

10.28 Getting the Front-end Server’s Name in the Back-end Server

Compile apache with both mod_proxy and mod_rewrite, then use a directive something like this:

 RewriteEngine On
 RewriteLog /somewhere/rewrite.log
 RewriteLogLevel 3
 RewriteRule ^/foo/bar(.*)$ \
 http://example.com:8080/foo/bar/$1?IP=%{REMOTE_HOST} [QSA,P]

This will have all the urls starting with /some/url proxied off to the other server at the same url. It will
append the REMOTE_HOST header as a query string argument. (QSA = Query String Append, P = Proxy).
There is probably a way to remap it as an X-Header of some sort, but if query string is good enough for
you, then this should work really nicely.

10.29 Authentication Snippets
Getting the authenticated username: $r->connection->user() , or $ENV{REMOTE_USER} if
you’re in a CGI emulation.

Example:

 my $r = shift;

 my ($res, $sent_pwd) = $r->get_basic_auth_pw;
 return $res if $res; #decline if not Basic

 my $user = $r->connection->user;

10.30 Emulating the Authentication Mechanism
You can provide your own mechanism to authenticate users, instead of the standard one. If you want to
make Apache think that the user was authenticated by the standard mechanism, set the username with:

 $r->connection->user(’username’);

Now you can use this information for example during the logging, so that you can have your "username"
passed as if it was transmitted to Apache through HTTP authentication.

10.31 An example of using Apache::Session::DBI with
cookies
META: should be annotated at some point. (an example was posted to the mod_perl list)

 use strict;
 use DBI;
 use Apache::Session::DBI;
 use CGI;

 # [...]

26315 Feb 2014

10.29 Authentication SnippetsCode Snippets

 # Initiate a session ID
 my $session = ();
 my $opts = { autocommit => 0,
 lifetime => 3600 }; # 3600 is one hour

 # Read in the cookie if this is an old session
 my $r = Apache->request;
 my $no_cookie = ’’;
 my $cookie = $r->header_in(’Cookie’);
 {
 # eliminate logging from Apache::Session::DBI’s use of ‘warn’
 local $^W = 0;

 if (defined($cookie) && $cookie ne ’’) {
 $cookie =~ s/SESSION_ID=(\w*)/$1/;
 $session = Apache::Session::DBI->open($cookie, $opts);
 $no_cookie = ’Y’ unless defined($session);
 }
 # Could have been obsolete - get a new one
 $session = Apache::Session::DBI->new($opts) unless defined($session);
 }

 # Might be a new session, so let’s give them a cookie back
 if (! defined($cookie) || $no_cookie) {
 local $^W = 0;

 my $session_cookie = "SESSION_ID=$session->{’_ID’}";
 $r->header_out("Set-Cookie" => $session_cookie);
 }

10.32 Detecting a Client Abort
META: should be annotated at some point. (an example was posted to the mod_perl list)

 # IsClientConnected? Might already be disconnected for busy
 # site, if a user hits stop/reload
 my $conn = $r->connection;
 my $is_connected = $conn->aborted ? 0 : 1;
 if ($is_connected) {
 my $fileno = $conn->fileno;
 if (defined $fileno) {
 my $s = IO::Select->new($fileno);
 $is_connected = $s->can_read(0) ? 0 : 1;
 }
 }

More comments in this thread: http://marc.theaims-
group.com/?l=apache-modperl&m=100057943909683&w=2

15 Feb 2014264

10.32 Detecting a Client Abort

http://marc.theaimsgroup.com/?l=apache-modperl&m=100057943909683&w=2
http://marc.theaimsgroup.com/?l=apache-modperl&m=100057943909683&w=2

10.33 Using DESTROY to Finalize Output
Well, as always with Perl -- TMTOWTDI (There’s More Than One Way To Do It), one of the readers is
using DESTROY to finalize output, and as a cheap means of buffering.

 package buffer;
 use Apache;

 sub new {
 my $class = shift;
 my $self = bless {
 ’r’ => shift,
 ’message’ => ""
 }, $class;
 $self->{apr} = Apache::Request->new($self->{r},
 POST_MAX=>(32*1024));
 $self->content_type(’text/plain’);
 $self->{r}->no_cache(1);
 }

 sub message {
 my $self = shift;
 $self->{message} .= join("\n", @_);
 }

 sub DESTROY {
 my $self = shift;
 $self->{apr}->send_http_header;
 $self->{apr}->print($self->{message});
 }
 1;

Now you can have perl scripts like:

 use buffer;
 my $b = new buffer(shift);

 $b->message(p("Hello World"));
 # end

and save a bunch of duplicate code across otherwise inconvenient gaggles of small scripts.

But suppose you also want to redirect the client under some circumstances, and send the HTTP status code
302. You might try this:

 sub redir {
 my $self = shift;
 $self->{redirect} = shift;
 exit;
 }

26515 Feb 2014

10.33 Using DESTROY to Finalize OutputCode Snippets

and re-code DESTROY as:

 sub DESTROY {
 my $self = shift;
 if ($self->{redirect}) {
 $self->{apr}->status{REDIRECT};
 $self->{apr}->header_out("Location", $self->{redirect});
 $self->{apr}->send_http_header;
 $self->{apr}->print($self->{redirect});
 } else {
 $self->{apr}->send_http_header;
 $self->{apr}->print($self->{message});
 }
 }

But you’ll find that while the browser redirects itself, mod_perl logs the result code as 200. It turns out
that status() only touches the Apache response, and the log message is determined by the Apache return
code.

Aha! So we’ll change the exit() in redir() to exit(REDIRECT). This fixes the log code, but causes a bogus
"[error] 302" line in the error_log. That comes from Apache::Registry :

 my $errsv = "";
 if($@) {
 $errsv = $@;
 $@ = ’’; #XXX fix me, if we don’t do this Apache::exit() breaks
 $@{$uri} = $errsv;
 }

 if($errsv) {
 $r->log_error($errsv);
 return SERVER_ERROR unless $Debug && $Debug & 2;
 return Apache::Debug::dump($r, SERVER_ERROR);
 }

So you see that any time the return code causes $@ to return true, we’ll get an error line. Not wanting this,
what can we do?

We can hope that a future version of mod_perl will allow us to set the HTTP result code independent from
the handler return code (perhaps a log_status() method? or at least an
Apache::LOG_HANDLER_RESULT config variable?).

In the meantime, there’s Apache::RedirectLogFix , distributed with mod_perl.

Add to your httpd.conf:

 PerlLogHandler Apache::RedirectLogFix

and take a look at the source code below. Note that it requires us to return the HTTP status code 200.

 package Apache::RedirectLogFix;

 use Apache::Constants qw(OK DECLINED REDIRECT);

15 Feb 2014266

10.33 Using DESTROY to Finalize Output

 sub handler {
 my $r = shift;
 return DECLINED unless $r->handler && ($r->handler eq "perl-script");

 if(my $loc = $r->header_out("Location")) {
 if($r->status == 200 and substr($loc, 0, 1) ne "/") {
 $r->status(REDIRECT);
 return OK
 }
 }
 return DECLINED;
 }

 1;

Now, if we wanted to do the same sort of thing for an error 500 handler, we could write another Perl-
LogHandler (call it ServerErrorLogFix). But we’ll leave that as an exercise for the reader, and
hope that it won’t be needed in the next mod_perl release. After all, it’s a little awkward to need a
LogHandler to clean up after ourselves....

10.34 Passing Arguments to a SSI script
Consider the following Apache::Include snippet:

 <!--#perl sub="Apache::Include" arg="/perl/ssi.pl" -->

Now if you want to pass arguments, you cannot do that with Apache::Include . The solution is to
define a subroutine that’s pulled in at the startup:

 sub My::ssi {
 my ($r, $one, $two, $three) = @_;
 ...
 }

In the html file:

 <!--#perl sub="My::ssi" arg="one" arg="two" arg="three" -->

10.35 Setting Environment Variables For Scripts Called
From CGI.
Perl uses sh() for its system() and open() calls. So if you want to set a temporary variable when
you call a script from your CGI you do something like this:

 open UTIL, "USER=stas ; script.pl | " or die "...: $!\n";

or

26715 Feb 2014

10.34 Passing Arguments to a SSI scriptCode Snippets

 system "USER=stas ; script.pl";

This is useful, for example, if you need to invoke a script that uses CGI.pm from within a mod_perl script.
We are tricking the Perl script into thinking it’s a simple CGI, which is not running under mod_perl.

 open(PUBLISH, "GATEWAY_INTERFACE=CGI/1.1 ; script.cgi
 \"param1=value1¶m2=value2\" |") or die "...: $!\n";

Make sure that the parameters you pass are shell safe -- all "unsafe" characters like single-quote and
back-tick should be properly escaped.

Unfortunately mod_perl uses fork() to run the script, so you have probably thrown out the window most of
the performance gained from using mod_perl. To avoid the fork, change script.cgi to a module containing
a subroutine which you can then call directly from your mod_perl script.

10.36 Mysql Backup and Restore Scripts
This is somewhat off-topic, but since many of us use mysql or some other RDBMS in their work with
mod_perl driven sites, it’s good to know how to backup and restore the databases in case of database
corruption.

First we should tell mysql to log all the clauses that modify the databases (we don’t care about SELECT
queries for database backups). Modify the safe_mysql script by adding the --log-update options to the
mysql server startup parameters and restart the server. From now on all the non-select queries will be
logged to the /var/lib/mysql/www.bar.com logfile. Your hostname will show up instead of www.bar.com.

Now create a dump directory under /var/lib/mysql/. That’s where the backups will be stored (you can name
the directory as you wish of course).

Prepare the backup script and store it in a file, e.g: /usr/local/sbin/mysql/mysql.backup.pl

This is the original code code/mysql-3.22.29_backup.pl:

#!/usr/bin/perl -w

this script should be run from the crontab every night or in shorter
intervals. This scripts does a few things.
1. dump all the tables into a separate dump files (these dump files
are ready for DB restore)
2. backups the last update log file and create a new log file

use strict;
my $data_dir = "/var/lib/mysql";
my $update_log = "$data_dir/www.bar.com";
my $dump_dir = "$data_dir/dump";
my $gzip_exec = "/bin/gzip";
my @db_names = qw(bugs mysql bonsai);
my $mysql_admin_exec = "/usr/bin/mysqladmin ";

 # convert unix time to date + time
my ($sec,$min,$hour,$mday,$mon,$year) = localtime(time);

15 Feb 2014268

10.36 Mysql Backup and Restore Scripts

my $time = sprintf("%0.2d:%0.2d:%0.2d",$hour,$min,$sec);
my $date = sprintf("%0.2d.%0.2d.%0.4d",++$mon,$mday,$year+1900);
my $timestamp = "$date.$time";

dump all the DBs we want to backup
foreach my $db_name (@db_names) {
 my $dump_file = "$dump_dir/$timestamp.$db_name.dump";
 my $dump_command = "/usr/bin/mysqldump -c -e -l -q --flush-logs $db_name > $dump_file";
 system $dump_command;
}

move update log to backup for later restore if needed
rename $update_log, "$dump_dir/$timestamp.log" if -e $update_log;

restart the update log to log to a new file!
‘/usr/bin/mysqladmin refresh‘;

compress all the created files
system "$gzip_exec $dump_dir/$timestamp.*";

This is the code modified to work with mysql-3.22.30+ code/mysql-3.22.30+_backup.pl:

#!/usr/bin/perl -w

this script should be run from the crontab every night or in shorter
intervals. This scripts does a few things.
1. dump all the tables into a separate dump files (these dump files
are ready for DB restore)
2. backups the last update log file and create a new log file

#This script originates from the perl.apache.org site, but I have adapted it to work
#properly with the newer versions of MySQL, where the log files are named differently
#WVW 14/02/2000 w@ba.be

use strict;

my $data_dir = "/var/lib/mysql";
my $update_log = "$data_dir/central2.001";
my $dump_dir = "$data_dir/backup";
my $gzip_exec = "/bin/gzip";
my @db_names = qw(mysql besup);
my $mysql_admin_exec = "/usr/bin/mysqladmin ";
my $hostname = "central2";

my $password = "babedb";

convert unix time to date + time
my ($sec,$min,$hour,$mday,$mon,$year) = localtime(time);
my $time = sprintf("%0.2d:%0.2d:%0.2d",$hour,$min,$sec);
my $date = sprintf("%0.2d.%0.2d.%0.4d",++$mon,$mday,$year+1900);
my $timestamp = "$date.$time";

dump all the DBs we want to backup
foreach my $db_name (@db_names) {
 my $dump_file = "$dump_dir/$timestamp.$db_name.dump";
 my $dump_command = "/usr/bin/mysqldump -c -e -l -q --flush-logs -p$password $db_name > $dump_file";
 system $dump_command;
}

mkdir "$dump_dir/$timestamp.log", 0;
‘mv $data_dir/$hostname.[0-9]* $dump_dir/$timestamp.log‘;

move update log to backup for later restore if needed

26915 Feb 2014

10.36 Mysql Backup and Restore ScriptsCode Snippets

#rename $update_log, "$dump_dir/$timestamp.log" if -e $update_log;

restart the update log to log to a new file!
‘/usr/bin/mysqladmin refresh -p$password‘;

compress all the created files
system "$gzip_exec $dump_dir/$timestamp.log/*";
system "$gzip_exec $dump_dir/$timestamp.*.dump*";

You might need to change the executable paths according to your system. List the names of the databases
you want to backup using the db_names array.

Here is another version using File::Backup :

 #!/usr/bin/perl
 # written by Miroslav Madzarevic, mire@modperldev.com
 use strict;

 umask 0177;

 use File::Backup qw|backup|;

 backup(
 ’from’ => "",
 ’to’ => "/opt/backup/mysql/backup",
 ’torootname’ => "example_backup_",
 ’keep’ => 4,
 ’tar’ => "/usr/bin/mysqldump",
 ’compress’ => "/usr/bin/bzip2",
 ’tarflags’ => "example -uroot -proot_pass -a >",
 ’compressflags’ => "",
 ’tarsuffix’ => ’.sql’,
);

Now make the script executable and arrange the crontab entry to run the backup script nightly. Note that
the disk space used by the backups will grow without bound and you should remove the old backups. Here
is a sample crontab entry to run the script at 4am every day:

 0 4 * * * /usr/local/sbin/mysql/mysql.backup.pl > /dev/null 2>&1

So now at any moment we have the dump of the databases from the last execution of the backup script and
the log file of all the clauses that have updated the databases since then. If the database gets corrupted we
have all the information to restore it to the state it was in at our last backup. We restore it with the follow-
ing script, which I put in: /usr/local/sbin/mysql/mysql.restore.pl

This is the original code code/mysql-3.22.29_restore.pl:

#!/usr/bin/perl -w

this scripts restores the DBs

Usage: mysql.restore.pl update.log.gz dump.db1.gz [... dump.dbn.gz]
all files dump* are compressed as we expect them to be created by
mysql.backup utility

15 Feb 2014270

10.36 Mysql Backup and Restore Scripts

example:
% mysql.restore.pl myhostname.log.gz 12.10.1998.16:37:12.*.dump.gz

.dump.gz extension.

use strict;

use FindBin qw($Bin);

my $data_dir = "/var/lib/mysql";
my $dump_dir = "$data_dir/dump";
my $gzip_exec = "/bin/gzip";
my $mysql_exec = "/usr/bin/mysql -f ";
my $mysql_backup_exec = "$Bin/mysql.backup.pl";
my $mysql_admin_exec = "/usr/bin/mysqladmin ";

my $update_log_file = ’’;
my @dump_files = ();

split input files into an update log and the dump files
foreach (@ARGV) {
 push(@dump_files, $_),next unless /\.log\.gz/;
 $update_log_file = $_;
}

die "Usage: mysql.restore.pl update.log.gz dump.db1.gz [... dump.dbn.gz]\n"
 unless defined @dump_files and @dump_files > 0;

load the dump files
foreach (@dump_files) {

 # check the file exists
 warn("Can’t locate $_"),next unless -e $_;

 # extract the db name from the dump file
 my $db_name = $1 if /\d\d\.\d\d.\d\d.\d\d:\d\d:\d\d\.(\w+)\.dump\.gz/;

 warn("Can’t extract DB name from the file name,
 probably an error in the file format"),
 next unless defined $db_name and $db_name;

 # we want to drop the table since restore will rebuild it!
 # force to drop the db without confirmation
 my $drop_command = "$mysql_admin_exec -f drop $db_name";
 system $drop_command;

 $drop_command = "$mysql_admin_exec create $db_name";
 system $drop_command;

 # build the command and execute it
 my $restore_command = "$gzip_exec -cd $_ | $mysql_exec $db_name";
 system $restore_command;
}

now load the update_log file (update the db with the changes since
the last dump
warn("Can’t locate $update_log_file"),next unless -e $update_log_file;

27115 Feb 2014

10.36 Mysql Backup and Restore ScriptsCode Snippets

my $restore_command =
 "$gzip_exec -cd $update_log_file |$mysql_exec";
system $restore_command;

rerun the mysql.backup.pl since we have reloaded the dump files
and update log , and we must rebuild backups!
system $mysql_backup_exec;

This is the code modified to work with mysql-3.22.30+ code/mysql-3.22.30+_restore.pl:

#!/usr/bin/perl -w

this scripts restores the DBs

Usage: mysql.restore.pl update.log.gz dump.db1.gz [... dump.dbn.gz]
all files dump* are compressed as we expect them to be created by
mysql.backup utility

example:
% mysql.restore.pl myhostname.log.gz 12.10.1998.16:37:12.*.dump.gz

.dump.gz extension.

use strict;

use FindBin qw($Bin);

my $data_dir = "/var/lib/mysql";
my $dump_dir = "$data_dir/backup";
my $gzip_exec = "/bin/gzip";
my $mysql_exec = "/usr/bin/mysql -f -pbabedb";
my $mysql_backup_exec = "$Bin/mysql_backup.pl";
my $mysql_admin_exec = "/usr/bin/mysqladmin -pbabedb";

my $update_log_dir = ’’;
my @dump_files = ();

split input files into an update log and the dump files
foreach (@ARGV) {
 push(@dump_files, $_),next unless /\.log/;
 $update_log_dir = $_;
}

die "Usage: mysql.restore.pl update.log.dir dump.db1.gz [... dump.dbn.gz]\n"
 unless defined @dump_files and @dump_files > 0;

load the dump files
foreach (@dump_files) {

 # check the file exists
 warn("Can’t locate $_"),next unless -e $_;

 # extract the db name from the dump file
 my $db_name = $1 if /\d\d\.\d\d.\d\d\d\d.\d\d:\d\d:\d\d\.(\w+)\.dump\.gz/;

 warn("Can’t extract DB name from the file name,

15 Feb 2014272

10.36 Mysql Backup and Restore Scripts

 probably an error in the file format"),
 next unless defined $db_name and $db_name;

 # we want to drop the table since restore will rebuild it!
 # force to drop the db without confirmation
 my $drop_command = "$mysql_admin_exec -f drop $db_name";
 system $drop_command;

 $drop_command = "$mysql_admin_exec create $db_name";
 system $drop_command;

 # build the command and execute it
 my $restore_command = "$gzip_exec -cd $_ | $mysql_exec $db_name";
 system $restore_command;
}

now load the update_log file (update the db with the changes since
the last dump
warn("Can’t locate $update_log_dir"),next unless -d $update_log_dir;

my $restore_command =
 "$gzip_exec -cd $update_log_dir/* |$mysql_exec";
system $restore_command;

rerun the mysql.backup.pl since we have reloaded the dump files
and update log , and we must rebuild backups!
system $mysql_backup_exec;

These are kinda dirty scripts, but they work... if you come up with cleaner scripts, please contribute them...
thanks

Update: there is now a "mysqlhotcopy" utility distributed with MySQL that can make an atomic snapshot
of a database. (by Tim Bunce) So you may consider using it instead.

10.37 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

10.38 Authors
Stas Bekman [http://stason.org/]

Alan Bailward, <alan (at) ufies.org>

Only the major authors are listed above. For contributors see the Changes file.

27315 Feb 2014

10.37 MaintainersCode Snippets

http://stason.org/
http://stason.org/

11 Apache::* modules

15 Feb 2014274

11 Apache::* modules

11.1 Description
Overview of some of the most popular modules for mod_perl, both to use directly from your code and as
mod_perl handlers.

Over the time, mod_perl has collected an impressive amount of modules which are distributed in the stan-
dard Perl way, over CPAN. Found in the Apache:: namespace, these implement various functionalities
you might need when creating a mod_perl-based website. For mod_perl, we can actually make a distinc-
tion between two types of modules:

Apache handlers, which handle request phases or whole requests and are standalone
(Apache::GTopLimit for example).

Convenience modules, which are like standard Perl modules, implementing some useful aspect of
web programming, usually using mod_perl API for a greater performance or functionality unavail-
able in plain Perl. (A good example of this is Apache::Session .) These modules exist under the
Apache:: namespace because they can only be used under mod_perl.

For a complete list of modules, see the Apache/Perl Modules .

11.2 Apache::Session - Maintain session state across HTTP
requests
This module provides the Apache/mod_perl user with a mechanism for storing persistent user data in a
global hash, which is independent of the underlying storage mechanism. Currently you can choose from
these storage mechanisms Apache::Session::DBI , Apache::Session::Win32 ,
Apache::Session::File , Apache::Session::IPC . Read the man page of the mechanism you
want to use for a complete reference.

Apache::Session provides persistence to a data structure. The data structure has an ID number, and
you can retrieve it by using the ID number. In the case of Apache, you would store the ID number in a
cookie or the URL to associate it with one browser, but the method of dealing with the ID is completely up
to you. The flow of things is generally:

 Tie a session to Apache::Session.
 Get the ID number.
 Store the ID number in a cookie.
 End of Request 1.

 (time passes)

 Get the cookie.
 Restore your hash using the ID number in the cookie.
 Use whatever data you put in the hash.
 End of Request 2.

27515 Feb 2014

11.1 DescriptionApache::* modules

Using Apache::Session is easy: simply tie a hash to the session object, stick any data structure into
the hash, and the data you put in automatically persists until the next invocation. Here is an example which
uses cookies to track the user’s session.

 # pull in the required packages
 use Apache::Session::DBI;
 use Apache;

 use strict;

 # read in the cookie if this is an old session
 my $r = Apache->request;
 my $cookie = $r->header_in(’Cookie’);
 $cookie =~ s/SESSION_ID=(\w*)/$1/;

 # create a session object based on the cookie we got from the
 # browser, or a new session if we got no cookie
 my %session;
 tie %session, ’Apache::Session::DBI’, $cookie,
 {DataSource => ’dbi:mysql:sessions’,
 UserName => $db_user,
 Password => $db_pass
 };

 # might be a new session, so lets give them their cookie back
 my $session_cookie = "SESSION_ID=$session{_session_id};";
 $r->header_out("Set-Cookie" => $session_cookie);

After setting this up, you can stick anything you want into %session (except file handles and code refer-
ences and using _session_id), and it will still be there when the user invokes the next page.

It is possible to write an Apache authentication handler using Apache::Session . You can put your
authentication token into the session. When a user invokes a page, you open their session, check to see if
they have a valid token, and authenticate or forbid based on that.

By way of comparison note that IIS’s sessions are only valid on the same web server as the one that issued
the session. Apache::Session ’s session objects can be shared amongst a farm of many machines
running different operating systems, including even Win32. IIS stores session information in RAM.
Apache::Session stores sessions in databases, file systems, or RAM. IIS’s sessions are only good for
storing scalars or arrays. Apache::Session ’s sessions allow you to store arbitrarily complex objects.
IIS sets up the session and automatically tracks it for you. With Apache::Session , you setup and
track the session yourself. IIS is proprietary. Apache::Session is open-source.
Apache::Session::DBI can issue 400+ session requests per second on light Celeron 300A running
Linux. IIS?

An alternative to Apache::Session is Apache::ASP , which has session tracking abilities.
HTML::Embperl hooks into Apache::Session for you.

15 Feb 2014276

11.2 Apache::Session - Maintain session state across HTTP requests

11.3 Apache::DBI - Initiate a persistent database connection
See mod_perl and relational Databases

11.4 Apache::Watchdog::RunAway - Hanging Processes
Monitor and Terminator
This module monitors hanging Apache/mod_perl processes. You define the time in seconds after which
the process is to be counted as hanging or run away.

When the process is considered to be hanging it will be killed and the event logged in a log file.

Generally you should use the amprapmon program that is bundled with this module’s distribution
package, but you can write your own code using the module as well. See the amprapmon manpage for
more information about it.

Note that it requires the Apache::Scoreboard module to work.

Refer to the Apache::Watchdog::RunAway manpage for the configuration details.

11.5 Apache::VMonitor -- Visual System and Apache Server
Monitor
Apache::VMonitor is the next generation of mod_status. It provides all the information mod_status
provides and much more.

This module emulates the reporting functions of the top(), mount(), df() and ifconfig() utilities. There is a
special mode for mod_perl processes. It has visual alert capabilities and a configurable automatic refresh
mode. It provides a Web interface, which can be used to show or hide all the sections dynamically.

The are two main modes:

Multi processes mode -- All system processes and information is shown.

Single process mode -- In-depth information about a single process is shown.

The main advantage of this module is that it reduces the need to telnet to the machine in order to monitor
it. Indeed it provides information about mod_perl processes that cannot be acquired from telneting to the
machine.

11.5.0.1 Configuration

 # Configuration in httpd.conf
 <Location /sys-monitor>
 SetHandler perl-script
 PerlHandler Apache::VMonitor

27715 Feb 2014

11.3 Apache::DBI - Initiate a persistent database connectionApache::* modules

 </Location>

 # startup file or <Perl> section:
 use Apache::VMonitor();
 $Apache::VMonitor::Config{BLINKING} = 0; # Blinking is evil
 $Apache::VMonitor::Config{REFRESH} = 0;
 $Apache::VMonitor::Config{VERBOSE} = 0;
 $Apache::VMonitor::Config{SYSTEM} = 1;
 $Apache::VMonitor::Config{APACHE} = 1;
 $Apache::VMonitor::Config{PROCS} = 1;
 $Apache::VMonitor::Config{MOUNT} = 1;
 $Apache::VMonitor::Config{FS_USAGE} = 1;
 $Apache::VMonitor::Config{NETLOAD} = 1;

 @Apache::VMonitor::NETDEVS = qw(lo eth0);
 $Apache::VMonitor::PROC_REGEX = join "\|", qw(httpd mysql squid);

More information is available in the module’s extensive manpage.

It requires Apache::Scoreboard and GTop to work. GTop in turn requires the libgtop library but
is not available for all platforms. See the docs in the source at
ftp://ftp.gnome.org/pub/GNOME/stable/sources/gtop/ to check whether your platform/flavor is supported.

11.6 Apache::GTopLimit - Limit Apache httpd processes
This module allows you to kill off Apache processes if they grow too large or if they share too little of
their memory. You can choose to set up the process size limiter to check the process size on every request:

The module is thoroughly explained in the section: Preventing Your Processes from Growing

11.7 Apache::Request (libapreq) - Generic Apache Request
Library
This package contains modules for manipulating client request data via the Apache API with Perl and C.
Functionality includes:

parsing of application/x-www-form-urlencoded data
parsing of multipart/form-data
parsing of HTTP Cookies

The Perl modules are simply a thin xs layer on top of libapreq, making them a lighter and faster alternative
to CGI.pm and CGI::Cookie. See the Apache::Request and Apache::Cookie documentation for
more details and eg/perl/ for examples.

Apache::Request and libapreq are tied tightly to the Apache API, to which there is no access in a
process running under mod_cgi.

15 Feb 2014278

11.6 Apache::GTopLimit - Limit Apache httpd processes

ftp://ftp.gnome.org/pub/GNOME/stable/sources/gtop/

(Apache::Request)

11.8 Apache::RequestNotes - Allow Easy, Consistent Access
to Cookie and Form Data Across Each Request Phase
Apache::RequestNotes provides a simple interface allowing all phases of the request cycle access
to cookie or form input parameters in a consistent manner. Behind the scenes, it uses libapreq
Apache::Request) functions to parse request data and puts references to the data in pnotes() .

Once the request is past the PerlInit phase, all other phases can have access to form input and cookie data
without parsing it themselves. This relieves some strain, especially when the GET or POST data is
required by numerous handlers along the way.

See the Apache::RequestNotes manpage for more information.

11.9 Apache::PerlRun - Run unaltered CGI scripts under
mod_perl
See Apache::PerlRun - a closer look.

11.10 Apache::RegistryNG -- Apache::Registry New Gener-
ation
Apache::RegistryNG is the same as Apache::Registry , aside from using filenames instead of
URIs for namespaces. This feature ensures that if the same CGI script is requested from different URIs
(e.g. different hostnames) it’ll be compiled and cached only once, thus saving memory.

Apache::RegistryNG uses an Object Oriented interface.

 PerlModule Apache::RegistryNG
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::RegistryNG->handler
 </Location>

Apache::RegistryNG inherits from Apache::PerlRun , but the handler() is overridden. Aside
from the handler(), the rest of Apache::PerlRun contains all the functionality of
Apache::Registry broken down into several subclass-able methods. These methods are used by
Apache::RegistryNG to implement the exact same functionality of Apache::Registry , using
the Apache::PerlRun methods.

There is no compelling reason to use Apache::RegistryNG over Apache::Registry , unless you
want to do add or change the functionality of the existing Registry.pm or if you want to use filenames
instead of URIs for namespaces. For example, Apache::RegistryBB (Bare-Bones) is another
subclass that skips the stat() call performed by Apache::Registry on each request.

27915 Feb 2014

11.8 Apache::RequestNotes - Allow Easy, Consistent Access to Cookie and Form Data Across Each Request PhaseApache::* modules

11.11 Apache::RegistryBB -- Apache::Registry Bare Bones
It works just like Apache::Registry , but does not test the x bit (-x file test for executable mode), only
compiles the file once (no stat() call is made per request), skips the OPT_EXECCGI checks and does not
chdir() into the script parent directory. It uses the Object Oriented interface.

Configuration:

 PerlModule Apache::RegistryBB
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::RegistryBB->handler
 </Location>

11.12 Apache::OutputChain -- Chain Stacked Perl Handlers
Apache::OutputChain was written as a way of exploring the possibilities of stacked handlers in mod_perl.
It ties STDOUT to an object which catches the output and makes it easy to build a chain of modules that
work on output data stream.

Examples of modules that are build on this idea are Apache::SSIChain , Apache::GzipChain and
Apache::EmbperlChain -- the first processes the SSI’s in the stream, the second compresses the
output on the fly, the last adds Embperl processing.

The syntax goes like this:

 <Files *.html>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::SSIChain Apache::PassHtml
 </Files>

The modules are listed in the reverse order of their execution -- here the Apache::PassHtml module
simply picks a file’s content and sends it to STDOUT, then it’s processed by Apache::SSIChain ,
which sends its output to STDOUT again. Then it’s processed by Apache::OutputChain , which
finally sends the result to the browser.

An alternative to this approach is Apache::Filter , which has a more natural forward configuration
order and is easier to interface with other modules.

It works with Apache::Registry as well, for example:

 Alias /foo /home/httpd/perl/foo
 <Location /foo>
 SetHandler "perl-script"
 Options +ExecCGI
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::Registry
 </Location>

15 Feb 2014280

11.11 Apache::RegistryBB -- Apache::Registry Bare Bones

It’s really a regular Apache::Registry setup, except for the added modules in the PerlHandler line.

(Apache::GzipChain allows to compress the output on the fly.)

11.13 Apache::Filter - Alter the output of previous handlers
Apache::Filter , like Apache::OutputChain , allows you to chain stacked handlers. It’s not very
different from Apache::OutputChain , except for the way you configure the filters. A normal config-
uration with Apache::Filter would be the following:

 PerlModule Apache::Filter Apache::RegistryFilter Apache::SSI Apache::Gzip
 Alias /perl /home/httpd/perl
 <Location /perl>
 SetHandler "perl-script"
 Options +ExecCGI
 PerlSetVar Filter On
 PerlHandler Apache::RegistryFilter Apache::SSI Apache::Gzip
 </Location>

This accomplishes some things many CGI programmers want: you can output SSI code from your
Apache::Registry scripts, have it parsed by Apache::SSI , and then compressed with
Apache::Gzip (see Apache::Gzip below).

Thanks to Apache::Filter , you can also write your own filter modules, which allow you to read in
the output from the previous handler in the chain and modify it. You would do something like this in your
handler subroutine:

 $r = $r->filter_register(); # Required
 my $fh = $r->filter_input(); # Optional (you might not need the input FH)
 while (<$fh>) {
 s/ something / something else /;
 print;
 }

Another interesting thing to do with Apache::Filter would be to use it for XML output from your
scripts(these modules are hypothetical, this is handled much better by AxKit, Matt Seargeant’s XML
application server for mod_perl (see http://www.axkit.org/).

 <Location /perl/xml-output>
 SetHandler perl-script
 Options +ExecCGI
 PerlSetVar Filter On
 PerlHandler Apache::RegistryFilter Apache::XSLT
 </Location>

As you can see, you can get a lot of freedom by using stacked handlers, allowing you to separate various
parts of your programs and leave those tasks up to other modules, which may already be available from
CPAN (this is much better than the CGI time when your script would have to do everything itself, because
you couldn’t do much with its output).

28115 Feb 2014

11.13 Apache::Filter - Alter the output of previous handlersApache::* modules

http://www.axkit.org/

11.14 Apache::GzipChain - compress HTML (or anything)
in the OutputChain
Have you ever served a huge HTML file (e.g. a file bloated with JavaScript code) and wondered how
could you send it compressed, thus dramatically cutting down the download times? After all Java applets
can be compressed into a jar and benefit from faster download times. Why can’t we do the same with plain
ASCII (HTML, JS etc.)? ASCII text can often be compressed by a factor of 10.

Apache::GzipChain comes to help you with this task. If a client (browser) understands gzip encod-
ing, this module compresses the output and sends it downstream. The client decompresses the data upon
receipt and renders the HTML as if it were fetching plain HTML.

For example to compress all html files on the fly, do this:

 <Files *.html>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::PassFile
 </Files>

Remember that it will work only if the browser claims to accept compressed input, by setting the
Accept-Encoding header. Apache::GzipChain keeps a list of user-agents, thus it also looks at
the User-Agent header to check for browsers known to accept compressed output.

For example if you want to return compressed files which will in addition pass through the Embperl
module, you would write:

 <Location /test>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::EmbperlChain Apache::PassFile
 </Location>

Hint: Watch the access_log file to see how many bytes were actually sent, and compare that with the bytes
sent using a regular configuration.

(See also Apache::GzipChain).

Notice that the rightmost PerlHandler must be a content producer. Here we are using Apache::Pass-
File but you can use any module which creates output.

11.15 Apache::Gzip - Auto-compress web files with Gzip
Similar to Apache::GzipChain but works with Apache::Filter .

This configuration:

15 Feb 2014282

11.14 Apache::GzipChain - compress HTML (or anything) in the OutputChain

 PerlModule Apache::Filter
 <Files ~ "*\.html">
 SetHandler perl-script
 PerlSetVar Filter On
 PerlHandler Apache::Gzip
 </Files>

will send all the *.html files compressed if the client accepts the compressed input.

And this one:

 PerlModule Apache::Filter
 Alias /home/http/perl /perl
 <Location /perl>
 SetHandler perl-script
 PerlSetVar Filter On
 PerlHandler Apache::RegistryFilter Apache::Gzip
 </Location>

will compress the output of the Apache::Registry scripts. Yes, you should use
Apache::RegistryFilter instead of Apache::Registry for it to work.

You can use as many filters as you want:

 PerlModule Apache::Filter
 <Files ~ "*\.blah">
 SetHandler perl-script
 PerlSetVar Filter On
 PerlHandler Filter1 Filter2 Apache::Gzip
 </Files>

You can test that it works by either looking at the size of the response in the access.log or by telnet:

 panic% telnet localhost 8000
 Trying 127.0.0.1
 Connected to 127.0.0.1
 Escape character is ’^]’.
 GET /perl/test.pl HTTP 1.1
 Accept-Encoding: gzip
 User-Agent: Mozilla

And you will get the data compressed if configured correctly.

11.16 Apache::PerlVINC - Allows Module Versioning in
Location blocks and Virtual Hosts
With this module you can have different @INC for different virtual hosts, locations and equivalent config-
uration blocks.

28315 Feb 2014

11.16 Apache::PerlVINC - Allows Module Versioning in Location blocks and Virtual HostsApache::* modules

Suppose two versions of Apache::Status are being hacked on the same server. In this configuration:

 PerlModule Apache::PerlVINC

 <Location /status-dev/perl>
 SetHandler perl-script
 PerlHandler Apache::Status

 PerlINC /home/httpd/dev/lib
 PerlFixupHandler Apache::PerlVINC
 PerlVersion Apache/Status.pm
 </Location>

 <Location /status/perl>
 SetHandler perl-script
 PerlHandler Apache::Status

 PerlINC /home/httpd/prod/lib
 PerlFixupHandler Apache::PerlVINC
 PerlVersion Apache/Status.pm
 </Location>

The Apache::PerlVINC is loaded and then two different locations are specified for the same handler
Apache::Status , whose development version resides in /home/httpd/dev/lib and production version in
/home/httpd/prod/lib.

In case the /status/perl request is issued (the latter configuration section), the fixup handler will internally
do:

 delete $INC{Apache/Status.pm};
 unshift @INC, /home/httpd/prod/lib;
 require "Apache/Status.pm";

which will load the production version of the module and it’ll be used to process the request. If on the
other hand if the request to the /status-dev/perl location will be issued, as configured in the former config-
uration section, a similar thing will happen, but a different path (/home/httpd/dev/lib) will be prepended to
@INC:

 delete $INC{Apache/Status.pm};
 unshift @INC, /home/httpd/dev/lib;
 require "Apache/Status.pm";

It’s important to be aware that a changed @INC is effective only inside the <Location> or a similar
configuration directive. Apache::PerlVINC subclasses the PerlRequire directive, marking the file
to be reloaded by the fixup handler, using the value of PerlINC for @INC. That’s local to the fixup
handler, so you won’t actually see @INC changed in your script.

In addition the modules with different versions can be unloaded at the end of request, using the Perl-
CleanupHandler handler:

15 Feb 2014284

11.16 Apache::PerlVINC - Allows Module Versioning in Location blocks and Virtual Hosts

 <Location /status/perl>
 SetHandler perl-script
 PerlHandler Apache::Status

 PerlINC /home/httpd/prod/lib
 PerlFixupHandler Apache::PerlVINC
 PerlCleanupHandler Apache::PerlVINC
 PerlVersion Apache/Status.pm
 </Location>

Also notice that PerlVersion effect things differently depending on where it was placed. If it was
placed inside a <Location> or a similar block section, the files will only be reloaded on requests to that
location. If it was placed in a server section, all requests to the server or virtual hosts will have these files
reloaded.

As you can guess, this module slows the response time down because it reloads some modules on a
per-request basis. Hence, this module should only be used in a development environment, not a production
one.

11.17 Apache::LogSTDERR
When Apache’s builtin syslog support is used, the stderr stream is redirected to /dev/null . This means
that Perl warnings, any messages from die() , croak() , etc., will also end up in the black hole. The
HookStderr directive will hook the stderr stream to a file of your choice, the default is shown in this
example:

 PerlModule Apache::LogSTDERR
 HookStderr logs/stderr_log

[META: see http://mathforum.org/epigone/modperl/vixquimwhen]

11.18 Apache::RedirectLogFix
Because of the way mod_perl handles redirects, the status code is not properly logged. The
Apache::RedirectLogFix module works around that bug until mod_perl can deal with this. All you
have to do is to enable it in the httpd.conf file.

 PerlLogHandler Apache::RedirectLogFix

For example, you will have to use it when doing:

 $r->status(304);

and do some manual header sending, like this:

 $r->status(304);
 $r->send_http_header();

28515 Feb 2014

11.17 Apache::LogSTDERRApache::* modules

http://mathforum.org/epigone/modperl/vixquimwhen

11.19 Apache::SubProcess
The output of system() , exec() , and open(PIPE,"|program") calls will not be sent to the
browser unless your Perl was configured with sfio .

One workaround is to use backticks:

 print ‘command here‘;

But a cleaner solution is provided by the Apache::SubProcess module. It overrides the exec() and
system() calls with calls that work correctly under mod_perl.

Let’s see a few examples:

 use Apache::SubProcess qw(system);
 my $r = shift;
 $r->send_http_header(’text/plain’);

 system "/bin/echo hi there";

overrides built-in system() function and sends the output to the browser.

 use Apache::SubProcess qw(exec);
 my $r = shift;
 $r->send_http_header(’text/plain’);

 exec "/usr/bin/cal";

 print "NOT REACHED\n";

overrides built-in exec() function and sends the output to the browser. As you can see the print statement
after the exec() call will be never executed.

 use Apache::SubProcess ();
 my $r = shift;
 $r->send_http_header(’text/plain’);

 my $efh = $r->spawn_child(\&env);
 $r->send_fd($efh);

 sub env {
 my $r = shift;
 $r->subprocess_env(HELLO => ’world’);
 $r->filename("/bin/env");
 $r->call_exec;
 }

env() is a function that sets an environment variable that can be seen by the main and sub-processes, then
it executes /bin/env program via call_exec(). The main code spawn a process, and tells it to execute the
env() function. This call returns an output filehandler from the spawned child process. Finally it takes the
output generated by the child process and sends it to the browser via send_fd(), that expects the filehandler
as an argument.

15 Feb 2014286

11.19 Apache::SubProcess

 use Apache::SubProcess ();
 my $r = shift;
 $r->send_http_header(’text/plain’);

 my $fh = $r->spawn_child(\&banner);
 $r->send_fd($fh);

 sub banner {
 my $r = shift;
 # /usr/games/banner on many Unices
 $r->filename("/usr/bin/banner");
 $r->args("-w40+Hello%20World");
 $r->call_exec;
 }

This example is very similar to the previous, but shows how can you pass arguments to the external
process. It passes the string to print as a banner to via a subprocess.

 use Apache::SubProcess ();
 my $r = shift;
 $r->send_http_header(’text/plain’);

 use vars qw($String);
 $String = "hello world";
 my ($out, $in, $err) = $r->spawn_child(\&echo);
 print $out $String;
 $r->send_fd($in);

 sub echo {
 my $r = shift;
 $r->subprocess_env(CONTENT_LENGTH => length $String);
 $r->filename("/tmp/pecho");
 $r->call_exec;
 }

The last example shows how you can have a full access to STDIN, STDOUT and STDERR streams of the
spawned sub process, so you can pipe data to a program and send its output to the browser. The echo()
function is similar to the earlier example’s env() function. The /tmp/pecho is as follows:

 !/usr/bin/perl
 read STDIN, $buf, $ENV{CONTENT_LENGTH};
 print "STDIN: ‘$buf’ ($ENV{CONTENT_LENGTH})\n";

So in the last example a string is defined as a global variable, so it’s length could be calculated in the
echo() function. The subprocess reads from STDIN, to which the main process writes the string (hello
world). It reads only a number of bytes specified by CONTENT_LENGTH passed to the external program
via environment variable. Finally the external program prints the data that it read to STDOUT, the main
program intercepts it and sends to the client’s socket (browser in most cases).

28715 Feb 2014

11.19 Apache::SubProcessApache::* modules

11.20 Module::Use - Log and Load used Perl modules
Module::Use records the modules used over the course of the Perl interpreter’s lifetime. If the logging
module is able, the old logs are read and frequently used modules are automatically loaded.

For example if configured as:

 <Perl>
 use Module::Use (Counting, Logger => "Debug");
 </Perl>

 PerlChildExitHandler Module::Use

it will only record the used modules when the child exists, logging everything (debug level).

11.21 Apache::ConfigFile - Parse an Apache style httpd.conf
config file
This module parses httpd.conf, or any compatible config file, and provides methods for accessing the
values from the parsed file.

See the module manpage for more information.

11.22 Apache::Admin::Config - Object oriented access to
Apache style config files
Apache::Admin::Config provides an object oriented interface for reading and writing Apache-like
configuration files without affecting comments, indentation, or truncated lines. You can easily extract
informations from the apache configuration, or manage htaccess files.

See http://rs.rhapsodyk.net/devel/apache-admin-config/ for more information.

11.23 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

11.24 Authors
Stas Bekman [http://stason.org/]

15 Feb 2014288

11.20 Module::Use - Log and Load used Perl modules

http://rs.rhapsodyk.net/devel/apache-admin-config/
http://stason.org/
http://stason.org/

Only the major authors are listed above. For contributors see the Changes file.

28915 Feb 2014

11.24 AuthorsApache::* modules

12 Choosing the Right Strategy

15 Feb 2014290

12 Choosing the Right Strategy

12.1 Description
This document discusses various mod_perl setup strategies used to get the best performance and scalabil-
ity of the services.

12.2 Do it like I do it!?
There is no such thing as the right strategy in the web server business, although there are many wrong
ones. Never believe a person who says: "Do it this way, this is the best!". As the old saying goes: "Trust
but verify". There are too many technologies out there to choose from, and it would take an enormous
investment of time and money to try to validate each one before deciding which is the best choice for your
situation.

With this in mind, I will present some ways of using standalone mod_perl, and some combinations of
mod_perl and other technologies. I’ll describe how these things work together, offer my opinions on the
pros and cons of each, the relative degree of difficulty in installing and maintaining them, and some hints
on approaches that should be used and things to avoid.

To be clear, I will not address all technologies and tools, but limit this discussion to those complementing
mod_perl.

Please let me stress it again: do not blindly copy someone’s setup and hope for a good result. Choose what
is best for your situation -- it might take some effort to find out what that is.

In this chapter we will discuss

Deployment of mod_perl in Overview, with the pros and cons.
Alternative architectures for running one and two servers.
Proxy servers (Squid, and Apache’s mod_proxy).

12.3 mod_perl Deployment Overview
There are several different ways to build, configure and deploy your mod_perl enabled server. Some of
them are:

1. Having one binary and one configuration file (one big binary for mod_perl).

2. Having two binaries and two configuration files (one big binary for mod_perl and one small binary
for static objects like images.)

3. Having one DSO-style binary and two configuration files, with mod_perl available as a loadable
object.

4. Any of the above plus a reverse proxy server in http accelerator mode.

29115 Feb 2014

12.1 DescriptionChoosing the Right Strategy

If you are a newbie, I would recommend that you start with the first option and work on getting your feet
wet with Apache and mod_perl. Later, you can decide whether to move to the second one which allows
better tuning at the expense of more complicated administration, or to the third option -- the more
state-of-the-art-yet-suspiciously-new DSO system, or to the fourth option which gives you even more
power.

1. The first option will kill your production site if you serve a lot of static data from large (4 to 15MB)
webserver processes. On the other hand, while testing you will have no other server interaction to
mask or add to your errors.

2. This option allows you to tune the two servers individually, for maximum performance.

However, you need to choose between running the two servers on multiple ports, multiple IPs, etc.,
and you have the burden of administering more than one server. You have to deal with proxying or
fancy site design to keep the two servers in synchronization.

3. With DSO, modules can be added and removed without recompiling the server, and their code is even
shared among multiple servers.

You can compile just once and yet have more than one binary, by using different configuration files
to load different sets of modules. The different Apache servers loaded in this way can run simultane-
ously to give a setup such as described in the second option above.

On the down side, you are playing at the bleeding edge.

You are dealing with a new solution that has weak documentation and is still subject to change. It is
still somewhat platform specific. Your mileage may vary.

The DSO module (mod_so) adds size and complexity to your binaries.

Refer to the section "Pros and Cons of Building mod_perl as DSO for more information.

Build details: Build mod_perl as DSO inside Apache source tree via APACI

4. The fourth option (proxy in http accelerator mode), once correctly configured and tuned, improves
the performance of any of the above three options by caching and buffering page results.

12.4 Alternative architectures for running one and two
servers
The next part of this chapter discusses the pros and the cons of each of these presented configurations.
Real World Scenarios Implementation describes the implementation techniques of these schemes.

We will look at the following installations:

15 Feb 2014292

12.4 Alternative architectures for running one and two servers

Standalone mod_perl Enabled Apache Server
One Plain Apache and One mod_perl-enabled Apache Servers
One light non-Apache and One mod_perl enabled Apache Servers
Adding a Proxy Server in http Accelerator Mode

12.4.1 Standalone mod_perl Enabled Apache Server

The first approach is to implement a straightforward mod_perl server. Just take your plain Apache server
and add mod_perl, like you add any other Apache module. You continue to run it at the port it was using
before. You probably want to try this before you proceed to more sophisticated and complex techniques.

The advantages:

Simplicity. You just follow the installation instructions, configure it, restart the server and you are
done.

No network changes. You do not have to worry about using additional ports as we will see later.

Speed. You get a very fast server and you see an enormous speedup from the first moment you start
to use it.

The disadvantages:

The process size of a mod_perl-enabled Apache server is huge (maybe 4MB at startup and growing to
10MB and more, depending on how you use it) compared to typical plain Apache. Of course if
memory sharing is in place, RAM requirements will be smaller.

You probably have a few tens of child processes. The additional memory requirements add up in
direct relation to the number of child processes. Your memory demands are growing by an order of
magnitude, but this is the price you pay for the additional performance boost of mod_perl. With
memory prices so cheap nowadays, the additional cost is low -- especially when you consider the
dramatic performance boost mod_perl gives to your services with every 100MB of RAM you add.

While you will be happy to have these monster processes serving your scripts with monster speed,
you should be very worried about having them serve static objects such as images and html files.
Each static request served by a mod_perl-enabled server means another large process running,
competing for system resources such as memory and CPU cycles. The real overhead depends on the
static object request rate. Remember that if your mod_perl code produces HTML code which
includes images, each one will turn into another static object request. Having another plain webserver
to serve the static objects solves this unpleasant obstacle. Having a proxy server as a front end,
caching the static objects and freeing the mod_perl processes from this burden is another solution.
We will discuss both below.

Another drawback of this approach is that when serving output to a client with a slow connection, the
huge mod_perl-enabled server process (with all of its system resources) will be tied up until the
response is completely written to the client. While it might take a few milliseconds for your script to
complete the request, there is a chance it will be still busy for some number of seconds or even
minutes if the request is from a slow connection client. As in the previous drawback, a proxy solution

29315 Feb 2014

12.4.1 Standalone mod_perl Enabled Apache ServerChoosing the Right Strategy

can solve this problem. More on proxies later.

Proxying dynamic content is not going to help much if all the clients are on a fast local net (for
example, if you are administering an Intranet.) On the contrary, it can decrease performance. Still,
remember that some of your Intranet users might work from home through slow modem links.

If you are new to mod_perl, this is probably the best way to get yourself started.

And of course, if your site is serving only mod_perl scripts (close to zero static objects, like images), this
might be the perfect choice for you!

For implementation notes, see the "One Plain and One mod_perl enabled Apache Servers" section in the
implementations chapter.

12.4.2 One Plain Apache and One mod_perl-enabled Apache Servers

As I have mentioned before, when running scripts under mod_perl you will notice that the httpd processes
consume a huge amount of virtual memory -- from 5MB to 15MB and even more. That is the price you
pay for the enormous speed improvements under mod_perl. (Again -- shared memory keeps the real
memory that is being used much smaller :)

Using these large processes to serve static objects like images and html documents is overkill. A better
approach is to run two servers: a very light, plain Apache server to serve static objects and a heavier
mod_perl-enabled Apache server to serve requests for dynamic (generated) objects (aka CGI).

From here on, I will refer to these two servers as httpd_docs (vanilla Apache) and httpd_perl (mod_perl
enabled Apache).

The advantages:

The heavy mod_perl processes serve only dynamic requests, which allows the deployment of fewer
of these large servers.

MaxClients , MaxRequestsPerChild and related parameters can now be optimally tuned for
both httpd_docs and httpd_perl servers, something we could not do before. This allows us to
fine tune the memory usage and get better server performance.

Now we can run many lightweight httpd_docs servers and just a few heavy httpd_perl
servers.

An important note: When a user browses static pages and the base URL in the Location window points
to the static server, for example http://www.example.com/index.html -- all relative URLs (e.g.
) are being served by the light plain Apache server. But this is
not the case with dynamically generated pages. For example when the base URL in the Location window
points to the dynamic server -- (e.g. http://www.example.com:8080/perl/index.pl) all rela-
tive URLs in the dynamically generated HTML will be served by the heavy mod_perl processes. You
must use fully qualified URLs and not relative ones!
http://www.example.com/icons/arrow.gif is a full URL, while /icons/arrow.gif is a

15 Feb 2014294

12.4.2 One Plain Apache and One mod_perl-enabled Apache Servers

http://www.example.com/index.html
http://www.example.com:8080/perl/index.pl
http://www.example.com/icons/arrow.gif

relative one. Using <BASE HREF="http://www.example.com/"> in the generated HTML is
another way to handle this problem. Also, the httpd_perl server could rewrite the requests back to
httpd_docs (much slower) and you still need the attention of the heavy servers. This is not an issue if
you hide the internal port implementations, so the client sees only one server running on port 80 . (See
Publishing Port Numbers other than 80)

The disadvantages:

An administration overhead.

The need for two configuration files.

The need for two sets of controlling scripts (startup/shutdown) and watchdogs.

If you are processing log files, now you probably will have to merge the two separate log files
into one before processing them.

Just as in the one server approach, we still have the problem of a mod_perl process spending its
precious time serving slow clients, when the processing portion of the request was completed a long
time ago. Deploying a proxy solves this, and will be covered in the next section.

As with the single server approach, this is not a major disadvantage if you are on a fast network (i.e.
Intranet). It is likely that you do not want a buffering server in this case.

Before you go on with this solution you really want to look at the Adding a Proxy Server in http Accelera-
tor Mode section.

For implementation notes see the "One Plain and One mod_perl enabled Apache Servers" section in
implementations chapter.

12.4.3 One light non-Apache and One mod_perl enabled Apache
Servers

If the only requirement from the light server is for it to serve static objects, then you can get away with
non-Apache servers having an even smaller memory footprint. thttpd has been reported to be about 5
times faster then Apache (especially under a heavy load), since it is very simple and uses almost no
memory (260K) and does not spawn child processes.

The Advantages:

All the advantages of the 2 servers scenario.

More memory saving. Apache is about 4 times bigger than thttpd , if you spawn 30 children you use
about 30M of memory, while thttpd uses only 260K - 100 times less! You could use the 30M you’ve
saved to run a few more mod_perl servers.

29515 Feb 2014

12.4.3 One light non-Apache and One mod_perl enabled Apache ServersChoosing the Right Strategy

http://www.example.com/

The memory savings are significantly smaller if your OS supports memory sharing with Dynamically
Shared Objects (DSO) and you have configured Apache to use it. If you do allow memory sharing, 30
light Apache servers ought to use only about 3 to 4MB, because most of it will be shared. There is no
memory sharing if Apache modules are statically compiled into the httpd executable.

Reported to be about 5 times faster then plain Apache serving static objects.

The Disadvantages:

Lacks some of Apache’s features, like access control, error redirection, customizable log file formats,
and so on.

Another interesting choice is a kHTTPd webserver for Linux. kHTTPd is different from other webservers
in that it runs from within the Linux-kernel as a module (device-driver). kHTTPd handles only static (file
based) web-pages, and passes all requests for non-static information to a regular userspace-webserver such
as Apache. For more information see http://www.fenrus.demon.nl/.

Also check out the Boa webserver: http://www.boa.org/

12.5 Adding a Proxy Server in http Accelerator Mode
At the beginning there were two servers: one plain Apache server, which was very light, and configured to
serve static objects, the other mod_perl enabled (very heavy) and configured to serve mod_perl scripts and
handlers. As you remember we named them httpd_docs and httpd_perl respectively.

In the dual-server setup presented earlier the two servers coexist at the same IP address by listening to
different ports: httpd_docs listens to port 80 (e.g. http://www.example.com/images/test.gif) and
httpd_perl listens to port 8080 (e.g. http://www.example.com:8080/perl/test.pl). Note that we did not
write http://www.example.com:80 for the first example, since port 80 is the default port for the http
service. Later on, we will be changing the configuration of the httpd_docs server to make it listen to
port 81.

This section will attempt to convince you that you really want to deploy a proxy server in the http acceler-
ator mode. This is a special mode that in addition to providing the normal caching mechanism, accelerates
your CGI and mod_perl scripts.

The advantages of using the proxy server in conjunction with mod_perl are:

Certainly the benefits of the usual use of the proxy server which allows serving of static objects from
the proxy’s cache. You get less I/O activity reading static objects from the disk (proxy serves the
most "popular" objects from RAM -- of course you benefit more if you allow the proxy server to
consume more RAM). Since you do not wait for the I/O to be completed, you are able to serve static
objects much faster.

And the extra functionality provided by the http-acceleration mode, which makes the proxy server act
as a sort of output buffer for the dynamic content. The mod_perl server sends the entire response to
the proxy and is then free to deal with other requests. The proxy server is responsible for sending the
response to the browser. So if the transfer is over a slow link, the mod_perl server is not waiting

15 Feb 2014296

12.5 Adding a Proxy Server in http Accelerator Mode

http://www.fenrus.demon.nl/
http://www.boa.org/
http://www.example.com/images/test.gif
http://www.example.com:8080/perl/test.pl
http://www.example.com:80/

around for the data to move.

Using numbers is always more convincing than just words. So we are going to show a simple
example from the real world.

First let’s explain the abbreviation used in the networking world. If someone claims to have a 56 kbps
connection -- it means that the connection is of 56 kilo-bits per second (~56000 bits/sec). It’s not 56
kilo-bytes per second, but 7 kilo-bytes per second, because 1 byte equals to 8 bits. So don’t let the
merchants fool you--your modem gives you 7 kilo-bytes per second connection at most and not 56
kilo-bytes per second as one might think.

Another convention used in computer literature is that if you see 10Kb it usually means 10 kilo-bits
and 10KB is 10 kilo-bytes. So if you see upper case B it generally refers to bytes, and lower case b to
bits (and K of course means kilo and equals to 1024 or to 1000 depending on the field it’s used in).
Remember that the latter convention is not followed everywhere, so use this knowledge with care.
This document is following this convention.

So here is the real world example. Let’s look at the typical scenario with a user connected to your site
with 56Kbps modem. It means that the speed of the user’s link is 56/8 = 7KBytes per sec. Let’s assume an
average generated HTML page to be of 42KB and an average mod_perl script that generates this
response in 0.5 second. How many responses this script could produce during the time it took for the
output to be delivered to user? A simple calculation reveals pretty scary numbers:

 42KB / (0.5s * 7KB/s) = 12

12 other dynamic requests could be served at the same time, if we could put mod_perl to do only
what it’s best at: generating responses.

This very simple example shows us that we need only one twelfth the number of children running,
which means that we will need only one twelfth of the memory (not quite true because some parts of
the code are shared).

But you know that nowadays scripts often return pages which are blown up with JavaScript code and
similar, which can make them 100kb size and the download time will be of the order of... (This calcu-
lation is left to you as an exercise :)

Moreover many users like to open many browser windows and do many things at once (download
files and browse graphically heavy sites). So in the speed of 7KB/sec we have assumed before, may
in reality be 5-10 times slower.

This technique allows us to hide the details of the server’s implementation. Users will never see ports
in the URLs (more on that topic later). You can have a few boxes serving the requests, and only one
serving as a front end, which spreads the jobs between the servers in a way that you can control. You
can actually shut down a server, without the user even noticing, because the front end server will
dispatch the jobs to other servers. (This is called Load Balancing and it’s a pretty big issue which will
take a book on its own to cover and therefore will not be discussed here. There is a plenty of informa-
tion available at the Internet though. For more information see ’High-Availability Linux Project’)

29715 Feb 2014

12.5 Adding a Proxy Server in http Accelerator ModeChoosing the Right Strategy

For security reasons, using any httpd accelerator (or a proxy in httpd accelerator mode) is essential
because you do not let your internal server get directly attacked by arbitrary packets from whomever.
The httpd accelerator and internal server communicate in expected HTTP requests. This allows for
only your public "bastion" accelerating www server to get hosed in a successful attack, while leaving
your internal data safe.

This is true if your server runs on your localhost (127.0.0.1) which makes it impossible to connect to
you back end machine from the outside. But you don’t need to connect from the outside anymore. You
will see why when you proceed to this techniques’ implementation notes.

The disadvantages are:

Of course there are drawbacks. Luckily, these are not functionality drawbacks, but they are more
administration hassle. You have another daemon to worry about, and while proxies are generally
stable, you have to make sure to prepare proper startup and shutdown scripts, which are run at boot
and reboot as appropriate. This is something that you do once and never come back to this issue
again. Also, you might want to set up the crontab to run a watchdog script that will make sure that the
proxying server is running and restart it if it detects a problem, reporting the problem to the adminis-
trator on the way.

Proxy servers can be configured to be light or heavy. The administrator must decide what gives the
highest performance for his application. A proxy server like squid is light in the sense of having only
one process serving all requests. But it can consume a lot of memory when it loads objects into
memory for faster service.

If you use the default logging mechanism for all requests on the front- and back-end servers the
requests that will be forwarded to the back-end server will be logged twice, which makes it tricky to
merge the two logfiles, should you want to.

One solution is to tell the heavy Apache not to bother logging requests that seem to come from the
light Apache’s machine. You might do this by installing a custom PerlLogHandler or just piping
to access_log via grep -v (match all but this pattern) for the requests coming from the light
Apache server. In this scenario, the access_log written by the light Apache is the file you should
work with. But you need to look for any direct accesses to the heavy server in case the proxy server is
sometimes bypassed, which can be eliminated if the server is listening only to the localhost
(127.0.0.1).

If you still decide to log proxied requests at the back-end server they will be useless since instead of
real remote IP of the user, you will get always the same IP of the front-end server. Later in this
Chapter on page XXX (mod_proxy_add_forward) we present a solution for this problem.

Have I succeeded in convincing you that you want a proxy server?

Of course if you are on a very fast local area network (LAN) (which means that all your users are
connected from this LAN and not from the outside), then the big benefit of the proxy buffering the output
and feeding a slow client is gone. You are probably better off sticking with a straight mod_perl server in
this case.

15 Feb 2014298

12.5 Adding a Proxy Server in http Accelerator Mode

12.6 Implementations of Proxy Servers
As of this writing, two proxy implementations are known to be widely used with mod_perl, the squid
proxy server and mod_proxy which is a part of the Apache server. Let’s compare them.

12.6.1 The Squid Server

The Advantages:

Caching of static objects. These are served much faster, assuming that your cache size is big enough
to keep the most frequently requested objects in the cache.

Buffering of dynamic content, by taking the burden of returning the content generated by mod_perl
servers to slow clients, thus freeing mod_perl servers from waiting for the slow clients to download
the data. Freed servers immediately switch to serve other requests, thus your number of required
servers goes down dramatically.

Non-linear URL space / server setup. You can use Squid to play some tricks with the URL space
and/or domain based virtual server support.

The Disadvantages:

Proxying dynamic content is not going to help much if all the clients are on a fast local net. Also, by
default squid only buffers in 16KB chunks so it would not allow mod_perl to complete immediately
if the output is larger. (READ_AHEAD_GAP which is 16KB by default, can be enlarged in defines.h if
your OS allows that).

Speed. Squid is not very fast today when compared with the plain file based web servers available.
Only if you are using a lot of dynamic features such as mod_perl or similar is there a reason to use
Squid, and then only if the application and the server are designed with caching in mind.

Memory usage. Squid uses quite a bit of memory. In fact, it caches a good part of its content in
memory, to be able to serve it directly from RAM, a technique which is a lot quicker than serving
from disk. However, as you already have your mod_perl server caching its code in RAM, you might
not want another RAM-hogging beast taking up your precious memory (see the Squid FAQ for refer-
ence: http://www.squid-cache.org/Doc/FAQ/FAQ-8.html).

HTTP protocol level. Squid is pretty much a HTTP/1.0 server, which seriously limits the deploy-
ment of HTTP/1.1 features, such as Keep-Alive requests.

HTTP headers, dates and freshness. The squid server might give out stale pages, confusing down-
stream/client caches. (You update some documents on the site, but squid will still serve the old ones.)

Stability. Compared to plain web servers, Squid is not the most stable.

29915 Feb 2014

12.6 Implementations of Proxy ServersChoosing the Right Strategy

http://www.squid-cache.org/Doc/FAQ/FAQ-8.html

The pros and cons presented above lead to the idea that you might want to use squid for its dynamic
content buffering features, but only if your server serves mostly dynamic requests. So in this situation,
when performance is the goal, it is better to have a plain Apache server serving static objects, and squid
proxying the mod_perl enabled server only.

For implementation details, see the sections Running One Webserver and Squid in httpd Accelerator Mode
and Running Two Webservers and Squid in httpd Accelerator Mode in the implementations chapter.

12.6.2 Apache’s mod_proxy

I do not think the difference in speed between Apache’s mod_proxy and squid is relevant for most sites,
since the real value of what they do is buffering for slow client connections. However, squid runs as a
single process and probably consumes fewer system resources.

The trade-off is that mod_rewrite is easy to use if you want to spread parts of the site across different back
end servers, while mod_proxy knows how to fix up redirects containing the back-end server’s idea of the
location. With squid you can run a redirector process to proxy to more than one back end, but there is a
problem in fixing redirects in a way that keeps the client’s view of both server names and port numbers in
all cases.

The difficult case is where you have DNS aliases that map to the same IP address and you want the redi-
rect to port 80 and the server is on a different port and you want to keep the specific name the browser has
already sent, so that it does not change in the client’s Location window.

The Advantages:

No additional server is needed. We keep the one plain plus one mod_perl enabled Apache servers. All
you need is to enable mod_proxy in the httpd_docs server and add a few lines to httpd.conf
file.

The ProxyPass and ProxyPassReverse directives allow you to hide the internal redirects, so if
http://example.com/modperl/ is actually http://localhost:81/modperl/ , it will
be absolutely transparent to the user. ProxyPass redirects the request to the mod_perl server, and
when it gets the response, ProxyPassReverse rewrites the URL back to the original one, e.g:

 ProxyPass /modperl/ http://localhost:81/modperl/
 ProxyPassReverse /modperl/ http://localhost:81/modperl/

It does mod_perl output buffering like squid does. See the Using mod_proxy notes for more details.

It even does caching. You have to produce correct Content-Length , Last-Modified and
Expires http headers for it to work. If some of your dynamic content does not change frequently,
you can dramatically increase performance by caching it with mod_proxy.

ProxyPass happens before the authentication phase, so you do not have to worry about authenticat-
ing twice.

15 Feb 2014300

12.6.2 Apache’s mod_proxy

http://example.com/modperl/
http://localhost:81/modperl/

Apache is able to accelerate secure HTTP requests completely, while also doing accelerated HTTP.
With Squid you have to use an external redirection program for that.

The latest (Apache 1.3.6 and later) Apache proxy accelerated module is reported to be very stable.

For implementation see the "Using mod_proxy" section in the implementation chapter.

12.6.3 Closing Lingering Connections with Lingerd

Because of some technical complications in TCP/IP, at the end of each client connection, it is not enough
for Apache to close the socket and forget about it; instead, it needs to spend about one second lingering on
the client. (More details can be found at http://httpd.apache.org/docs/misc/fin_wait_2.html)

Lingerd is a daemon (service) designed to take over the job of properly closing network connections from
an http server like Apache and immediately freeing it to handle a new connection.

lingerd can only do an effective job if HTTP Keep-Alive s are turned off; since Keep-Alive s are
useful for images, the recommended setup is to have lingerd serving mod_perl enabled Apache and
plain Apache for images and other static objects.

With a lingerd setup, you don’t have the proxy, so the buffering chain we have presented before for the
proxy setup is much shorter here:

FIGURE:

 | Apache Kernel |TCP/IP ‘o’
 | [mod_perl]=>[sendbuf] |======> /|\
 | | / \

Hence in this setup it becomes more important to have a big enough kernel send buffer.

With lingerd, a big enough kernel send buffer, and keep-alives off, the job of spoonfeeding the data to a
slow client is done by the OS kernel in the background. As a result, lingerd makes it possible to serve
the same load using considerably fewer Apache processes. This translates into a reduced load on the
server. It can be used as an alternative to the proxy setups we have seen so far.

For more information about lingerd see: http://www.iagora.com/about/software/lingerd/

12.7 When One Machine is not Enough for RDBMS
Database and mod_perl
Imagine a scenario where you start your business as a small service providing web-site. After a while your
business becomes very popular and at some point you understand that it has outgrown the capacity of your
machine. Therefore you decide to upgrade your current machine with lots of memory, the cutting edge
super expensive CPU and an ultra-fast hard disk. As a result the load goes back to normal but not for a
long, as the demand for your services keeps on growing and just a little time after you’ve upgraded your
machine, once again it cannot cope the load. Should you buy an even stronger and very expensive machine

30115 Feb 2014

12.7 When One Machine is not Enough for RDBMS Database and mod_perlChoosing the Right Strategy

http://httpd.apache.org/docs/misc/fin_wait_2.html
http://www.iagora.com/about/software/lingerd/

or start looking for another solution? Let’s explore the possible solution for this problem.

A typical web service consists of two main software components, the database server and the web server.

A typical user-server interaction consists of accepting the query parameters entered into an HTML form
and submitted to the web server by a user, converting these parameters into a database query, sending it to
the database server, accepting the results of the executed query, formatting them into a nice HTML page,
and sending it to a user’s Internet browser or another application that created the request (e.g. WAP).

This figure depicts the above description:

 1 2
 [] ====> [] ====> []
 [Client] [Apache Server] [Database Server]
 [] <==== [] <==== []
 4 3

This schema is known as a 3-tier architecture in the computing world.

A 3-tier architecture means splitting up several processes of your computing solution between different
machines.

Tier 1

The client, who will see the data on its screen and can give instructions to modify or process the data.
In our case, an Internet browser.

Tier 2

The application server, which does the actual processing of the data and sends it back to the client. In
our case, a mod_perl enabled Apache server.

Tier 3

The database server, which stores and retrieves all the data for the application server.

We are interested only in the second and the third tiers; we don’t specify user machine requirements, since
mod_perl is all about server side programming. The only thing the client should be able to do is to render
the generated HTML from the response, which any simple browser will do. Of course I’m not talking
about the case where you return some heavy Java applets, but that movie is screened in another theater.

12.7.1 Servers’ Requirements

Let’s first understand what kind of software the web and database servers are, what they need to run fast
and what implications they have on the rest of the system software.

The three important machine components are the hard disk, the amount of RAM and the CPU type.

15 Feb 2014302

12.7.1 Servers’ Requirements

Typically the mod_perl server is mostly RAM hungry, while the SQL database server mostly needs a very
fast hard-disk. Of course if your mod_perl process reads a lot from the disk (which is a quite infrequent
phenomenon) you will need a fast disk too. And if your database server has to do a lot of sorting of big
tables and do lots of big table joins, you will need a lot of RAM too.

If we would specify average "virtual" requirements for each machine, that’s what we’d get:

An "ideal" mod_perl machine:

 * HD: low-end (no real IO, mostly logging)
 * RAM: the more the better
 * CPU: medium to high (according to needs)

An "ideal" database server machine:

 * HD: high-end
 * RAM: large amounts (big joins, sorting of many records)
 small amounts (otherwise)
 * CPU: medium to high (according to needs)

12.7.2 The Problem

With the database and the httpd on the same machine, you have conflicting interests.

During peak loads, Apache will spawn more processes and use RAM that the database server might have
been using, or that the kernel was using on its behalf in the form of cache. You will starve your database
of resources at the time when it needs those resources the most.

Disk I/O contention is the biggest time issue. Adding another disk wouldn’t cut I/O times because the
database is the only one who does I/O - since mod_perl processes have all their code loaded in memory.
(I’m talking about code that does pure perl and SQL processing) so it’s clear that the DB is I/O and CPU
bounded (RAM only if there are big joins to make) and mod_perl CPU and mostly RAM bounded.

The problem exists, but it doesn’t mean that you cannot run the application and the web servers on the
same machine. There is a very high degree of parallelism in modern PC architecture. The I/O hardware is
helpful here. The machine can do many things while a SCSI subsystem is processing a command, or the
network hardware is writing a buffer over the wire.

If a process is not runnable (that is, it is blocked waiting for I/O or similar), it is not using significant CPU
time. The only CPU time that will be required to maintain a blocked process is the time it takes for the
operating system’s scheduler to look at the process, decide that it is still not runnable, and move on to the
next process in the list. This is hardly any time at all. If there are two processes and one of them is blocked
on I/O and the other is CPU bound, the blocked process is getting 0% CPU time, the runnable process is
getting 99.9% CPU time, and the kernel scheduler is using the remainder.

30315 Feb 2014

12.7.2 The ProblemChoosing the Right Strategy

12.7.3 The Solution

Adding another machine, which allows a set-up where both the database and the web servers run on their
own dedicated machines.

12.7.3.1 Pros

Hardware Requirements

That allows you to scale two requirements independently.

If your httpd processes are heavily weighted with respect to RAM consumption, you can easily add
another machine to accommodate more httpd processes, without changing your database machine.

If your database is CPU intensive, but your httpd doesn’t need much CPU time, you can get low end
machines for the httpd and a high end machine with a very fast CPU for the database server.

Scalability

Since your web server is not depending on the database server location any more, you can add more
web servers hitting the same database server, using the existing infrastructure.

Database Security

Once you have multiple web server boxes the backend database becomes a single point of failure so
it’s a good idea to shield it from direct Internet access, something you couldn’t do when you had both
servers on the same machine.

12.7.3.2 Cons

Network latency

A database request from a webserver to a database server running on the same machine uses UNIX
sockets, compared to the TCP/IP sockets used when the client submits the query from another
machine. UNIX sockets are very fast since all the communications happens within the same box,
eliminating network delays. TCP/IP sockets communication totally depends on the quality and the
speed of the network the two machines are connected with.

Basically, you can have almost the same client-server speed if you install a very fast and dedicated
network between the two machines. It might impose a cost of additional NICs but it’s probably
insignificant compared to the speed up you gain.

But even the normal network that you have would probably fit as well, because the networks delays
are probably much smaller than the time it takes to execute the query. In contrast to the previous
paragraph, you really want to test the added overhead, since the network can be quite slow especially
at the peak hours.

15 Feb 2014304

12.7.3 The Solution

How do you know what overhead is a significant one? All you have to measure is the average time
spent in the web server and the database server. If any of the two numbers is at least 20 times bigger than
the added overhead of the network you are all set.

To give you some numbers -- if your query takes about 20 milliseconds to process and only 1
millisecond to deliver the results, it’s good. If the delivery takes about half of the time the processing
takes you should start considering switching to a faster and/or dedicated network.

The consequences of a slow network can be quite bad. If the network is slow mod_perl processes
remain open waiting for data from the database server and eat even more RAM as new child processes pop
up to handle new requests. So the overall machine performance can be worse than it was originally
when you had just a single machine for both servers.

12.7.4 Three Machines Model

Since we are talking about using a dedicated machine for each server, you might consider adding a third
machine to do the proxy work; this will make your setup even more flexible since it will enable you to
proxy-pass all request to not just one mod_perl running box, but to many of them. It will enable you to do
load balancing if and when you need it.

Generally the proxy machine can be very light when it serves just a little traffic and mainly proxy-passes
to the mod_perl processes. Of course you can use this machine to serve the static content and then the
hardware requirement will depend on the number of objects you will have to serve and the rate at which
they are requested.

12.8 Running More than One mod_perl Server on the Same
Machine.
Let’s assume that you have two different sets of code which have little or nothing in common--different
Perl modules, no code sharing. Typical numbers can be four megabytes of unshared and four megabytes of
shared memory for each code set, plus three megabytes of shared basic mod_perl stuff. Which makes each
process 17MB in size when the two code sets are loaded. (3MB (server core shared) + 4MB (shared 1st
code set) + 4MB (unshared 1st code set) + 4MB (shared 2nd code set) + 4MB (unshared 2nd code set).
Under this scenario:

 Shared_RAM_per_Child : 11MB
 Max_Process_Size : 17MB
 Total_RAM : 251MB

We assume that four megabytes is the size of each code sets unshared memory. This is a pretty typical size
of unshared memory, especially when connecting to databases, as the database connections cannot be
shared. Databases like Oracle can take even more RAM per connection on top of this.

Let’s assume that we have 251 megabytes of RAM dedicated to the webserver.

30515 Feb 2014

12.8 Running More than One mod_perl Server on the Same Machine.Choosing the Right Strategy

According to the equation developed in the section: "Choosing MaxClients":

 Total_RAM - Shared_RAM_per_Child
 MaxClients = ---------------------------------------
 Max_Process_Size - Shared_RAM_per_Child

 MaxClients = (251 - 11)/(17-11) = 40

We see that we can run 40 processes, using the given memory and the two code sets in the same server.

Now consider this practical decision. Since we have recognized that the code sets are very distinct in
nature and there is no significant memory sharing in place, the wise thing to do is to split the two code sets
between two mod_perl servers (a single mod_perl server actually is a set of the parent process and a
number of the child processes). So instead of running everything on one server, now we move the second
code set onto another mod_perl server. At this point we are talking about a single machine.

Let’s look at the figures again. After the split we will have 20 servers of eleven megabytes (4MB unshared
+ 7mb shared) and another 20 more of the same kind.

How much memory do we need now? From the above equation we derive:

 Total_RAM = MaxClients * (Max_Process_Size - Shared_RAM_per_Child)
 + Shared_RAM_per_Child

And using the numbers (the total of 40 servers):

 Total_RAM = 2 * (20*(11-7)+7) = 174

A total of 174MB of memory required. But, hey, we have 251MB of memory. We’ve got 77MB of
memory freed up. If we recalculate again the MaxClients we will see that we can run almost 60
servers:

 MaxClients = (251 - 7*2)/(11-7) = 59

So we can run about 19 more servers using the same memory size. Almost 30 servers for each code set
instead of 20 originally. We have enlarged the servers pool by half without changing the machine’s hard-
ware.

Moreover this new setup allows us to fine tune the two code sets, since in reality the smaller in size code
base might have a higher hit rate, so we can benefit even more.

Let’s assume that based on the usage statistics we know that the first code set is called in 70% of requests
and the other 30% are used by the second set. Now we assume that the first code set requires only 5MB of
RAM (3MB shared plus 2MB unshared) over the basic mod_perl server size, and the second set needs
11MBytes (7MB shared and 4MB unshared).

Lets compare this new requirement with our original 50:50 setup (here we have assigned the same number
of clients for each code set).

15 Feb 2014306

12.8 Running More than One mod_perl Server on the Same Machine.

So now the first mod_perl server running the first code set will have all its processes using 8MB (3MB
(server shared) + 3MB (code shared) + 2MB (code unshared), and the second 14MB (3+7+4). Given that
we have a 70:30 hits relation and that we have 251MB of available memory, we have to solve these two
equations:

 X/Y = 7/3

 X*(8-6) + 6 + Y*(14-10) + 10 = 251

where X is the total number of the processes the first code set can use and Y the second. The first equation
reflect the 70:30 hits relation, and the second uses the equation for the total memory requirements for the
given number of servers and the shared and unshared memory sizes.

When we solve these equations, we find that X equals 63 and Y equals 27. So we have a total of 90 servers
-- two and a half times the number of servers running compared to the original setup using the same
memory size.

The hits rate optimized solution and the fact that the code sets can be different in their memory require-
ments, allowed us to run 30 more servers in total and gave us 33 more servers (63 versus 30) for the most
wanted code base, relative to the simple 50:50 split as in the first example.

Of course if you identify more than two distinct sets of code based on your hit rate statistics, more compli-
cated solutions may be required. You could make even more splits and run three or more mod_perl
servers.

Remember that having too many running processes doesn’t necessarily mean better performance because
all of them will contend for CPU time slices. The more processes that are running the less CPU time each
gets and the slower overall performance will be. Therefore after hitting a certain load you might want to
start spreading servers over different machines.

In addition to the obvious memory saving you gain the power to troubleshoot problems that occur more
easily when you have different components running on different servers. It’s quite possible that a small
change in the server configuration to fix or improve something for one code set, might completely break
the second code set. For example if you upgrade the first code set and it requires an update of some
modules that both code bases rely on. But there is a chance that the second code set won’t work with a
new version of a module it was relying on.

12.9 SSL functionality and a mod_perl Server
If you need SSL functionality, you can get it by adding the mod_ssl or equivalent Apache_ssl to the light
front-end server (httpd_docs) or the heavy back-end mod_perl server (httpd_perl). (The configuration and
installation instructions are located here.)

The question is: Is it a good idea to add mod_ssl into the back-end mod_perl enabled server? Given that
your internal network is secured, or if both the front and back end servers are running on the same
machine and you can ensure a safe communication between the processes, there is no need for an
encrypted traffic between them.

30715 Feb 2014

12.9 SSL functionality and a mod_perl ServerChoosing the Right Strategy

If this is the situation you don’t have to put mod_ssl into the already too heavy mod_perl server. You will
have the external traffic encrypted by the front-end server, which will proxy-pass the unencrypted request
and response data internally.

Another important point is if you put the mod_ssl on the back-end, you have to tunnel back your images to
it (i.e. have the back-end serve the images) defeating the whole purpose of having the front-end
lightweight server.

You cannot serve a secure page which includes non-secured information. If you fetch an html page over
SSL and have an tag that fetches the image from the non-secure server, the image is shown
broken. This is true for any other non-secured objects as well. Of course if the generated response doesn’t
include any embedded objects, like images -- this is not a problem.

Choosing the front-end machine to have an SSL functionality also simplifies configuration of mod_perl by
eliminating VirtualHost duplication for SSL. mod_perl configuration files can be plenty difficult without
the mod_ssl overhead.

Also assuming that you have front-end machines under-worked anyway, especially if you run a
high-volume web service deploying a cluster of machines to serve requests, you save some CPU as it’s
known that SSL connections are about 100 times more CPU intensive than non-SSL connections.

Of course caching session keys so you don’t have to set up a new symmetric key for every single connec-
tion, improves the situation. If you use the shared memory session caching mechanism that mod_ssl
supports, then the overhead is actually rather small except for the initial connection.

But then on the other hand, why even bother to run a full scale mod_ssl in front? You might as well just
choose a small tunnel/port forwarding application like Stunnel or one of the many other mentioned at
http://www.openssl.org/related/apps.html .

Of course if you do heavy SSL processing ideally you should really be offloading it to a dedicated cryp-
tography server. But this advice can be misleading based on the current status of the crypto hardware. If
you use hardware you get extra speed now, but you’re locked into a proprietary solution; in 6 months/one
year software will have caught up with whatever hardware you’re using and because software is easier to
adapt you’ll have more freedom to change what software you’re using and more control of things. So the
choice is in your hand.

12.10 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

15 Feb 2014308

12.10 Maintainers

http://www.openssl.org/related/apps.html
http://stason.org/

12.11 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

30915 Feb 2014

12.11 AuthorsChoosing the Right Strategy

http://stason.org/

13 Real World Scenarios

15 Feb 2014310

13 Real World Scenarios

13.1 Description
This chapter provides a step-by-step installation guide for the various setups discussed in Choosing the
Right Strategy.

13.2 Assumptions
I will assume for this section that you are familiar with plain (not mod_perl enabled) Apache, its compila-
tion and configuration. In all configuration and code examples I will use localhost or www.example.com as
a hostname. For the testing on a local machine, localhost would be just fine. If you are using the real name
of your machine make sure to replace www.example.com with the name of your machine.

13.3 Standalone mod_perl Enabled Apache Server

13.3.1 Installation in 10 lines

The Installation is very simple. This example shows installation on the Linux operating system.

 % cd /usr/src
 % lwp-download http://www.apache.org/dist/apache_x.x.x.tar.gz
 % lwp-download http://apache.org/dist/perl/mod_perl-x.xx.tar.gz
 % tar xzvf apache_x.x.x.tar.gz
 % tar xzvf mod_perl-x.xx.tar.gz
 % cd mod_perl-x.xx
 % perl Makefile.PL APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_x.x.x
 % make install

That’s all!

Notes: Replace x.xx and x.x.x with the real version numbers of mod_perl and Apache respectively. The z
flag tells Gnu tar to uncompress the archive as well as extract the files. You might need superuser
permissions to do the make install steps.

13.3.2 Installation in 10 paragraphs

If you have the lwp-download utility installed, you can use it to download the sources of both pack-
ages:

 % lwp-download http://www.apache.org/dist/apache_x.x.x.tar.gz
 % lwp-download http://apache.org/dist/perl/mod_perl-x.xx.tar.gz

lwp-download is a part of the LWP module (from the libwww package), and you will need to have it
installed in order for mod_perl’s make test step to pass.

31115 Feb 2014

13.1 DescriptionReal World Scenarios

Extract both sources. Usually I open all the sources in /usr/src/, but your mileage may vary. So move the
sources and chdir to the directory that you want to put the sources in. If you have a non-GNU tar
utility it will be unable to decompress so you will have to unpack in two steps: first uncompress the pack-
ages with:

 gzip -d apache_x.x.x.tar.gz
 gzip -d mod_perl-x.xx.tar.gz

then un-tar them with:

 tar xvf apache_x.x.x.tar
 tar xvf mod_perl-x.xx.tar

You can probably use gunzip instead of gzip -d if you prefer.

 % cd /usr/src
 % tar xzvf apache_x.x.x.tar.gz
 % tar xzvf mod_perl-x.xx.tar.gz

chdir to the mod_perl source directory:

 % cd mod_perl-x.xx

Now build the Makefile. For your first installation and most basic work the parameters in the example
below are the only ones you will need. APACHE_SRC tells the Makefile.PL where to find the Apache src
directory. If you have followed my suggestion and have extracted both sources under the directory
/usr/src, then issue the command:

 % perl Makefile.PL APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

There are many additional optional parameters. You can find some of them later in this section and in the
Server Configuration section.

While running perl Makefile.PL ... the process will check for prerequisites and tell you if some-
thing is missing. If you are missing some of the perl packages or other software, you will have to install
them before you proceed.

Next make the project. The command make builds the mod_perl extension and also calls make in the
Apache source directory to build httpd . Then we run the test suite, and finally install the mod_perl
modules in their proper places.

 % make && make test && make install

Note that if make fails, neither make test nor make install will be executed. If make test
fails, make install will be not executed.

Now change to the Apache source directory and run make install . This will install Apache’s headers,
default configuration files, build the Apache directory tree and put httpd in it.

15 Feb 2014312

13.3.2 Installation in 10 paragraphs

 % cd ../apache_x.x.x
 % make install

When you execute the above command, the Apache installation process will tell you how to start a freshly
built webserver (you need to know the path of apachectl , more about that later) and where to find the
configuration files. Write down both, since you will need this information very soon. On my machine the
two important paths are:

 /usr/local/apache/bin/apachectl
 /usr/local/apache/conf/httpd.conf

Now the build and installation processes are complete.

13.3.3 Configuration

First, a simple configuration. Configure Apache as you usually would (set Port , User , Group , Error-
Log , other file paths etc).

Start the server and make sure it works, then shut it down. The apachectl utility can be used to start
and stop the server:

 % /usr/local/apache/bin/apachectl start
 % /usr/local/apache/bin/apachectl stop

Now we will configure Apache to run perl CGI scripts under the Apache::Registry handler.

You can put configuration directives in a separate file and tell httpd.conf to include it, but for now we will
simply add them to the main configuration file. We will add the mod_perl configuration directives to the
end of httpd.conf. In fact you can place them anywhere in the file, but they are easier to find at the end.

For the moment we will assume that you will put all the scripts which you want to be executed by the
mod_perl enabled server under the directory /home/httpd/perl. We will alias this directory to the URI /perl

Add the following configuration directives to httpd.conf:

 Alias /perl/ /home/httpd/perl/

 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 allow from all
 </Location>

Now create a four-line test script in /home/httpd/perl/:

31315 Feb 2014

13.3.3 ConfigurationReal World Scenarios

 test.pl

 #!/usr/bin/perl -w
 use strict;
 print "Content-type: text/html\r\n\r\n";
 print "It worked!!!\n";

Note that the server is probably running as a user with a restricted set of privileges, perhaps as user
nobody or www. Look for the User directive in httpd.conf to find the userid of the server.

Make sure that you have read and execute permissions for test.pl.

 % chmod u+rx /home/httpd/perl/test.pl

Test that the script works from the command line, by executing it:

 % /home/httpd/perl/test.pl

You should see:

 Content-type: text/html

 It worked!!!

Assuming that the server’s userid is nobody , make the script owned by this user. We already made it
executable and readable by user.

 % chown nobody /home/httpd/perl/test.pl

Now it is time to test that mod_perl enabled Apache can execute the script.

Start the server (’apachectl start ’). Check in logs/error_log to see that the server has indeed
started--verify the correct date and time of the log entry.

To get Apache to execute the script we simply fetch its URI. Assuming that your httpd.conf has been
configured with the directive Port 80 , start your favorite browser and fetch the following URI:

 http://www.example.com/perl/test.pl

If you have the loop-back device (127.0.0.1) configured, you can use the URI:

 http://localhost/perl/test.pl

In either case, you should see:

 It worked!!!

If your server is listening on a port other than 80, for example 8000, then fetch the URI:

 http://www.example.com:8000/perl/test.pl

15 Feb 2014314

13.3.3 Configuration

or whatever is appropriate.

If something went wrong, go through the installation process again, and make sure you didn’t make a
mistake. If that doesn’t help, read the INSTALL pod document (perlpod INSTALL) in the mod_perl
distribution directory.

Now that your mod_perl server is working, copy some of your Perl CGI scripts into the directory
/home/httpd/perl/ or below it.

If your programming techniques are good, chances are that your scripts will work with no modifications at
all. With the mod_perl enabled server you will see them working very much faster.

If your programming techniques are sloppy, some of your scripts will not work and they may exhibit
strange behaviour. Depending on the degree of sloppiness they may need anything from minor tweaking to
a major rewrite to make them work properly. (See Sometimes My Script Works, Sometimes It Does Not)

The above setup is very basic, but as with Perl, you can start to benefit from mod_perl from the very first
moment you try it. As you become more familiar with mod_perl you will want to start writing Apache
handlers and make more use of its power.

13.4 One Plain and One mod_perl enabled Apache Servers
Since we are going to run two Apache servers we will need two complete (and different) sets of configura-
tion, log and other files. In this scenario we’ll use a dedicated root directory for each server, which is a
personal choice. You can choose to have both servers living under the same roof, but it might lead to a
mess, since it requires a slightly more complicated configuration. This decision might be nice since you
will be able to share some directories like include (which contains Apache headers), but in fact this can
become a problem later, when you decide to upgrade one server but not the other. You will have to solve
this problem then, so why not to avoid it in first place.

From now on we will refer to these two servers as httpd_docs (plain Apache) and httpd_perl
(Apache/mod_perl). We will use /usr/local as our root directory.

First let’s prepare the sources. We will assume that all the sources go into the /usr/src directory. Since you
will probably want to tune each copy of Apache separately, it is better to use two separate copies of the
Apache source for this configuration. For example you might want only the httpd_docs server to be built
with the mod_rewrite module.

Having two independent source trees will prove helpful unless you use dynamically shared objects (DSO)
which is covered later in this chapter.

Make two subdirectories:

 % mkdir /usr/src/httpd_docs
 % mkdir /usr/src/httpd_perl

31515 Feb 2014

13.4 One Plain and One mod_perl enabled Apache ServersReal World Scenarios

Next put a set of the Apache sources into the /usr/src/httpd_docs directory (replace the directory /tmp with
the path to the downloaded file and x.x.x with the version of Apache that you have downloaded):

 % cd /usr/src/httpd_docs
 % gzip -dc /tmp/apache_x.x.x.tar.gz | tar xvf -

or if you have GNU tar:

 % tar xvzf /tmp/apache_x.x.x.tar.gz

Just to check we have extracted in the right way:

 % ls -l
 drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 apache_x.x.x/

Now prepare the httpd_perl server sources:

 % cd /usr/src/httpd_perl
 % gzip -dc /tmp/apache_x.x.x.tar.gz | tar xvf -
 % gzip -dc /tmp/modperl-x.xx.tar.gz | tar xvf -

 % ls -l
 drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 apache_x.x.x/
 drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 modperl-x.xx/

We are going to use a default Apache directory layout, and place each server directories under its dedi-
cated directory. The two directories are as you have already guessed:

 /usr/local/httpd_perl/
 /usr/local/httpd_docs/

The next step is to configure and compile the sources: Below are the procedures to compile both servers,
using the directory layout I have just suggested.

13.4.1 Configuration and Compilation of the Sources.

As usual we use x.x.x instead of real version numbers so this document will never become obsolete. But
the most important thing -- it’s not misleading. It’s quite possible that since the moment this document
was written a new version has come out and you will be not aware of this fact if you will not check for it.

13.4.1.1 Building the httpd_docs Server

Sources Configuration:

 % cd /usr/src/httpd_docs/apache_x.x.x
 % make clean
 % ./configure --prefix=/usr/local/httpd_docs \
 --enable-module=rewrite --enable-module=proxy

We need the mod_rewrite and mod_proxy modules as we will see later, so we tell ./configure to build
them in.

15 Feb 2014316

13.4.1 Configuration and Compilation of the Sources.

You might want to add --layout to see the resulting directories’ layout without actually running
the configuration process.

Source Compilation and Installation

 % make
 % make install

Rename httpd to http_docs :

 % mv /usr/local/httpd_docs/bin/httpd \
 /usr/local/httpd_docs/bin/httpd_docs

Now modify the apachectl utility to point to the renamed httpd via your favorite text editor or by
using perl:

 % perl -pi -e ’s|bin/httpd|bin/httpd_docs|’ \
 /usr/local/httpd_docs/bin/apachectl

Another approach would be to use the --target option while configuring the source, which makes the last
two commands unnecessary.

 % ./configure --prefix=/usr/local/httpd_docs \
 --target=httpd_docs \
 --enable-module=rewrite --enable-module=proxy
 % make && make install

Since we told ./configure that we want the executable to be called httpd_docs (via
--target=httpd_docs) -- it performs all the naming adjustment for us.

The only thing that you might find unusual, is that apachectl will be now called httpd_docsctl and the
configuration file httpd.conf now will be called httpd_docs.conf.

We will leave the decision making about the preferred configuration and installation way to the reader. In
the rest of the guide we will continue using the regular names resulted from using the standard configura-
tion and the manual executable name adjustment as described at the beginning of this section .

13.4.1.2 Building the httpd_perl Server

Now we proceed with the sources configuration and installation of the httpd_perl server. First make sure
the sources are clean:

 % cd /usr/src/httpd_perl/apache_x.x.x
 % make clean
 % cd /usr/src/httpd_perl/mod_perl-x.xx
 % make clean

It is important to make clean since some of the versions are not binary compatible (e.g apache 1.3.3 vs
1.3.4) so any "third-party" C modules need to be re-compiled against the latest header files.

31715 Feb 2014

13.4.1 Configuration and Compilation of the Sources.Real World Scenarios

 % cd /usr/src/httpd_perl/mod_perl-x.xx

 % /usr/bin/perl Makefile.PL \
 APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
 APACHE_PREFIX=/usr/local/httpd_perl \
 APACI_ARGS=’--prefix=/usr/local/httpd_perl’

If you need to pass any other configuration options to Apache’s configure , add them after the --prefix
option. e.g:

 APACI_ARGS=’--prefix=/usr/local/httpd_perl \
 --enable-module=status’

Notice that all APACI_ARGS (above) must be passed as one long line if you work with t?csh !!!
However with (ba)?sh it works correctly the way it is shown above, breaking the long lines with ’\ ’.
As of tcsh version 6.08.0, when it passes the APACI_ARGS arguments to configure it does not alter
the newlines, but it strips the backslashes, thus breaking the configuration process.

Notice that just like in httpd_docs configuration you can use --target=httpd_perl instead of speci-
fying each directory separately. Note that this option has to be the very last argument in APACI_ARGS,
otherwise ’make test’ tries to run ’httpd_perl’ , which fails.

[META: It’s very important to use the same compiler you build the perl with. See the section ’What
Compiler Should Be Used to Build mod_perl’ for more information.

[META: --- Hmm, what’s the option that overrides the compiler when building Apache from mod_perl.
Check also whether mod_perl supplies the right compiler (the one used for building itself) -- if it does
there is no need for the above note.]

Now, build, test and install the httpd_perl .

 % make && make test && make install

Upon installation Apache puts a stripped version of httpd at /usr/local/httpd_perl/bin/httpd. The original
version which includes debugging symbols (if you need to run a debugger on this executable) is located at
/usr/src/httpd_perl/apache_x.x.x/src/httpd.

You may have noticed that we did not run make install in the Apache source directory. When
USE_APACI is enabled, APACHE_PREFIX will specify the --prefix option for Apache’s config-
ure utility, which gives the installation path for Apache. When this option is used, mod_perl’s make
install will also make install for Apache, installing the httpd binary, the support tools, and the
configuration, log and document trees. If this option is not used you will have to explicitly run make
install in the Apache source directory.

If make test fails, look into /usr/src/httpd_perl/mod_perl-x.xx/t/logs and read the error_log file. Also
see make test fails.

15 Feb 2014318

13.4.1 Configuration and Compilation of the Sources.

While doing perl Makefile.PL ... mod_perl might complain by warning you about a missing
library libgdbm . This is a crucial warning. See Missing or Misconfigured libgdbm.so for more info.

Now rename httpd to httpd_perl :

 % mv /usr/local/httpd_perl/bin/httpd \
 /usr/local/httpd_perl/bin/httpd_perl

Update the apachectl utility to drive the renamed httpd:

 % perl -p -i -e ’s|bin/httpd|bin/httpd_perl|’ \
 /usr/local/httpd_perl/bin/apachectl

13.4.2 Configuration of the servers

Now when we have completed the building process, the last stage before running the servers is to config-
ure them.

13.4.2.1 Basic httpd_docs Server Configuration

Configuring of the httpd_docs server is a very easy task. Starting from version 1.3.4 of Apache, there
is only one file to edit. Open /usr/local/httpd_docs/conf/httpd.conf in your favorite text editor and config-
ure it as you usually would, except make sure that you configure the log file directory
(/usr/local/httpd_docs/logs and so on) and the other paths according to the layout you have decided to use.

Start the server with:

 /usr/local/httpd_docs/bin/apachectl start

13.4.2.2 Basic httpd_perl Server Configuration

Edit the /usr/local/httpd_perl/conf/httpd.conf. As with the httpd_docs server configuration, make sure
that ErrorLog and other file location directives are set to point to the right places, according to the
chosen directory layout.

The first thing to do is to set a Port directive - it should be different from that used by the plain Apache
server (Port 80) since we cannot bind two servers to the same port number on the same machine. Here
we will use 8080 . Some developers use port 81 , but you can bind to ports below 1024 only if the server
has root permissions. If you are running on a multiuser machine, there is a chance that someone already
uses that port, or will start using it in the future, which could cause problems. If you are the only user on
your machine, basically you can pick any unused port number. Many organizations use firewalls which
may block some of the ports, so port number choice can be a controversial topic. From my experience the
most popular port numbers are: 80 , 81 , 8000 and 8080 . Personally, I prefer the port 8080 . Of course
with the two server scenario you can hide the nonstandard port number from firewalls and users, by using
either mod_proxy’s ProxyPass directive or a proxy server like Squid.

31915 Feb 2014

13.4.2 Configuration of the serversReal World Scenarios

For more details see Publishing Port Numbers other than 80, Running One Webserver and Squid in httpd
Accelerator Mode, Running Two Webservers and Squid in httpd Accelerator Mode and Using mod_proxy.

Now we proceed to the mod_perl specific directives. It will be a good idea to add them all at the end of
httpd.conf , since you are going to fiddle with them a lot in the early stages.

First, you need to specify the location where all mod_perl scripts will be located.

Add the following configuration directive:

 # mod_perl scripts will be called from
 Alias /perl/ /usr/local/httpd_perl/perl/

From now on, all requests for URIs starting with /perl will be executed under mod_perl and will be
mapped to the files in /usr/local/httpd_perl/perl/.

Now we configure the /perl location.

 PerlModule Apache::Registry

 <Location /perl>
 #AllowOverride None
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

This configuration causes any script that is called with a path prefixed with /perl to be executed under the
Apache::Registry module and as a CGI (hence the ExecCGI --if you omit this option the script will
be printed to the user’s browser as plain text or will possibly trigger a ’Save-As’ window). The
Apache::Registry module lets you run your (carefully written) Perl CGI scripts virtually unchanged
under mod_perl. The PerlModule directive is the equivalent of Perl’s require(). We load the
Apache::Registry module before we use it by giving the PerlHandler Apache::Registry
directive.

PerlSendHeader On tells the server to send an HTTP header to the browser on every script invoca-
tion. You will want to turn this off for nph (non-parsed-headers) scripts.

This is only a very basic configuration. The Server Configuration section covers the rest of the details.

Now start the server with:

 /usr/local/httpd_perl/bin/apachectl start

15 Feb 2014320

13.4.2 Configuration of the servers

13.5 Running Two webservers and Squid in httpd Accelera-
tor Mode
While I have detailed the mod_perl server installation, you are on your own with installing the Squid
server (See Getting Helped for more details). I run Linux, so I downloaded the RPM package, installed it,
configured the /etc/squid/squid.conf, fired off the server and all was set.

Basically once you have Squid installed, you just need to modify the default squid.conf as I will
explain below, then you are ready to run it.

The configuration that I’m going to present works with Squid server version 2.3.STABLE2. It’s possible
that some directives will change in future versions.

First, let’s take a look at what we have already running and what we want from squid.

Previously we have had the httpd_docs and httpd_perl servers listening on ports 80 and 8080.
Now we want squid to listen on port 80, to forward requests for static objects (plain HTML pages, images
and so on) to the port which the httpd_docs server listens to, and dynamic requests to httpd_perl’s port.
And of course collecting the generated responses, which will be delivered to the client by Squid. As
mentioned before this mode is known as httpd-accelerator mode in proxy dialect.

Therefore we have to reconfigure the httpd_docs server to listen to port 81 instead, since port 80 will be
taken by Squid. Remember that in our scenario both copies of Apache will reside on the same machine as
Squid.

A proxy server makes all the magic behind it transparent to users. Both Apache servers return the data to
Squid (unless it was already cached by Squid). The client never sees the other ports and never knows that
there might be more than one server running. Do not confuse this scenario with mod_rewrite , where a
server redirects the request somewhere according to the rewrite rules and forgets all about it. (i.e. works as
a one way dispatcher, which dispatches the jobs but is not responsible for.)

Squid can be used as a straightforward proxy server. ISPs and other companies generally use it to cut
down the incoming traffic by caching the most popular requests. However we want to run it in httpd
accelerator mode . Two directives (httpd_accel_host and httpd_accel_port) enable this
mode. We will see more details shortly.

If you are currently using Squid in the regular proxy mode, you can extend its functionality by running
both modes concurrently. To accomplish this, you can extend the existing Squid configuration with httpd
accelerator mode’s related directives or you can just create one from scratch.

Let’s go through the changes we should make to the default configuration file. Since the file with default
settings (/etc/squid/squid.conf) is huge (about 60KB) and we will not alter 95% of its default settings, my
suggestion is to write a new one including only the modified directives.

We want to enable the redirect feature, to be able to serve requests by more than one server (in our case we
have two: the httpd_docs and httpd_perl servers). So we specify httpd_accel_host as virtual. This
assumes that your server has multiple interfaces - Squid will bind to all of them.

32115 Feb 2014

13.5 Running Two webservers and Squid in httpd Accelerator ModeReal World Scenarios

 httpd_accel_host virtual

Then we define the default port the requests will be sent to, unless redirected. We assume that most
requests will be for static documents (also it’s easier to define redirect rules for the mod_perl server
because of the URI that starts with perl or similar). We have our httpd_docs listening on port 81:

 httpd_accel_port 81

And as described before, squid listens to port 80.

 http_port 80

We do not use icp (icp is used for cache sharing between neighboring machines, which is more relevant
in the proxy mode).

 icp_port 0

hierarchy_stoplist defines a list of words which, if found in a URL, causes the object to be
handled directly by the cache. Since we told Squid in the previous directive that we aren’t going to share
the cache between neighboring machines this directive is irrelevant. In case that you do use this feature,
make sure to set this directive to something like:

 hierarchy_stoplist /cgi-bin /perl

where the /cgi-bin and /perl are aliases for the locations which handle the dynamic requests.

Now we tell Squid not to cache dynamically generated pages.

 acl QUERY urlpath_regex /cgi-bin /perl
 no_cache deny QUERY

Please note that the last two directives are controversial ones. If you want your scripts to be more compli-
ant with the HTTP standards, according to the HTTP specification the headers of your scripts should carry
the Caching Directives: Last-Modified and Expires .

What are they for? If you set the headers correctly, there is no need to tell the Squid accelerator NOT to
try to cache anything. Squid will not bother your mod_perl servers a second time if a request is (a)
cacheable and (b) still in the cache. Many mod_perl applications will produce identical results on identical
requests if not much time has elapsed between the requests. So your Squid might have a hit ratio of 50%,
which means that the mod_perl servers will have only half as much work to do as they did before you
installed Squid (or mod_proxy).

Even if you insert a user-ID and date in your page, caching can save resources when you set the expiration
time to 1 second. A user might double click where a single click would do, thus sending two requests in
parallel. Squid could serve the second request.

But this is only possible if you set the headers correctly. Refer to the chapter Correct Headers - A quick
guide for mod_perl users to learn more about generating the proper caching headers under mod_perl. In
case where only the scripts under /perl/caching-unfriendly are not caching friendly fix the above setting to
be:

15 Feb 2014322

13.5 Running Two webservers and Squid in httpd Accelerator Mode

 acl QUERY urlpath_regex /cgi-bin /perl/caching-unfriendly
 no_cache deny QUERY

But if you are lazy, or just have too many things to deal with, you can leave the above directives the way
we described. Just keep in mind that one day you will want to reread this section and the headers genera-
tion tutorial to squeeze even more power from your servers without investing money in more memory and
better hardware.

While testing you might want to enable the debugging options and watch the log files in the directory
/var/log/squid/. But make sure to turn debugging off in your production server. Below we show it
commented out, which makes it disabled, since it’s disabled by default. Debug option 28 enables the
debugging of the access control routes, for other debug codes see the documentation embedded in the
default configuration file that comes with squid.

 # debug_options 28

We need to provide a way for Squid to dispatch requests to the correct servers. Static object requests
should be redirected to httpd_docs unless they are already cached, while requests for dynamic documents
should go to the httpd_perl server. The configuration below tells Squid to fire off 10 redirect daemons at
the specified path of the redirect daemon and (as suggested by Squid’s documentation) disables rewriting
of any Host: headers in redirected requests. The redirection daemon script is listed below.

 redirect_program /usr/lib/squid/redirect.pl
 redirect_children 10
 redirect_rewrites_host_header off

The maximum allowed request size is in kilobytes, which is mainly useful during PUT and POST requests.
A user who attempts to send a request with a body larger than this limit receives an "Invalid Request"
error message. If you set this parameter to a zero, there will be no limit imposed. If you are using POST to
upload files, then set this to the largest file’s size plus a few extra KB.

 request_body_max_size 1000 KB

Then we have access permissions, which we will not explain. You might want to read the documentation,
so as to avoid any security problems.

 acl all src 0.0.0.0/0.0.0.0
 acl manager proto cache_object
 acl localhost src 127.0.0.1/255.255.255.255
 acl myserver src 127.0.0.1/255.255.255.255
 acl SSL_ports port 443 563
 acl Safe_ports port 80 81 8080 81 443 563
 acl CONNECT method CONNECT

 http_access allow manager localhost
 http_access allow manager myserver
 http_access deny manager
 http_access deny !Safe_ports
 http_access deny CONNECT !SSL_ports
 # http_access allow all

32315 Feb 2014

13.5 Running Two webservers and Squid in httpd Accelerator ModeReal World Scenarios

Since Squid should be run as a non-root user, you need these if you are invoking the Squid as root. The
user squid is created when the Squid server is installed.

 cache_effective_user squid
 cache_effective_group squid

Now configure a memory size to be used for caching. The Squid documentation warns that the actual size
of Squid can grow to be three times larger than the value you set.

 cache_mem 20 MB

We want to keep pools of allocated (but unused) memory available for future use if we have the memory
available of course. Otherwise turn it off.

 memory_pools on

Now tighten the runtime permissions of the cache manager CGI script (cachemgr.cgi , which comes
bundled with squid) on your production server.

 cachemgr_passwd disable shutdown

If you are not using this script to manage the Squid server from remote, you should disable it:

 cachemgr_passwd disable all

Now the redirection daemon script (you should put it at the location you have specified in the redi-
rect_program parameter in the config file above, and make it executable by the webserver of course):

 #!/usr/local/bin/perl -p
 BEGIN{ $|=1 }
 s|www.example.com(?::81)?/perl/|www.example.com:8080/perl/|o ;

Here is what the regular expression from above does; it matches all the URIs that include either the string
www.example.com/perl/ or the string www.example.com:81/perl/ and replaces either of these strings with
www.example.com:8080/perl. No matter whether the regular expression worked or not, the $_ variable is
automagically printed.

We can write the above code as the following code as well:

 #!/usr/local/bin/perl

 $|=1;

 while (<>) {
 # redirect to mod_perl server (httpd_perl)
 print($_), next
 if s|www.example.com(:81)?/perl/|www.example.com:8080/perl/|o;

 # send it unchanged to plain apache server (http_docs)
 print;
 }

15 Feb 2014324

13.5 Running Two webservers and Squid in httpd Accelerator Mode

The above redirector can be more complex of course, but you know Perl, right?

A few notes regarding the redirector script:

You must disable buffering. $|=1; does the job. If you do not disable buffering, STDOUT will be flushed
only when its buffer becomes full--and its default size is about 4096 characters. So if you have an average
URL of 70 chars, only after about 59 (4096/70) requests will the buffer be flushed, and the requests will
finally reach the server. Your users will not wait that long, unless you have hundreds requests per second
and then the buffer will be flushed very frequently because it’ll get full very fast.

If you think that this is a very ineffective way to redirect, you should consider the following explanation.
The redirector runs as a daemon, it fires up N redirect daemons, so there is no problem with Perl inter-
preter loading. Exactly as with mod_perl, the perl interpreter is loaded all the time in memory and the code
has already been compiled, so the redirect is very fast (not much slower than if the redirector was written
in C). Squid keeps an open pipe to each redirect daemon, thus there is no overhead of the system calls.

Now it is time to restart the server, at linux I do it with:

 /etc/rc.d/init.d/squid restart

Now the Squid server setup is complete.

Almost... When you try the new setup, you will be surprised and upset to discover port 81 showing up in
the URLs of the static objects (like htmls). Hey, we did not want the user to see the port 81 and use it
instead of 80, since then it will bypass the squid server and the hard work we went through was just a
waste of time!

The solution is to make both squid and httpd_docs listen to the same port. This can be accomplished by
binding each one to a specific interface (so they are listening to different sockets). Modify
httpd_docs/conf/httpd.conf:

 Port 80
 BindAddress 127.0.0.1
 Listen 127.0.0.1:80

Now the httpd_docs server is listening only to requests coming from the local server. You cannot access it
directly from the outside. Squid becomes a gateway that all the packets go through on the way to the
httpd_docs server.

Modify squid.conf:

 http_port 80
 tcp_outgoing_address 127.0.0.1
 httpd_accel_host 127.0.0.1
 httpd_accel_port 80

Now restart the Squid and httpd_docs servers (it doesn’t matter which one you start first), and voila--the
port number has gone.

32515 Feb 2014

13.5 Running Two webservers and Squid in httpd Accelerator ModeReal World Scenarios

You must also have in the file /etc/hosts the following entry (chances are that it’s already there):

 127.0.0.1 localhost.localdomain localhost

Now if your scripts are generating HTML including fully qualified self references, using 8080 or the other
port, you should fix them to generate links to point to port 80 (which means not using the port at all in the
URI). If you do not do this, users will bypass Squid and will make direct requests to the mod_perl server’s
port. As we will see later just like with httpd_docs, the httpd_perl server can be configured to listen only to
requests coming from the localhost (with Squid forwarding these requests from the outside) and therefore
users will not be able to bypass Squid.

To save you some keystrokes, here is the whole modified squid.conf :

 http_port 80
 tcp_outgoing_address 127.0.0.1
 httpd_accel_host 127.0.0.1
 httpd_accel_port 80

 icp_port 0

 acl QUERY urlpath_regex /cgi-bin /perl
 no_cache deny QUERY

 # debug_options 28

 redirect_program /usr/lib/squid/redirect.pl
 redirect_children 10
 redirect_rewrites_host_header off

 request_body_max_size 1000 KB

 acl all src 0.0.0.0/0.0.0.0
 acl manager proto cache_object
 acl localhost src 127.0.0.1/255.255.255.255
 acl myserver src 127.0.0.1/255.255.255.255
 acl SSL_ports port 443 563
 acl Safe_ports port 80 81 8080 81 443 563
 acl CONNECT method CONNECT

 http_access allow manager localhost
 http_access allow manager myserver
 http_access deny manager
 http_access deny !Safe_ports
 http_access deny CONNECT !SSL_ports
 # http_access allow all

 cache_effective_user squid
 cache_effective_group squid

 cache_mem 20 MB

 memory_pools on

15 Feb 2014326

13.5 Running Two webservers and Squid in httpd Accelerator Mode

 cachemgr_passwd disable shutdown

Note that all directives should start at the beginning of the line, so if you cut and paste from the text make
sure you remove the leading whitespace from each line.

13.6 Running One Webserver and Squid in httpd Accelera-
tor Mode
When I was first told about Squid, I thought: "Hey, now I can drop the httpd_docs server and have just
Squid and the httpd_perl servers". Since all my static objects will be cached by squid, I do not need
the light httpd_docs server.

But I was a wrong. Why? Because I still have the overhead of loading the objects into Squid the first time.
If a site has many of them, unless a huge chunk of memory is devoted to Squid they won’t all be cached
and the heavy mod_perl server will still have the task of serving static objects.

How do we measure the overhead? The difference between the two servers is in memory consumption,
everything else (e.g. I/O) should be equal. So you have to estimate the time needed to fetch each static
object for the first time at a peak period and thus the number of additional servers you need for serving the
static objects. This will allow you to calculate the additional memory requirements. I imagine that this
amount could be significant in some installations.

So on for production servers I have decided to stick with the Squid, httpd_docs and httpd_perl scenario,
where I can optimize and fine tune everything. But if in your case there is almost no static objects to serve,
the httpd_docs server is definitely redundant. And all you need are the mod_perl server and Squid to
buffer the output from it.

If you want to proceed with this setup, install mod_perl enabled Apache and Squid. Then use a configura-
tion similar to the previous section, but now httpd_docs is not there anymore. Also we do not need the
redirector anymore and we specify httpd_accel_host as a name of the server and not virtual .
Because we do not redirect there is no need to bind two servers on the same port so there are neither Bind
nor Listen directives in httpd.conf.

The modified configuration for this simplified setup (see the explanations in the previous section):

 httpd_accel_host put.your.hostname.here
 httpd_accel_port 8080
 http_port 80
 icp_port 0

 acl QUERY urlpath_regex /cgi-bin /perl
 no_cache deny QUERY

 # debug_options 28

 # redirect_program /usr/lib/squid/redirect.pl
 # redirect_children 10
 # redirect_rewrites_host_header off

32715 Feb 2014

13.6 Running One Webserver and Squid in httpd Accelerator ModeReal World Scenarios

 request_body_max_size 1000 KB

 acl all src 0.0.0.0/0.0.0.0
 acl manager proto cache_object
 acl localhost src 127.0.0.1/255.255.255.255
 acl myserver src 127.0.0.1/255.255.255.255
 acl SSL_ports port 443 563
 acl Safe_ports port 80 81 8080 81 443 563
 acl CONNECT method CONNECT

 http_access allow manager localhost
 http_access allow manager myserver
 http_access deny manager
 http_access deny !Safe_ports
 http_access deny CONNECT !SSL_ports
 # http_access allow all

 cache_effective_user squid
 cache_effective_group squid

 cache_mem 20 MB

 memory_pools on

 cachemgr_passwd disable shutdown

13.7 mod_proxy
mod_proxy implements a proxy/cache for Apache. It implements proxying capability for FTP, CONNECT
(for SSL), HTTP/0.9, and HTTP/1.0. The module can be configured to connect to other proxy modules for
these and other protocols.

13.7.1 Concepts and Configuration Directives

In the following explanation, we will use www.example.com as the main server users access when they
want to get some kind of service and backend.example.com as a machine that does the heavy work. The
main and the back-end are different servers, they may or may not coexist on the same machine.

The mod_proxy module is built into the server that answers requests to the www.example.com hostname.
For the matter of this discussion it doesn’t matter what functionality is built into the backend.example.com
server, obviously it’ll be mod_perl for most of us.

13.7.1.1 ProxyPass

You can use the ProxyPass configuration directive for mapping remote hosts into the space of the local
server; the local server does not act as a proxy in the conventional sense, but appears to be a mirror of the
remote server.

15 Feb 2014328

13.7 mod_proxy

Let’s explore what this rule does:

 ProxyPass /modperl/ http://backend.example.com/modperl/

When a user initiates a request to http://www.example.com/modperl/foo.pl, the request will be redirected
to http://backend.example.com/modperl/foo.pl, and starting from this moment user will see
http://backend.example.com/ in her location window, instead of http://www.example.com/.

You have probably noticed many examples of this from real life Internet sites you’ve visited. Free-email
service providers and other similar heavy online services display the login or the main page from their
main server, and then when you log-in you see something like x11.example.com, then w59.example.com,
etc. These are the back-end servers that do the actual work.

Obviously this is not an ideal solution, but usually users don’t really care about what they see in the loca-
tion window. So you can get away with this approach. As I’ll show in a minute there is a better solution
which removes this caveat and provides even more useful functionalities.

13.7.1.2 ProxyPassReverse

This directive lets Apache adjust the URL in the Location header on HTTP redirect responses. This is
essential for example, when Apache is used as a reverse proxy to avoid by-passing the reverse proxy
because of HTTP redirects on the back-end servers which stay behind the reverse proxy. Generally used in
conjunction with the ProxyPass directive to build a complete front-end proxy server.

 ProxyPass /modperl/ http://backend.example.com/modperl/
 ProxyPassReverse /modperl/ http://backend.example.com/modperl/

When a user initiates a request to http://www.example.com/modperl/foo.pl, the request will be redirected
to http://backend.example.com/modperl/foo.pl but on the way back ProxyPassReverse will correct
the location URL to become http://www.example.com/modperl/foo.pl . This happens completely transpar-
ently. The end user will never know that something has happened to his request behind the scenes.

Note that this ProxyPassReverse directive can also be used in conjunction with the proxy
pass-through feature:

 RewriteRule ... [P]

from mod_rewrite because its doesn’t depend on a corresponding ProxyPass directive.

13.7.1.3 Security Issues

Whenever you use mod_proxy you need to make sure that your server will not become a proxy for free
riders. Allowing clients to issue proxy requests is controlled by the ProxyRequests directive. Its
default setting is off , which means proxy requests are handled only if generated internally (by Proxy-
Pass or RewriteRule...[P] directives.) Do not use the ProxyRequests directive on your
reverse proxy servers.

32915 Feb 2014

13.7.1 Concepts and Configuration DirectivesReal World Scenarios

http://www.example.com/modperl/foo.pl
http://backend.example.com/modperl/foo.pl
http://backend.example.com/
http://www.example.com/
http://www.example.com/modperl/foo.pl
http://backend.example.com/modperl/foo.pl
http://www.example.com/modperl/foo.pl

13.7.2 Buffering Feature

In addition to correcting the URI on its way back from the back-end server, mod_proxy also provides
buffering services which mod_perl and similar heavy modules benefit from. The buffering feature allows
mod_perl to pass the generated data to mod_proxy and move on to serve new requests, instead of waiting
for a possibly slow client to receive all the data.

This figure depicts this feature:

 [socket] wire ‘o’
 [mod_perl] => [] => [mod_proxy] => ____ => /|\
 [buffer] / \

From looking at this figure it’s easy to see that the bottleneck is the socket buffer; it has to be able to
absorb all the data that mod_perl has generated in order to free the mod_perl process immediately;
mod_proxy will take the data as fast as mod_perl can deliver it, freeing the mod_perl server to service new
requests as soon as possible while mod_proxy feeds the client at whatever rate the client requires.

ProxyReceiveBufferSize is the name of the parameter that specifies the size of the socket buffer.
Configuring:

 ProxyReceiveBufferSize 16384

will create a buffer of 16KB in size. If mod_perl generates output which is less than 16KB, the process
will be immediately untied and allowed to serve new requests, if the output is bigger than 16KB, the
following process will take place:

1. The first 16KB will enter the system buffer.

2. mod_proxy picks the first 8KB and sends it down the wire.

3. mod_perl writes the next 8KB into the place of the 8KB of data that was just sent off by mod_proxy.

Stages 2 and 3 are repeated until mod_perl has no more data to send. When this happens, mod_perl can
serve a new request while stage 2 is repeated until all the data was picked from the system buffer and sent
down the wire.

Of course you want to set the buffer size as large as possible, since you want the heavy mod_perl
processes to be utilized in the most efficient way, so you don’t want them to waste their time waiting for a
client to receive the data, especially if a client has a slow downstream connection.

As the ProxyReceiveBufferSize name states, its buffering feature applies only to downstream data
(coming from the origin server to the proxy) and not upstream data. There is no buffering of data uploaded
from the client browser to the proxy, thus you cannot use this technique to prevent the heavy mod_perl
server from being tied up during a large POST such as a file upload. Falling back to mod_cgi seems to be
the best solution for these specific scripts whose major function is receiving large amounts of upstream
data.

15 Feb 2014330

13.7.2 Buffering Feature

[META: check this: --]

Of course just like mod_perl, mod_proxy writes the data it proxy-passes into its outgoing socket buffer,
therefore the mod_proxy process gets released as soon as the last chunk of data is deposited into this
buffer, even if the client didn’t complete the download. Its the OS’s problem to complete the transfer and
release the TCP socket used for this transfer.

Therefore if you don’t use mod_proxy and mod_perl sends its data directly to the client, and you have a
big socket buffer, the mod_perl process will be released as soon as the last chunk of data enters the buffer.
Just like with mod_proxy, the OS will deal with completing the data transfer.

[based on this comment] yes, too (but receive and transmit buffer may be of different size, depending on
the OS)

The problem I don’t know is, does the call to close the socket wait, until all data is actually send success-
fully or not. If it doesn’t wait, you may not be noticed of any failure, but because the proxying Apache can
write as fast to the socket transmission buffer as it can read, it should be possible that the proxying Apache
copies all the data from the receive to the transmission buffer and after that releasing the receive buffer, so
the mod_perl Apache is free to do other things, while the proxying Apache still wait until the client returns
the success of data transmission. (The last, is the part I am not sure on)

[/META]

Unfortunately you cannot set the socket buffer size as large as you want because there is a limit of the
available physical memory and OSs have their own upper limits on the possible buffer size.

This doesn’t mean that you cannot change the OS imposed limits, but to do that you have to know the
techniques for doing that. In the next section we will present a few OSs and the ways to increase their
socket buffer sizes.

To increase the physical memory limits you just have to add more memory.

13.7.3 Setting the Buffering Limits on Various OSs

As we just saw there are a few kinds of parameters we might want to adjust for our needs.

13.7.3.1 IOBUFSIZE Source Code Definition

The first parameter is used by proxy_util.c:ap_proxy_send_fb() to loop over content being proxy passed in
8KB chunks (as of this writing), passing that on to the client. In other words it specifies the size of the data
that is sent down the wire.

This parameter is defined by the IOBUFSIZE :

 #define IOBUFSIZE 8192

33115 Feb 2014

13.7.3 Setting the Buffering Limits on Various OSsReal World Scenarios

You have no control over this setting in the server configuration file, therefore you might want to change it
in the source files, before you compile the server.

13.7.3.2 ProxyReceiveBufferSize Configuration Directive

You can control the socket buffer size with the ProxyReceiveBufferSize directive:

 ProxyReceiveBufferSize 16384

The above setting will set a buffer size of 16KB. If it is not set explicitly, or if it is set to 0, then the default
buffer size is used. The number should be an integral multiple of 512.

Note that if you set the value of ProxyReceiveBufferSize larger than the OS limit, the default
value will be used.

Both the default and the maximum possible value of ProxyReceiveBufferSize depend on the
Operating System.

Linux

For 2.2 kernels the maximum limit is in /proc/sys/net/core/rmem_max and the default value is in
/proc/sys/net/core/rmem_default. If you want to increase RCVBUF size above 65535, the default
maximum value, you have to raise first the absolute limit in /proc/sys/net/core/rmem_max. To do that
at the run time, execute this command to raise it to 128KB:

 % echo 131072 > /proc/sys/net/core/rmem_max

You probably want to put this command into /etc/rc.d/rc.local so the change will take effect at system
reboot.

On Linux OS with kernel 2.2.5 the maximum and default values are either 32KB or 64KB. You can
also change the default and maximum values during kernel compilation; for that you should alter the
SK_RMEM_DEFAULT and SK_RMEM_MAX definitions respectively. (Since kernel source files tend to
change, use grep(1) utility to find the files.)

FreeBSD

Under FreeBSD it’s possible to configure the kernel to have bigger socket buffers:

 % sysctl -w kern.ipc.maxsockbuf=2621440

Solaris

Under Solaris this upper limit is specified by tcp_max_buf parameter and is 256KB.

Other OSs

[ReaderMeta]: If you use an OS that is not listed here and know how to increase the socket buffer
size please let me know.

15 Feb 2014332

13.7.3 Setting the Buffering Limits on Various OSs

When you tell the kernel to use bigger sockets you can set bigger values for ProxyReceiveBufferSize. e.g.
1048576 (1MB).

13.7.3.3 Hacking the Code

Some folks have patched the Apache’s 1.3.x source code to make the application buffer configurable as
well. After the patch there are two configuration directives available:

ProxyReceiveBufferSize -- sets the socket buffer size

ProxyInternalBufferSize -- sets the application buffer size

To patch the source, rename ap_breate() to ap_bcreate_size() and add a size parameter, which defaults to
IOBUFSIZE if 0 is passed. Then add

 #define ap_bcreate(p,flags) ap_bcreate(p,flags,0)

and add a new ap_bcreate() which calls ap_bcreate_size() for binary compatibility.

Actually the ProxyReceiveBufferSize should be called ProxySocketBufferSize . This
would also remove some of the confusion about what it actually does.

13.7.4 Caching Feature

META: complete the conf details

Apache does caching as well. It’s relevant to mod_perl only if you produce proper headers, so your
scripts’ output can be cached. See the Apache documentation for more details on the configuration of this
capability.

13.7.5 Build Process

To build mod_proxy into Apache just add --enable-module=proxy during the Apache ./configure stage.
Since you probably will need the mod_rewrite capability enable it as well with --enable-module=rewrite.

13.8 Front-end Back-end Proxying with Virtual Hosts
This section explains a configuration setup for proxying your back-end mod_perl servers when you need
to use Virtual Hosts.

The term Virtual Host refers to the practice of maintaining more than one server on one machine, as differ-
entiated by their apparent hostname. For example, it is often desirable for companies sharing a web server
to have their own domains, with web servers accessible as www.company1.com and www.company2.com,
without requiring the user to know any extra path information.

33315 Feb 2014

13.8 Front-end Back-end Proxying with Virtual HostsReal World Scenarios

The approach is to use a unique port number for each virtual host at the back-end server, so you can redi-
rect from the front-end server to localhost:1234, and name-based virtual servers on the front end, though
any technique on the front-end will do.

If you run the front-end and the back-end servers on the same machine you can prevent any direct outside
connections to the back-end server if you bind tightly to address 127.0.0.1 (localhost) as you will see
in the following configuration example.

The front-end (light) server configuration:

 <VirtualHost 10.10.10.10>
 ServerName www.example.com
 ServerAlias example.com
 RewriteEngine On
 RewriteOptions ’inherit’
 RewriteRule \.(gif|jpg|png|txt|html)$ - [last]
 RewriteRule ^/(.*)$ http://localhost:4077/$1 [proxy]
 </VirtualHost>

 <VirtualHost 10.10.10.10>
 ServerName foo.example.com
 RewriteEngine On
 RewriteOptions ’inherit’
 RewriteRule \.(gif|jpg|png|txt|html)$ - [last]
 RewriteRule ^/(.*)$ http://localhost:4078/$1 [proxy]
 </VirtualHost>

The above front-end configuration handles two virtual hosts: www.example.com and foo.example.com. The
two setups are almost identical.

The front-end server will handle files with the extensions .gif, .jpg, .png, .txt and .html internally, the rest
will be proxied to be handled by the back-end server.

The only difference between the two virtual hosts settings is that the former rewrites requests to port 4077
at the back-end machine and the latter to port 4078 .

If your server is configured to run traditional CGI scripts (under mod_cgi) as well as mod_perl CGI
programs, then it would be beneficial to configure the front-end server to run the traditional CGI scripts
directly. This can be done by altering the gif|jpg|png|txt Rewrite rule to add |cgi at the end if all
your mod_cgi scripts have the .cgi extension, or adding a new rule to handle all /cgi-bin/* locations
locally.

The back-end (heavy) server configuration:

 Port 80

 PerlPostReadRequestHandler My::ProxyRemoteAddr

 Listen 4077
 <VirtualHost localhost:4077>
 ServerName www.example.com
 DocumentRoot /home/httpd/docs/www.example.com
 DirectoryIndex index.shtml index.html

15 Feb 2014334

13.8 Front-end Back-end Proxying with Virtual Hosts

 </VirtualHost>

 Listen 4078
 <VirtualHost localhost:4078>
 ServerName foo.example.com
 DocumentRoot /home/httpd/docs/foo.example.com
 DirectoryIndex index.shtml index.html
 </VirtualHost>

The back-end server knows to tell which virtual host the request is made to, by checking the port number
the request was proxied to and using the appropriate virtual host section to handle it.

We set "Port 80" so that any redirects don’t get sent directly to the back-end port.

To get the real remote IP addresses from proxy, the My::ProxyRemoteAddr handler is used based on the
mod_proxy_add_forward Apache module. Prior to mod_perl 1.22 this setting must have been set
per-virtual host, since it wasn’t inherited by the virtual hosts.

The following configuration is yet another useful example showing the other way around. It specifies what
to be proxied and then the rest is served by the front end:

 RewriteEngine on
 RewriteLogLevel 0
 RewriteRule ^/(perl.*)$ http://127.0.0.1:8052/$1 [P,L]
 NoCache *
 ProxyPassReverse / http://www.example.com/

So we don’t have to specify the rule for static objects to be served by the front-end as we did in the previ-
ous example to handle files with the extensions .gif, .jpg, .png and .txt internally.

13.9 Getting the Remote Server IP in the Back-end server in
the Proxy Setup
Ask Bjoern Hansen has written the mod_proxy_add_forward module for Apache. It sets the
X-Forwarded-For field when doing a ProxyPass , similar to what Squid can do. Its location is spec-
ified in the download section.

Basically, this module adds an extra HTTP header to proxying requests. You can access that header in the
mod_perl-enabled server, and set the IP address of the remote server. You won’t need to compile anything
into the back-end server.

13.9.1 Build

Download the module and use its location as a value of the --activate-module argument for the ./configure
utility within the Apache source code, so the module can be found.

33515 Feb 2014

13.9 Getting the Remote Server IP in the Back-end server in the Proxy SetupReal World Scenarios

 ./configure \
 "--with-layout=Apache" \
 "--activate-module=src/modules/extra/mod_proxy_add_forward.c" \
 "--enable-module=proxy_add_forward" \
 ... other options ...

--enable-module=proxy_add_forward enables this module as you have guessed already.

13.9.2 Usage

If you are using Apache::Registry or Apache::PerlRun modules just put the following code
into startup.pl:

 use Apache::Constants ();
 sub My::ProxyRemoteAddr ($) {
 my $r = shift;

 # we’ll only look at the X-Forwarded-For header if the requests
 # comes from our proxy at localhost
 return Apache::Constants::OK
 unless ($r->connection->remote_ip eq "127.0.0.1")
 and $r->header_in(’X-Forwarded-For’);

 # Select last value in the chain -- original client’s ip
 if (my ($ip) = $r->headers_in->{’X-Forwarded-For’} =~ /([^,\s]+)$/) {
 $r->connection->remote_ip($ip);
 }

 return Apache::Constants::OK;
 }

And in the mod_perl’s httpd.conf:

 PerlPostReadRequestHandler My::ProxyRemoteAddr

and the right thing will happen transparently for your scripts. Otherwise if you write your own mod_perl
content handler, you can retrieve it directly in your code using a similar code.

13.9.3 Security

Different sites have different needs. If you use the header to set the IP address, Apache believes it. This is
reflected in the logging for example. You really don’t want anyone but your own system to set the header,
which is why the recommended code above checks where the request really came from before changing
remote_ip .

Generally you shouldn’t trust the X-Forwarded-For header. You only want to rely on
X-Forwarded-For headers from proxies you control yourself. If you know how to spoof a cookie
you’ve probably got the general idea on making HTTP headers and can spoof the X-Forwarded-For
header as well. The only address you can count on as being a reliable value is the one from r->connec-
tion->remote_ip .

15 Feb 2014336

13.9.2 Usage

From that point on, the remote IP address is correct. You should be able to access
$ENV{REMOTE_ADDR} environment variable as usual.

13.9.4 Caveats

It was reported that Ben Laurie’s Apache-SSL does not seem to put the IP addresses in the
X-Forwarded-For header--it does not set up such a header at all. However, the
$ENV{REMOTE_ADDR} environment variable it sets up contains the IP address of the original client
machine.

Prior to mod_perl 1.22 there was a need to repeat the PerlPostReadRequestHandler My::ProxyRe-
moteAddr directive for each virtual host, since it wasn’t inherited by the virtual hosts.

13.9.5 mod_proxy_add_forward Module’s Order Precedence

Some users report that they cannot get this module to work as advertised. They verify that the module is
built in, but the front-end server is not generating the X-Forwarded-For header when requests are
being proxied to the back-end server. As a result, the back-end server has no idea what the remote IP is.

As it turns out, mod_proxy_add_forward needs to be configured in Apache before mod_proxy in order to
operate properly, since Apache gives highest precedence to the last defined module.

Moving the two build options required to enable mod_proxy_add_forward while configuring Apache
appears to have no effect on the default configuration order of modules, since in each case, the resulting
builds show mod_proxy_add_forward last in the list (or first via /server-info).

One solution is to explicitly define the configuration order in the http.conf file, so that
mod_proxy_add_forward appears before mod_proxy, and therefore gets executed after mod_proxy.
(Modules are being executed in reverse order, i.e. module that was Added first will be executed last.)

Obviously, this list would need to be tailored to match the build environment, but to ease this task just
insert an AddModule directive before each entry reported by httpd -l (and removing httpd_core.c, of
course):

 ClearModuleList
 AddModule mod_env.c
 [more modules snipped]
 AddModule mod_proxy_add_forward.c
 AddModule mod_proxy.c
 AddModule mod_rewrite.c
 AddModule mod_setenvif.c

Note that the above snippet is added to httpd.conf of the front-end server.

Another solution is to reorder the module list during configuration by using one or more
--permute-module arguments to the ./configure utility. (Try ./configure --help to see if your
version of Apache supports this option.) --permute-module=foo:bar will swap the position of
mod_foo and mod_bar in the list, --permute-module=BEGIN:foo will move mod_foo to the begin-
ning of the list, and --permute-module=foo:END will move mod_foo to the end. For example

33715 Feb 2014

13.9.4 CaveatsReal World Scenarios

suppose your module list from httpd -l looks like:

 http_core.c
 [more modules snipped]
 mod_proxy.c
 mod_setenvif.c
 mod_proxy_add_forward.c

You might add the following arguments to ./configure to move mod_proxy_add_forward to the position in
the list just before mod_proxy:

 ./configure \
 "--with-layout=Apache" \
 "--activate-module=src/modules/extra/mod_proxy_add_forward.c" \
 "--enable-module=proxy_add_forward" \
 ... other options ...
 "--permute-module=proxy:proxy_add_forward" \
 "--permute-module=setenvif:END"

With this change, the X-Forwarded-For header is now being sent to the back-end server, and the
remote IP appears in the back-end server’s access_log file.

13.10 HTTP Authentication With Two Servers Plus a Proxy
Assuming that you have a setup of one "front-end" server, which proxies the "back-end" (mod_perl)
server, if you need to perform authentication in the "back-end" server it should handle all authentication
itself. If Apache proxies correctly, it will pass through all authentication information, making the
"front-end" Apache somewhat "dumb", as it does nothing but pass through the information.

In the configuration file your Auth configuration directives need to be inside the <Directory ...> ...
</Directory> sections because if you use the section <Location ...> ... </Location> the
proxy server will take the authentication information for itself and not pass it on.

The same applies to mod_ssl and similar Apache SSL modules. If it gets plugged into a front-end server, it
will properly encode/decode all the SSL requests. So if your machine is secured from inside, your
back-end server can do secure transactions.

13.11 mod_rewrite Examples
Example code for using mod_rewrite with mod_perl application servers. Several examples were taken
from the mailing list.

13.11.1 Rewriting Requests Based on File Extension

In the mod_proxy + mod_perl servers scenario, ProxyPass was used to redirect all requests to the
mod_perl server, by matching the beginning of the relative URI (e.g. /perl). What should you do if you
want everything, but files with extensions like .gif, .cgi and similar, to be proxypassed to the mod_perl
server. These files are to be served by the light Apache server which carries the mod_proxy module.

15 Feb 2014338

13.10 HTTP Authentication With Two Servers Plus a Proxy

The following example rewrites everything to the mod_perl server. It locally handles all requests for files
with extensions gif, jpg, png, css, txt, cgi and relative URIs starting with /cgi-bin (e.g. if you want some
scripts to be executed under mod_cgi).

 RewriteEngine On
 # handle GIF and JPG images and traditional CGI’s directly
 RewriteRule \.(gif|jpg|png|css|txt|cgi)$ - [last]
 RewriteRule ^/cgi-bin - [last]
 # pass off everything but images to the heavy-weight server via proxy
 RewriteRule ^/(.*)$ http://localhost:4077/$1 [proxy]

That is, first, handle locally what you want to handle locally, then hand off everything else to the back-end
guy.

This is the configuration of the logging facilities.

 RewriteLogLevel 1
 RewriteLog "| /usr/local/apache_proxy/bin/rotatelogs \
 /usr/local/apache-common/logs/r_log 86400"

It says: log all the rewrites thru the pipe to the rotatelogs utility which will rotate the logs every 2
hours (86400 secs).

13.11.2 Internet Exporer 5 favicon.ico 404

Redirect all those IE5 requests for favicon.ico to a central image:

 RewriteRule .*favicon.ico /wherever/favicon.ico [PT,NS]

13.11.3 Hiding Extensions for Dynamic Pages

A quick way to make dynamic pages look static:

 RewriteRule ^/wherever/([a-zA-Z]+).html /perl-bin/$1.cgi [PT]

13.11.4 Serving Static Content Locally and Rewriting Everything Else

Instead of keeping all your Perl scripts in /perl and your static content everywhere else, you could keep
your static content in special directories and keep your Perl scripts everywhere else. You can still use the
light/heavy apache separation approach described before, with a few minor modifications.

In the light Apache’s httpd.conf file, turn rewriting on:

 RewriteEngine On

Now list all directories that contain only static objects. For example if the only relative to Document-
Root directories are /images and style you can set the following rule:

33915 Feb 2014

13.11.2 Internet Exporer 5 favicon.ico 404Real World Scenarios

 RewriteRule ^/(images|style) - [L]

The [L] (Last) means that the rewrite engine should stop if it has a match. This is necessary because the
very last rewrite rule proxies everything to the heavy server:

 RewriteRule ^/(.*) http://www.example.com:8080/$1 [P]

This line is the difference between a server for which static content is the default and one for which
dynamic (perlish) content is the default.

You should also add the reverse rewrite rule as before:

 ProxyPassReverse / http://www.example.com/

so that the user doesn’t see the port number :8080 in the browser’s location window.

It is possible to use localhost in the RewriteRule above if the heavy and light servers are on the
same machine. So if we sum up the above setup we get:

 RewriteEngine On
 RewriteRule ^/(images|style) - [L]
 RewriteRule ^/(.*) http://www.example.com:8080/$1 [P]
 ProxyPassReverse / http://www.example.com/

13.11.5 Upgrading mod_perl Heavy Application Instances

When using a light/heavy separation method one of the challenges of running a production environment is
being able to upgrade to newer versions of mod_perl or your own application. The following method can
be used without having to do a server restart.

Add the following rewrite rule to your httpd.conf file:

 RewriteEngine On
 RewriteMap maps txt:/etc/httpd.maps
 RewriteRule ^(.*) http://${maps:appserver}$1 [proxy]

Create the file /etc/httpd.maps and add the following entry:

 appserver foo.com:9999

Mod_rewrite rereads (or checks the mtime of) the file on every request so the change takes effect immedi-
ately. To seamlessly upgrade your application server to a new version, install a new version on a different
port. After checking for a quality installation, edit /etc/httpd.maps to point to the new server. After the file
is written the next request the server processes will be redirected to the new installation.

13.11.6 Blocking IP Addresses

The following rewrite code blocks IP addresses:

15 Feb 2014340

13.11.5 Upgrading mod_perl Heavy Application Instances

 RewriteCond /web/site/var/blocked/REMOTE_ADDR-%{REMOTE_ADDR} -f
 RewriteRule .* http://YOUR-HOST-BLOCKED-FOR-EXCESSIVE-CONSUMPTION [redirect,last]

To block IP address 10.1.2.3, simply touch

 /web/site/var/blocked/REMOTE_ADDR-10.1.2.3

This has an advantage over Apache parsing a long file of addresses in that the OS is better at a file lookup.

13.12 Caching in mod_proxy
This is not really mod_perl related, so I’ll just stress one point. If you want the caching to work the follow-
ing HTTP headers should be supplied: Last-Modified , Content-Length and Expires .

13.13 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

13.14 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

34115 Feb 2014

13.12 Caching in mod_proxyReal World Scenarios

http://stason.org/
http://stason.org/

14 Performance Tuning

15 Feb 2014342

14 Performance Tuning

14.1 Description
An exhaustive list of various techniques you might want to use to get the most performance possible out of
your mod_perl server: configuration, coding, memory use, and more.

14.2 The Big Picture
To make the user’s Web browsing experience as painless as possible, every effort must be made to wring
the last drop of performance from the server. There are many factors which affect Web site usability, but
speed is one of the most important. This applies to any webserver, not just Apache, so it is very important
that you understand it.

How do we measure the speed of a server? Since the user (and not the computer) is the one that interacts
with the Web site, one good speed measurement is the time elapsed between the moment when she clicks
on a link or presses a Submit button to the moment when the resulting page is fully rendered.

The requests and replies are broken into packets. A request may be made up of several packets, a reply
may be many thousands. Each packet has to make its own way from one machine to another, perhaps
passing through many interconnection nodes. We must measure the time starting from when the first
packet of the request leaves our user’s machine to when the last packet of the reply arrives back there.

A webserver is only one of the entities the packets see along their way. If we follow them from browser to
server and back again, they may travel by different routes through many different entities. Before they are
processed by your server the packets might have to go through proxy (accelerator) servers and if the
request contains more than one packet, packets might arrive to the server by different routes with different
arrival times, therefore it’s possible that some packets that arrive earlier will have to wait for other packets
before they could be reassembled into a chunk of the request message that will be then read by the server.
Then the whole process is repeated in reverse.

You could work hard to fine tune your webserver’s performance, but a slow Network Interface Card (NIC)
or a slow network connection from your server might defeat it all. That’s why it’s important to think about
the Big Picture and to be aware of possible bottlenecks between the server and the Web.

Of course there is little that you can do if the user has a slow connection. You might tune your scripts and
webserver to process incoming requests ultra quickly, so you will need only a small number of working
servers, but you might find that the server processes are all busy waiting for slow clients to accept their
responses.

But there are techniques to cope with this. For example you can deliver the respond after it was
compressed. If you are delivering a pure text respond--gzip compression will sometimes reduce the size of
the respond by 10 times.

You should analyze all the involved components when you try to create the best service for your users,
and not the web server or the code that the web server executes. A Web service is like a car, if one of the
parts or mechanisms is broken the car may not go smoothly and it can even stop dead if pushed too far
without first fixing it.

34315 Feb 2014

14.1 DescriptionPerformance Tuning

And let me stress it again--if you want to have a success in the web service business you should start
worrying about the client’s browsing experience and not only how good your code benchmarks are.

14.3 System Analysis
Before we try to solve a problem we need to identify it. In our case we want to get the best performance
we can with as little monetary and time investment as possible.

14.3.1 Software Requirements

Covered in the section "Choosing an Operating System".

14.3.2 Hardware Requirements

(META: Only partial analysis. Please submit more points. Many points are scattered around the document
and should be gathered here, to represent the whole picture. It also should be merged with the above item!)

You need to analyze all of the problem’s dimensions. There are several things that need to be considered:

How long does it take to process each request?

How many requests can you process simultaneously?

How many simultaneous requests are you planning to get?

At what rate are you expecting to receive requests?

The first one is probably the easiest to optimize. Following the performance optimization tips in this and
other documents allows a perl (mod_perl) programmer to exercise their code and improve it.

The second one is a function of RAM. How much RAM is in each box, how many boxes do you have, and
how much RAM does each mod_perl process use? Multiply the first two and divide by the third. Ask
yourself whether it is better to switch to another, possibly just as inefficient language or whether that will
actually cost more than throwing another powerful machine into the rack.

Also ask yourself whether switching to another language will even help. In some applications, for example
to link Oracle runtime libraries, a huge chunk of memory is needed so you would save nothing even if you
switched from Perl to C.

The last two are important. You need a realistic estimate. Are you really expecting 8 million hits per day?
What is the expected peak load, and what kind of response time do you need to guarantee? Remember that
these numbers might change drastically when you apply code changes and your site becomes popular.
Remember that when you get a very high hit rate, the resource requirements don’t grow linearly but expo-
nentially!

15 Feb 2014344

14.3 System Analysis

More coverage is provided in the section "Choosing Hardware".

14.4 Essential Tools
In order to improve performance we need measurement tools. The main tool categories are benchmarking
and code profiling.

It’s important to understand that in a major number of the benchmarking tests that we will execute we will
not look at the absolute result numbers but the relation between the two and more result sets, since in most
cases we would try to show which coding approach is preferable and the you shouldn’t try to compare the
absolute results collected while running the same benchmarks on your machine, since you won’t have the
exact hardware and software setup anyway. So this kind of comparison would be misleading. Compare the
relative results from the tests running on your machine, don’t compare your absolute results with those in
this Guide.

14.4.1 Benchmarking Applications

How much faster is mod_perl than mod_cgi (aka plain perl/CGI)? There are many ways to benchmark the
two. I’ll present a few examples and numbers below. Check out the benchmark directory of the
mod_perl distribution for more examples.

If you are going to write your own benchmarking utility, use the Benchmark module for heavy scripts
and the Time::HiRes module for very fast scripts (faster than 1 sec) where you will need better time
precision.

There is no need to write a special benchmark though. If you want to impress your boss or colleagues, just
take some heavy CGI script you have (e.g. a script that crunches some data and prints the results to
STDOUT), open 2 xterms and call the same script in mod_perl mode in one xterm and in mod_cgi mode
in the other. You can use lwp-get from the LWP package to emulate the browser. The benchmark
directory of the mod_perl distribution includes such an example.

See also two tools for benchmarking: ApacheBench and crashme test

14.4.1.1 Benchmarking Perl Code

If you are going to write your own benchmarking utility, use the Benchmark module and the
Time::HiRes module where you need better time precision (less than 10msec).

An example of the Benchmark.pm module usage:

 benchmark.pl

 use Benchmark;

 timethis (1_000,
 sub {
 my $x = 100;
 my $y = log ($x ** 100) for (0..10000);

34515 Feb 2014

14.4 Essential ToolsPerformance Tuning

 });

 % perl benchmark.pl
 timethis 1000: 25 wallclock secs (24.93 usr + 0.00 sys = 24.93 CPU)

If you want to get the benchmark results in micro-seconds you will have to use the Time::HiRes
module, its usage is similar to Benchmark ’s.

 use Time::HiRes qw(gettimeofday tv_interval);
 my $start_time = [gettimeofday];
 sub_that_takes_a_teeny_bit_of_time();
 my $end_time = [gettimeofday];
 my $elapsed = tv_interval($start_time,$end_time);
 print "The sub took $elapsed seconds."

See also the crashme test.

14.4.1.2 Benchmarking a Graphic Hits Counter with Persistent DB Connections

Here are the numbers from Michael Parker’s mod_perl presentation at the Perl Conference (Aug, 98).
(Sorry, there used to be links here to the source, but they went dead one day, so I removed them). The
script is a standard hits counter, but it logs the counts into a mysql relational DataBase:

 Benchmark: timing 100 iterations of cgi, perl... [rate 1:28]

 cgi: 56 secs (0.33 usr 0.28 sys = 0.61 cpu)
 perl: 2 secs (0.31 usr 0.27 sys = 0.58 cpu)

 Benchmark: timing 1000 iterations of cgi,perl... [rate 1:21]

 cgi: 567 secs (3.27 usr 2.83 sys = 6.10 cpu)
 perl: 26 secs (3.11 usr 2.53 sys = 5.64 cpu)

 Benchmark: timing 10000 iterations of cgi, perl [rate 1:21]

 cgi: 6494 secs (34.87 usr 26.68 sys = 61.55 cpu)
 perl: 299 secs (32.51 usr 23.98 sys = 56.49 cpu)

We don’t know what server configurations were used for these tests, but I guess the numbers speak for
themselves.

The source code of the script was available at http://www.realtime.net/~parkerm/perl/conf98/sld006.htm.
It’s now a dead link. If you know its new location, please let me know.

14.4.1.3 Benchmarking Response Times

In the next sections we will talk about tools that allow us to benchmark response times.

15 Feb 2014346

14.4.1 Benchmarking Applications

http://www.realtime.net/~parkerm/perl/conf98/sld006.htm

14.4.1.3.1 ApacheBench

ApacheBench (ab) is a tool for benchmarking your Apache HTTP server. It is designed to give you an
idea of the performance that your current Apache installation can give. In particular, it shows you how
many requests per second your Apache server is capable of serving. The ab tool comes bundled with the
Apache source distribution.

Let’s try it. We will simulate 10 users concurrently requesting a very light script at
www.example.com/perl/test.pl . Each simulated user makes 10 requests.

 % ./ab -n 100 -c 10 www.example.com/perl/test.pl

The results are:

 Document Path: /perl/test.pl
 Document Length: 319 bytes

 Concurrency Level: 10
 Time taken for tests: 0.715 seconds
 Complete requests: 100
 Failed requests: 0
 Total transferred: 60700 bytes
 HTML transferred: 31900 bytes
 Requests per second: 139.86
 Transfer rate: 84.90 kb/s received

 Connection Times (ms)
 min avg max
 Connect: 0 0 3
 Processing: 13 67 71
 Total: 13 67 74

We can see that under load of ten concurrent users our server is capable of processing 140 requests per
second. Of course this benchmark is correct only when the script under test is used. We can also learn
about the average processing time, which in this case was 67 milli-seconds. Other numbers reported by ab
may or may not be of interest to you.

For example if we believe that the script perl/test.pl is not efficient we will try to improve it and run the
benchmark again, to see whether we have any improve in performance.

HTTPD::Bench::ApacheBench , available from CPAN, provides a Perl interface for ab .

14.4.1.3.2 httperf

httperf is a utility written by David Mosberger. Just like ApacheBench, it measures the performance of the
webserver.

A sample command line is shown below:

34715 Feb 2014

14.4.1 Benchmarking ApplicationsPerformance Tuning

 httperf --server hostname --port 80 --uri /test.html \
 --rate 150 --num-conn 27000 --num-call 1 --timeout 5

This command causes httperf to use the web server on the host with IP name hostname, running at port 80.
The web page being retrieved is /test.html and, in this simple test, the same page is retrieved repeatedly.
The rate at which requests are issued is 150 per second. The test involves initiating a total of 27,000 TCP
connections and on each connection one HTTP call is performed. A call consists of sending a request and
receiving a reply.

The timeout option defines the number of seconds that the client is willing to wait to hear back from the
server. If this timeout expires, the tool considers the corresponding call to have failed. Note that with a
total of 27,000 connections and a rate of 150 per second, the total test duration will be approximately 180
seconds (27,000/150), independently of what load the server can actually sustain. Here is a result that one
might get:

 Total: connections 27000 requests 26701 replies 26701 test-duration 179.996 s

 Connection rate: 150.0 conn/s (6.7 ms/conn, <=47 concurrent connections)
 Connection time [ms]: min 1.1 avg 5.0 max 315.0 median 2.5 stddev 13.0
 Connection time [ms]: connect 0.3

 Request rate: 148.3 req/s (6.7 ms/req)
 Request size [B]: 72.0

 Reply rate [replies/s]: min 139.8 avg 148.3 max 150.3 stddev 2.7 (36 samples)
 Reply time [ms]: response 4.6 transfer 0.0
 Reply size [B]: header 222.0 content 1024.0 footer 0.0 (total 1246.0)
 Reply status: 1xx=0 2xx=26701 3xx=0 4xx=0 5xx=0

 CPU time [s]: user 55.31 system 124.41 (user 30.7% system 69.1% total 99.8%)
 Net I/O: 190.9 KB/s (1.6*10^6 bps)

 Errors: total 299 client-timo 299 socket-timo 0 connrefused 0 connreset 0
 Errors: fd-unavail 0 addrunavail 0 ftab-full 0 other 0

httperf download

14.4.1.3.3 http_load

http_load is yet another utility that does webserver load testing. It can simulate 33.6kbps modem
connection (-throttle) and allows you to provide a file with a list of URLs, which we be fetched randomly.
You can specify how many parallel connections to run using the -parallel N option, or you can specify the
number of requests to generate per second with -rate N option. Finally you can tell the utility when to stop
by specifying either the test time length (-seconds N) or the total number of fetches (-fetches N).

A sample run with the file urls including:

 http://www.example.com/foo/
 http://www.example.com/bar/

15 Feb 2014348

14.4.1 Benchmarking Applications

We ask to generate three requests per second and run for only two seconds. Here is the generated output:

 % ./http_load -rate 3 -seconds 2 urls
 http://www.example.com/foo/: check-connect SUCCEEDED, ignoring
 http://www.example.com/bar/: check-connect SUCCEEDED, ignoring
 http://www.example.com/bar/: check-connect SUCCEEDED, ignoring
 http://www.example.com/bar/: check-connect SUCCEEDED, ignoring
 http://www.example.com/foo/: check-connect SUCCEEDED, ignoring
 5 fetches, 3 max parallel, 96870 bytes, in 2.00258 seconds
 19374 mean bytes/connection
 2.49678 fetches/sec, 48372.7 bytes/sec
 msecs/connect: 1.805 mean, 5.24 max, 0.79 min
 msecs/first-response: 291.289 mean, 560.338 max, 34.349 min

So you can see that it has reported 2.5 requests per second. Of course for the real test you will want to load
the server heavily and run the test for a longer time to get more reliable results.

Note that when you provide a file with a list of URLs make sure that you don’t have empty lines in it. If
you do -- the utility won’t work complaining:

 ./http_load: unknown protocol -

http_load download

14.4.1.3.4 the crashme Script

This is another crashme suite originally written by Michael Schilli (and was located at
http://www.linux-magazin.de site, but now the link has gone). I made a few modifications, mostly adding
my () operators. I also allowed it to accept more than one url to test, since sometimes you want to test
more than one script.

The tool provides the same results as ab above but it also allows you to set the timeout value, so requests
will fail if not served within the time out period. You also get values for Latency (seconds per request)
and Throughput (requests per second). It can do a complete simulation of your favorite Netscape browser
:) and give you a better picture.

I have noticed while running these two benchmarking suites, that ab gave me results from two and a half
to three times better. Both suites were run on the same machine, with the same load and the same parame-
ters, but the implementations were different.

Sample output:

 URL(s): http://www.example.com/perl/access/access.cgi
 Total Requests: 100
 Parallel Agents: 10
 Succeeded: 100 (100.00%)
 Errors: NONE
 Total Time: 9.39 secs
 Throughput: 10.65 Requests/sec
 Latency: 0.85 secs/Request

34915 Feb 2014

14.4.1 Benchmarking ApplicationsPerformance Tuning

http://www.linux-magazin.de/

And the code:

The LWP::Parallel::UserAgent benchmark: code/lwp-bench.pl:

#!/usr/bin/perl -w

use LWP::Parallel::UserAgent;
use Time::HiRes qw(gettimeofday tv_interval);
use strict;

###
Configuration
###

my $nof_parallel_connections = 10;
my $nof_requests_total = 100;
my $timeout = 10;
my @urls = (
 ’http://www.example.com:81/perl/faq_manager/faq_manager.pl’,
 ’http://www.example.com:81/perl/access/access.cgi’,
);

##
Derived Class for latency timing
##

package MyParallelAgent;
@MyParallelAgent::ISA = qw(LWP::Parallel::UserAgent);
use strict;

###
Is called when connection is opened
###
sub on_connect {
 my ($self, $request, $response, $entry) = @_;
 $self->{__start_times}->{$entry} = [Time::HiRes::gettimeofday];
}

###
Are called when connection is closed
###
sub on_return {
 my ($self, $request, $response, $entry) = @_;
 my $start = $self->{__start_times}->{$entry};
 $self->{__latency_total} += Time::HiRes::tv_interval($start);
}

sub on_failure {
 on_return(@_); # Same procedure
}

###
Access function for new instance var
###
sub get_latency_total {
 return shift->{__latency_total};

15 Feb 2014350

14.4.1 Benchmarking Applications

}

##
package main;
##
###
Init parallel user agent
###
my $ua = MyParallelAgent->new();
$ua->agent("pounder/1.0");
$ua->max_req($nof_parallel_connections);
$ua->redirect(0); # No redirects

###
Register all requests
###
foreach (1..$nof_requests_total) {
 foreach my $url (@urls) {
 my $request = HTTP::Request->new(’GET’, $url);
 $ua->register($request);
 }
}

###
Launch processes and check time
###
my $start_time = [gettimeofday];
my $results = $ua->wait($timeout);
my $total_time = tv_interval($start_time);

###
Requests all done, check results
###

my $succeeded = 0;
my %errors = ();

foreach my $entry (values %$results) {
 my $response = $entry->response();
 if($response->is_success()) {
 $succeeded++; # Another satisfied customer
 } else {
 # Error, save the message
 $response->message("TIMEOUT") unless $response->code();
 $errors{$response->message}++;
 }
}

###
Format errors if any from %errors
###
my $errors = join(’,’, map "$_ ($errors{$_})", keys %errors);
$errors = "NONE" unless $errors;

###
Format results
###

35115 Feb 2014

14.4.1 Benchmarking ApplicationsPerformance Tuning

#@urls = map {($_,".")} @urls;
my @P = (
 "URL(s)" => join("\n\t\t ", @urls),
 "Total Requests" => $nof_requests_total * @urls,
 "Parallel Agents" => $nof_parallel_connections,
 "Succeeded" => sprintf("$succeeded (%.2f%%)\n",
 $succeeded * 100 / ($nof_requests_total * @urls)),
 "Errors" => $errors,
 "Total Time" => sprintf("%.2f secs\n", $total_time),
 "Throughput" => sprintf("%.2f Requests/sec\n",
 ($nof_requests_total * @urls) / $total_time),
 "Latency" => sprintf("%.2f secs/Request",
 ($ua->get_latency_total() || 0) /
 ($nof_requests_total * @urls)),
);

my ($left, $right);
###
Print out statistics
###
format STDOUT =
@<<<<<<<<<<<<<<< @*
"$left:", $right
.

while(($left, $right) = splice(@P, 0, 2)) {
 write;
}

14.4.1.4 Benchmarking PerlHandlers

The Apache::Timeit module does PerlHandler Benchmarking. With the help of this module you
can log the time taken to process the request, just like you’d use the Benchmark module to benchmark a
regular Perl script. Of course you can extend this module to perform more advanced processing like
putting the results into a database for a later processing. But all it takes is adding this configuration direc-
tive inside httpd.conf:

 PerlFixupHandler Apache::Timeit

Since scripts running under Apache::Registry are running inside the PerlHandler these are bench-
marked as well.

An example of the lines which show up in the error_log file:

 timing request for /perl/setupenvoff.pl:
 0 wallclock secs (0.04 usr + 0.01 sys = 0.05 CPU)
 timing request for /perl/setupenvoff.pl:
 0 wallclock secs (0.03 usr + 0.00 sys = 0.03 CPU)

The Apache::Timeit package is a part of the Apache-Perl-contrib files collection available from
CPAN.

15 Feb 2014352

14.4.1 Benchmarking Applications

14.4.1.5 Other Benchmarking Tools

Other tools you may want to take a look at:

HTTP::WebTest

HTTP::WebTest module runs tests on remote URLs or local web files containing
Perl/JSP/HTML/JavaScript/etc. and generates a detailed test report.

It’s available from CPAN.

HTTP::Monkeywrench

HTTP::Monkeywrench is a test-harness application to test the integrity of a user’s path through a
web site.

It’s available from CPAN.

Apache::Recorder and HTTP::RecordedSession

Apache::Recorder is a mod_perl handler that records an HTTP session and stores it on the web
server’s file system. HTTP::RecordedSession reads the recorded session from the file system,
and formats it for playback using HTTP::WebTest or HTTP::Monkeywrench . This is useful
when writing acceptance and regression tests.

It’s available from CPAN.

Webstone

This tool is somewhat complex to set up, but once you get it running it gives you stats that you could
only duplicate with ab or http_load if you did quite a bit of extra scripting around them. It also allows
multiple client machines to be used for providing heavy loads. This tool is useful if you need to know
things like at what point people start finding your sight slow, as opposed to at what point the server
becomes unresponsive.

Webstone download

Flood

Flood is a load-tester being developed through the Apache Software Foundation. From the Flood
FAQ:

"Flood is a profile-driven HTTP load tester. In layman’s terms, it means that flood is capable of
generating large amounts of web traffic. Flood’s flexibility and power arises in its configuration
syntax. It is able to work well with dynamic content."

Flood download

35315 Feb 2014

14.4.1 Benchmarking ApplicationsPerformance Tuning

14.4.2 Code Profiling Techniques

The profiling process helps you to determine which subroutines or just snippets of code take the longest
time to execute and which subroutines are called most often. Probably you will want to optimize those.

When do you need to profile your code? You do that when you suspect that some part of your code is
called very often and may be there is a need to optimize it to significantly improve the overall perfor-
mance.

For example if you have ever used the diagnostics pragma, which extends the terse diagnostics
normally emitted by both the Perl compiler and the Perl interpreter, augmenting them with the more
verbose and endearing descriptions found in the perldiag manpage. You know that it might tremen-
dously slow you code down, so let’s first prove that it is correct.

We will run a benchmark, once with diagnostics enabled and once disabled, on a subroutine called
test_code.

The code inside the subroutine does an arithmetic and a numeric comparison of two strings. It assigns one
string to another if the condition tests true but the condition always tests false. To demonstrate the diag-
nostics overhead the comparison operator is intentionally wrong. It should be a string comparison, not
a numeric one.

 use Benchmark;
 use diagnostics;
 use strict;

 my $count = 50000;

 disable diagnostics;
 my $t1 = timeit($count,\&test_code);

 enable diagnostics;
 my $t2 = timeit($count,\&test_code);

 print "Off: ",timestr($t1),"\n";
 print "On : ",timestr($t2),"\n";

 sub test_code{
 my ($a,$b) = qw(foo bar);
 my $c;
 if ($a == $b) {
 $c = $a;
 }
 }

For only a few lines of code we get:

 Off: 1 wallclock secs (0.81 usr + 0.00 sys = 0.81 CPU)
 On : 13 wallclock secs (12.54 usr + 0.01 sys = 12.55 CPU)

15 Feb 2014354

14.4.2 Code Profiling Techniques

With diagnostics enabled, the subroutine test_code() is 16 times slower, than with diagnostics
disabled!

Now let’s fix the comparison the way it should be, by replacing == with eq , so we get:

 my ($a,$b) = qw(foo bar);
 my $c;
 if ($a eq $b) {
 $c = $a;
 }

and run the same benchmark again:

 Off: 1 wallclock secs (0.57 usr + 0.00 sys = 0.57 CPU)
 On : 1 wallclock secs (0.56 usr + 0.00 sys = 0.56 CPU)

Now there is no overhead at all. The diagnostics pragma slows things down only when warnings are
generated.

After we have verified that using the diagnostics pragma might adds a big overhead to execution
runtime, let’s use the code profiling to understand why this happens. We are going to use
Devel::DProf to profile the code. Let’s use this code:

 diagnostics.pl

 use diagnostics;
 print "Content-type:text/html\n\n";
 test_code();
 sub test_code{
 my ($a,$b) = qw(foo bar);
 my $c;
 if ($a == $b) {
 $c = $a;
 }
 }

Run it with the profiler enabled, and then create the profiling stastics with the help of dprofpp:

 % perl -d:DProf diagnostics.pl
 % dprofpp

 Total Elapsed Time = 0.342236 Seconds
 User+System Time = 0.335420 Seconds
 Exclusive Times
 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 92.1 0.309 0.358 1 0.3089 0.3578 main::BEGIN
 14.9 0.050 0.039 3161 0.0000 0.0000 diagnostics::unescape
 2.98 0.010 0.010 2 0.0050 0.0050 diagnostics::BEGIN
 0.00 0.000 -0.000 2 0.0000 - Exporter::import
 0.00 0.000 -0.000 2 0.0000 - Exporter::export
 0.00 0.000 -0.000 1 0.0000 - Config::BEGIN
 0.00 0.000 -0.000 1 0.0000 - Config::TIEHASH
 0.00 0.000 -0.000 2 0.0000 - Config::FETCH
 0.00 0.000 -0.000 1 0.0000 - diagnostics::import
 0.00 0.000 -0.000 1 0.0000 - main::test_code

35515 Feb 2014

14.4.2 Code Profiling TechniquesPerformance Tuning

 0.00 0.000 -0.000 2 0.0000 - diagnostics::warn_trap
 0.00 0.000 -0.000 2 0.0000 - diagnostics::splainthis
 0.00 0.000 -0.000 2 0.0000 - diagnostics::transmo
 0.00 0.000 -0.000 2 0.0000 - diagnostics::shorten
 0.00 0.000 -0.000 2 0.0000 - diagnostics::autodescribe

It’s not easy to see what is responsible for this enormous overhead, even if main::BEGIN seems to be
running most of the time. To get the full picture we must see the OPs tree, which shows us who calls
whom, so we run:

 % dprofpp -T

and the output is:

 main::BEGIN
 diagnostics::BEGIN
 Exporter::import
 Exporter::export
 diagnostics::BEGIN
 Config::BEGIN
 Config::TIEHASH
 Exporter::import
 Exporter::export
 Config::FETCH
 Config::FETCH
 diagnostics::unescape

 3159 times [diagnostics::unescape] snipped

 diagnostics::unescape
 diagnostics::import
 diagnostics::warn_trap
 diagnostics::splainthis
 diagnostics::transmo
 diagnostics::shorten
 diagnostics::autodescribe
 main::test_code
 diagnostics::warn_trap
 diagnostics::splainthis
 diagnostics::transmo
 diagnostics::shorten
 diagnostics::autodescribe
 diagnostics::warn_trap
 diagnostics::splainthis
 diagnostics::transmo
 diagnostics::shorten
 diagnostics::autodescribe

So we see that two executions of diagnostics::BEGIN and 3161 of diagnostics::unescape
are responsible for most of the running overhead.

If we comment out the diagnostics module, we get:

15 Feb 2014356

14.4.2 Code Profiling Techniques

 Total Elapsed Time = 0.079974 Seconds
 User+System Time = 0.059974 Seconds
 Exclusive Times
 %Time ExclSec CumulS #Calls sec/call Csec/c Name
 0.00 0.000 -0.000 1 0.0000 - main::test_code

It is possible to profile code running under mod_perl with the Devel::DProf module, available on
CPAN. However, you must have apache version 1.3b3 or higher and the PerlChildExitHandler
enabled during the httpd build process. When the server is started, Devel::DProf installs an END block
to write the tmon.out file. This block will be called at server shutdown. Here is how to start and stop a
server with the profiler enabled:

 % setenv PERL5OPT -d:DProf
 % httpd -X -d ‘pwd‘ &
 ... make some requests to the server here ...
 % kill ‘cat logs/httpd.pid‘
 % unsetenv PERL5OPT
 % dprofpp

The Devel::DProf package is a Perl code profiler. It will collect information on the execution time of
a Perl script and of the subs in that script (remember that print() and map() are just like any other
subroutines you write, but they come bundled with Perl!)

Another approach is to use Apache::DProf , which hooks Devel::DProf into mod_perl. The
Apache::DProf module will run a Devel::DProf profiler inside each child server and write the
tmon.out file in the directory $ServerRoot/logs/dprof/$$ when the child is shutdown (where $$
is the number of the child process). All it takes is to add to httpd.conf:

 PerlModule Apache::DProf

Remember that any PerlHandler that was pulled in before Apache::DProf in the httpd.conf or
startup.pl, will not have its code debugging information inserted. To run dprofpp , chdir to $Server-
Root/logs/dprof/$$ and run:

 % dprofpp

(Lookup the ServerRoot directive’s value in httpd.conf to figure out what’s your $ServerRoot .)

14.4.3 Measuring the Memory of the Process

Very important aspect of performance tuning is to make sure that your applications don’t use much
memory, since if they do you cannot run many servers and therefore in most cases under a heavy load the
overall performance degrades.

In addition the code may not be clean and leak memory, which is even worse, since if the same process
serves many requests and after each request more memory is used, after awhile all RAM will be used and
machine will start swapping (use the swap partition) which is a very undesirable event, since it may lead to
a machine crash.

35715 Feb 2014

14.4.3 Measuring the Memory of the ProcessPerformance Tuning

The simplest way to figure out how big the processes are and see whether they grow is to watch the output
of top(1) or ps(1) utilities.

For example the output of top(1):

 8:51am up 66 days, 1:44, 1 user, load average: 1.09, 2.27, 2.61
 95 processes: 92 sleeping, 3 running, 0 zombie, 0 stopped
 CPU states: 54.0% user, 9.4% system, 1.7% nice, 34.7% idle
 Mem: 387664K av, 309692K used, 77972K free, 111092K shrd, 70944K buff
 Swap: 128484K av, 11176K used, 117308K free 170824K cached

 PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND
 29225 nobody 0 0 9760 9760 7132 S 0 12.5 2.5 0:00 httpd_perl
 29220 nobody 0 0 9540 9540 7136 S 0 9.0 2.4 0:00 httpd_perl
 29215 nobody 1 0 9672 9672 6884 S 0 4.6 2.4 0:01 httpd_perl
 29255 root 7 0 1036 1036 824 R 0 3.2 0.2 0:01 top
 376 squid 0 0 15920 14M 556 S 0 1.1 3.8 209:12 squid
 29227 mysql 5 5 1892 1892 956 S N 0 1.1 0.4 0:00 mysqld
 29223 mysql 5 5 1892 1892 956 S N 0 0.9 0.4 0:00 mysqld
 29234 mysql 5 5 1892 1892 956 S N 0 0.9 0.4 0:00 mysqld

Which starts with overall information of the system and then displays the most active processes at the
given moment. So for example if we look at the httpd_perl processes we can see the size of the resi-
dent (RSS) and shared (SHARE) memory segments. This sample was taken on the production server
running linux.

But of course we want to see all the apache/mod_perl processes, and that’s where ps(1) comes to help. The
options of this utility vary from one Unix flavor to another, and some flavors provide their own tools.
Let’s check the information about mod_perl processes:

 % ps -o pid,user,rss,vsize,%cpu,%mem,ucomm -C httpd_perl
 PID USER RSS VSZ %CPU %MEM COMMAND
 29213 root 8584 10264 0.0 2.2 httpd_perl
 29215 nobody 9740 11316 1.0 2.5 httpd_perl
 29216 nobody 9668 11252 0.7 2.4 httpd_perl
 29217 nobody 9824 11408 0.6 2.5 httpd_perl
 29218 nobody 9712 11292 0.6 2.5 httpd_perl
 29219 nobody 8860 10528 0.0 2.2 httpd_perl
 29220 nobody 9616 11200 0.5 2.4 httpd_perl
 29221 nobody 8860 10528 0.0 2.2 httpd_perl
 29222 nobody 8860 10528 0.0 2.2 httpd_perl
 29224 nobody 8860 10528 0.0 2.2 httpd_perl
 29225 nobody 9760 11340 0.7 2.5 httpd_perl
 29235 nobody 9524 11104 0.4 2.4 httpd_perl

Now you can see the resident (RSS) and virtual (VSZ) memory segments (and shared memory segment if
you ask for it) of all mod_perl processes. Please refer to the top(1) and ps(1) man pages for more informa-
tion.

You probably agree that using top(1) and ps(1) is cumbersome if we want to use memory size sampling
during the benchmark test. We want to have a way to print memory sizes during the program execution at
desired places. If you have GTop modules installed, which is a perl glue to the libgtop library, it’s
exactly what we need.

15 Feb 2014358

14.4.3 Measuring the Memory of the Process

Note: GTop requires the libgtop library but is not available for all platforms. See the docs in the source
at ftp://ftp.gnome.org/pub/GNOME/stable/sources/gtop/ to check whether your platform/flavor is
supported.

GTop provides an API for retrieval of information about processes and the whole system. We are inter-
ested only in memory sampling API methods. To print all the process related memory information we can
execute the following code:

 use GTop;
 my $gtop = GTop->new;
 my $proc_mem = $gtop->proc_mem($$);
 for (qw(size vsize share rss)) {
 printf " %s => %d\n", $_, $proc_mem->$_();
 }

When executed we see the following output (in bytes):

 size => 1900544
 vsize => 3108864
 share => 1392640
 rss => 1900544

So if we are interested in to print the process resident memory segment before and after some event we
just do it: For example if we want to see how much extra memory was allocated after a variable creation
we can write the following code:

 use GTop;
 my $gtop = GTop->new;
 my $before = $gtop->proc_mem($$)->rss;
 my $x = ’a’ x 10000;
 my $after = $gtop->proc_mem($$)->rss;
 print "diff: ",$after-$before, " bytes\n";

and the output

 diff: 20480 bytes

So we can see that Perl has allocated extra 20480 bytes to create $x (of course the creation of after
needed a few bytes as well, but it’s insignificant compared to a size of $x)

The Apache::VMonitor module with help of the GTop module allows you to watch all your system
information using your favorite browser from anywhere in the world without a need to telnet to your
machine. If you are looking at what information you can retrieve with GTop, you should look at
Apache::VMonitor as it deploys a big part of the API GTop provides.

If you are running a true BSD system, you may use BSD::Resource::getrusage instead of GTop.
For example:

 print "used memory = ".(BSD::Resource::getrusage)[2]."\n"

35915 Feb 2014

14.4.3 Measuring the Memory of the ProcessPerformance Tuning

ftp://ftp.gnome.org/pub/GNOME/stable/sources/gtop/

For more information refer to the BSD::Resource manpage.

14.4.4 Measuring the Memory Usage of Subroutines

With help of Apache::Status you can find out the size of each and every subroutine.

1. Build and install mod_perl as you always do, make sure it’s version 1.22 or higher.

2. Configure /perl-status if you haven’t already:

 <Location /perl-status>
 SetHandler perl-script
 PerlHandler Apache::Status
 order deny,allow
 #deny from all
 #allow from ...
 </Location>

3. Add to httpd.conf

 PerlSetVar StatusOptionsAll On
 PerlSetVar StatusTerse On
 PerlSetVar StatusTerseSize On
 PerlSetVar StatusTerseSizeMainSummary On

 PerlModule B::TerseSize

4. Start the server (best in httpd -X mode)

5. From your favorite browser fetch http://localhost/perl-status

6. Click on ’Loaded Modules’ or ’Compiled Registry Scripts’

7. Click on the module or script of your choice (you might need to run some script/handler before you
will see it here unless it was preloaded)

8. Click on ’Memory Usage’ at the bottom

9. You should see all the subroutines and their respective sizes.

Now you can start to optimize your code. Or test which of the several implementations is of the least size.

For example let’s compare CGI.pm ’s OO vs. procedural interfaces:

As you will see below the first OO script uses about 2k bytes while the second script (procedural interface)
uses about 5k.

Here are the code examples and the numbers:

15 Feb 2014360

14.4.4 Measuring the Memory Usage of Subroutines

http://localhost/perl-status

1.

 cgi_oo.pl

 use CGI ();
 my $q = CGI->new;
 print $q->header;
 print $q->b("Hello");

2.

 cgi_mtd.pl

 use CGI qw(header b);
 print header();
 print b("Hello");

After executing each script in single server mode (-X) the results are:

1.

 Totals: 1966 bytes | 27 OPs

 handler 1514 bytes | 27 OPs
 exit 116 bytes | 0 OPs

2.

 Totals: 4710 bytes | 19 OPs

 handler 1117 bytes | 19 OPs
 basefont 120 bytes | 0 OPs
 frameset 120 bytes | 0 OPs
 caption 119 bytes | 0 OPs
 applet 118 bytes | 0 OPs
 script 118 bytes | 0 OPs
 ilayer 118 bytes | 0 OPs
 header 118 bytes | 0 OPs
 strike 118 bytes | 0 OPs
 layer 117 bytes | 0 OPs
 table 117 bytes | 0 OPs
 frame 117 bytes | 0 OPs
 style 117 bytes | 0 OPs
 Param 117 bytes | 0 OPs
 small 117 bytes | 0 OPs
 embed 117 bytes | 0 OPs
 font 116 bytes | 0 OPs
 span 116 bytes | 0 OPs
 exit 116 bytes | 0 OPs
 big 115 bytes | 0 OPs
 div 115 bytes | 0 OPs
 sup 115 bytes | 0 OPs
 Sub 115 bytes | 0 OPs
 TR 114 bytes | 0 OPs

36115 Feb 2014

14.4.4 Measuring the Memory Usage of SubroutinesPerformance Tuning

 td 114 bytes | 0 OPs
 Tr 114 bytes | 0 OPs
 th 114 bytes | 0 OPs
 b 113 bytes | 0 OPs

Note, that the above is correct if you didn’t precompile all CGI.pm ’s methods at server startup. Since if
you did, the procedural interface in the second test will take up to 18k and not 5k as we saw. That’s
because the whole of CGI.pm ’s namespace is inherited and it already has all its methods compiled, so it
doesn’t really matter whether you attempt to import only the symbols that you need. So if you have:

 use CGI qw(-compile :all);

in the server startup script. Having:

 use CGI qw(header);

or

 use CGI qw(:all);

is essentially the same. You will have all the symbols precompiled at startup imported even if you ask for
only one symbol. It seems to me like a bug, but probably that’s how CGI.pm works.

BTW, you can check the number of opcodes in the code by a simple command line run. For example
comparing ’my %hash’ vs. ’my %hash = ()’.

 % perl -MO=Terse -e ’my %hash’ | wc -l
 -e syntax OK
 4

 % perl -MO=Terse -e ’my %hash = ()’ | wc -l
 -e syntax OK
 10

The first one has less opcodes.

Note that you shouldn’t use Apache::Status module on production server as it adds quite a bit of
overhead for each request.

14.5 Know Your Operating System
In order to get the best performance it helps to get intimately familiar with the Operating System (OS) the
web server is running on. There are many OS specific things that you may be able to optimize which will
improve your web server’s speed, reliability and security.

The following sections will reveal some of the most important details you should know about your OS.

15 Feb 2014362

14.5 Know Your Operating System

14.5.1 Sharing Memory

The sharing of memory is one very important factor. If your OS supports it (and most sane systems do),
you might save memory by sharing it between child processes. This is only possible when you preload
code at server startup. However, during a child process’ life its memory pages tend to become unshared.

There is no way we can make Perl allocate memory so that (dynamic) variables land on different memory
pages from constants, so the copy-on-write effect (we will explain this in a moment) will hit you almost at
random.

If you are pre-loading many modules you might be able to trade off the memory that stays shared against
the time for an occasional fork by tuning MaxRequestsPerChild . Each time a child reaches this
upper limit and dies it should release its unshared pages. The new child which replaces it will share its
fresh pages until it scribbles on them.

The ideal is a point where your processes usually restart before too much memory becomes unshared. You
should take some measurements to see if it makes a real difference, and to find the range of reasonable
values. If you have success with this tuning the value of MaxRequestsPerChild will probably be
peculiar to your situation and may change with changing circumstances.

It is very important to understand that your goal is not to have MaxRequestsPerChild to be 10000.
Having a child serving 300 requests on precompiled code is already a huge overall speedup, so if it is 100
or 10000 it probably does not really matter if you can save RAM by using a lower value.

Do not forget that if you preload most of your code at server startup, the newly forked child gets ready
very fast, because it inherits most of the preloaded code and the perl interpreter from the parent process.

During the life of the child its memory pages (which aren’t really its own to start with, it uses the parent’s
pages) gradually get ‘dirty’ - variables which were originally inherited and shared are updated or modified
-- and the copy-on-write happens. This reduces the number of shared memory pages, thus increasing the
memory requirement. Killing the child and spawning a new one allows the new child to get back to the
pristine shared memory of the parent process.

The recommendation is that MaxRequestsPerChild should not be too large, otherwise you lose some
of the benefit of sharing memory.

See Choosing MaxRequestsPerChild for more about tuning the MaxRequestsPerChild parameter.

14.5.1.1 How Shared Is My Memory?

You’ve probably noticed that the word shared is repeated many times in relation to mod_perl. Indeed,
shared memory might save you a lot of money, since with sharing in place you can run many more servers
than without it. See the Formula and the numbers.

How much shared memory do you have? You can see it by either using the memory utility that comes
with your system or you can deploy the GTop module:

36315 Feb 2014

14.5.1 Sharing MemoryPerformance Tuning

 use GTop ();
 print "Shared memory of the current process: ",
 GTop->new->proc_mem($$)->share,"\n";

 print "Total shared memory: ",
 GTop->new->mem->share,"\n";

When you watch the output of the top utility, don’t confuse the RES (or RSS) columns with the SHARE
column. RES is RESident memory, which is the size of pages currently swapped in.

14.5.1.2 Calculating Real Memory Usage

I have shown how to measure the size of the process’ shared memory, but we still want to know what the
real memory usage is. Obviously this cannot be calculated simply by adding up the memory size of each
process because that wouldn’t account for the shared memory.

On the other hand we cannot just subtract the shared memory size from the total size to get the real
memory usage numbers, because in reality each process has a different history of processed requests,
therefore the shared memory is not the same for all processes.

So how do we measure the real memory size used by the server we run? It’s probably too difficult to give
the exact number, but I’ve found a way to get a fair approximation which was verified in the following
way. I have calculated the real memory used, by the technique you will see in the moment, and then have
stopped the Apache server and saw that the memory usage report indicated that the total used memory
went down by almost the same number I’ve calculated. Note that some OSs do smart memory pages
caching so you may not see the memory usage decrease as soon as it actually happens when you quit the
application.

This is a technique I’ve used:

1. For each process sum up the difference between shared and system memory. To calculate a difference
for a single process use:

 use GTop;
 my $proc_mem = GTop->new->proc_mem($$);
 my $diff = $proc_mem->size - $proc_mem->share;
 print "Difference is $diff bytes\n";

2. Now if we add the shared memory size of the process with maximum shared memory, we will get all
the memory that actually is being used by all httpd processes, except for the parent process.

3. Finally, add the size of the parent process.

Please note that this might be incorrect for your system, so you use this number on your own risk.

I’ve used this technique to display real memory usage in the module Apache::VMonitor, so instead of
trying to manually calculate this number you can use this module to do it automatically. In fact in the
calculations used in this module there is no separation between the parent and child processes, they are all
counted indifferently using the following code:

15 Feb 2014364

14.5.1 Sharing Memory

 use GTop ();
 my $gtop = GTop->new;
 my $total_real = 0;
 my $max_shared = 0;
 # @mod_perl_pids is initialized by Apache::Scoreboard, irrelevant here
 my @mod_perl_pids = some_code();
 for my $pid (@mod_perl_pids)
 my $proc_mem = $gtop->proc_mem($pid);
 my $size = $proc_mem->size($pid);
 my $share = $proc_mem->share($pid);
 $total_real += $size - $share;
 $max_shared = $share if $max_shared < $share;
 }
 my $total_real += $max_shared;

So as you see we that we accumulate the difference between the shared and reported memory:

 $total_real += $size-$share;

and at the end add the biggest shared process size:

 my $total_real += $max_shared;

So now $total_real contains approximately the really used memory.

14.5.1.3 Are My Variables Shared?

How do you find out if the code you write is shared between the processes or not? The code should be
shared, except where it is on a memory page with variables that change. Some variables are read-only in
usage and never change. For example, if you have some variables that use a lot of memory and you want
them to be read-only. As you know the variable becomes unshared when the process modifies its value.

So imagine that you have this 10Mb in-memory database that resides in a single variable, you perform
various operations on it and want to make sure that the variable is still shared. For example if you do some
matching regular expression (regex) processing on this variable and want to use the pos() function, will it
make the variable unshared or not?

The Apache::Peek module comes to rescue. Let’s write a module called MyShared.pm which we
preload at server startup, so all the variables of this module are initially shared by all children.

 MyShared.pm

 package MyShared;
 use Apache::Peek;

 my $readonly = "Chris";

 sub match { $readonly =~ /\w/g; }
 sub print_pos{ print "pos: ",pos($readonly),"\n";}
 sub dump { Dump($readonly); }
 1;

36515 Feb 2014

14.5.1 Sharing MemoryPerformance Tuning

This module declares the package MyShared , loads the Apache::Peek module and defines the lexi-
cally scoped $readonly variable which is supposed to be a variable of large size (think about a huge
hash data structure), but we will use a small one to simplify this example.

The module also defines three subroutines: match() that does a simple character matching, print_pos() that
prints the current position of the matching engine inside the string that was last matched and finally the
dump() subroutine that calls the Apache::Peek module’s Dump() function to dump a raw Perl
data-type of the $readonly variable.

Now we write the script that prints the process ID (PID) and calls all three functions. The goal is to check
whether pos() makes the variable dirty and therefore unshared.

 share_test.pl

 use MyShared;
 print "Content-type: text/plain\r\n\r\n";
 print "PID: $$\n";
 MyShared::match();
 MyShared::print_pos();
 MyShared::dump();

Before you restart the server, in httpd.conf set:

 MaxClients 2

for easier tracking. You need at least two servers to compare the print outs of the test program. Having
more than two can make the comparison process harder.

Now open two browser windows and issue the request for this script several times in both windows, so
you get different processes PIDs reported in the two windows and each process has processed a different
number of requests to the share_test.pl script.

In the first window you will see something like that:

 PID: 27040
 pos: 1
 SV = PVMG(0x853db20) at 0x8250e8c
 REFCNT = 3
 FLAGS = (PADBUSY,PADMY,SMG,POK,pPOK)
 IV = 0
 NV = 0
 PV = 0x8271af0 "Chris"\0
 CUR = 5
 LEN = 6
 MAGIC = 0x853dd80
 MG_VIRTUAL = &vtbl_mglob
 MG_TYPE = ’g’
 MG_LEN = 1

And in the second window:

15 Feb 2014366

14.5.1 Sharing Memory

 PID: 27041
 pos: 2
 SV = PVMG(0x853db20) at 0x8250e8c
 REFCNT = 3
 FLAGS = (PADBUSY,PADMY,SMG,POK,pPOK)
 IV = 0
 NV = 0
 PV = 0x8271af0 "Chris"\0
 CUR = 5
 LEN = 6
 MAGIC = 0x853dd80
 MG_VIRTUAL = &vtbl_mglob
 MG_TYPE = ’g’
 MG_LEN = 2

We see that all the addresses of the supposedly big structures are the same, 0x8250e8c for SV, and
0x8271af0 for PV, therefore the variable data structure is almost completely shared. The only difference is
in SV.MAGIC.MG_LEN record, which is not shared.

So given that the $readonly variable is a big one, its value is still shared between the processes, while
part of the variable data structure is non-shared. But it’s almost insignificant because it takes a very little
memory space.

Now if you need to compare more than variable, doing it by hand can be quite time consuming and error
prune. Therefore it’s better to correct the testing script to dump the Perl data-types into files (e.g
/tmp/dump.$$, where $$ is the PID of the process) and then using diff(1) utility to see whether there is
some difference.

So correcting the dump() function to write the info to the file will do the job. Notice that we use
Devel::Peek and not Apache::Peek . The both are almost the same, but Apache::Peek prints it
output directly to the opened socket so we cannot intercept and redirect the result to the file. Since
Devel::Peek dumps results to the STDERR stream we can use the old trick of saving away the default
STDERR handler, and open a new filehandler using the STDERR. In our example when Devel::Peek
now prints to STDERR it actually prints to our file. When we are done, we make sure to restore the origi-
nal STDERR filehandler.

So this is the resulting code:

 MyShared2.pm

 package MyShared2;
 use Devel::Peek;

 my $readonly = "Chris";

 sub match { $readonly =~ /\w/g; }
 sub print_pos{ print "pos: ",pos($readonly),"\n";}
 sub dump{
 my $dump_file = "/tmp/dump.$$";
 print "Dumping the data into $dump_file\n";
 open OLDERR, ">&STDERR";
 open STDERR, ">".$dump_file or die "Can’t open $dump_file: $!";
 Dump($readonly);

36715 Feb 2014

14.5.1 Sharing MemoryPerformance Tuning

 close STDERR ;
 open STDERR, ">&OLDERR";
 }
 1;

When if we modify the code to use the modified module:

 share_test2.pl

 use MyShared2;
 print "Content-type: text/plain\r\n\r\n";
 print "PID: $$\n";
 MyShared2::match();
 MyShared2::print_pos();
 MyShared2::dump();

And run it as before (with MaxClients 2), two dump files will be created in the directory /tmp. In our test
these were created as /tmp/dump.1224 and /tmp/dump.1225. When we run diff(1):

 % diff /tmp/dump.1224 /tmp/dump.1225
 12c12
 < MG_LEN = 1

 > MG_LEN = 2

We see that the two padlists (of the variable readonly) are different, as we have observed before when
we did a manual comparison.

In fact we if we think about these results again, we get to a conclusion that there is no need for two
processes to find out whether the variable gets modified (and therefore unshared). It’s enough to check the
datastructure before the script was executed and after that. You can modify the MyShared2 module to
dump the padlists into a different file after each invocation and than to run the diff(1) on the two files.

If you want to watch whether some lexically scoped (with my ()) variables in your Apache::Registry
script inside the same process get changed between invocations you can use the
Apache::RegistryLexInfo module instead. Since it does exactly this: it makes a snapshot of the
padlist before and after the code execution and shows the difference between the two. This specific
module was written to work with Apache::Registry scripts so it won’t work for loaded modules. Use
the technique we have described above for any type of variables in modules and scripts.

Surely another way of ensuring that a scalar is readonly and therefore sharable is to either use the
constant pragma or readonly pragma. But then you won’t be able to make calls that alter the vari-
able even a little, like in the example that we just showed, because it will be a true constant variable and
you will get compile time error if you try this:

 MyConstant.pm

 package MyConstant;
 use constant readonly => "Chris";

 sub match { readonly =~ /\w/g; }
 sub print_pos{ print "pos: ",pos(readonly),"\n";}
 1;

15 Feb 2014368

14.5.1 Sharing Memory

 % perl -c MyConstant.pm

 Can’t modify constant item in match position at MyConstant.pm line
 5, near "readonly)"
 MyConstant.pm had compilation errors.

However this code is just right:

 MyConstant1.pm

 package MyConstant1;
 use constant readonly => "Chris";

 sub match { readonly =~ /\w/g; }
 1;

14.5.1.4 Preloading Perl Modules at Server Startup

You can use the PerlRequire and PerlModule directives to load commonly used modules such as
CGI.pm , DBI and etc., when the server is started. On most systems, server children will be able to share
the code space used by these modules. Just add the following directives into httpd.conf:

 PerlModule CGI
 PerlModule DBI

But an even better approach is to create a separate startup file (where you code in plain perl) and put there
things like:

 use DBI ();
 use Carp ();

Don’t forget to prevent importing of the symbols exported by default by the module you are going to
preload, by placing empty parentheses () after a module’s name. Unless you need some of these in the
startup file, which is unlikely. This will save you a few more memory bits.

Then you require() this startup file in httpd.conf with the PerlRequire directive, placing it before
the rest of the mod_perl configuration directives:

 PerlRequire /path/to/start-up.pl

CGI.pm is a special case. Ordinarily CGI.pm autoloads most of its functions on an as-needed basis. This
speeds up the loading time by deferring the compilation phase. When you use mod_perl, FastCGI or
another system that uses a persistent Perl interpreter, you will want to precompile the functions at initial-
ization time. To accomplish this, call the package function compile() like this:

 use CGI ();
 CGI->compile(’:all’);

The arguments to compile() are a list of method names or sets, and are identical to those accepted by
the use() and import() operators. Note that in most cases you will want to replace ’:all’ with the
tag names that you actually use in your code, since generally you only use a subset of them.

36915 Feb 2014

14.5.1 Sharing MemoryPerformance Tuning

Let’s conduct a memory usage test to prove that preloading, reduces memory requirements.

In order to have an easy measurement we will use only one child process, therefore we will use this
setting:

 MinSpareServers 1
 MaxSpareServers 1
 StartServers 1
 MaxClients 1
 MaxRequestsPerChild 100

We are going to use the Apache::Registry script memuse.pl which consists of two parts: the first one
preloads a bunch of modules (that most of them aren’t going to be used), the second part reports the
memory size and the shared memory size used by the single child process that we start. and of course it
prints the difference between the two sizes.

 memuse.pl

 use strict;
 use CGI ();
 use DB_File ();
 use LWP::UserAgent ();
 use Storable ();
 use DBI ();
 use GTop ();

 my $r = shift;
 $r->send_http_header(’text/plain’);
 my $proc_mem = GTop->new->proc_mem($$);
 my $size = $proc_mem->size;
 my $share = $proc_mem->share;
 my $diff = $size - $share;
 printf "%10s %10s %10s\n", qw(Size Shared Difference);
 printf "%10d %10d %10d (bytes)\n",$size,$share,$diff;

First we restart the server and execute this CGI script when none of the above modules preloaded. Here is
the result:

 Size Shared Diff
 4706304 2134016 2572288 (bytes)

Now we take all the modules:

 use strict;
 use CGI ();
 use DB_File ();
 use LWP::UserAgent ();
 use Storable ();
 use DBI ();
 use GTop ();

and copy them into the startup script, so they will get preloaded. The script remains unchanged. We restart
the server and execute it again. We get the following.

15 Feb 2014370

14.5.1 Sharing Memory

 Size Shared Diff
 4710400 3997696 712704 (bytes)

Let’s put the two results into one table:

 Preloading Size Shared Diff
 Yes 4710400 3997696 712704 (bytes)
 No 4706304 2134016 2572288 (bytes)
 --
 Difference 4096 1863680 -1859584

You can clearly see that when the modules weren’t preloaded the shared memory pages size, were about
1864Kb smaller relative to the case where the modules were preloaded.

Assuming that you have had 256M dedicated to the web server, if you didn’t preload the modules, you
could have:

 268435456 = X * 2572288 + 2134016

 X = (268435456 - 2134016) / 2572288 = 103

103 servers.

Now let’s calculate the same thing with modules preloaded:

 268435456 = X * 712704 + 3997696

 X = (268435456 - 3997696) / 712704 = 371

You can have almost 4 times more servers!!!

Remember that we have mentioned before that memory pages gets dirty and the size of the shared memory
gets smaller with time? So we have presented the ideal case where the shared memory stays intact. There-
fore the real numbers will be a little bit different, but not far from the numbers in our example.

Also it’s obvious that in your case it’s possible that the process size will be bigger and the shared memory
will be smaller, since you will use different modules and a different code, so you won’t get this fantastic
ratio, but this example is certainly helps to feel the difference.

14.5.1.5 Preloading Registry Scripts at Server Startup

What happens if you find yourself stuck with Perl CGI scripts and you cannot or don’t want to move most
of the stuff into modules to benefit from modules preloading, so the code will be shared by the children.
Luckily you can preload scripts as well. This time the Apache::RegistryLoader modules comes to
aid. Apache::RegistryLoader compiles Apache::Registry scripts at server startup.

For example to preload the script /perl/test.pl which is in fact the file /home/httpd/perl/test.pl you would
do the following:

37115 Feb 2014

14.5.1 Sharing MemoryPerformance Tuning

 use Apache::RegistryLoader ();
 Apache::RegistryLoader->new->handler("/perl/test.pl",
 "/home/httpd/perl/test.pl");

You should put this code either into <Perl> sections or into a startup script.

But what if you have a bunch of scripts located under the same directory and you don’t want to list them
one by one. Take the benefit of Perl modules and put them to a good use. The File::Find module will
do most of the work for you.

The following code walks the directory tree under which all Apache::Registry scripts are located.
For each encountered file with extension .pl, it calls the Apache::RegistryLoader::handler()
method to preload the script in the parent server, before pre-forking the child processes:

 use File::Find qw(finddepth);
 use Apache::RegistryLoader ();
 {
 my $scripts_root_dir = "/home/httpd/perl/";
 my $rl = Apache::RegistryLoader->new;
 finddepth
 (
 sub {
 return unless /\.pl$/;
 my $url = "$File::Find::dir/$_";
 $url =~ s|$scripts_root_dir/?|/|;
 warn "pre-loading $url\n";
 # preload $url
 my $status = $rl->handler($url);
 unless($status == 200) {
 warn "pre-load of ‘$url’ failed, status=$status\n";
 }
 },
 $scripts_root_dir);
 }

Note that we didn’t use the second argument to handler() here, as in the first example. To make the
loader smarter about the URI to filename translation, you might need to provide a trans() function to
translate the URI to filename. URI to filename translation normally doesn’t happen until HTTP request
time, so the module is forced to roll its own translation. If filename is omitted and a trans() function
was not defined, the loader will try using the URI relative to ServerRoot.

A simple trans() function can be something like that:

 sub mytrans {
 my $uri = shift;
 $uri =~ s|^/perl/|/home/httpd/perl/|;
 return $uri;
 }

You can easily derive the right translation by looking at the Alias directive. The above mytrans() func-
tion is matching our Alias :

15 Feb 2014372

14.5.1 Sharing Memory

 Alias /perl/ /home/httpd/perl/

After defining the URI to filename translation function you should pass it during the creation of the
Apache::RegistryLoader object:

 my $rl = Apache::RegistryLoader->new(trans => \&mytrans);

I won’t show any benchmarks here, since the effect is absolutely the same as with preloading modules.

See also BEGIN blocks

14.5.1.6 Modules Initializing at Server Startup

We have just learned that it’s important to preload the modules and scripts at the server startup. It turns out
that it’s not enough for some modules and you have to prerun their initialization code to get more memory
pages shared. Basically you will find an information about specific modules in their respective manpages.
We will present a few examples of widely used modules where the code can be initialized.

14.5.1.6.1 Initializing DBI.pm

The first example is the DBI module. As you know DBI works with many database drivers falling into the
DBD:: category, e.g. DBD::mysql . It’s not enough to preload DBI , you should initialize DBI with
driver(s) that you are going to use (usually a single driver is used), if you want to minimize memory use
after forking the child processes. Note that you want to do this under mod_perl and other environments
where the shared memory is very important. Otherwise you shouldn’t initialize drivers.

You probably know already that under mod_perl you should use the Apache::DBI module to get the
connection persistence, unless you open a separate connection for each user--in this case you should not
use this module. Apache::DBI automatically loads DBI and overrides some of its methods, so you
should continue coding like there is only a DBI module.

Just as with modules preloading our goal is to find the startup environment that will lead to the smallest
"difference" between the shared and normal memory reported, therefore a smaller total memory usage.

And again in order to have an easy measurement we will use only one child process, therefore we will use
this setting in httpd.conf:

 MinSpareServers 1
 MaxSpareServers 1
 StartServers 1
 MaxClients 1
 MaxRequestsPerChild 100

We always preload these modules:

 use Gtop();
 use Apache::DBI(); # preloads DBI as well

37315 Feb 2014

14.5.1 Sharing MemoryPerformance Tuning

We are going to run memory benchmarks on five different versions of the startup.pl file.

option 1

Leave the file unmodified.

option 2

Install MySQL driver (we will use MySQL RDBMS for our test):

 DBI->install_driver("mysql");

It’s safe to use this method, since just like with use() , if it can’t be installed it’ll die().

option 3

Preload MySQL driver module:

 use DBD::mysql;

option 4

Tell Apache::DBI to connect to the database when the child process starts (Chil-
dInitHandler), no driver is preload before the child gets spawned!

 Apache::DBI->connect_on_init(’DBI:mysql:test::localhost’,
 "",
 "",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes
 # immediately
 }
)
 or die "Cannot connect to database: $DBI::errstr";

option 5

Options 2 and 4: using connect_on_init() and install_driver().

Here is the Apache::Registry test script that we have used:

 preload_dbi.pl

 use strict;
 use GTop ();
 use DBI ();

 my $dbh = DBI->connect("DBI:mysql:test::localhost",
 "",
 "",
 {
 PrintError => 1, # warn() on errors

15 Feb 2014374

14.5.1 Sharing Memory

 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes
 # immediately
 }
)
 or die "Cannot connect to database: $DBI::errstr";

 my $r = shift;
 $r->send_http_header(’text/plain’);

 my $do_sql = "show tables";
 my $sth = $dbh->prepare($do_sql);
 $sth->execute();
 my @data = ();
 while (my @row = $sth->fetchrow_array){
 push @data, @row;
 }
 print "Data: @data\n";
 $dbh->disconnect(); # NOP under Apache::DBI

 my $proc_mem = GTop->new->proc_mem($$);
 my $size = $proc_mem->size;
 my $share = $proc_mem->share;
 my $diff = $size - $share;
 printf "%8s %8s %8s\n", qw(Size Shared Diff);
 printf "%8d %8d %8d (bytes)\n",$size,$share,$diff;

The script opens a opens a connection to the database ’test’ and issues a query to learn what tables the
databases has. When the data is collected and printed the connection would be closed in the regular case,
but Apache::DBI overrides it with empty method. When the data is processed a familiar to you already
code to print the memory usage follows.

The server was restarted before each new test.

So here are the results of the five tests that were conducted, sorted by the Diff column:

1. After the first request:

 Test type Size Shared Diff
 --
 install_driver (2) 3465216 2621440 843776
 install_driver & connect_on_init (5) 3461120 2609152 851968
 preload driver (3) 3465216 2605056 860160
 nothing added (1) 3461120 2494464 966656
 connect_on_init (4) 3461120 2482176 978944

2. After the second request (all the subsequent request showed the same results):

 Test type Size Shared Diff
 --
 install_driver (2) 3469312 2609152 860160
 install_driver & connect_on_init (5) 3481600 2605056 876544
 preload driver (3) 3469312 2588672 880640
 nothing added (1) 3477504 2482176 995328
 connect_on_init (4) 3481600 2469888 1011712

37515 Feb 2014

14.5.1 Sharing MemoryPerformance Tuning

Now what do we conclude from looking at these numbers. First we see that only after a second reload we
get the final memory footprint for a specific request in question (if you pass different arguments the
memory usage might and will be different).

But both tables show the same pattern of memory usage. We can clearly see that the real winner is the
startup.pl file’s version where the MySQL driver was installed (2). Since we want to have a connection
ready for the first request made to the freshly spawned child process, we generally use the version (5)
which uses somewhat more memory, but has almost the same number of shared memory pages. The
version (3) only preloads the driver which results in smaller shared memory. The last two versions having
nothing initialized (1) and having only the connect_on_init() method used (4). The former is a little bit
better than the latter, but both significantly worse than the first two versions.

To remind you why do we look for the smallest value in the column diff, recall the real memory usage
formula:

 RAM_dedicated_to_mod_perl = diff * number_of_processes
 + the_processes_with_largest_shared_memory

Notice that the smaller the diff is, the bigger the number of processes you can have using the same amount
of RAM. Therefore every 100K difference counts, when you multiply it by the number of processes. If we
take the number from the version (2) vs. (4) and assume that we have 256M of memory dedicated to
mod_perl processes we will get the following numbers using the formula derived from the above formula:

 RAM - largest_shared_size
 N_of Procs = -------------------------
 Diff

 268435456 - 2609152
 (ver 2) N = ------------------- = 309
 860160

 268435456 - 2469888
 (ver 4) N = ------------------- = 262
 1011712

So you can tell the difference (17% more child processes in the first version).

14.5.1.6.2 Initializing CGI.pm

CGI.pm is a big module that by default postpones the compilation of its methods until they are actually
needed, thus making it possible to use it under a slow mod_cgi handler without adding a big overhead.
That’s not what we want under mod_perl and if you use CGI.pm you should precompile the methods that
you are going to use at the server startup in addition to preloading the module. Use the compile method for
that:

 use CGI;
 CGI->compile(’:all’);

15 Feb 2014376

14.5.1 Sharing Memory

where you should replace the tag group :all with the real tags and group tags that you are going to use if
you want to optimize the memory usage.

We are going to compare the shared memory foot print by using the script which is back compatible with
mod_cgi. You will see that you can improve performance of this kind of scripts as well, but if you really
want a fast code think about porting it to use Apache::Request for CGI interface and some other
module for HTML generation.

So here is the Apache::Registry script that we are going to use to make the comparison:

 preload_cgi_pm.pl

 use strict;
 use CGI ();
 use GTop ();

 my $q = new CGI;
 print $q->header(’text/plain’);
 print join "\n", map {"$_ => ".$q->param($_) } $q->param;
 print "\n";

 my $proc_mem = GTop->new->proc_mem($$);
 my $size = $proc_mem->size;
 my $share = $proc_mem->share;
 my $diff = $size - $share;
 printf "%8s %8s %8s\n", qw(Size Shared Diff);
 printf "%8d %8d %8d (bytes)\n",$size,$share,$diff;

The script initializes the CGI object, sends HTTP header and then print all the arguments and values that
were passed to the script if at all. At the end as usual we print the memory usage.

As usual we are going to use a single child process, therefore we will use this setting in httpd.conf:

 MinSpareServers 1
 MaxSpareServers 1
 StartServers 1
 MaxClients 1
 MaxRequestsPerChild 100

We are going to run memory benchmarks on three different versions of the startup.pl file. We always
preload this module:

 use Gtop();

option 1

Leave the file unmodified.

option 2

Preload CGI.pm :

37715 Feb 2014

14.5.1 Sharing MemoryPerformance Tuning

 use CGI ();

option 3

Preload CGI.pm and pre-compile the methods that we are going to use in the script:

 use CGI ();
 CGI->compile(qw(header param));

The server was restarted before each new test.

So here are the results of the five tests that were conducted, sorted by the Diff column:

1. After the first request:

 Version Size Shared Diff Test type
 --
 1 3321856 2146304 1175552 not preloaded
 2 3321856 2326528 995328 preloaded
 3 3244032 2465792 778240 preloaded & methods+compiled

2. After the second request (all the subsequent request showed the same results):

 Version Size Shared Diff Test type
 --
 1 3325952 2134016 1191936 not preloaded
 2 3325952 2314240 1011712 preloaded
 3 3248128 2445312 802816 preloaded & methods+compiled

The first version shows the results of the script execution when CGI.pm wasn’t preloaded. The second
version with module preloaded. The third when it’s both preloaded and the methods that are going to be
used are precompiled at the server startup.

By looking at the version one of the second table we can conclude that, preloading adds about 20K of
shared size. As we have mention at the beginning of this section that’s how CGI.pm was implemented--to
reduce the load overhead. Which means that preloading CGI is almost hardly change a thing. But if we
compare the second and the third versions we will see a very significant difference of 207K
(1011712-802816), and we have used only a few methods (the header method loads a few more method
transparently for a user). Imagine how much memory we are going to save if we are going to precompile
all the methods that we are using in other scripts that use CGI.pm and do a little bit more than the script
that we have used in the test.

But even in our very simple case using the same formula, what do we see? (assuming that we have 256MB
dedicated for mod_perl)

15 Feb 2014378

14.5.1 Sharing Memory

 RAM - largest_shared_size
 N_of Procs = -------------------------
 Diff

 268435456 - 2134016
 (ver 1) N = ------------------- = 223
 1191936

 268435456 - 2445312
 (ver 3) N = ------------------- = 331
 802816

If we preload CGI.pm and precompile a few methods that we use in the test script, we can have 50%
more child processes than when we don’t preload and precompile the methods that we are going to use.

META: I’ve heard that the 3.x generation will be less bloated, so probably I’ll have to rerun this using the
new version.

14.5.2 Increasing Shared Memory With mergemem

mergemem is an experimental utility for linux, which looks very interesting for us mod_perl users:
http://www.complang.tuwien.ac.at/ulrich/mergemem/

It looks like it could be run periodically on your server to find and merge duplicate pages. It won’t halt
your httpds during the merge, this aspect has been taken into consideration already during the design of
mergemem: Merging is not performed with one big systemcall. Instead most operation is in userspace,
making a lot of small systemcalls.

Therefore blocking of the system should not happen. And, if it really should turn out to take too much time
you can reduce the priority of the process.

The worst case that can happen is this: mergemem merges two pages and immediately afterwards they
will be split. The split costs about the same as the time consumed by merging.

This software comes with a utility called memcmp to tell you how much you might save.

14.5.3 Forking and Executing Subprocesses from mod_perl

It’s desirable to avoid forking under mod_perl. Since when you do, you are forking the entire Apache
server, lock, stock and barrel. Not only is your Perl code and Perl interpreter being duplicated, but so is
mod_ssl, mod_rewrite, mod_log, mod_proxy, mod_speling (it’s not a typo!) or whatever modules you
have used in your server, all the core routines, etc.

Modern Operating Systems come with a very light version of fork which adds a little overhead when
called, since it was optimized to do the absolute minimum of memory pages duplications. The
copy-on-write technique is the one that allows to do so. The gist of this technique is as follows: the parent
process memory pages aren’t immediately copied to the child’s space on fork(), but this is done only when
the child or the parent modifies the data in some memory pages. Before the pages get modified they get
marked as dirty and the child has no choice but to copy the pages that are to be modified since they cannot

37915 Feb 2014

14.5.2 Increasing Shared Memory With mergememPerformance Tuning

http://www.complang.tuwien.ac.at/ulrich/mergemem/

be shared any more.

If you need to call a Perl program from your mod_perl code, it’s better to try to covert the program into a
module and call it a function without spawning a special process to do that. Of course if you cannot do that
or the program is not written in Perl, you have to call via system() or is equivalent, which spawn a new
process. If the program written in C, you may try to write a Perl glue code with help of XS or SWIG archi-
tectures, and then the program will be executed as a perl subroutine.

Also by trying to spawn a sub-process, you might be trying to do the "wrong thing". If what you really
want is to send information to the browser and then do some post-processing, look into the Perl-
CleanupHandler directive. The latter allows you to tell the child process after request has been
processed and user has received the response. This doesn’t release the mod_perl process to serve other
requests, but it allows to send the response to the client faster. If this is the situation and you need to run
some cleanup code, you may want to register this code during the request processing via:

 my $r = shift;
 $r->register_cleanup(\&do_cleanup);
 sub do_cleanup{ #some clean-up code here }

But when a long term process needs to be spawned, there is not much choice, but to use fork(). We cannot
just run this long term process within Apache process, since it’ll first keep the Apache process busy,
instead of letting it do the job it was designed for. And second, if Apache will be stopped the long term
process might be terminated as well, unless coded properly to detach from Apache processes group.

In the following sections we are going to discuss how to properly spawn new processes under mod_perl.

14.5.3.1 Forking a New Process

This is a typical way to call fork() under mod_perl:

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 # Parent runs this block
 } else {
 # Child runs this block
 # some code comes here
 CORE::exit(0);
 }
 # possibly more code here usually run by the parent

When using fork(), you should check its return value, since if it returns undef it means that the call was
unsuccessful and no process was spawned. Something that can happen when the system is running too
many processes and cannot spawn new ones.

When the process is successfully forked--the parent receives the PID of the newly spawned child as a
returned value of the fork() call and the child receives 0. Now the program splits into two. In the above
example the code inside the first block after if will be executed by the parent and the code inside the first
block after else will be executed by the child process.

15 Feb 2014380

14.5.3 Forking and Executing Subprocesses from mod_perl

It’s important not to forget to explicitly call exit() at the end of the child code when forking. Since if you
don’t and there is some code outside the if/else block, the child process will execute it as well. But under
mod_perl there is another nuance--you must use CORE::exit() and not exit() , which would be
automatically overridden by Apache::exit() if used in conjunction with Apache::Registry and
similar modules. And we want the spawned process to quit when its work is done, otherwise it’ll just stay
alive use resources and do nothing.

The parent process usually completes its execution path and enters the pool of free servers to wait for a
new assignment. If the execution path is to be aborted earlier for some reason one should use
Apache::exit() or die(), in the case of Apache::Registry or Apache::PerlRun handlers a simple
exit() will do the right thing.

The child shares with parent its memory pages until it has to modify some of them, which triggers a
copy-on-write process which copies these pages to the child’s domain before the child is allowed to
modify them. But this all happens afterwards. At the moment the fork() call executed, the only work to be
done before the child process goes on its separate way is setting up the page tables for the virtual memory,
which imposes almost no delay at all.

14.5.3.2 Freeing the Parent Process

In the child code you must also close all the pipes to the connection socket that were opened by the parent
process (i.e. STDIN and STDOUT) and inherited by the child, so the parent will be able to complete the
request and free itself for serving other requests. If you need the STDIN and/or STDOUT streams you
should re-open them. You may need to close or re-open the STDERR filehandle. It’s opened to append to
the error_log file as inherited from its parent, so chances are that you will want to leave it untouched.

Under mod_perl, the spawned process also inherits the file descriptor that’s tied to the socket through
which all the communications between the server and the client happen. Therefore we need to free this
stream in the forked process. If we don’t do that, the server cannot be restarted while the spawned process
is still running. If an attempt is made to restart the server you will get the following error:

 [Mon Dec 11 19:04:13 2000] [crit]
 (98)Address already in use: make_sock:
 could not bind to address 127.0.0.1 port 8000

Apache::SubProcess comes to help and provides a method cleanup_for_exec() which takes care of
closing this file descriptor.

So the simplest way is to freeing the parent process is to close all three STD* streams if we don’t need
them and untie the Apache socket. In addition you may want to change process’ current directory to / so
the forked process won’t keep the mounted partition busy, if this is to be unmounted at a later time. To
summarize all this issues, here is an example of the fork that takes care of freeing the parent process.

 use Apache::SubProcess;
 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 # Parent runs this block
 } else {
 # Child runs this block
 $r->cleanup_for_exec(); # untie the socket

38115 Feb 2014

14.5.3 Forking and Executing Subprocesses from mod_perlPerformance Tuning

 chdir ’/’ or die "Can’t chdir to /: $!";
 close STDIN;
 close STDOUT;
 close STDERR;

 # some code comes here

 CORE::exit(0);
 }
 # possibly more code here usually run by the parent

Of course between the freeing the parent code and child process termination the real code is to be placed.

14.5.3.3 Detaching the Forked Process

Now what happens if the forked process is running and we decided that we need to restart the web-server?
This forked process will be aborted, since when parent process will die during the restart it’ll kill its child
processes as well. In order to avoid this we need to detach the process from its parent session, by opening
a new session with help of setsid() system call, provided by the POSIX module:

 use POSIX ’setsid’;

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 # Parent runs this block
 } else {
 # Child runs this block
 setsid or die "Can’t start a new session: $!";
 ...
 }

Now the spawned child process has a life of its own, and it doesn’t depend on the parent anymore.

14.5.3.4 Avoiding Zombie Processes

Now let’s talk about zombie processes.

Normally, every process has its parent. Many processes are children of the init process, whose PID is 1.
When you fork a process you must wait() or waitpid() for it to finish. If you don’t wait() for it, it becomes
a zombie.

A zombie is a process that doesn’t have a parent. When the child quits, it reports the termination to its
parent. If no parent wait()s to collect the exit status of the child, it gets "confused" and becomes a ghost
process, that can be seen as a process, but not killed. It will be killed only when you stop the parent
process that spawned it!

Generally the ps(1) utility displays these processes with the <defunc> tag, and you will see the zombies
counter increment when doing top(). These zombie processes can take up system resources and are gener-
ally undesirable.

15 Feb 2014382

14.5.3 Forking and Executing Subprocesses from mod_perl

So the proper way to do a fork is:

 my $r = shift;
 $r->send_http_header(’text/plain’);

 defined (my $kid = fork) or die "Cannot fork: $!";
 if ($kid) {
 waitpid($kid,0);
 print "Parent has finished\n";
 } else {
 # do something
 CORE::exit(0);
 }

In most cases the only reason you would want to fork is when you need to spawn a process that will take a
long time to complete. So if the Apache process that spawns this new child process has to wait for it to
finish, you have gained nothing. You can neither wait for its completion (because you don’t have the time
to), nor continue because you will get yet another zombie process. This is called a blocking call, since the
process is blocked to do anything else before this call gets completed.

The simplest solution is to ignore your dead children. Just add this line before the fork() call:

 $SIG{CHLD} = ’IGNORE’;

When you set the CHLD (SIGCHLD in C) signal handler to ’IGNORE’ , all the processes will be collected
by the init process and are therefore prevented from becoming zombies. This doesn’t work everywhere,
however. It proved to work at least on Linux OS.

Note that you cannot localize this setting with local() . If you do, it won’t have the desired effect.

[META: Can anyone explain why localization doesn’t work?]

So now the code would look like this:

 my $r = shift;
 $r->send_http_header(’text/plain’);

 $SIG{CHLD} = ’IGNORE’;

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 print "Parent has finished\n";
 } else {
 # do something time-consuming
 CORE::exit(0);
 }

Note that waitpid() call has gone. The $SIG{CHLD} = ’IGNORE’; statement protects us from zombies, as
explained above.

38315 Feb 2014

14.5.3 Forking and Executing Subprocesses from mod_perlPerformance Tuning

Another, more portable, but slightly more expensive solution is to use a double fork approach.

 my $r = shift;
 $r->send_http_header(’text/plain’);

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 waitpid($kid,0);
 } else {
 defined (my $grandkid = fork) or die "Kid cannot fork: $!\n";
 if ($grandkid) {
 CORE::exit(0);
 } else {
 # code here
 # do something long lasting
 CORE::exit(0);
 }
 }

Grandkid becomes a "child of init", i.e. the child of the process whose PID is 1.

Note that the previous two solutions do allow you to know the exit status of the process, but in our
example we didn’t care about it.

Another solution is to use a different SIGCHLD handler:

 use POSIX ’WNOHANG’;
 $SIG{CHLD} = sub { while(waitpid(-1,WNOHANG)>0) {} };

Which is useful when you fork() more than one process. The handler could call wait() as well, but for a
variety of reasons involving the handling of stopped processes and the rare event in which two children
exit at nearly the same moment, the best technique is to call waitpid() in a tight loop with a first argument
of -1 and a second argument of WNOHANG. Together these arguments tell waitpid() to reap the next child
that’s available, and prevent the call from blocking if there happens to be no child ready for reaping. The
handler will loop until waitpid() returns a negative number or zero, indicating that no more reapable chil-
dren remain.

While you test and debug your code that uses one of the above examples, You might want to write some
debug information to the error_log file so you know what happens.

Read perlipc manpage for more information about signal handlers.

14.5.3.5 A Complete Fork Example

Now let’s put all the bits of code together and show a well written fork code that solves all the problems
discussed so far. We will use an Apache::Registry script for this purpose:

 proper_fork1.pl

 use strict;
 use POSIX ’setsid’;
 use Apache::SubProcess;

15 Feb 2014384

14.5.3 Forking and Executing Subprocesses from mod_perl

 my $r = shift;
 $r->send_http_header("text/plain");

 $SIG{CHLD} = ’IGNORE’;
 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 print "Parent $$ has finished, kid’s PID: $kid\n";
 } else {
 $r->cleanup_for_exec(); # untie the socket
 chdir ’/’ or die "Can’t chdir to /: $!";
 open STDIN, ’/dev/null’ or die "Can’t read /dev/null: $!";
 open STDOUT, ’>/dev/null’
 or die "Can’t write to /dev/null: $!";
 open STDERR, ’>/tmp/log’ or die "Can’t write to /tmp/log: $!";
 setsid or die "Can’t start a new session: $!";

 my $oldfh = select STDERR;
 local $| = 1;
 select $oldfh;
 warn "started\n";
 # do something time-consuming
 sleep 1, warn "$_\n" for 1..20;
 warn "completed\n";

 CORE::exit(0); # terminate the process
 }

The script starts with the usual declaration of the strict mode, loading the POSIX and
Apache::SubProcess modules and importing of the setsid() symbol from the POSIX package.

The HTTP header is sent next, with the Content-type of text/plain. The parent process gets ready to ignore
the child, to avoid zombies and the fork is called.

The program gets its personality split after fork and the if conditional evaluates to a true value for the
parent process, and to a false value for the child process, therefore the first block is executed by the parent
and the second by the child.

The parent process announces his PID and the PID of the spawned process and finishes its block. If there
will be any code outside it will be executed by the parent as well.

The child process starts its code by disconnecting from the socket, changing its current directory to / ,
opening the STDIN and STDOUT streams to /dev/null, which in effect closes them both before opening.
In fact in this example we don’t need neither of these, so we could just close() both. The child process
completes its disengagement from the parent process by opening the STDERR stream to /tmp/log, so it
could write there, and creating a new session with help of setsid(). Now the child process has nothing to do
with the parent process and can do the actual processing that it has to do. In our example it performs a
simple series of warnings, which are logged into /tmp/log:

38515 Feb 2014

14.5.3 Forking and Executing Subprocesses from mod_perlPerformance Tuning

 my $oldfh = select STDERR;
 local $| = 1;
 select $oldfh;
 warn "started\n";
 # do something time-consuming
 sleep 1, warn "$_\n" for 1..20;
 warn "completed\n";

The localized setting of $|=1 unbuffers the STDERR stream, so we can immediately see the debug output
generated by the program. In fact this setting is not required when the output is generated by warn().

Finally the child process terminates by calling:

 CORE::exit(0);

which make sure that it won’t get out of the block and run some code that it’s not supposed to run.

This code example will allow you to verify that indeed the spawned child process has its own life, and its
parent is free as well. Simply issue a request that will run this script, watch that the warnings are started to
be written into the /tmp/log file and issue a complete server stop and start. If everything is correct, the
server will successfully restart and the long term process will still be running. You will know that it’s still
running, if the warnings will still be printed into the /tmp/log file. You may need to raise the number of
warnings to do above 20, to make sure that you don’t miss the end of the run.

If there are only 5 warnings to be printed, you should see the following output in this file:

 started
 1
 2
 3
 4
 5
 completed

14.5.3.6 Starting a Long Running External Program

But what happens if we cannot just run a Perl code from the spawned process and we have a compiled
utility, i.e. a program written in C. Or we have a Perl program which cannot be easily converted into a
module, and thus called as a function. Of course in this case we have to use system(), exec(), qx() or ‘‘
(back ticks) to start it.

When using any of these methods and when the Taint mode is enabled, we must at least add the following
code to untaint the PATH environment variable and delete a few other insecure environment variables.
This information can be found in the perlsec manpage.

 $ENV{’PATH’} = ’/bin:/usr/bin’;
 delete @ENV{’IFS’, ’CDPATH’, ’ENV’, ’BASH_ENV’};

Now all we have to do is to reuse the code from the previous section.

15 Feb 2014386

14.5.3 Forking and Executing Subprocesses from mod_perl

First we move the core program into the external.pl file, add the shebang first line so the program will be
executed by Perl, tell the program to run under Taint mode (-T) and possibly enable the warnings mode
(-w) and make it executable:

 external.pl

 #!/usr/bin/perl -Tw

 open STDIN, ’/dev/null’ or die "Can’t read /dev/null: $!";
 open STDOUT, ’>/dev/null’
 or die "Can’t write to /dev/null: $!";
 open STDERR, ’>/tmp/log’ or die "Can’t write to /tmp/log: $!";

 my $oldfh = select STDERR;
 local $| = 1;
 select $oldfh;
 warn "started\n";
 # do something time-consuming
 sleep 1, warn "$_\n" for 1..20;
 warn "completed\n";

Now we replace the code that moved into the external program with exec() to call it:

 proper_fork_exec.pl

 use strict;
 use POSIX ’setsid’;
 use Apache::SubProcess;

 $ENV{’PATH’} = ’/bin:/usr/bin’;
 delete @ENV{’IFS’, ’CDPATH’, ’ENV’, ’BASH_ENV’};

 my $r = shift;
 $r->send_http_header("text/html");

 $SIG{CHLD} = ’IGNORE’;

 defined (my $kid = fork) or die "Cannot fork: $!\n";
 if ($kid) {
 print "Parent has finished, kid’s PID: $kid\n";
 } else {
 $r->cleanup_for_exec(); # untie the socket
 chdir ’/’ or die "Can’t chdir to /: $!";
 open STDIN, ’/dev/null’ or die "Can’t read /dev/null: $!";
 open STDOUT, ’>/dev/null’
 or die "Can’t write to /dev/null: $!";
 open STDERR, ’>&STDOUT’ or die "Can’t dup stdout: $!";
 setsid or die "Can’t start a new session: $!";

 exec "/home/httpd/perl/external.pl" or die "Cannot execute exec: $!";
 }

Notice that exec() never returns unless it fails to start the process. Therefore you shouldn’t put any code
after exec()--it will be not executed in the case of success. Use system() or back-ticks instead if you want
to continue doing other things in the process. But then you probably will want to terminate the process

38715 Feb 2014

14.5.3 Forking and Executing Subprocesses from mod_perlPerformance Tuning

after the program has finished. So you will have to write:

 system "/home/httpd/perl/external.pl" or die "Cannot execute system: $!";
 CORE::exit(0);

Another important nuance is that we have to close all STD* stream in the forked process, even if the called
program does that.

If the external program is written in Perl you may pass complicated data structures to it using one of the
methods to serialize Perl data and then to restore it. The Storable and FreezeThaw modules come
handy. Let’s say that we have program master.pl calling program slave.pl:

 master.pl

 # we are within the mod_perl code
 use Storable ();
 my @params = (foo => 1, bar => 2);
 my $params = Storable::freeze(\@params);
 exec "./slave.pl", $params or die "Cannot execute exec: $!";

 slave.pl

 #!/usr/bin/perl -w
 use Storable ();
 my @params = @ARGV ? @{ Storable::thaw(shift)||[] } : ();
 # do something

As you can see, master.pl serializes the @params data structure with Storable::freeze and passes
it to slave.pl as a single argument. slave.pl restores the it with Storable::thaw , by shifting the first
value of the ARGV array if available. The FreezeThaw module does a very similar thing.

14.5.3.7 Starting a Short Running External Program

Sometimes you need to call an external program and you cannot continue before this program completes
its run and optionally returns some result. In this case the fork solution doesn’t help. But we have a few
ways to execute this program. First using system():

 system "perl -e ’print 5+5’"

We believe that you will never call the perl interperter for doing this simple calculation, but for the sake of
a simple example it’s good enough.

The problem with this approach is that we cannot get the results printed to STDOUT, and that’s where
back-ticks or qx() come to help. If you use either:

 my $result = ‘perl -e ’print 5+5’‘;

or:

15 Feb 2014388

14.5.3 Forking and Executing Subprocesses from mod_perl

 my $result = qx{perl -e ’print 5+5’};

the whole output of the external program will be stored in the $result variable.

Of course you can use other solutions, like opening a pipe (| to the program) if you need to submit many
arguments and more evolved solutions provided by other Perl modules like IPC::Open2 which allows
to open a process for both reading and writing.

14.5.3.8 Executing system() or exec() in the Right Way

The exec() and system() system calls behave identically in the way they spawn a program. For example
let’s use system() as an example. Consider the following code:

 system("echo","Hi");

Perl will use the first argument as a program to execute, find /bin/echo along the search path, invoke it
directly and pass the Hi string as an argument.

Perl’s system() is not the system(3) call [C-library]. This is how the arguments to system() get inter-
preted. When there is a single argument to system(), it’ll be checked for having shell metacharacters first
(like * ,?), and if there are any--Perl interpreter invokes a real shell program (/bin/sh -c on Unix plat-
forms). If you pass a list of arguments to system(), they will be not checked for metacharacters, but split
into words if required and passed directly to the C-level execvp() system call, which is more efficient.
That’s a very nice optimization. In other words, only if you do:

 system "sh -c ’echo *’"

will the operating system actually exec() a copy of /bin/sh to parse your command. But even then since
sh is almost certainly already running somewhere, the system will notice that (via the disk inode reference)
and replace your virtual memory page table with one pointing to the existing program code plus your data
space, thus will not create this overhead.

14.5.4 OS Specific Parameters for Proxying

Most of the mod_perl enabled servers use a proxy front-end server. This is done in order to avoid serving
static objects, and also so that generated output which might be received by slow clients does not cause the
heavy but very fast mod_perl servers from idly waiting.

There are very important OS parameters that you might want to change in order to improve the server
performance. This topic is discussed in the section: Setting the Buffering Limits on Various OSes

14.6 Performance Tuning by Tweaking Apache Configura-
tion
Correct configuration of the MinSpareServers , MaxSpareServers , StartServers ,
MaxClients , and MaxRequestsPerChild parameters is very important. There are no defaults. If
they are too low, you will under-use the system’s capabilities. If they are too high, the chances are that the

38915 Feb 2014

14.6 Performance Tuning by Tweaking Apache ConfigurationPerformance Tuning

server will bring the machine to its knees.

All the above parameters should be specified on the basis of the resources you have. With a plain apache
server, it’s no big deal if you run many servers since the processes are about 1Mb and don’t eat a lot of
your RAM. Generally the numbers are even smaller with memory sharing. The situation is different with
mod_perl. I have seen mod_perl processes of 20Mb and more. Now if you have MaxClients set to 50:
50x20Mb = 1Gb. Do you have 1Gb of RAM? Maybe not. So how do you tune the parameters? Generally
by trying different combinations and benchmarking the server. Again mod_perl processes can be of much
smaller size with memory sharing.

Before you start this task you should be armed with the proper weapon. You need the crashme utility,
which will load your server with the mod_perl scripts you possess. You need it to have the ability to
emulate a multiuser environment and to emulate the behavior of multiple clients calling the mod_perl
scripts on your server simultaneously. While there are commercial solutions, you can get away with free
ones which do the same job. You can use the ApacheBench ab utility which comes with the Apache
distribution, the crashme script which uses LWP::Parallel::UserAgent , httperf or http_load.

It is important to make sure that you run the load generator (the client which generates the test requests) on
a system that is more powerful than the system being tested. After all we are trying to simulate Internet
users, where many users are trying to reach your service at once. Since the number of concurrent users can
be quite large, your testing machine must be very powerful and capable of generating a heavy load. Of
course you should not run the clients and the server on the same machine. If you do, your test results
would be invalid. Clients will eat CPU and memory that should be dedicated to the server, and vice versa.

14.6.1 Configuration Tuning with ApacheBench

We are going to use ApacheBench (ab) utility to tune our server’s configuration. We will simulate 10
users concurrently requesting a very light script at
http://www.example.com/perl/access/access.cgi . Each simulated user makes 10
requests.

 % ./ab -n 100 -c 10 http://www.example.com/perl/access/access.cgi

The results are:

 Document Path: /perl/access/access.cgi
 Document Length: 16 bytes

 Concurrency Level: 10
 Time taken for tests: 1.683 seconds
 Complete requests: 100
 Failed requests: 0
 Total transferred: 16100 bytes
 HTML transferred: 1600 bytes
 Requests per second: 59.42
 Transfer rate: 9.57 kb/s received

 Connnection Times (ms)

15 Feb 2014390

14.6.1 Configuration Tuning with ApacheBench

http://www.example.com/perl/access/access.cgi

 min avg max
 Connect: 0 29 101
 Processing: 77 124 1259
 Total: 77 153 1360

The only numbers we really care about are:

 Complete requests: 100
 Failed requests: 0
 Requests per second: 59.42

Let’s raise the request load to 100 x 10 (10 users, each makes 100 requests):

 % ./ab -n 1000 -c 10 http://www.example.com/perl/access/access.cgi
 Concurrency Level: 10
 Complete requests: 1000
 Failed requests: 0
 Requests per second: 139.76

As expected, nothing changes -- we have the same 10 concurrent users. Now let’s raise the number of
concurrent users to 50:

 % ./ab -n 1000 -c 50 http://www.example.com/perl/access/access.cgi
 Complete requests: 1000
 Failed requests: 0
 Requests per second: 133.01

We see that the server is capable of serving 50 concurrent users at 133 requests per second! Let’s find the
upper limit. Using -n 10000 -c 1000 failed to get results (Broken Pipe?). Using -n 10000 -c
500 resulted in 94.82 requests per second. The server’s performance went down with the high load.

The above tests were performed with the following configuration:

 MinSpareServers 6
 MaxSpareServers 8
 StartServers 10
 MaxClients 50
 MaxRequestsPerChild 1500

Now let’s kill each child after it serves a single request. We will use the following configuration:

 MinSpareServers 6
 MaxSpareServers 8
 StartServers 10
 MaxClients 100
 MaxRequestsPerChild 1

Simulate 50 users each generating a total of 20 requests:

 % ./ab -n 1000 -c 50 http://www.example.com/perl/access/access.cgi

39115 Feb 2014

14.6.1 Configuration Tuning with ApacheBenchPerformance Tuning

The benchmark timed out with the above configuration.... I watched the output of ps as I ran it, the parent
process just wasn’t capable of respawning the killed children at that rate. When I raised the MaxRe-
questsPerChild to 10, I got 8.34 requests per second. Very bad - 18 times slower! You can’t bench-
mark the importance of the MinSpareServers , MaxSpareServers and StartServers with this
kind of test.

Now let’s reset MaxRequestsPerChild to 1500, but reduce MaxClients to 10 and run the same
test:

 MinSpareServers 6
 MaxSpareServers 8
 StartServers 10
 MaxClients 10
 MaxRequestsPerChild 1500

I got 27.12 requests per second, which is better but still 4-5 times slower. (I got 133 with MaxClients
set to 50.)

Summary: I have tested a few combinations of the server configuration variables (MinSpareServers ,
MaxSpareServers , StartServers , MaxClients and MaxRequestsPerChild). The results I
got are as follows:

MinSpareServers , MaxSpareServers and StartServers are only important for user response
times. Sometimes users will have to wait a bit.

The important parameters are MaxClients and MaxRequestsPerChild . MaxClients should be
not too big, so it will not abuse your machine’s memory resources, and not too small, for if it is your users
will be forced to wait for the children to become free to serve them. MaxRequestsPerChild should be
as large as possible, to get the full benefit of mod_perl, but watch your server at the beginning to make
sure your scripts are not leaking memory, thereby causing your server (and your service) to die very fast.

Also it is important to understand that we didn’t test the response times in the tests above, but the ability of
the server to respond under a heavy load of requests. If the test script was heavier, the numbers would be
different but the conclusions very similar.

The benchmarks were run with:

 HW: RS6000, 1Gb RAM
 SW: AIX 4.1.5 . mod_perl 1.16, apache 1.3.3
 Machine running only mysql, httpd docs and mod_perl servers.
 Machine was _completely_ unloaded during the benchmarking.

After each server restart when I changed the server’s configuration, I made sure that the scripts were
preloaded by fetching a script at least once for every child.

It is important to notice that none of the requests timed out, even if it was kept in the server’s queue for
more than a minute! That is the way ab works, which is OK for testing purposes but will be unacceptable
in the real world - users will not wait for more than five to ten seconds for a request to complete, and the
client (i.e. the browser) will time out in a few minutes.

15 Feb 2014392

14.6.1 Configuration Tuning with ApacheBench

Now let’s take a look at some real code whose execution time is more than a few milliseconds. We will do
some real testing and collect the data into tables for easier viewing.

I will use the following abbreviations:

 NR = Total Number of Request
 NC = Concurrency
 MC = MaxClients
 MRPC = MaxRequestsPerChild
 RPS = Requests per second

Running a mod_perl script with lots of mysql queries (the script under test is mysqld limited)
(http://www.example.com/perl/access/access.cgi?do_sub=query_form), with the configuration:

 MinSpareServers 8
 MaxSpareServers 16
 StartServers 10
 MaxClients 50
 MaxRequestsPerChild 5000

gives us:

 NR NC RPS comment
 --
 10 10 3.33 # not a reliable figure
 100 10 3.94
 1000 10 4.62
 1000 50 4.09

Conclusions: Here I wanted to show that when the application is slow (not due to perl loading, code
compilation and execution, but limited by some external operation) it almost does not matter what load we
place on the server. The RPS (Requests per second) is almost the same. Given that all the requests have
been served, you have the ability to queue the clients, but be aware that anything that goes into the queue
means a waiting client and a client (browser) that might time out!

Now we will benchmark the same script without using the mysql (code limited by perl only):
(http://www.example.com/perl/access/access.cgi), it’s the same script but it just returns the HTML form,
without making SQL queries.

 MinSpareServers 8
 MaxSpareServers 16
 StartServers 10
 MaxClients 50
 MaxRequestsPerChild 5000

 NR NC RPS comment
 --
 10 10 26.95 # not a reliable figure
 100 10 30.88
 1000 10 29.31
 1000 50 28.01
 1000 100 29.74
 10000 200 24.92
 100000 400 24.95

39315 Feb 2014

14.6.1 Configuration Tuning with ApacheBenchPerformance Tuning

http://www.example.com/perl/access/access.cgi?do_sub=query_form
http://www.example.com/perl/access/access.cgi

Conclusions: This time the script we executed was pure perl (not limited by I/O or mysql), so we see that
the server serves the requests much faster. You can see the number of requests per second is almost the
same for any load, but goes lower when the number of concurrent clients goes beyond MaxClients .
With 25 RPS, the machine simulating a load of 400 concurrent clients will be served in 16 seconds. To be
more realistic, assuming a maximum of 100 concurrent clients and 30 requests per second, the client will
be served in 3.5 seconds. Pretty good for a highly loaded server.

Now we will use the server to its full capacity, by keeping all MaxClients clients alive all the time and
having a big MaxRequestsPerChild , so that no child will be killed during the benchmarking.

 MinSpareServers 50
 MaxSpareServers 50
 StartServers 50
 MaxClients 50
 MaxRequestsPerChild 5000

 NR NC RPS comment
 --
 100 10 32.05
 1000 10 33.14
 1000 50 33.17
 1000 100 31.72
 10000 200 31.60

Conclusion: In this scenario there is no overhead involving the parent server loading new children, all the
servers are available, and the only bottleneck is contention for the CPU.

Now we will change MaxClients and watch the results: Let’s reduce MaxClients to 10.

 MinSpareServers 8
 MaxSpareServers 10
 StartServers 10
 MaxClients 10
 MaxRequestsPerChild 5000

 NR NC RPS comment
 --
 10 10 23.87 # not a reliable figure
 100 10 32.64
 1000 10 32.82
 1000 50 30.43
 1000 100 25.68
 1000 500 26.95
 2000 500 32.53

Conclusions: Very little difference! Ten servers were able to serve almost with the same throughput as 50
servers. Why? My guess is because of CPU throttling. It seems that 10 servers were serving requests 5
times faster than when we worked with 50 servers. In that case, each child received its CPU time slice five
times less frequently. So having a big value for MaxClients , doesn’t mean that the performance will be
better. You have just seen the numbers!

15 Feb 2014394

14.6.1 Configuration Tuning with ApacheBench

Now we will start drastically to reduce MaxRequestsPerChild :

 MinSpareServers 8
 MaxSpareServers 16
 StartServers 10
 MaxClients 50

 NR NC MRPC RPS comment
 --
 100 10 10 5.77
 100 10 5 3.32
 1000 50 20 8.92
 1000 50 10 5.47
 1000 50 5 2.83
 1000 100 10 6.51

Conclusions: When we drastically reduce MaxRequestsPerChild , the performance starts to become
closer to plain mod_cgi.

Here are the numbers of this run with mod_cgi, for comparison:

 MinSpareServers 8
 MaxSpareServers 16
 StartServers 10
 MaxClients 50

 NR NC RPS comment
 --
 100 10 1.12
 1000 50 1.14
 1000 100 1.13

Conclusion: mod_cgi is much slower. :) In the first test, when NR/NC was 100/10, mod_cgi was capable
of 1.12 requests per second. In the same circumstances, mod_perl was capable of 32 requests per second,
nearly 30 times faster! In the first test each client waited about 100 seconds to be served. In the second and
third tests they waited 1000 seconds!

14.6.2 Choosing MaxClients

The MaxClients directive sets the limit on the number of simultaneous requests that can be supported.
No more than this number of child server processes will be created. To configure more than 256 clients,
you must edit the HARD_SERVER_LIMIT entry in httpd.h and recompile. In our case we want this
variable to be as small as possible, because in this way we can limit the resources used by the server chil-
dren. Since we can restrict each child’s process size (see Preventing Your Processes from Growing), the
calculation of MaxClients is pretty straightforward:

 Total RAM Dedicated to the Webserver
 MaxClients = ------------------------------------
 MAX child’s process size

39515 Feb 2014

14.6.2 Choosing MaxClientsPerformance Tuning

So if I have 400Mb left for the webserver to run with, I can set MaxClients to be of 40 if I know that
each child is limited to 10Mb of memory (e.g. with Apache::SizeLimit).

You will be wondering what will happen to your server if there are more concurrent users than
MaxClients at any time. This situation is signified by the following warning message in the
error_log :

 [Sun Jan 24 12:05:32 1999] [error] server reached MaxClients setting,
 consider raising the MaxClients setting

There is no problem -- any connection attempts over the MaxClients limit will normally be queued, up
to a number based on the ListenBacklog directive. When a child process is freed at the end of a
different request, the connection will be served.

It is an error because clients are being put in the queue rather than getting served immediately, despite the
fact that they do not get an error response. The error can be allowed to persist to balance available system
resources and response time, but sooner or later you will need to get more RAM so you can start more
child processes. The best approach is to try not to have this condition reached at all, and if you reach it
often you should start to worry about it.

It’s important to understand how much real memory a child occupies. Your children can share memory
between them when the OS supports that. You must take action to allow the sharing to happen - See
Preload Perl modules at server startup. If you do this, the chances are that your MaxClients can be even
higher. But it seems that it’s not so simple to calculate the absolute number. If you come up with a solu-
tion please let us know! If the shared memory was of the same size throughout the child’s life, we could
derive a much better formula:

 Total_RAM + Shared_RAM_per_Child * (MaxClients - 1)
 MaxClients = ---
 Max_Process_Size

which is:

 Total_RAM - Shared_RAM_per_Child
 MaxClients = ---------------------------------------
 Max_Process_Size - Shared_RAM_per_Child

Let’s roll some calculations:

 Total_RAM = 500Mb
 Max_Process_Size = 10Mb
 Shared_RAM_per_Child = 4Mb

 500 - 4
 MaxClients = --------- = 82
 10 - 4

With no sharing in place

15 Feb 2014396

14.6.2 Choosing MaxClients

 500
 MaxClients = --------- = 50
 10

With sharing in place you can have 64% more servers without buying more RAM.

If you improve sharing and keep the sharing level, let’s say:

 Total_RAM = 500Mb
 Max_Process_Size = 10Mb
 Shared_RAM_per_Child = 8Mb

 500 - 8
 MaxClients = --------- = 246
 10 - 8

392% more servers! Now you can feel the importance of having as much shared memory as possible.

14.6.3 Choosing MaxRequestsPerChild

The MaxRequestsPerChild directive sets the limit on the number of requests that an individual child
server process will handle. After MaxRequestsPerChild requests, the child process will die. If
MaxRequestsPerChild is 0, then the process will live forever.

Setting MaxRequestsPerChild to a non-zero limit solves some memory leakage problems caused by
sloppy programming practices, whereas a child process consumes more memory after each request.

If left unbounded, then after a certain number of requests the children will use up all the available memory
and leave the server to die from memory starvation. Note that sometimes standard system libraries leak
memory too, especially on OSes with bad memory management (e.g. Solaris 2.5 on x86 arch).

If this is your case you can set MaxRequestsPerChild to a small number. This will allow the system
to reclaim the memory that a greedy child process consumed, when it exits after MaxRequestsPer-
Child requests.

But beware -- if you set this number too low, you will lose some of the speed bonus you get from
mod_perl. Consider using Apache::PerlRun if this is the case.

Another approach is to use the Apache::SizeLimit or Apache::GTopLimit modules. By using either of
these modules you should be able to discontinue using the MaxRequestPerChild , although for some
developers, using both in combination does the job. In addition these modules allow you to kill httpd
processes whose shared memory size drops below a specified limit or unshared memory size crosses a
specified threshold.

See also Preload Perl modules at server startup and Sharing Memory.

39715 Feb 2014

14.6.3 Choosing MaxRequestsPerChildPerformance Tuning

14.6.4 Choosing MinSpareServers, MaxSpareServers and StartServers

With mod_perl enabled, it might take as much as 20 seconds from the time you start the server until it is
ready to serve incoming requests. This delay depends on the OS, the number of preloaded modules and the
process load of the machine. It’s best to set StartServers and MinSpareServers to high numbers,
so that if you get a high load just after the server has been restarted the fresh servers will be ready to serve
requests immediately. With mod_perl, it’s usually a good idea to raise all 3 variables higher than normal.

In order to maximize the benefits of mod_perl, you don’t want to kill servers when they are idle, rather
you want them to stay up and available to handle new requests immediately. I think an ideal configuration
is to set MinSpareServers and MaxSpareServers to similar values, maybe even the same. Having
the MaxSpareServers close to MaxClients will completely use all of your resources (if
MaxClients has been chosen to take the full advantage of the resources), but it’ll make sure that at any
given moment your system will be capable of responding to requests with the maximum speed (assuming
that number of concurrent requests is not higher than MaxClients).

Let’s try some numbers. For a heavily loaded web site and a dedicated machine I would think of (note
400Mb is just for example):

 Available to webserver RAM: 400Mb
 Child’s memory size bounded: 10Mb
 MaxClients: 400/10 = 40 (larger with mem sharing)
 StartServers: 20
 MinSpareServers: 20
 MaxSpareServers: 35

However if I want to use the server for many other tasks, but make it capable of handling a high load, I’d
think of:

 Available to webserver RAM: 400Mb
 Child’s memory size bounded: 10Mb
 MaxClients: 400/10 = 40
 StartServers: 5
 MinSpareServers: 5
 MaxSpareServers: 10

These numbers are taken off the top of my head, and shouldn’t be used as a rule, but rather as examples to
show you some possible scenarios. Use this information with caution!

14.6.5 Summary of Benchmarking to tune all 5 parameters

OK, we’ve run various benchmarks -- let’s summarize the conclusions:

MaxRequestsPerChild

If your scripts are clean and don’t leak memory, set this variable to a number as large as possible
(10000?). If you use Apache::SizeLimit or Apache::GTopLimit , you can set this parame-
ter to 0 (treated as infinity).

15 Feb 2014398

14.6.4 Choosing MinSpareServers, MaxSpareServers and StartServers

StartServers

If you keep a small number of servers active most of the time, keep this number low. Keep it low
especially if MaxSpareServers is also low, as if there is no load Apache will kill its children
before they have been utilized at all. If your service is heavily loaded, make this number close to
MaxClients , and keep MaxSpareServers equal to MaxClients .

MinSpareServers

If your server performs other work besides web serving, make this low so the memory of unused chil-
dren will be freed when the load is light. If your server’s load varies (you get loads in bursts) and you
want fast response for all clients at any time, you will want to make it high, so that new children will
be respawned in advance and are waiting to handle bursts of requests.

MaxSpareServers

The logic is the same as for MinSpareServers - low if you need the machine for other tasks, high
if it’s a dedicated web host and you want a minimal delay between the request and the response.

MaxClients

Not too low, so you don’t get into a situation where clients are waiting for the server to start serving
them (they might wait, but not for very long). However, do not set it too high. With a high MaxClients, if
you get a high load the server will try to serve all requests immediately. Your CPU will have a hard
time keeping up, and if the child size * number of running children is larger than the total available
RAM your server will start swapping. This will slow down everything, which in turn will make
things even slower, until eventually your machine will die. It’s important that you take pains to
ensure that swapping does not normally happen. Swap space is an emergency pool, not a resource to
be used routinely. If you are low on memory and you badly need it, buy it. Memory is cheap.

But based on the test I conducted above, even if you have plenty of memory like I have (1Gb),
increasing MaxClients sometimes will give you no improvement in performance. The more clients
are running, the more CPU time will be required, the less CPU time slices each process will receive. The
response latency (the time to respond to a request) will grow, so you won’t see the expected improve-
ment. The best approach is to find the minimum requirement for your kind of service and the
maximum capability of your machine. Then start at the minimum and test like I did, successively
raising this parameter until you find the region on the curve of the graph of latency and/or throughput
against MaxClients where the improvement starts to diminish. Stop there and use it. When you make
the measurements on a production server you will have the ability to tune them more precisely, since
you will see the real numbers.

Don’t forget that if you add more scripts, or even just modify the existing ones, the processes will
grow in size as you compile in more code. Probably the parameters will need to be recalculated.

39915 Feb 2014

14.6.5 Summary of Benchmarking to tune all 5 parametersPerformance Tuning

14.6.6 KeepAlive

If your mod_perl server’s httpd.conf includes the following directives:

 KeepAlive On
 MaxKeepAliveRequests 100
 KeepAliveTimeout 15

you have a real performance penalty, since after completing the processing for each request, the process
will wait for KeepAliveTimeout seconds before closing the connection and will therefore not be
serving other requests during this time. With this configuration you will need many more concurrent
processes on a server with high traffic.

If you use some server status reporting tools, you will see the process in K status when it’s in
KeepAlive status.

The chances are that you don’t want this feature enabled. Set it Off with:

 KeepAlive Off

the other two directives don’t matter if KeepAlive is Off .

You might want to consider enabling this option if the client’s browser needs to request more than one
object from your server for a single HTML page. If this is the situation the by setting KeepAlive On
then for each page you save the HTTP connection overhead for all requests but the first one.

For example if you have a page with 10 ad banners, which is not uncommon today, you server will work
more effectively if a single process serves them all during a single connection. However, your client will
see a slightly slower response, since banners will be brought one at a time and not concurrently as is the
case if each IMG tag opens a separate connection.

Since keepalive connections will not incur the additional three-way TCP handshake they are kinder to the
network.

SSL connections benefit the most from KeepAlive in case you didn’t configure the server to cache
session ids.

You have probably followed the advice to send all the requests for static objects to a plain Apache server.
Since most pages include more than one unique static image, you should keep the default KeepAlive
setting of the non-mod_perl server, i.e. keep it On. It will probably be a good idea also to reduce the
timeout a little.

One option would be for the proxy/accelerator to keep the connection open to the client but make individ-
ual connections to the server, read the response, buffer it for sending to the client and close the server
connection. Obviously you would make new connections to the server as required by the client’s requests.

15 Feb 2014400

14.6.6 KeepAlive

14.6.7 PerlSetupEnv Off

PerlSetupEnv Off is another optimization you might consider. This directive requires mod_perl 1.25
or later.

When this option is enabled, mod_perl fiddles with the environment to make it appear as if the code is
called under the mod_cgi handler. For example, the $ENV{QUERY_STRING} environment variable is
initialized with the contents of Apache::args(), and the value returned by Apache::server_hostname() is
put into $ENV{SERVER_NAME}.

But %ENV population is expensive. Those who have moved to the Perl Apache API no longer need this
extra %ENV population, and can gain by turning it Off . Scripts using the CGI.pm module require
PerlSetupEnv On because that module relies on a properly populated CGI environment table.

By default it is turned On.

Note that you can still set enviroment variables when PerlSetupEnv is turned Off . For example when
you use the following configuration:

 PerlSetupEnv Off
 PerlModule Apache::RegistryNG
 <Location /perl>
 PerlSetEnv TEST hi
 SetHandler perl-script
 PerlHandler Apache::RegistryNG
 Options +ExecCGI
 </Location>

and you issue a request for this script:

 setupenvoff.pl

 use Data::Dumper;
 my $r = Apache->request();
 $r->send_http_header(’text/plain’);
 print Dumper(\%ENV);

you should see something like this:

 $VAR1 = {
 ’GATEWAY_INTERFACE’ => ’CGI-Perl/1.1’,
 ’MOD_PERL’ => ’mod_perl/1.25’,
 ’PATH’ => ’/usr/lib/perl5/5.00503:... snipped ...’,
 ’TEST’ => ’hi’
 };

Note that we got the value of the TEST environment variable we set in httpd.conf.

40115 Feb 2014

14.6.7 PerlSetupEnv OffPerformance Tuning

14.6.8 Reducing the Number of stat() Calls Made by Apache

If you watch the system calls that your server makes (using truss or strace while processing a request, you
will notice that a few stat() calls are made. For example when I fetch http://localhost/perl-status and I have
my DocRoot set to /home/httpd/docs I see:

 [snip]
 stat("/home/httpd/docs/perl-status", 0xbffff8cc) = -1
 ENOENT (No such file or directory)
 stat("/home/httpd/docs", {st_mode=S_IFDIR|0755,
 st_size=1024, ...}) = 0
 [snip]

If you have some dynamic content and your virtual relative URI is something like
/news/perl/mod_perl/summary (i.e., there is no such directory on the web server, the path components are
only used for requesting a specific report), this will generate five(!) stat() calls, before the Document-
Root is found. You will see something like this:

 stat("/home/httpd/docs/news/perl/mod_perl/summary", 0xbffff744) = -1
 ENOENT (No such file or directory)
 stat("/home/httpd/docs/news/perl/mod_perl", 0xbffff744) = -1
 ENOENT (No such file or directory)
 stat("/home/httpd/docs/news/perl", 0xbffff744) = -1
 ENOENT (No such file or directory)
 stat("/home/httpd/docs/news", 0xbffff744) = -1
 ENOENT (No such file or directory)
 stat("/home/httpd/docs",
 {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0

How expensive those calls are? Let’s use the Time::HiRes module to find out.

 stat_call_sample.pl

 use Time::HiRes qw(gettimeofday tv_interval);
 my $calls = 1_000_000;

 my $start_time = [gettimeofday];

 stat "/foo" for 1..$calls;

 my $end_time = [gettimeofday];

 my $elapsed = tv_interval($start_time,$end_time) / $calls;

 print "The average execution time: $elapsed seconds\n";

This script takes a time sample at the beginnig, then does 1_000_000 stat() calls to a non-existing file,
samples the time at the end and prints the average time it took to make a single stat() call. I’m
sampling a 1M stats, so I’d get a correct average result.

Before we actually run the script one should distinguish between two different situation. When the server
is idle the time between the first and the last system call will be much shorter than the same time measured
on the loaded system. That is because on the idle system, a process can use CPU very often, and on the

15 Feb 2014402

14.6.8 Reducing the Number of stat() Calls Made by Apache

http://localhost/perl-status

loaded system lots of processes compete over it and each process has to wait for a longer time to get the
same amount of CPU time.

So first we run the above code on the unloaded system:

 % perl stat_call_sample.pl
 The average execution time: 4.209645e-06 seconds

So it takes about 4 microseconds to execute a stat() call. Now let start a CPU intensive process in one
console. The following code keeps CPU busy all the time.

 % perl -e ’1**1 while 1’

And now run the stat_call_sample.pl script in the other console.

 % perl stat_call_sample.pl
 The average execution time: 8.777301e-06 seconds

You can see that the average time has doubled (about 8 microseconds). And this is obvious, since there
were two processes competing over CPU. Now if run 4 occurrences of the above code:

 % perl -e ’1**1 while 1’ &
 % perl -e ’1**1 while 1’ &
 % perl -e ’1**1 while 1’ &
 % perl -e ’1**1 while 1’ &

And when running our script in parallel with these processes, we get:

 % perl stat_call_sample.pl
 2.0853558e-05 seconds

about 20 microseconds. So the average stat() system call is 5 times longer now. Now if you have 50
mod_perl processes that keep the CPU busy all the time, the stat() call will be 50 times slower and it’ll
take 0.2 milliseconds to complete a series of call. If you have five redundant calls as in the strace example
above, they adds up to one millisecond. If you have more processes constantly consuming CPU, this time
adds up. Now multiply this time by the number of processes that you have and you get a few seconds lost.
As usual, for some services this loss is insignificant, while for others a very significant one.

So why Apache does all these redundant stat() calls? You can blame the default installed TransHan-
dler for this inefficiency. Of course you could supply your own, which will be smart enough not to look
for this virtual path and immediately return OK. But in cases where you have a virtual host that serves only
dynamically generated documents, you can override the default PerlTransHandler with this one:

 PerlModule Apache::Constants
 <VirtualHost 10.10.10.10:80>
 ...
 PerlTransHandler Apache::Constants::OK
 ...
 </VirtualHost>

40315 Feb 2014

14.6.8 Reducing the Number of stat() Calls Made by ApachePerformance Tuning

As you see it affects only this specific virtual host.

This has the effect of short circuiting the normal TransHandler processing of trying to find a filesys-
tem component that matches the given URI -- no more ’stat’s!

Watching your server under strace/truss can often reveal more performance hits than trying to optimize the
code itself!

For example unless configured correctly, Apache might look for the .htaccess file in many places, if you
don’t have one and add many open() calls.

Let’s start with this simple configuration, and will try to reduce the number of irrelevant system calls.

 DocumentRoot "/home/httpd/docs"
 <Location /foo/test>
 SetHandler perl-script
 PerlHandler Apache::Foo
 </Location>

The above configuration allows us to make a request to /foo/test and the Perl handler() defined in
Apache::Foo will be executed. Notice that in the test setup there is no file to be executed (like in
Apache::Registry). There is no .htaccess file as well.

This is a typical generated trace.

 stat("/home/httpd/docs/foo/test", 0xbffff8fc) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs/foo", 0xbffff8fc) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs",
 {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0
 open("/.htaccess", O_RDONLY) = -1 ENOENT
 (No such file or directory)
 open("/home/.htaccess", O_RDONLY) = -1 ENOENT
 (No such file or directory)
 open("/home/httpd/.htaccess", O_RDONLY) = -1 ENOENT
 (No such file or directory)
 open("/home/httpd/docs/.htaccess", O_RDONLY) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs/test", 0xbffff774) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs",
 {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0

Now we modify the <Directory> entry and add AllowOverride None, which among other things
disables .htaccess files and will not try to open them.

 <Directory />
 AllowOverride None
 </Directory>

15 Feb 2014404

14.6.8 Reducing the Number of stat() Calls Made by Apache

We see that the four open() calls for .htaccess have gone.

 stat("/home/httpd/docs/foo/test", 0xbffff8fc) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs/foo", 0xbffff8fc) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs",
 {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0
 stat("/home/httpd/docs/test", 0xbffff774) = -1 ENOENT
 (No such file or directory)
 stat("/home/httpd/docs",
 {st_mode=S_IFDIR|0755, st_size=1024, ...}) = 0

Let’s try to shortcut the foo location with:

 Alias /foo /

Which makes Apache to look for the file in the / directory and not under /home/httpd/docs/foo. Let’s run
it:

 stat("//test", 0xbffff8fc) = -1 ENOENT (No such file or directory)

Wow, we’ve got only one stat call left!

Let’s remove the last Alias setting and use:

 PerlModule Apache::Constants
 PerlTransHandler Apache::Constants::OK

as explained above. When we issue the request, we see no stat() calls. But this is possible only if you serve
only dynamically generated documents, i.e. no CGI scripts. Otherwise you will have to write your own
PerlTransHandler to handle requests as desired.

For example this PerlTransHandler will not lookup the file on the filesystem if the URI starts with /foo,
but will use the default PerlTransHandler otherwise:

 PerlTransHandler ’sub { return shift->uri() =~ m|^/foo| \
 ? Apache::Constants::OK \
 : Apache::Constants::DECLINED; }’

Let’s see the same configuration using the <Perl> section and a dedicated package:

 <Perl>
 package My::Trans;
 use Apache::Constants qw(:common);
 sub handler{
 my $r = shift;
 return OK if $r->uri() =~ m|^/foo|;
 return DECLINED;
 }

 package Apache::ReadConfig;
 $PerlTransHandler = "My::Trans";
 </Perl>

40515 Feb 2014

14.6.8 Reducing the Number of stat() Calls Made by ApachePerformance Tuning

As you see we have defined the My::Trans package and implemented the handler() function. Then we
have assigned this handler to the PerlTransHandler .

Of course you can move the code in the module into an external file, (e.g. My/Trans.pm) and configure the
PerlTransHandler with

 PerlTransHandler My::Trans

in the normal way (no <Perl> section required).

There is an even simpler way to save that last stat() call. Instead of using PerlTransHandler
combined with:

 Alias /foo /

we can use:

 AliasMatch ^/foo /

which in the current implementation (at least in apache-1.3.28) doesn’t incur the stat() call. Using the
regex instead of prefix matching might slow things a bit, but is probably still faster than the stat() call.

14.7 TMTOWTDI: Convenience and Habit vs. Performance
TMTOWTDI (sometimes pronounced "tim toady"), or "There’s More Than One Way To Do It" is the
main motto of Perl. In other words, you can gain the same goal by coding in many different styles, using
different modules and deploying the same modules in different ways.

Unfortunately when you come to the point where performance is the goal, you might have to learn what’s
more efficient and what’s not. Of course it might mean that you will have to use something that you don’t
really like, it might be less convenient or it might be just a matter of habit that one should change.

So this section is about performance trade-offs. For almost each comparison we will provide the theoreti-
cal difference and then run benchmarks to support the theory, since however good the theory its the
numbers we get in practice that matter.

"Premature optimizations are evil", the saying goes. I believe that knowing how to write an efficient code
in first place, where it doesn’t make the quality and clarity suffer saves time in the long run. That’s what
this section is mostly about.

In the following benchmarks, unless told different the following Apache configuration has been used:

 MinSpareServers 10
 MaxSpareServers 20
 StartServers 10
 MaxClients 20
 MaxRequestsPerChild 10000

15 Feb 2014406

14.7 TMTOWTDI: Convenience and Habit vs. Performance

14.7.1 Apache::Registry PerlHandler vs. Custom PerlHandler

At some point you have to decide whether to use Apache::Registry and similar handlers and stick to
writing scripts for the content generation or to write pure Perl handlers.

Apache::Registry maps a request to a file and generates a subroutine to run the code contained in
that file. If you use a PerlHandler My::Handler instead of Apache::Registry , you have a direct
mapping from request to subroutine, without the steps in between. These steps include:

1. run the stat() on the script’s filename ($r->filename)

2. check that the file exists and is executable

3. generate a Perl package name based on the request’s URI ($r->uri)

4. go to the directory the script resides in (chdir basename $r->filename)

5. compare the file’s and stored in memory compiled subroutine’s last modified time (if it was compiled
already)

6. if modified or not compiled, compile the subroutine

7. go back to the previous directory (chdir $old_cwd)

If you cut out those steps, you cut out some overhead, plain and simple. Do you need to cut out that over-
head? May be yes, may be not. Your requirements determine that.

You should take a look at the sister Apache::Registry modules (e.g. Apache::RegistryNG and
Apache::RegistryBB) that don’t perform all these steps, so you can still choose to stick to using
scripts to generate the content. The greatest added value of scripts is that you don’t have to modify the
configuration file to add the handler configuration and restarting the server for each newly written content
handler.

Now let’s run benchmarks and compare.

We want to see the overhead that Apache::Registry adds compared to the custom handler and
whether it becomes insignificant when used for the heavy and time consuming code. In order to do that we
will run two benchmarks sets: the first so called a light set will use an almost empty script, that only sends
a basic header and one word as content; the second will be a heavy set which will add some time consum-
ing operation to the script’s and the handler’s code.

For the light set we are going to use the registry.pl script running under Apache::Registry :

 benchmarks/registry.pl

 use strict;
 print "Content-type: text/plain\r\n\r\n";
 print "Hello";

40715 Feb 2014

14.7.1 Apache::Registry PerlHandler vs. Custom PerlHandlerPerformance Tuning

And the following content generation handler:

 Benchmark/Handler.pm

 package Benchmark::Handler;
 use Apache::Constants qw(:common);

 sub handler{
 $r = shift;
 $r->send_http_header(’text/html’);
 $r->print("Hello");
 return OK;
 }
 1;

We will add this settings to httpd.conf:

 PerlModule Benchmark::Handler
 <Location /benchmark_handler>
 SetHandler perl-script
 PerlHandler Benchmark::Handler
 </Location>

The first directive worries to preload and compile the Benchmark::Handler module. The rest of the
lines tell Apache to execute the subroutine Benchmark::Handler::handler when a request with
relative URI /benchmark_handler is made.

We will use the usual configuration for Apache::Registry scripts, where all the URIs starting with
/perl are remapped to the files residing under /home/httpd/perl/ directory.

 Alias /perl/ /home/httpd/perl/
 <Location /perl>
 SetHandler perl-script
 PerlHandler +Apache::Registry
 Options ExecCGI
 PerlSendHeader On
 </Location>

We will use the Apache::RegistryLoader to preload and compile the script at the server startup as
well, so the benchmark will be fair through the benchmark and only the processing time will be measured.
To accomplish the preloading we add the following code to the startup.pl file:

 use Apache::RegistryLoader ();
 Apache::RegistryLoader->new->handler(
 "/perl/benchmarks/registry.pl",
 "/home/httpd/perl/benchmarks/registry.pl");

To create the heavy benchmark set let’s leave the above code examples unmodified but add some CPU
intensive processing operation (it can be also an IO operation or a database query.)

 my $x = 100;
 my $y = log ($x ** 100) for (0..10000);

15 Feb 2014408

14.7.1 Apache::Registry PerlHandler vs. Custom PerlHandler

This code does lots of mathematical processing and therefore very CPU intensive.

Now we are ready to proceed with the benchmark. We will generate 5000 requests with 15 as a concur-
rency level using the Apache::Benchmark module.

Here are the reported results:

 name | avtime rps

 light handler | 15 911
 light registry | 21 680

 heavy handler | 183 81
 heavy registry | 191 77

Let’s look at the results and answer the previously asked questions.

First let’s compare the results from the light set. We can see that the average overhead added by
Apache::Registry (compared to the custom handler) is about:

 21 - 15 = 6 milliseconds

per request.

Thus the difference in speed is about 40% (15 vs. 21). Note that this doesn’t mean that the difference in
the real world applications is such big. And the results of the heavy set confirm that.

In the heavy set the average processing time is almost the same for the Apache::Registry and the
custom handler. You can clearly see that the difference between the two is almost the same one that we
have seen in the light set’s results. It has grown from 6 milliseconds to 8 milliseconds (191-183). Which
means that the identical heavy code that has been added was running for about 168 milliseconds (183-15).
It doesn’t mean that the added code itself has been running for 168 milliseconds. It means that it took 168
milliseconds for this code to be completed in a multi-process environment where each process gets a time
slice to use the CPU. The more processes are running the more time the process will have to wait to get the
next time slice when it can use the CPU.

We have the second question answered as well. You can see that when the code is not just the hello script,
the overhead of the extra operations done but the Apache::Registry module, is almost insignificant.
It’s a non zero though, so it depends on your requirements, and if another 5-10 millisecons overhead are
quite tolerable, you may choose to use Apache::Registry .

The interesting thing is that when the server under test runs on a very slow machine the results are
completely different. I’ll present them here for comparison:

40915 Feb 2014

14.7.1 Apache::Registry PerlHandler vs. Custom PerlHandlerPerformance Tuning

 name | avtime rps

 light handler | 50 196
 light registry | 160 61

 heavy handler | 149 67
 heavy registry | 822 12

First of all the difference of 6 milliseconds in the average processing time we have seen on the fast
machine when running the light set, now has grown to 110 milliseconds. Which means that a few extra
operations, that Apache::Registry does, turn to be very expensive on the slow machine.

Second, you can see that when the heavy set is used, there is no preservation of the 110 milliseconds as we
have seen on the fast machine, which we obviously would expect to see, since the code that was added
should take the same time to execute in the handler and the script. But instead we see a difference of 673
milliseconds (822-149).

The explanation lies in fact that the difference between the machines isn’t merely in the CPU speed. It’s
possible that there are many other things that are different. For example the size of the processor cache. If
one machine has a processor cache large enough to hold the whole handler and the other doesn’t this can
be very significant, given that in our heavy benchmark set, 99.9% of the CPU activity was dedicated to
running the calculation code.

But this also shows you again, that none of the results and conclusion made here should be taken for
granted. Certainly, most chances are that you will see a similar behavior on your machine, but only after
you have run the benchmarks and analyzed the received results, you can be sure what is the best for you
using the setup under test. If you later you happen to use a different machine, make sure to run the tests
again, as they can lead to complete different decision as we have just seen when we have tried the same
benchmark on a different machine.

14.7.2 "Bloatware" modules

Perl modules like IO:: are very convenient, but let’s see what it costs us to use them. (perl5.6.0 over
OpenBSD)

 % wc ‘perl -MIO -e ’print join("\n", sort values %INC, "")’‘
 124 696 4166 /usr/local/lib/perl5/5.6.0/Carp.pm
 580 2465 17661 /usr/local/lib/perl5/5.6.0/Class/Struct.pm
 400 1495 10455 /usr/local/lib/perl5/5.6.0/Cwd.pm
 313 1589 10377 /usr/local/lib/perl5/5.6.0/Exporter.pm
 225 784 5651 /usr/local/lib/perl5/5.6.0/Exporter/Heavy.pm
 92 339 2813 /usr/local/lib/perl5/5.6.0/File/Spec.pm
 442 1574 10276 /usr/local/lib/perl5/5.6.0/File/Spec/Unix.pm
 115 398 2806 /usr/local/lib/perl5/5.6.0/File/stat.pm
 406 1350 10265 /usr/local/lib/perl5/5.6.0/IO/Socket/INET.pm
 143 429 3075 /usr/local/lib/perl5/5.6.0/IO/Socket/UNIX.pm
 7168 24137 178650 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/Config.pm
 230 1052 5995 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/Errno.pm
 222 725 5216 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/Fcntl.pm

15 Feb 2014410

14.7.2 "Bloatware" modules

 47 101 669 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/IO.pm
 239 769 5005 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/IO/Dir.pm
 169 549 3956 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/IO/File.pm
 594 2180 14772 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/IO/Handle.pm
 252 755 5375 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/IO/Pipe.pm
 77 235 1709 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/IO/Seekable.pm
 428 1419 10219 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/IO/Socket.pm
 452 1401 10554 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/Socket.pm
 127 473 3554 /usr/local/lib/perl5/5.6.0/OpenBSD.i386-openbsd/XSLoader.pm
 52 161 1050 /usr/local/lib/perl5/5.6.0/SelectSaver.pm
 139 541 3754 /usr/local/lib/perl5/5.6.0/Symbol.pm
 161 609 4081 /usr/local/lib/perl5/5.6.0/Tie/Hash.pm
 109 390 2479 /usr/local/lib/perl5/5.6.0/strict.pm
 79 370 2589 /usr/local/lib/perl5/5.6.0/vars.pm
 318 1124 11975 /usr/local/lib/perl5/5.6.0/warnings.pm
 30 85 722 /usr/local/lib/perl5/5.6.0/warnings/register.pm
 13733 48195 349869 total

Moreover, that requires 116 happy trips through the kernel’s namei(). It syscalls open() a remarkable 57
times, 17 of which failed but leaving 38 that were successful. It also syscalled read() a curiously identical
57 times, ingesting a total of 180,265 plump bytes. To top it off, this increases your resident set size by
two megabytes!

Happy mallocking...

It seems that CGI.pm suffers from the same disease:

 % wc ‘perl -MCGI -le ’print for values %INC’‘
 1368 6920 43710 /usr/local/lib/perl5/5.6.0/overload.pm
 6481 26122 200840 /usr/local/lib/perl5/5.6.0/CGI.pm
 7849 33042 244550 total

You have 16 trips through namei, 7 successful opens, 2 unsuccessful ones, and 213k of data read in.

This is a perlbloat.pl that shows how much memory is acquired by Perl when you run some. So we can
easily test the overhead of loading some modules.

 #!/usr/bin/perl -w

 use GTop ();

 my $gtop = GTop->new;
 my $before = $gtop->proc_mem($$)->size;

 for (@ARGV) {
 if (eval "require $_") {
 eval {
 $_->import;
 };
 }
 else {
 eval $_;
 die $@ if $@;
 }

41115 Feb 2014

14.7.2 "Bloatware" modulesPerformance Tuning

 }

 my $after = $gtop->proc_mem($$)->size;
 printf "@ARGV added %s\n", GTop::size_string($after - $before);

Now let’s try to load IO , which loads IO::Handle , IO::Seekable , IO::File , IO::Pipe ,
IO::Socket and IO::Dir :

 % ./perlbloat.pl ’use IO;’
 use IO; added 1.5M

"Only" 1.5 MB overhead. Now let’s load CGI (v2.74) and compile all its methods:

 % ./perlbloat.pl ’use CGI; CGI->compile(":all")’
 use CGI; CGI->compile(":all") added 1.8M

Almost 2MB extra memory. Let’s compare CGI.pm with its younger sister, whose internals are imple-
mented in C.

 %. /perlbloat.pl ’use Apache::Request’
 use Apache::Request added 48k

48KB. A significant difference isn’t it?

The following numbers show memory sizes in KB (virtual and resident) for v5.6.0 of Perl on four different
operating systems, The three calls each are without any modules, with just -MCGI, and with -MIO (never
with both):

 OpenBSD FreeBSD Redhat Linux Solaris
 vsz rss vsz rss vsz rss vsz rss
 Raw Perl 736 772 832 1208 2412 980 2928 2272
 w/ CGI 1220 1464 1308 1828 2972 1768 3616 3232
 w/ IO 2292 2580 2456 3016 4080 2868 5384 4976

Anybody who’s thinking of choosing one of these might do well to digest these numbers first.

14.7.3 Apache::args vs. Apache::Request::param vs. CGI::param

Apache::args , Apache::Request::param and CGI::param are the three most common ways
to process input arguments in mod_perl handlers and scripts. Let’s write three Apache::Registry
scripts that use Apache::args , Apache::Request::param and CGI::param to process a
form’s input and print it out. Notice that Apache::args is considered identical to
Apache::Request::param only when you have single valued keys. In the case of multi-valued keys
(e.g. when using check-box groups) you will have to write some extra code: If you do a simple:

 my %params = $r->args;

only the last value will be stored and the rest will collapse, because that’s what happens when you turn a
list into a hash. Assuming that you have the following list:

15 Feb 2014412

14.7.3 Apache::args vs. Apache::Request::param vs. CGI::param

 (rules => ’Apache’, rules => ’Perl’, rules => ’mod_perl’)

and assign it to a hash, the following happens:

 $hash{rules} = ’Apache’;
 $hash{rules} = ’Perl’;
 $hash{rules} = ’mod_perl’;

So at the end only the:

 rules => ’mod_perl’

pair will get stored. With CGI.pm or Apache::Request you can solve this by extracting the whole list
by its key:

 my @values = $q->params(’rules’);

In addition Apache::Request and CGI.pm have many more functions that ease input processing, like
handling file uploads. However Apache::Request is much faster since its guts are implemented in C,
glued to Perl using XS code.

Assuming that the only functionality you need is the parsing of key-value pairs, and assuming that every
key has a single value, we will compare the following almost identical scripts, by trying to pass various
query strings.

Here’s the code:

 file:processing_with_apache_args.pl

 use strict;
 my $r = shift;
 $r->send_http_header(’text/plain’);
 my %args = $r->args;
 print join "\n", map {"$_ => ".$args{$_} } keys %args;

 file:processing_with_apache_request.pl

 use strict;
 use Apache::Request ();
 my $r = shift;
 my $q = Apache::Request->new($r);
 $r->send_http_header(’text/plain’);
 my %args = map {$_ => $q->param($_) } $q->param;
 print join "\n", map {"$_ => ".$args{$_} } keys %args;

 file:processing_with_cgi_pm.pl

 use strict;
 use CGI;
 my $r = shift;
 $r->send_http_header(’text/plain’);
 my $q = new CGI;
 my %args = map {$_ => $q->param($_) } $q->param;
 print join "\n", map {"$_ => ".$args{$_} } keys %args;

41315 Feb 2014

14.7.3 Apache::args vs. Apache::Request::param vs. CGI::paramPerformance Tuning

All three scripts are preloaded at server startup:

 <Perl>
 use Apache::RegistryLoader ();
 Apache::RegistryLoader->new->handler(
 "/perl/processing_with_cgi_pm.pl",
 "/home/httpd/perl/processing_with_cgi_pm.pl"
);
 Apache::RegistryLoader->new->handler(
 "/perl/processing_with_apache_request.pl",
 "/home/httpd/perl/processing_with_apache_request.pl"
);
 Apache::RegistryLoader->new->handler(
 "/perl/processing_with_apache_args.pl",
 "/home/httpd/perl/processing_with_apache_args.pl"
);
 </Perl>

We use four different query strings, generated by:

 my @queries = (
 join("&", map {"$_=" . ’e’ x 10} (’a’..’b’)),
 join("&", map {"$_=" . ’e’ x 50} (’a’..’b’)),
 join("&", map {"$_=" . ’e’ x 5 } (’a’..’z’)),
 join("&", map {"$_=" . ’e’ x 10} (’a’..’z’)),
);

The first string is:

 a=eeeeeeeeee&b=eeeeeeeeee

which is 25 characters in length and consists of two key/value pairs. The second string is also made of two
key/value pairs, but the value is 50 characters long (total 105 characters). The third and the forth strings
are made from 26 key/value pairs, with the value lengths of 5 and 10 characters respectively, with total
lengths of 207 and 337 characters respectively. The query_len column in the report table is one of
these four total lengths.

We conduct the benchmark with concurrency level of 50 and generate 5000 requests for each test.

And the results are:

 name val_len pairs query_len | avtime rps

 apreq 10 2 25 | 51 945
 apreq 50 2 105 | 53 907
 r_args 50 2 105 | 53 906
 r_args 10 2 25 | 53 899
 apreq 5 26 207 | 64 754
 apreq 10 26 337 | 65 742
 r_args 5 26 207 | 73 665
 r_args 10 26 337 | 74 657
 cgi_pm 50 2 105 | 85 573

15 Feb 2014414

14.7.3 Apache::args vs. Apache::Request::param vs. CGI::param

 cgi_pm 10 2 25 | 87 559
 cgi_pm 5 26 207 | 188 263
 cgi_pm 10 26 337 | 188 262

Where apreq stands for Apache::Request::param() , r_args stands for Apache::args() or
$r->args() and cgi_pm stands for CGI::param() .

You can see that Apache::Request::param and Apache::args have similar performance with a
few key/value pairs, but the former is faster with many key/value pairs. CGI::param is significantly
slower than the other two methods.

14.7.4 Using $|=1 Under mod_perl and Better print() Techniques.

As you know, local $|=1; disables the buffering of the currently selected file handle (default is
STDOUT). If you enable it, ap_rflush() is called after each print() , unbuffering Apache’s IO.

If you are using multiple print() calls (_bad_ style in generating output) or if you just have too many
of them, then you will experience a degradation in performance. The severity depends on the number of
print() calls that you make.

Many old CGI scripts were written like this:

 print "<BODY BGCOLOR=\"black\" TEXT=\"white\">";
 print "<H1>";
 print "Hello";
 print "</H1>";
 print " foo ";
 print "</BODY>";

This example has multiple print() calls, which will cause performance degradation with $|=1 . It also
uses too many backslashes. This makes the code less readable, and it is also more difficult to format the
HTML so that it is easily readable as the script’s output. The code below solves the problems:

 print qq{
 <BODY BGCOLOR="black" TEXT="white">
 <H1>
 Hello
 </H1>
 foo
 </BODY>
 };

I guess you see the difference. Be careful though, when printing a <HTML> tag. The correct way is:

 print qq{<HTML>
 <HEAD></HEAD>
 <BODY>
 }

41515 Feb 2014

14.7.4 Using $|=1 Under mod_perl and Better print() Techniques.Performance Tuning

If you try the following:

 print qq{
 <HTML>
 <HEAD></HEAD>
 <BODY>
 }

Some older browsers expect the first characters after the headers and empty line to be <HTML> with no
spaces before the opening left angle-bracket. If there are any other characters, they might not accept the
output as HTML and print it as a plain text. Even if it works with your browser, it might not work for
others.

One other approach is to use ‘here’ documents, e.g.:

 print <<EOT;
 <HTML>
 <HEAD></HEAD>
 <BODY>
 EOT

Now let’s go back to the $|=1 topic. I still disable buffering, for two reasons:

I use relatively few print() calls. I achieve this by arranging for my print() statements to
print multiline HTML, and not one line per print() statement.
I want my users to see the output immediately. So if I am about to produce the results of a DB
query which might take some time to complete, I want users to get some text while they are
waiting. This improves the usability of my site. Ask yourself which you like better: getting the
output a bit slower, but steadily from the moment you’ve pressed the Submit button, or having
to watch the "falling stars" for a while and then get the whole output at once, even if it’s a few
milliseconds faster - assuming the browser didn’t time out during the wait.

An even better solution is to keep buffering enabled, and use a Perl API rflush() call to flush the
buffers when needed. This way you can place the first part of the page that you are going to send to the
user in the buffer, and flush it a moment before you are going to do some lengthy operation, like a DB
query. So you kill two birds with one stone: you show some of the data to the user immediately, so she
will feel that something is actually happening, and you have no performance hit from disabled buffering.

 use CGI ();
 my $r = shift;
 my $q = new CGI;
 print $q->header(’text/html’);
 print $q->start_html;
 print $q->p("Searching...Please wait");
 $r->rflush;
 # imitate a lengthy operation
 for (1..5) {
 sleep 1;
 }
 print $q->p("Done!");

15 Feb 2014416

14.7.4 Using $|=1 Under mod_perl and Better print() Techniques.

Conclusion: Do not blindly follow suggestions, but think what is best for you in each case.

Note: It might happen that some browsers do not render the page before they have received a significant
amount. This is especially true if you insert <link< or <script> tags in your HTML header that
require the browser to load a separate file. In that case, the user won’t be able to see the content at once, no
matter if you flush the buffers or not.

A workaround for this might be to use an output filter that replaces these tags with the files they refer to.

14.7.5 Global vs. Fully Qualified Variables

It’s always a good idea to avoid using global variables where it’s possible. Some variables must be either
global, such as @ISA or else fully qualified such as @MyModule::ISA , so that Perl can see them from
different packages.

A combination of strict and vars pragmas keeps modules clean and reduces a bit of noise. However,
the vars pragma also creates aliases, as does Exporter , which eat up more memory. When possible,
try to use fully qualified names instead of use vars .

For example write:

 package MyPackage1;
 use strict;
 use vars; # added only for fair comparison
 @MyPackage1::ISA = qw(CGI);
 $MyPackage1::VERSION = "1.00";
 1;

instead of:

 package MyPackage2;
 use strict;
 use vars qw(@ISA $VERSION);
 @ISA = qw(CGI);
 $VERSION = "1.00";
 1;

Note that we have added the vars pragma in the package that doesn’t use it so the memory comparison
will be fair.

Here are the numbers under Perl version 5.6.0

 % perl -MGTop -MMyPackage1 -le ’print GTop->new->proc_mem($$)->size’
 2023424
 % perl -MGTop -MMyPackage2 -le ’print GTop->new->proc_mem($$)->size’
 2031616

We have a difference of 8192 bytes. So every few global variables declared with vars pragma add about
8KB overhead.

41715 Feb 2014

14.7.5 Global vs. Fully Qualified VariablesPerformance Tuning

Note that Perl 5.6.0 introduced a new our() pragma which works like my () scope-wise, but declares global
variables.

 package MyPackage3;
 use strict;
 use vars; # not needed, added only for fair comparison
 our @ISA = qw(CGI);
 our $VERSION = "1.00";
 1;

which uses the same amount of memory as a fully qualified global variable:

 % perl -MGTop -MMyPackage3 -le ’print GTop->new->proc_mem($$)->size’
 2023424

Imported symbols act just like global variables, they can add up quick:

 % perlbloat.pl ’use POSIX ()’
 use POSIX () added 316k

 % perlbloat.pl ’use POSIX’
 use POSIX added 696k

That’s 380k worth of aliases. Now let’s say 6 different Apache::Registry scripts ’use POSIX;’
for strftime() or some other function: 6 * 380k = 2.3Mb

One could save 2.3Mb per single process with ’use POSIX ();’ and using fully qualifying POSIX::
function calls.

14.7.6 Object Methods Calls vs. Function Calls

Which subroutine calling form is more efficient: Object methods or functions?

14.7.6.1 The Overhead with Light Subroutines

Let’s do some benchmarking. We will start doing it using empty methods, which will allow us to measure
the real difference in the overhead each kind of call introduces. We will use this code:

 bench_call1.pl

 package Foo;

 use strict;
 use Benchmark;

 sub bar { };

 timethese(50_000, {
 method => sub { Foo->bar() },
 function => sub { Foo::bar(’Foo’);},
 });

15 Feb 2014418

14.7.6 Object Methods Calls vs. Function Calls

The two calls are equivalent, since both pass the class name as their first parameter; function does this
explicitly, while method does this transparently.

The benchmarking result:

 Benchmark: timing 50000 iterations of function, method...
 function: 0 wallclock secs (0.80 usr + 0.05 sys = 0.85 CPU)
 method: 1 wallclock secs (1.51 usr + 0.08 sys = 1.59 CPU)

We are interested in the ’total CPU times’ and not the ’wallclock seconds’. It’s possible that the load on
the system was different for the two tests while benchmarking, so the wallclock times give us no useful
information.

We see that the method calling type is almost twice as slow as the function call, 0.85 CPU compared to
1.59 CPU real execution time. Why does this happen? Because the difference between functions and
methods is the time taken to resolve the pointer from the object, to find the module it belongs to and then
the actual method. The function form has one parameter less to pass, less stack operations, less time to get
to the guts of the subroutine.

perl5.6+ does better method caching, Foo->method() is a little bit faster (some constant folding
magic), but not Foo->$method() . And the improvement does not address the @ISA lookup that still
happens in either case.

14.7.6.2 The Overhead with Heavy Subroutines

But that doesn’t mean that you shouldn’t use methods. Generally your functions do something, and the
more they do the less significant is the time to perform the call, because the calling time is effectively
fixed and is probably a very small overhead in comparison to the execution time of the method or function
itself. Therefore the longer execution time of the function the smaller the relative overhead of the method
call. The next benchmark proves this point:

 bench_call2.pl

 package Foo;

 use strict;
 use Benchmark;

 sub bar {
 my $class = shift;

 my ($x,$y) = (100,100);
 $y = log ($x ** 10) for (0..20);
 };

 timethese(50_000, {
 method => sub { Foo->bar() },
 function => sub { Foo::bar(’Foo’);},
 });

41915 Feb 2014

14.7.6 Object Methods Calls vs. Function CallsPerformance Tuning

We get a very close benchmarks!

 function: 33 wallclock secs (15.81 usr + 1.12 sys = 16.93 CPU)
 method: 32 wallclock secs (18.02 usr + 1.34 sys = 19.36 CPU)

Let’s make the subroutine bar even slower:

 sub bar {
 my $class = shift;

 my ($x,$y) = (100,100);
 $y = log ($x ** 10) for (0..40);
 };

And the result is amazing, the method call convention was faster than function:

 function: 81 wallclock secs (25.63 usr + 1.84 sys = 27.47 CPU)
 method: 61 wallclock secs (19.69 usr + 1.49 sys = 21.18 CPU)

In case your functions do very little, like the functions that generate HTML tags in CGI.pm , the overhead
might become a significant one. If your goal is speed you might consider using the function form, but if
you write a big and complicated application, it’s much better to use the method form, as it will make your
code easier to develop, maintain and debug, saving programmer time which, over the life of a project may
turn out to be the most significant cost factor.

14.7.6.3 Are All Methods Slower than Functions?

Some modules’ API is misleading, for example CGI.pm allows you to execute its subroutines as func-
tions or as methods. As you will see in a moment its function form of the calls is slower than the method
form because it does some voodoo work when the function form call is used.

 use CGI;
 my $q = new CGI;
 $q->param(’x’,5);
 my $x = $q->param(’x’);

vs

 use CGI qw(:standard);
 param(’x’,5);
 my $x = param(’x’);

As usual, let’s benchmark some very light calls and compare. Ideally we would expect the methods to be
slower than functions based on the previous benchmarks:

 bench_call3.pl

 use Benchmark;

 use CGI qw(:standard);
 $CGI::NO_DEBUG = 1;
 my $q = new CGI;
 my $x;

15 Feb 2014420

14.7.6 Object Methods Calls vs. Function Calls

 timethese
 (20000, {
 method => sub {$q->param(’x’,5); $x = $q->param(’x’); },
 function => sub { param(’x’,5); $x = param(’x’); },
 });

The benchmark is written is such a way that all the initializations are done at the beginning, so that we get
as accurate performance figures as possible. Let’s do it:

 % ./bench_call3.pl

 function: 51 wallclock secs (28.16 usr + 2.58 sys = 30.74 CPU)
 method: 39 wallclock secs (21.88 usr + 1.74 sys = 23.62 CPU)

As we can see methods are faster than functions, which seems to be wrong. The explanation lays in the
way CGI.pm is implemented. CGI.pm uses some fancy tricks to make the same routine act both as a
method and a plain function. The overhead of checking whether the arguments list looks like a method
invocation or not, will mask the slight difference in time for the way the function was called.

If you are intrigued and want to investigate further by yourself the subroutine you want to explore is called
self_or_default. The first line of this function short-circuits if you are using the object methods, but the
whole function is called if you are using the functional forms. Therefore, the functional form should be
slightly slower than the object form.

14.7.7 Imported Symbols and Memory Usage

There is a real memory hit when you import all of the functions into your process’ memory. This can
significantly enlarge memory requirements, particularly when there are many child processes.

In addition to polluting the namespace, when a process imports symbols from any module or any script it
grows by the size of the space allocated for those symbols. The more you import (e.g. qw(:standard) vs
qw(:all)) the more memory will be used. Let’s say the overhead is of size X. Now take the number of
scripts in which you deploy the function method interface, let’s call that Y. Finally let’s say that you have
a number of processes equal to Z.

You will need X*Y*Z size of additional memory, taking X=10k, Y=10, Z=30, we get 10k*10*30 =
3Mb!!! Now you understand the difference.

Let’s benchmark CGI.pm using GTop.pm. First we will try it with no exporting at all.

 use GTop ();
 use CGI ();
 print GTop->new->proc_mem($$)->size;

 1,949,696

Now exporting a few dozens symbols:

42115 Feb 2014

14.7.7 Imported Symbols and Memory UsagePerformance Tuning

 use GTop ();
 use CGI qw(:standard);
 print GTop->new->proc_mem($$)->size;

 1,966,080

And finally exporting all the symbols (about 130)

 use GTop ();
 use CGI qw(:all);
 print GTop->new->proc_mem($$)->size;

 1,970,176

Results:

 import symbols size(bytes) delta(bytes) relative to ()

 () 1949696 0
 qw(:standard) 1966080 16384
 qw(:all) 1970176 20480

So in my example above X=20k => 20K*10*30 = 6Mb. You will need 6Mb more when importing all the
CGI.pm ’s symbols than when you import none at all.

Generally you use more than one script, run more than one process and probably import more symbols
from the additional modules that you deploy. So the real numbers are much bigger.

The function method is faster in the general case, because of the time overhead to resolve the pointer from
the object.

If you are looking for performance improvements, you will have to face the fact that having to type
My::Module::my_method might save you a good chunk of memory if the above call must not be
called with a reference to an object, but even then it can be passed by value.

I strongly endorse Apache::Request (libapreq) - Generic Apache Request Library. Its core is written in C,
giving it a significant memory and performance benefit. It has all the functionality of CGI.pm except the
HTML generation functions.

14.7.8 Interpolation, Concatenation or List

Somewhat overlapping with the previous section we want to revisit the various approaches of mungling
with strings, and compare the speed of using lists of strings compared to interpolation. We will add a
string concatenation angle as well.

When the strings are small, it almost doesn’t matter whether interpolation or a list is used. Here is a bench-
mark:

 use Benchmark;
 use Symbol;
 my $fh = gensym;
 open $fh, ">/dev/null" or die;

15 Feb 2014422

14.7.8 Interpolation, Concatenation or List

 my ($one, $two, $three, $four) = (’a’..’d’);

 timethese(1_000_000,
 {
 interp => sub {
 print $fh "$onetwothree$four";
 },
 list => sub {
 print $fh $one, $two, $three, $four;
 },
 conc => sub {
 print $fh $one.$two.$three.$four;
 },
 });

 Benchmark: timing 1000000 iterations of conc, interp, list...
 conc: 3 wallclock secs (3.38 usr + 0.00 sys = 3.38 CPU)
 interp: 3 wallclock secs (3.45 usr + -0.01 sys = 3.44 CPU)
 list: 2 wallclock secs (2.58 usr + 0.00 sys = 2.58 CPU)

The concatenation technique is very similar to interpolation. The list technique is a little bit faster than
interpolation. But when the strings are large, lists are significantly faster. We have seen this in the previous
section and here is another benchmark to increase our confidence in our conclusion. This time we use
1000 character long strings:

 use Benchmark;
 use Symbol;
 my $fh = gensym;
 open $fh, ">/dev/null" or die;

 my ($one, $two, $three, $four) = map { $_ x 1000 } (’a’..’d’);

 timethese(500_000,
 {
 interp => sub {
 print $fh "$onetwothree$four";
 },
 list => sub {
 print $fh $one, $two, $three, $four;
 },
 conc => sub {
 print $fh $one.$two.$three.$four;
 },
 });

 Benchmark: timing 500000 iterations of interp, list...
 conc: 5 wallclock secs (4.47 usr + 0.27 sys = 4.74 CPU)
 interp: 4 wallclock secs (4.25 usr + 0.26 sys = 4.51 CPU)
 list: 4 wallclock secs (2.87 usr + 0.16 sys = 3.03 CPU)

In this case using a list is about 30% faster than interpolation. Concatenation is a little bit slower than
interpolation.

42315 Feb 2014

14.7.8 Interpolation, Concatenation or ListPerformance Tuning

Let’s look at this code:

 $title = ’My Web Page’;
 print "<h1>$title</h1>"; # Interpolation (slow)
 print ’<h1>’ . $title . ’</h1>’; # Concatenation (slow)
 print ’<h1>’, $title, ’</h1>’; # List (fast for long strings)

When you use "<h1>$title</h1>" Perl does interpolation (since "" is an operator in Perl), which must
parse the contents of the string and replace any variables or expressions it finds with their respective
values. This uses more memory and is slower than using a list. Of course if there are no variables to inter-
polate it makes no difference whether to use "string" or ’string’ .

Concatenation is also potentially slow since Perl might create a temporary string which it then prints.

Lists are fast because Perl can simply deal with each element in turn. This is true if you don’t run join() on
the list at the end to create a single string from the elements of list. This operation might be slower than
direct append to the string whenever a new string springs into existence.

[ReaderMETA]: Please send more mod_perl relevant Perl performance hints

14.7.9 Using Perl stat() Call’s Cached Results

When you do a stat() (or its variations -M -- last modification time, -A -- last access time, -C -- last
inode-change time, etc), the returned information is cached internally. If you need to make an additional
check for the same file, use the _ magic variable and save the overhead of an unnecessary stat() call. For
example when testing for existence and read permissions you might use:

 my $filename = "./test";
 # three stat() calls
 print "OK\n" if -e $filename and -r $filename;
 my $mod_time = (-M $filename) * 24 * 60 * 60;
 print "$filename was modified $mod_time seconds before startup\n";

or the more efficient:

 my $filename = "./test";
 # one stat() call
 print "OK\n" if -e $filename and -r _;
 my $mod_time = (-M _) * 24 * 60 * 60;
 print "$filename was modified $mod_time seconds before startup\n";

Two stat() calls were saved!

14.7.10 Optimizing Code

Here are some other resources that explain how to optimize your code, which are usually applied when
you profile your code and need to optimize it but in many cases are useful to know when you develop the
code.

15 Feb 2014424

14.7.9 Using Perl stat() Call’s Cached Results

Interesting C code optimization notes, most applying to Perl code as well:
http://www.utsc.utoronto.ca/~harper/cscb09/lecture11.html#code

[ReaderMETA]: please send me similar resources if you know of such.

14.8 Apache::Registry and Derivatives Specific Notes
These are the sections that deal solely with Apache::Registry and derived modules, like
Apache::PerlRun and Apache::RegistryBB . No Perl handlers code is discussed here, so if you
don’t use these modules, feel free to skip this section.

14.8.1 Be Careful with Symbolic Links

As you know Apache::Registry caches the scripts in the packages whose names are constructed by
scripts’ URI. If you have the same script that can be reached by different URIs, which is possible if you
have used symbolic links, you will get the same script stored twice in the memory.

For example:

 % ln -s /home/httpd/perl/news/news.pl /home/httpd/perl/news.pl

Now the script can be reached through the both URIs /news/news.pl and /news.pl. It doesn’t really matter
until you advertise the two URIs, and users reach the same script from both of them.

So let’s assume that you have issued the requests to the both URIs:

 http://localhost/perl/news/news.pl
 http://localhost/perl/news.pl

To spot the duplication you should use the Apache::Status module. Amongst other things, it shows
all the compiled Apache::Registry scripts (using their respective packages):

If you are using the default configuration directives you should either use this URI:

 http://localhost/perl-status?rgysubs

or just go to the main menu at:

 http://localhost/perl-status

And click on Compiled Registry Scripts menu item.

META: we need a screen snapshot here!!!

If you the script was accessed through the URI that was remapped to the real file and through the URI that
was remapped to the symbolic link, you will see the following output:

42515 Feb 2014

14.8 Apache::Registry and Derivatives Specific NotesPerformance Tuning

http://www.utsc.utoronto.ca/~harper/cscb09/lecture11.html#code

 Apache::ROOT::perl::news::news_2epl
 Apache::ROOT::perl::news_2epl

You should run the server in the single mode, to see it immediately. If you test it in the normal mode--it’s
possible that some child processes would show only one entry or none at all, since they might not serve
the same requests as the others. For more hints see the section "Run the server in single mode".

14.9 Improving Performance by Prevention
There are two ways to improve performance: one is by tuning to squeeze the most out of your hardware
and software; and the other is preventing certain bad things from happening, like impolite robots that
crawl your site without pausing between requests, memory leakages, getting the memory unshared,
making sure that some processes won’t take up all the CPU etc.

In the following sections we are going to discuss about the tools and programming techniques that would
help you to keep your service in order, even if you are not around.

14.9.1 Memory leakage

Scripts under mod_perl can very easily leak memory! Global variables stay around indefinitely, lexically
scoped variables (declared with my ()) are destroyed when they go out of scope, provided there are no
references to them from outside that scope.

Perl doesn’t return the memory it acquired from the kernel. It does reuse it though!

14.9.1.1 Reading In A Whole File

 open IN, $file or die $!;
 local $/ = undef; # will read the whole file in
 $content = <IN>;
 close IN;

If your file is 5Mb, the child which served that script will grow by exactly that size. Now if you have 20
children, and all of them will serve this CGI, they will consume 20*5M = 100M of RAM in total! If that’s
the case, try to use other approaches to processing the file, if possible. Try to process a line at a time and
print it back to the file. If you need to modify the file itself, use a temporary file. When finished, overwrite
the source file. Make sure you use a locking mechanism!

14.9.1.2 Copying Variables Between Functions

Now let’s talk about passing variables by value. Let’s use the example above, assuming we have no choice
but to read the whole file before any data processing takes place. Now you have some imaginary
process() subroutine that processes the data and returns it. What happens if you pass the $content
by value? You have just copied another 5M and the child has grown in size by another 5M. Watch your
swap space! Now multiply it again by factor of 20 you have 200M of wasted RAM, which will apparently
be reused, but it’s a waste! Whenever you think the variable can grow bigger than a few Kb, pass it by
reference!

15 Feb 2014426

14.9 Improving Performance by Prevention

Once I wrote a script that passed the contents of a little flat file database to a function that processed it by
value -- it worked and it was fast, but after a time the database became bigger, so passing it by value was
expensive. I had to make the decision whether to buy more memory or to rewrite the code. It’s obvious
that adding more memory will be merely a temporary solution. So it’s better to plan ahead and pass vari-
ables by reference, if a variable you are going to pass might eventually become bigger than you envisage
at the time you code the program. There are a few approaches you can use to pass and use variables passed
by reference. For example:

 my $content = qq{foobarfoobar};
 process(\$content);
 sub process{
 my $r_var = shift;
 $$r_var =~ s/foo/bar/gs;
 # nothing returned - the variable $content outside has already
 # been modified
 }

If you work with arrays or hashes it’s:

 @{$var_lr} dereferences an array
 %{$var_hr} dereferences a hash

We can still access individual elements of arrays and hashes that we have a reference to without derefer-
encing them:

 $var_lr->[$index] get $index’th element of an array via a ref
 $var_hr->{$key} get $key’th element of a hash via a ref

For more information see perldoc perlref .

Another approach would be to use the @_ array directly. This has the effect of passing by reference:

 process($content);
 sub process{
 $_[0] =~ s/foo/bar/gs;
 # nothing returned - the variable $content outside has been
 # already modified
 }

From perldoc perlsub :

 The array @_ is a local array, but its elements are aliases for
 the actual scalar parameters. In particular, if an element
 $_[0] is updated, the corresponding argument is updated (or an
 error occurs if it is not possible to update)...

Be careful when you write this kind of subroutine, since it can confuse a potential user. It’s not obvious
that call like process($content); modifies the passed variable. Programmers (the users of your
library in this case) are used to subroutines that either modify variables passed by reference or expressly
return a result (e.g. $content=process($content);).

42715 Feb 2014

14.9.1 Memory leakagePerformance Tuning

14.9.1.3 Work With Databases

If you do some DB processing, you will often encounter the need to read lots of records into your
program, and then print them to the browser after they are formatted. I won’t even mention the horrible
case where programmers read in the whole DB and then use Perl to process it!!! Use a relational DB and
let the SQL do the job, so you get only the records you need!

We will use DBI for this (assume that we are already connected to the DB--refer to perldoc DBI for a
complete reference to the DBI module):

 $sth->execute;
 while(@row_ary = $sth->fetchrow_array) {
 # do DB accumulation into some variable
 }
 # print the output using the data returned from the DB

In the example above the httpd_process will grow by the size of the variables that have been allocated for
the records that matched the query. Again remember to multiply it by the number of the children your
server runs!

A better approach is not to accumulate the records, but rather to print them as they are fetched from the
DB. Moreover, we will use the bind_col() and $sth->fetchrow_arrayref() (aliased to
$sth->fetch()) methods, to fetch the data in the fastest possible way. The example below prints an
HTML table with matched data, the only memory that is being used is a @cols array to hold temporary
row values. The table will be rendered by the client browser only when the whole table will be out though.

 my @select_fields = qw(a b c);
 # create a list of cols values
 my @cols = ();
 @cols[0..$#select_fields] = ();
 $sth = $dbh->prepare($do_sql);
 $sth->execute;
 # Bind perl variables to columns.
 $sth->bind_columns(undef,\(@cols));
 print "<TABLE>";
 while($sth->fetch) {
 print "<TR>",
 map("<TD>$_</TD>", @cols),
 "</TR>";
 }
 print "</TABLE>";

Note: the above method doesn’t allow you to know how many records have been matched. The
workaround is to run an identical query before the code above where you use SELECT count(*) ...
instead of ’SELECT * ... , to get the number of matched records. It should be much faster, since you
can remove any SORTBY and similar attributes.

For those who think that $sth->rows will do the job, here is the quote from the DBI manpage:

15 Feb 2014428

14.9.1 Memory leakage

 rows();

 $rv = $sth->rows;

 Returns the number of rows affected by the last database altering
 command, or -1 if not known or not available. Generally you can
 only rely on a row count after a do or non-select execute (for some
 specific operations like update and delete) or after fetching all
 the rows of a select statement.

 For select statements it is generally not possible to know how many
 rows will be returned except by fetching them all. Some drivers
 will return the number of rows the application has fetched so far
 but others may return -1 until all rows have been fetched. So use of
 the rows method with select statements is not recommended.

As a bonus, I wanted to write a single sub that flexibly processes any query. It would accept conditions, a
call-back closure sub, select fields and restrictions.

 # Usage:
 # $o->dump(\%conditions,\&callback_closure,\@select_fields,@restrictions);
 #
 sub dump{
 my $self = shift;
 my %param = %{+shift}; # dereference hash
 my $rsub = shift;
 my @select_fields = @{+shift}; # dereference list
 my @restrict = shift || ’’;

 # create a list of cols values
 my @cols = ();
 @cols[0..$#select_fields] = ();

 my $do_sql = ’’;
 my @where = ();

 # make a @where list
 map { push @where, "$_=\’$param{$_}\’" if $param{$_};} keys %param;

 # prepare the sql statement
 $do_sql = "SELECT ";
 $do_sql .= join(" ", @restrict) if @restrict; # append restriction list
 $do_sql .= " " .join(",", @select_fields) ; # append select list
 $do_sql .= " FROM $DBConfig{TABLE} "; # from table

 # we will not add the WHERE clause if @where is empty
 $do_sql .= " WHERE " . join " AND ", @where if @where;

 print "SQL: $do_sql \n" if $debug;

 $dbh->{RaiseError} = 1; # do this, or check every call for errors
 $sth = $dbh->prepare($do_sql);
 $sth->execute;
 # Bind perl variables to columns.
 $sth->bind_columns(undef,\(@cols));

42915 Feb 2014

14.9.1 Memory leakagePerformance Tuning

 while($sth->fetch) {
 &$rsub(@cols);
 }
 # print the tail or "no records found" message

 # according to the previous calls
 &$rsub();

 } # end of sub dump

Now a callback closure sub can do lots of things. We need a closure to know what stage are we in: header,
body or tail. For example, we want a callback closure for formatting the rows to print:

 my $rsub = eval {
 # make a copy of @fields list, since it might go
 # out of scope when this closure is called
 my @fields = @fields;
 my @query_fields = qw(user dir tool act); # no date field!!!
 my $header = 0;
 my $tail = 0;
 my $counter = 0;
 my %cols = (); # columns name=> value hash

 # Closure with the following behavior:
 # 1. Header’s code will be executed on the first call only and
 # if @_ was set
 # 2. Row’s printing code will be executed on every call with @_ set
 # 3. Tail’s code will be executed only if Header’s code was
 # printed and @_ isn’t set
 # 4. "No record found" code will be executed if Header’s code
 # wasn’t executed

 sub {
 # Header
 if (@_ and !$header){
 print "<TABLE>\n";
 print $q->Tr(map{ $q->td($_) } @fields);
 $header = 1;
 }

 # Body
 if (@_) {
 print $q->Tr(map{$q->td($_)} @_);
 $counter++;
 return;
 }

 # Tail, will be printed only at the end
 if ($header and !($tail or @_)){
 print "</TABLE>\n $counter records found";
 $tail = 1;
 return;
 }

15 Feb 2014430

14.9.1 Memory leakage

 # No record found
 unless ($header){
 print $q->p($q->center($q->b("No record was found!\n")));
 }

 } # end of sub {}
 }; # end of my $rsub = eval {

You might also want to check the section Preventing Your Processes from Growing and Limiting Other
Resources Used by Apache Child Processes.

14.9.2 Avoid the Evil Troika

The perlre manpage says:

 WARNING: Once Perl sees that you need one of "$&", "$‘", or "$’"
 anywhere in the program, it has to provide them for every pattern
 match. This may substantially slow your program.

The mere existence of these variables will trigger this behavior, regardless of whether or not the code that
accesses them will be executed. Removing these variables should significantly improve the regex perfor-
mance.

How do you know whether some code loads them? You could grep(1), but it’s hard to remember to do that
as you include more modules from CPAN and write new code. Luckily Devel::SawAmpersand
comes to help. (http://search.cpan.org/dist/Devel-SawAmpersand/lib/Devel/SawAmpersand.pm) This
module will alert you if it detects any of the evil troika variables present.

14.9.3 Preventing Your Processes from Growing

If you have already worked with mod_perl, you have probably noticed that it can be difficult to keep your
mod_perl processes from using a lot of memory. The less memory you have, the fewer processes you can
run and the worse your server will perform, especially under a heavy load. This chapter presents several
common situations which can lead to unnecessary consumption of RAM, together with preventive
measures.

When you need to control the size of your httpd processes, use one of the two modules
Apache::GTopLimit and Apache::SizeLimit which kill Apache httpd processes when the latter
grow too large or lose a big chunk of their shared memory. The two modules differ in methods for finding
out the memory usage. Apache::GTopLimit relies on the libgtop library to perform this task, there-
fore if this library can be built on your platform you can use this module. Apache::SizeLimit
includes different methods for different platforms, you will have to check the modules’ manpage to figure
out which platforms are supported.

43115 Feb 2014

14.9.2 Avoid the Evil TroikaPerformance Tuning

http://search.cpan.org/dist/Devel-SawAmpersand/lib/Devel/SawAmpersand.pm

14.9.3.1 Defining the Minimum Shared Memory Size Threshold

As we have already discussed, when it is first created an Apache child process usually has a large fraction
of it memory shared with its parent. During the child process’ life some of its data structures are modified
and a part of its memory becomes unshared (pages become "dirty"), leading to an increase in memory
consumption. You will remember that the MaxRequestsPerChild directive allows you to specify the
number of requests a child process should serve before it is killed. One way to limit the memory consump-
tion of a process is to kill it and let Apache replace it with a newly started process, which again will have
all its memory shared with the Apache parent. The new child process serves requests and eventually the
cycle is repeated.

This is a fairly crude means of limiting unshared memory and you will probably need to tune MaxRe-
questsPerChild , eventually finding an optimum value. If, as is likely, your service is undergoing
constant changes then this is an inconvenient solution. You have to re-tune this number again and again to
adapt to the ever changing code base.

You really want to set some guardian to watch the shared size and kill the process if it goes below some
limit. This way, processes will not be killed unnecessarily.

To set a shared memory lower limit of 4MB using Apache::GTopLimit add the following code into
the startup.pl file:

 use Apache::GTopLimit;
 $Apache::GTopLimit::MIN_PROCESS_SHARED_SIZE = 4096;

and in httpd.conf:

 PerlFixupHandler Apache::GTopLimit

don’t forget to restart the server for the changes to take effect.

This has the effect that as soon as the child process shares less than 4MB, (the corollary being that it must
therefore be occupying a lot of memory with its unique pages), it will be killed after completing to serve
the last request, and, as a consequence, a new child will take its place.

If you use Apache::SizeLimit you can accomplish the same with the adding to startup.pl:

 use Apache::SizeLimit;
 $Apache::SizeLimit::MIN_SHARE_SIZE = 4096;

and in httpd.conf:

 PerlFixupHandler Apache::SizeLimit

If you only want to set this limit for some requests (presumably the ones which you think are likely to
cause memory to become unshared) then you can register a post-processing check using the
set_min_shared_size() function. For example:

15 Feb 2014432

14.9.3 Preventing Your Processes from Growing

 use Apache::GTopLimit;
 if ($need_to_limit) {
 # make sure that at least 4MB are shared
 Apache::GTopLimit->set_min_shared_size(4096);
 }

or for Apache::SizeLimit :

 use Apache::SizeLimit;
 if ($need_to_limit) {
 # make sure that at least 4MB are shared
 Apache::SizeLimit->setmin(4096);
 }

Since accessing the process information adds a little overhead, you may want to only check the process
size every N times. In this case set the $Apache::GTopLimit::CHECK_EVERY_N_REQUESTS
variable. For example to test the size every other time, put in your startup.pl:

 $Apache::GTopLimit::CHECK_EVERY_N_REQUESTS = 2;

or for Apache::SizeLimit :

 $Apache::SizeLimit::CHECK_EVERY_N_REQUESTS = 2;

You can run the Apache::GTopLimit module in the debug mode by setting:

 PerlSetVar Apache::GTopLimit::DEBUG 1

in httpd.conf. It’s important that this setting should happen before the Apache::GTopLimit module is
loaded.

When debug mode is turned on the module reports in the error_log file the memory usage of the current
process and also when it detects that at least one of the thresholds was crosses and the process is going to
be killed.

Apache::SizeLimit controls the debug level via $Apache::SizeLimit::DEBUG variable:

 $Apache::SizeLimit::DEBUG = 1;

which can be modified any time, even after the module was loaded.

14.9.3.2 Potential Drawbacks of Memory Sharing Restriction

It’s very important that the system won’t be heavily engaged in swapping process. Some systems do swap
in and out every so often even if they have plenty of real memory available and it’s OK. The following
applies to conditions when there is hardly any free memory available.

So if the system uses almost all of its real memory (including the cache), there is a danger of parent’s
process memory pages being swapped out (written to a swap device). If this happens the memory usage
reporting tools will report all those swapped out pages as non-shared, even though in reality these pages
are still shared on most OSs. When these pages are getting swapped in, the sharing will be reported back
to normal after a certain amount of time. If a big chunk of the memory shared with child processes is

43315 Feb 2014

14.9.3 Preventing Your Processes from GrowingPerformance Tuning

swapped out, it’s most likely that Apache::SizeLimit or Apache::GTopLimit will notice that
the shared memory floor threshold was crossed and as a result kill those processes. If many of the parent
process’ pages are swapped out, and the newly created child process is already starting with shared
memory below the limit, it’ll be killed immediately after serving a single request (assuming that we the
$CHECK_EVERY_N_REQUESTS is set to one). This is a very bad situation which will eventually lead to
a state where the system won’t respond at all, as it’ll be heavily engaged in swapping process.

This effect may be less or more severe depending on the memory manager’s implementation and it
certainly varies from OS to OS, and different kernel versions. Therefore you should be aware of this
potential problem and simply try to avoid situations where the system needs to swap at all, by adding more
memory, reducing the number of child servers or spreading the load across more machines, if reducing the
number of child servers is not an options because of the request rate demands.

14.9.3.3 Defining the Maximum Memory Size Threshold

Not less important than maximizing shared memory is restricting the absolute size of the processes. If the
processes grow after each request, and if nothing restricts them from growing, you can easily run out of
memory.

Again you can set the MaxRequestPerChild directive to kill the processes after a few requests have
been served. But as we have explained in the previous section this solution is not as good as one which
monitors the process size and kills it only when some limit is reached.

If you have Apache::GTopLimit (described in the previous section) you can limit process’ memory
usage by setting the $Apache::GTopLimit::MAX_PROCESS_SIZE directive. For example if you
want the processes to be killed when they reach 10MB you should put the following in your startup.pl file:

 $Apache::GTopLimit::MAX_PROCESS_SIZE = 10240;

Just as when limiting shared memory, you can set a limit for the current process using the set_max_size()
method in your code:

 use Apache::GTopLimit;
 Apache::GTopLimit->set_max_size(10000);

For Apache::SizeLimit the equivalents are:

 use Apache::SizeLimit;
 $Apache::SizeLimit::MAX_PROCESS_SIZE = 10240;

and:

 use Apache::SizeLimit;
 Apache::SizeLimit->setmax(10240);

15 Feb 2014434

14.9.3 Preventing Your Processes from Growing

14.9.3.4 Defining the Maximum Unshared Memory Size Threshold

Instead of setting the shared and total memory usage thresholds, you can set a single threshold which
measures the amount of unshared memory, by subtracting the shared memory size from the total memory
size.

Both modules allow you to set the thresholds in similar ways. With Apache::GTopLimit you can set
the unshared memory threshold server-wide with:

 $Apache::GTopLimit::MAX_PROCESS_UNSHARED_SIZE = 6144;

and locally for a handler with:

 Apache::GTopLimit->set_max_unshared_size(6144);

If you are using Apache::SizeLimit the corresponding settings would be:

 $Apache::SizeLimit::MAX_UNSHARED_SIZE = 6144;

and:

 Apache::SizeLimit->setmax_unshared(6144);

14.9.4 Limiting Other Resources Used by Apache Child Processes

In addition to the absolute and shared memory sizes limiting, you might need to prevent the processes
from excessive consumption of the system resources. Like limiting the CPU usage, the number of files that
can be opened, or memory segment usage and more.

The Apache::Resource module allows this all by deploying the BSD::Resource module, which in
turn uses the C function setrlimit() to set limits on system resources.

A resource limit is specified as a soft limit and a hard limit. When a soft limit is exceeded a process may
receive a signal (for example, if the CPU time or file size is exceeded), but it will be allowed to continue
execution until it reaches the hard limit (or modifies its resource limit). The rlimit structure is used to
specify the hard and soft limits on a resource. (See the manpage for setrlimit for your OS specific informa-
tion.)

If the value of the variable is of the form S:H , S is treated as the soft limit, and H is the hard limit. If it is
just a single number, it is used for both soft and hard limits. So if you set 10:20 , the soft limit is 10 and
the hard limit is 20. If you set just 10--both the soft and the hard limits are set to 20.

The mostly spread usage of this module is to limit the CPU usage. The environment variable
PERL_RLIMIT_CPU defines the maximum amount of CPU time the process can use. If it runs for longer
than this, it gets killed, no matter what it does, either processing a new request or just waiting. This is very
useful when you have a code with a bug and the process starts to spin in an infinite loop or alike using a
lot of CPU and never completing the request.

43515 Feb 2014

14.9.4 Limiting Other Resources Used by Apache Child ProcessesPerformance Tuning

The value is measured in seconds. The following example sets the soft limit of the CPU usage to 120
seconds (the default is 360).

 PerlModule Apache::Resource
 PerlSetEnv PERL_RLIMIT_CPU 120

Of course you should tell mod_perl to use this module, which is done by adding the following directive to
httpd.conf:

 PerlChildInitHandler Apache::Resource

There are other resources that you might want to limit. For example you can limit the memory data and
stack segment sizes (PERL_RLIMIT_DATA and PERL_RLIMIT_STACK), the maximum process file
size (PERL_RLIMIT_FSIZE), the core file size (PERL_RLIMIT_CORE), the address space (virtual
memory) limit (PERL_RLIMIT_AS), etc. Refer to the setrlimit(2) man page on your OS for other possi-
ble resources. Remember to prepend PERL_ before the resource types you will see in the man page.

If you configure Apache::Status , it will let you review the resources set in this way. Remember that
Apache::Status must be loaded before Apache::Resource in order to enable the resources
display menu.

If you want to set the debug mode set the $Apache::Resource::Debug before loading the module,
for example by using the Perl sections in httpd.conf.

 <Perl>
 $Apache::Resource::Debug = 1;
 require Apache::Resource;
 </Perl>
 PerlChildInitHandler Apache::Resource

Now open in the error_log file using tell and watch the debug messages showing up, when the requests
are served.

14.9.4.1 OS Specific notes

Note that under Linux malloc() uses mmap() instead of brk(). This is done to conserve virtual memory -
that is, when you malloc a large block of memory, it isn’t actually given to your program until you initial-
ize it. The old-style brk() system call obeyed resource limits on data segment size as set in setrlimit() -
mmap() doesn’t.

Apache::Resource ’s defaults put caps on data size and stack size. Linux’s current memory allocation
scheme doesn’t honor these limits, so if you just do

 PerlSetEnv PERL_RLIMIT_DEFAULTS On
 PerlModule Apache::Resource
 PerlChildInitHandler Apache::Resource

Your Apache processes are still free to use as much memory as they like.

15 Feb 2014436

14.9.4 Limiting Other Resources Used by Apache Child Processes

However, BSD::Resource also has a limit called RLIMIT_AS (Address Space) which limits the total
number of bytes of virtual memory assigned to a process. Happily, Linux’s memory manager does honor
this limit.

Therefore, you can limit memory usage under Linux with Apache::Resource -- simply add a line to
httpd.conf:

 PerlSetEnv PERL_RLIMIT_AS 67108864

This example sets a hard and soft limit of 64MB of total address space.

Refer to the Apache::Resource and setrlimit(2) manpages for more information.

14.9.5 Limiting the Number of Processes Serving the Same Resource

If you want to limit number of Apache children that could simultaneously be serving the (nearly) same
resource, you should take a look at the mod_throttle_access module.

It solves the problem of too many concurrent request accessing the same URI, if for example the handler
that serves this URI uses some resource that has a limitation on the maximum number of possible users or
the handlers code is very CPU intensive and you cannot afford more than a certain number of concurrent
requests to this specific URI.

Imagine that your service provides the three following URIs:

 /perl/news/
 /perl/webmail/
 /perl/morphing/

The first two URIs are response critical as people want to read news and their email. The third URI is very
CPU and RAM intensive image morphing service, provided as a bonus to your users. Since you don’t
want users to abuse this service, you have to set some limits on the number of concurrent requests for this
resource, since if you don’t--the other two critical resources can be hurt.

When you compile in and enable the Apache mod_throttle_access module, the MaxConcurrentReqs
directive becomes available. For example, the following setting:

 <Location "/perl/morphing">
 <Limit PUT GET POST>
 MaxConcurrentReqs 10
 </Limit>
 </Location>

will allow only 10 concurrent PUT, GET or POST requests under the URI /perl/morphing to be processed
at one time. The other two URIs remain unlimited.

43715 Feb 2014

14.9.5 Limiting the Number of Processes Serving the Same ResourcePerformance Tuning

14.9.6 Limiting the Request Rate Speed (Robot Blocking)

A limitation of using pattern matching to identify robots is that it only catches the robots that you know
about, and then only those that identify themselves by name. A few devious robots masquerade as users by
using user agent strings that identify themselves as conventional browsers. To catch such robots, you’ll
have to be more sophisticated.

Apache::SpeedLimit comes to your aid, see:

http://www.modperl.com/chapters/ch6.html#Blocking_Greedy_Clients

14.10 Perl Modules for Performance Improvement
These sections are about Perl modules that improve performance without requiring changes to your code.
Mostly you just need to tweak the configuration file to plug these modules in.

14.10.1 Sending Plain HTML as Compressed Output

See Apache::GzipChain - compress HTML (or anything) in the OutputChain

14.10.2 Caching Components with HTML::Mason

META: complete the full description

HTML::Mason is a system that makes use of components to build HTML pages.

If most of your output is generated dynamically, but each finished page can be separated into different
components, HTML::Mason can cache those components. This can really improve the performance of
your service and reduce the load on the system.

Say for example that you have a page consisting of five components, each generated by a different SQL
query, but for four of the five components it’s the same four queries for each user so you don’t have to
rerun them again and again. Only one component is generated by a unique query and will not use the
cache.

META: HTML::Mason docs (v 8.0) said Mason was 2-3 times slower than pure mod_perl, implying that
the power & convenience made up for this.

META: Should also mention Embperl (especially since its C + XS)

14.11 Efficient Work with Databases under mod_perl
Most of the mod_perl enabled servers work with database engines, so in this section we will learn about
two things: how mod_perl makes working with databases faster and a few tips for a more efficient DBI
coding in Perl. (DBI provides an identical Perl interface to many database implementations.)

15 Feb 2014438

14.10 Perl Modules for Performance Improvement

http://www.modperl.com/chapters/ch6.html#Blocking_Greedy_Clients

14.11.1 Persistent DB Connections

Another popular use of mod_perl is to take advantage of its ability to maintain persistent open database
connections.

You want to have a persistent database connection because the most expensive part of a network transac-
tion for most databases is the business of building and tearing down connections.

Of course the persistence doesn’t help with the latency problems during the actual use of the database
connections. Oracle is notoriously latency-sensitive which in most cases generates a network transaction
per row returned which slows things down if the query execution matches many rows. You may want to
read the Tim Bunce’s Advanced DBI talk at http://dbi.perl.org/doc/conferences/tim_1999/index.html
which covers a lot of techniques to reduce latency.

So here is the basic approach of making the connection persistent:

 # Apache::Registry script

 use strict;
 use vars qw($dbh);

 $dbh ||= SomeDbPackage->connect(...);

Since $dbh is a global variable for the child, once the child has opened the connection it will use it over
and over again, unless you perform disconnect() .

Be careful to use different names for handlers if you open connections to different databases!

Apache::DBI allows you to make a persistent database connection. With this module enabled, every
connect() request to the plain DBI module will be forwarded to the Apache::DBI module. This
looks to see whether a database handle from a previous connect() request has already been opened,
and if this handle is still valid using the ping method. If these two conditions are fulfilled it just returns the
database handle. If there is no appropriate database handle or if the ping method fails, a new connection is
established and the handle is stored for later re-use. There is no need to delete the disconnect()
statements from your code. They will not do anything, the Apache::DBI module overloads the
disconnect() method with a NOP. When a child exits there is no explicit disconnect, the child dies
and so does the database connection. You may leave the use DBI; statement inside the scripts as well.

The usage is simple -- add to httpd.conf:

 PerlModule Apache::DBI

It is important to load this module before any other DBI , DBD::* and ApacheDBI* modules!

43915 Feb 2014

14.11.1 Persistent DB ConnectionsPerformance Tuning

http://dbi.perl.org/doc/conferences/tim_1999/index.html

 db.pl

 use DBI ();
 use strict;

 my $dbh = DBI->connect(’DBI:mysql:database’, ’user’, ’password’,
 { autocommit => 0 }
) || die $DBI::errstr;

 ...rest of the program

14.11.1.1 Preopening Connections at the Child Process’ Fork Time

If you use DBI for DB connections, and you use Apache::DBI to make them persistent, it also allows
you to preopen connections to the DB for each child with the connect_on_init() method, thus
saving a connection overhead on the very first request of every child.

 use Apache::DBI ();
 Apache::DBI->connect_on_init("DBI:mysql:test",
 "login",
 "passwd",
 {
 RaiseError => 1,
 PrintError => 0,
 AutoCommit => 1,
 }
);

This is a simple way to have Apache children establish connections on server startup. This call should be
in a startup file require()d by PerlRequire or inside a <Perl> section. It will establish a connec-
tion when a child is started in that child process. See the Apache::DBI manpage for the requirements
for this method.

14.11.1.2 Caching prepare() Statements

You can also benefit from persistent connections by replacing prepare() with prepare_cached(). That way
you will always be sure that you have a good statement handle and you will get some caching benefit. The
downside is that you are going to pay for DBI to parse your SQL and do a cache lookup every time you
call prepare_cached().

Be warned that some databases (e.g PostgreSQL and Sybase) don’t support caches of prepared plans. With
Sybase you could open multiple connections to achieve the same result, although this is at the risk of
getting deadlocks depending on what you are trying to do!

14.11.2 mod_perl Database Performance Improving

15 Feb 2014440

14.11.2 mod_perl Database Performance Improving

14.11.2.1 Analysis of the Problem

A common web application architecture is one or more application servers which handle requests from
client browsers by consulting one or more database servers and performing a transform on the data. When
an application must consult the database on every request, the interaction with the database server
becomes the central performance issue. Spending a bit of time optimizing your database access can result
in significant application performance improvements. In this analysis, a system using Apache, mod_perl,
DBI , and Oracle will be considered. The application server uses Apache and mod_perl to service client
requests, and DBI to communicate with a remote Oracle database.

In the course of servicing a typical client request, the application server must retrieve some data from the
database and execute a stored procedure. There are several steps that need to be performed to complete the
request:

 1: Connect to the database server
 2: Prepare a SQL SELECT statement
 3: Execute the SELECT statement
 4: Retrieve the results of the SELECT statement
 5: Release the SELECT statement handle
 6: Prepare a PL/SQL stored procedure call
 7: Execute the stored procedure
 8: Release the stored procedure statement handle
 9: Commit or rollback
 10: Disconnect from the database server

In this document, an application will be described which achieves maximum performance by eliminating
some of the steps above and optimizing others.

14.11.2.2 Optimizing Database Connections

A naive implementation would perform steps 1 through 10 from above on every request. A portion of the
source code might look like this:

 # ...
 my $dbh = DBI->connect(’dbi:Oracle:host’, ’user’, ’pass’)
 || die $DBI::errstr;

 my $baz = $r->param(’baz’);

 eval {
 my $sth = $dbh->prepare(qq{
 SELECT foo
 FROM bar
 WHERE baz = $baz
 });
 $sth->execute;

 while (my @row = $sth->fetchrow_array) {
 # do HTML stuff
 }

 $sth->finish;

44115 Feb 2014

14.11.2 mod_perl Database Performance ImprovingPerformance Tuning

 my $sph = $dbh->prepare(qq{
 BEGIN
 my_procedure(
 arg_in => $baz
);
 END;
 });
 $sph->execute;
 $sph->finish;

 $dbh->commit;
 };
 if ($@) {
 $dbh->rollback;
 }

 $dbh->disconnect;
 # ...

In practice, such an implementation would have hideous performance problems. The majority of the
execution time of this program would likely be spent connecting to the database. An examination shows
that step 1 is comprised of many smaller steps:

 1: Connect to the database server
 1a: Build client-side data structures for an Oracle connection
 1b: Look up the server’s alias in a file
 1c: Look up the server’s hostname
 1d: Build a socket to the server
 1e: Build server-side data structures for this connection

The naive implementation waits for all of these steps to happen, and then throws away the database
connection when it is done! This is obviously wasteful, and easily rectified. The best solution is to hoist
the database connection step out of the per-request lifecycle so that more than one request can use the
same database connection. This can be done by connecting to the database server once, and then not
disconnecting until the Apache child process exits. The Apache::DBI module does this transparently
and automatically with little effort on the part of the programmer.

Apache::DBI intercepts calls to DBI ’s connect and disconnect methods and replaces them with its own.
Apache::DBI caches database connections when they are first opened, and it ignores disconnect
commands. When an application tries to connect to the same database, Apache::DBI returns a cached
connection, thus saving the significant time penalty of repeatedly connecting to the database. You will find
a full treatment of Apache::DBI at Persistent DB Connections

When Apache::DBI is in use, none of the code in the example needs to change. The code is upgraded
from naive to respectable with the use of a simple module! The first and biggest database performance
problem is quickly dispensed with.

15 Feb 2014442

14.11.2 mod_perl Database Performance Improving

14.11.2.3 Utilizing the Database Server’s Cache

Most database servers, including Oracle, utilize a cache to improve the performance of recently seen
queries. The cache is keyed on the SQL statement. If a statement is identical to a previously seen state-
ment, the execution plan for the previous statement is reused. This can be a considerable improvement
over building a new statement execution plan.

Our respectable implementation from the last section is not making use of this caching ability. It is prepar-
ing the statement:

 SELECT foo FROM bar WHERE baz = $baz

The problem is that $baz is being read from an HTML form, and is therefore likely to change on every
request. When the database server sees this statement, it is going to look like:

 SELECT foo FROM bar WHERE baz = 1

and on the next request, the SQL will be:

 SELECT foo FROM bar WHERE baz = 42

Since the statements are different, the database server will not be able to reuse its execution plan, and will
proceed to make another one. This defeats the purpose of the SQL statement cache.

The application server needs to make sure that SQL statements which are the same look the same. The
way to achieve this is to use placeholders and bound parameters. The placeholder is a blank in the SQL
statement, which tells the database server that the value will be filled in later. The bound parameter is the
value which is inserted into the blank before the statement is executed.

With placeholders, the SQL statement looks like:

 SELECT foo FROM bar WHERE baz = :baz

Regardless of whether baz is 1 or 42, the SQL always looks the same, and the database server can reuse
its cached execution plan for this statement. This technique has eliminated the execution plan generation
penalty from the per-request runtime. The potential performance improvement from this optimization
could range from modest to very significant.

Here is the updated code fragment which employs this optimization:

 # ...
 my $dbh = DBI->connect(’dbi:Oracle:host’, ’user’, ’pass’)
 || die $DBI::errstr;

 my $baz = $r->param(’baz’);

 eval {
 my $sth = $dbh->prepare(qq{
 SELECT foo
 FROM bar
 WHERE baz = :baz
 });

44315 Feb 2014

14.11.2 mod_perl Database Performance ImprovingPerformance Tuning

 $sth->bind_param(’:baz’, $baz);
 $sth->execute;

 while (my @row = $sth->fetchrow_array) {
 # do HTML stuff
 }

 $sth->finish;

 my $sph = $dbh->prepare(qq{
 BEGIN
 my_procedure(
 arg_in => :baz
);
 END;
 });
 $sph->bind_param(’:baz’, $baz);
 $sph->execute;
 $sph->finish;

 $dbh->commit;
 };
 if ($@) {
 $dbh->rollback;
 }
 # ...

14.11.2.4 Eliminating SQL Statement Parsing

The example program has certainly come a long way and the performance is now probably much better
than that of the first revision. However, there is still more speed that can be wrung out of this server archi-
tecture. The last bottleneck is in SQL statement parsing. Every time DBI ’s prepare() method is called,
DBI parses the SQL command looking for placeholder strings, and does some housekeeping work. Worse,
a context has to be built on the client and server sides of the connection which the database will use to
refer to the statement. These things take time, and by eliminating these steps the time can be saved.

To get rid of the statement handle construction and statement parsing penalties, we could use DBI ’s
prepare_cached() method. This method compares the SQL statement to others that have already been
executed. If there is a match, the cached statement handle is returned. But the application server is still
spending time calling an object method (very expensive in Perl), and doing a hash lookup. Both of these
steps are unnecessary, since the SQL is very likely to be static and known at compile time. The smart
programmer can take advantage of these two attributes to gain better database performance. In this
example, the database statements will be prepared immediately after the connection to the database is
made, and they will be cached in package scalars to eliminate the method call.

What is needed is a routine that will connect to the database and prepare the statements. Since the state-
ments are dependent upon the connection, the integrity of the connection needs to be checked before using
the statements, and a reconnection should be attempted if needed. Since the routine presented here does
everything that Apache::DBI does, it does not use Apache::DBI and therefore has the added benefit
of eliminating a cache lookup on the connection.

15 Feb 2014444

14.11.2 mod_perl Database Performance Improving

Here is an example of such a package:

 package My::DB;

 use strict;
 use DBI ();

 sub connect {
 if (defined $My::DB::conn) {
 eval {
 $My::DB::conn->ping;
 };
 if (!$@) {
 return $My::DB::conn;
 }
 }

 $My::DB::conn = DBI->connect(
 ’dbi:Oracle:server’, ’user’, ’pass’, {
 PrintError => 1,
 RaiseError => 1,
 AutoCommit => 0
 }
) || die $DBI::errstr; #Assume application handles this

 $My::DB::select = $My::DB::conn->prepare(q{
 SELECT foo
 FROM bar
 WHERE baz = :baz
 });

 $My::DB::procedure = $My::DB::conn->prepare(q{
 BEGIN
 my_procedure(
 arg_in => :baz
);
 END;
 });

 return $My::DB::conn;
 }

 1;

Now the example program needs to be modified to use this package.

 # ...
 my $dbh = My::DB->connect;

 my $baz = $r->param(’baz’);

 eval {
 my $sth = $My::DB::select;
 $sth->bind_param(’:baz’, $baz);
 $sth->execute;

44515 Feb 2014

14.11.2 mod_perl Database Performance ImprovingPerformance Tuning

 while (my @row = $sth->fetchrow_array) {
 # do HTML stuff
 }

 my $sph = $My::DB::procedure;
 $sph->bind_param(’:baz’, $baz);
 $sph->execute;

 $dbh->commit;
 };
 if ($@) {
 $dbh->rollback;
 }
 # ...

Notice that several improvements have been made. Since the statement handles have a longer life than the
request, there is no need for each request to prepare the statement, and no need to call the statement
handle’s finish method. Since Apache::DBI and the prepare_cached() method are not used, no cache
lookups are needed.

14.11.2.5 Conclusion

The number of steps needed to service the request in the example system has been reduced significantly.
In addition, the hidden cost of building and tearing down statement handles and of creating query execu-
tion plans is removed. Compare the new sequence with the original:

 1: Check connection to database
 2: Bind parameter to SQL SELECT statement
 3: Execute SELECT statement
 4: Fetch rows
 5: Bind parameters to PL/SQL stored procedure
 6: Execute PL/SQL stored procedure
 7: Commit or rollback

It is probably possible to optimize this example even further, but I have not tried. It is very likely that the
time could be better spent improving your database indexing scheme or web server buffering and load
balancing.

14.12 Using 3rd Party Applications
It’s been said that no one can do everything well, but one can do something specific extremely well. This
seems to be true for many software applications, when you don’t try to do everything but instead concen-
trate on something specific you can do it really well.

Based on the above introduction, while the mod_perl server can do many many things, there are other
applications (or Apache server modules) that can do some specific operations faster or do a really great job
for the mod_perl server by unloading it when doing some operations by themselves.

15 Feb 2014446

14.12 Using 3rd Party Applications

Let’s take a look at a few of these.

14.12.1 Proxying the mod_perl Server

Proxy gives you a great performance increase in most cases. It’s discussed in the section Adding a Proxy
Server in http Accelerator Mode.

14.13 Upload and Download of Big Files
You don’t want to tie up your precious mod_perl backend server children doing something as long and
simple as transferring a file, especially a big one. The overhead saved by mod_perl is typically under one
second, which is an enormous saving for the scripts whose run time is under one second. The user won’t
really see any important performance benefits from mod_perl, since the upload may take up to several
minutes.

If some particular script’s main functionality is the uploading or downloading of big files, you probably
want it to be executed on a plain apache server under mod_cgi (i.e. performing this operation on the
front-end server, if you use a dual-server setup.

This of course assumes that the script requires none of the functionality of the mod_perl server, such as
custom authentication handlers.

14.14 Apache/mod_perl Build Options
It’s important how you build mod_perl enabled Apache. It influences the size of the httpd executable,
some irrelevant modules might slow the performance.

[ReaderMETA: Any other building time things that influence performance?]

14.14.1 mod_perl Process Size as a Function of Compiled in C
Modules and mod_perl Features

You might wonder whether it’s better to compile in only the required modules and mod_perl hooks, or it
doesn’t really matter. To answer on this question lets first make a few compilation and compare the
results.

So we are going to build mod_perl starting with:

 % perl Makefile.PL APACHE_SRC=../apache_x.x.x/src \
 DO_HTTPD=1 USE_APACI=1

and followed by one of these option groups:

1. Default

44715 Feb 2014

14.13 Upload and Download of Big FilesPerformance Tuning

no arguments

2. Minimum

 APACI_ARGS=’--disable-module=env, \
 --disable-module=negotiation, \
 --disable-module=status, \
 --disable-module=info, \
 --disable-module=include, \
 --disable-module=autoindex, \
 --disable-module=dir, \
 --disable-module=cgi, \
 --disable-module=asis, \
 --disable-module=imap, \
 --disable-module=userdir, \
 --disable-module=access, \
 --disable-module=auth’

3. Everything

 EVERYTHING=1

4. Everything + Debug

 EVERYTHING=1 PERL_DEBUG=1

After re-compiling with arguments of each of these groups, we can summarize the results:

 Build group httpd size (bytes) Difference

 Minimum 892928 + 0
 Default 994316 +101388
 Everything 1044432 +151504
 Everything+Debug 1162100 +269172

Indeed when you strip most of the default things, the server size is slimmer. But the savings are insignifi-
cant since you don’t multiply the added size by the number of child processes if your OS supports sharing
memory. The parent processes is a little bigger, but it shares these memory pages with its child processes.
Of course not everything will be shared, if some module you add does some process memory modification
particular to the process, but the most will.

And of course this was just an example to show the difference is size. It doesn’t mean that you can every-
thing away, since there will be Apache modules and mod_perl options that you won’t be able to work
without.

But as a good system administrator’s rule says: "Run the absolute minimum of the applications. If you
don’t know or need something, disable it". Following this rule to decide on the required Apache compo-
nents and disabling the unneeded default components, makes you a good Apache administrator.

15 Feb 2014448

14.14.1 mod_perl Process Size as a Function of Compiled in C Modules and mod_perl Features

14.15 Perl Build Options
The Perl interpreter lays in the brain of the mod_perl server and if we can optimize perl into doing things
faster under mod_perl we make the whole server faster. Generally, optimizing the Perl interpreter means
enabling or disabling some command line options. Let’s see a few important ones.

14.15.1 -DTWO_POT_OPTIMIZE and -DPACK_MALLOC Perl
Build Options

Newer Perl versions also have build time options to reduce runtime memory consumption. These options
might shrink the size of your httpd by about 150k -- quite a big number if you remember to multiply it by
the number of children you use.

The -DTWO_POT_OPTIMIZE macro improves allocations of data with size close to a power of two; but
this works for big allocations (starting with 16K by default). Such allocations are typical for big hashes
and special-purpose scripts, especially image processing.

Perl memory allocation is by bucket with sizes close to powers of two. Because of these the malloc() over-
head may be big, especially for data of size exactly a power of two. If PACK_MALLOC is defined, perl
uses a slightly different algorithm for small allocations (up to 64 bytes long), which makes it possible to
have overhead down to 1 byte for allocations which are powers of two (and appear quite often).

Expected memory savings (with 8-byte alignment in alignbytes) is about 20% for typical Perl usage.
Expected slowdown due to additional malloc() overhead is in fractions of a percent and hard to measure,
because of the effect of saved memory on speed.

You will find these and other memory improvement details in perl5004delta.pod .

Important: both options are On by default in perl versions 5.005 and higher.

14.15.2 -Dusemymalloc Perl Build Option

You have a choice to use the native or Perl’s own malloc() implementation. The choice depends on your
Operating System. Unless you know which of the two is better on yours, you better try both and compare
the benchmarks.

To build without Perl’s malloc(), you can use the Configure command:

 % sh Configure -Uusemymalloc"

Note that:

 -U == undefine usemymalloc (use system malloc)
 -D == define usemymalloc (use Perl’s malloc)

44915 Feb 2014

14.15 Perl Build OptionsPerformance Tuning

It seems that Linux still defaults to system malloc so you might want to configure Perl with -Dusemymal-
loc. Perl’s malloc is not much of a win under linux, but makes a huge difference under Solaris.

14.16 Architecture Specific Compile Options
When you build Apache and Perl you can optimize the compiled applications to take the benefits of your
machine’s architecture.

Everything depends on the kind of compiler that you use, the kind of CPU and

For example if you use gcc(1) you might want to use:

-march=pentium if you have a pentium CPU

-march=pentiumpro for pentiumpro and above (but the binary won’t run on i386)

-fomit-frame-pointer makes extra register available but disables debugging

you can try these options were reported to improve the performance: -ffast-math, -malign-double,
-funroll-all-loops, -fno-rtti, -fno-exceptions.

see the gcc(1) manpage for the details about these

and of course you may want to change the usually default -02 flag with a higher number like -O3.
-OX (where X is a number between 1 and 6) defines a collection of various optimization flags, the
higher the number the more flags are bundled. The gcc man page will tell you what flags are used for
each number.

Test your applications thoroughly when you change the default optimization flags, especially when you go
beyond -02 . It’s possible that the optimization will make the code work incorrectly and/or cause segmen-
tation faults.

See your preferred compiler’s man page for detailed information about optimization.

14.17 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

14.18 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014450

14.16 Architecture Specific Compile Options

http://stason.org/
http://stason.org/

15 Frequent mod_perl problems

45115 Feb 2014

15 Frequent mod_perl problemsFrequent mod_perl problems

15.1 Description
Some problems come up very often on the mailing list. If there is some important problem that is being
reported frequently on the list which is not included below, even if it is found elsewhere in the Guide,
please report to mod_perl mailing list.

15.2 my () scoped variable in nested subroutines
See the section "my () Scoped Variable in Nested Subroutines".

15.3 Segfaults caused by PerlFreshRestart
See the section Evil things might happen when using PerlFreshRestart

15.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

15.5 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014452

15.1 Description

http://stason.org/
http://stason.org/

16 Warnings and Errors Troubleshooting Index

45315 Feb 2014

16 Warnings and Errors Troubleshooting IndexWarnings and Errors Troubleshooting Index

16.1 Description
If you encounter an error or warning you don’t understand, check this chapter for solutions to common
warnings and errors that the mod_perl community has encountered in the last few years.

16.2 General Advice
Perl’s warnings mode is immensely helpful in detecting possible problems. Make sure you always turn on
warnings while you are developing code. See The Importance of Warnings.

Enabling use diagnostics; generally helps you to determine the source of the problem and how to
solve it. See diagnostics pragma for more information.

16.3 Building and Installation

16.3.1 Bareword "gensym" not allowed while "strict subs"

When building mod_perl one may get the following failure:

 make[1]: Entering directory ‘.../mod_perl-1.29/Symbol’
 Running Mkbootstrap for Apache::Symbol ()
 ...
 Bareword "gensym" not allowed while "strict subs" in use at
 /usr/lib/perl5/5.8.3/Pod/Parser.pm line 1158.
 ...
 make: *** [subdirs] Error 2

That happens when you you’ve modify @INC to push "." before all other directories, whereas it should
be last. When "." is first in @INC it picks mod_perl-1.29/Symbol/Symbol.pm when it’s inside the direc-
tory mod_perl-1.29/Symbol. This shouldn’t happen if your system paths are coming first. To check your
@INC, run:

 % perl -V

and it’ll appear at the end of the output. Usually "." is pushed first by setting a PERL5LIB or a similar
environment variable. Unset it and repeat the build process to solve the problem.

16.3.2 No rule to make target ... CORE/config.h

If while running ’make’ you get a message:

 make: *** No rule to make target
 ‘/usr/lib/perl5/5.8.3/i386-linux/CORE/config.h’,
 needed by ‘Makefile’. Stop.

15 Feb 2014454

16.1 Description

That means that your Perl installation is incomplete. Usually this is the case on package based distros,
where perl is split across multiple packages. Usually you need to install the Perl-devel package to be able
to build any other Perl modules that include XS extensions.

16.4 make test Issues
See make Troubleshooting and make test Troubleshooting

16.5 Configuration and Startup
This section talks about errors reported when you attempt to start the server.

16.5.1 ’relocation errors’ or ’undefined symbol’

Although the httpd executable was successfully built, you can still have make failures. The output could
include the following errors:

 relocation error:
 undefined symbol: PL_dowarn

This class of errors is often due to multiple installations of Perl. Having libperl.so in /usr/lib/ is a great
reason for lots of obscure problems, when you have one more perl installed elsewhere. That’s why perl
puts its libperl.so under its private tree (e.g., /usr/lib/perl5/5.8.3/i686/CORE/). But some distributions
decide to put it along with the rest of system libraries, not expecting that users will have extra perl installa-
tions.

To resolve the problem you need to check what perl library the application finds. This is easy to check
with the help of ldd(1) .

If your mod_perl is statically linked with httpd, you need to check the httpd executable whether it’s linked
against libperl.so:

 % ldd /path/to/apache/bin/httpd

If the output includes libperl.so check that the path is to the version of Perl you’ve built mod_perl with. If
your httpd executable is reported to link against the wrong libperl.so file, you’ve found the cause of the
problem. You should either ask your distributor to not put the perl library into the global system libs direc-
tory, or use some other solution to force the loading of the right library, which is usually very platform
specific. For example on Linux one can preload a specific library path using the LD_PRELOAD environ-
ment variable. So if the wanted library is located at /usr/lib/perl5/5.8.3/i686/CORE/libperl.so you can
make httpd use it with:

 % LD_PRELOAD=/usr/lib/perl5/5.8.3/i686/CORE/libperl.so httpd

for more information on Linux loader referer to the ld.so(8) ldconfig(8) manpages.

45515 Feb 2014

16.4 make test IssuesWarnings and Errors Troubleshooting Index

If mod_perl is built as DSO, you will need to check the mod_perl module (and not httpd) with ldd .
Confusingly, mod_perl 1.0 module name is the same as of Perl: libperl.so. If for example the mod_perl
module is located in /path/to/apache/libexec/, the command would be:

 % ldd /path/to/apache/libexec/libperl.so

There could be another variation of the problem where a Perl used to build mod_perl is statically linked
and again, during the build time a wrong static archive (e.g., /usr/lib/libperl.a) is picked by the linker. If
Perl is statically linked, running:

 % perl -V:useshrplib

will say:

 useshrplib=’false’

Again, the solution may vary from system to system, but moving /usr/lib/libperl.a away while building
mod_perl is probably the simplest.

16.5.2 SegFaults During Startup

Possible reasons and solutions:

You have to build mod_perl with the same compiler as Perl was built with. Otherwise you may see
segmentation faults and other weird things happen.

This could be the XSLoader vs. DynaLoader problem, where the list of dl_handles created by
XSLoader is wiped out by DynaLoader. Try adding:

 use DynaLoader ();

to your startup.pl before any other module is loaded.

This has been resolved in perl 5.8.0. For earlier versions of Perl you need to comment out:

 #@dl_librefs = (); # things we have loaded
 #@dl_modules = (); # Modules we have loaded

in DynaLoader.pm.

However if none of this cases applies and you still experience segmentation faults, please report the
problem using the following guidelines.

16.5.3 libexec/libperl.so: open failed: No such file or directory

If when you run the server you get the following error:

15 Feb 2014456

16.5.2 SegFaults During Startup

 libexec/libperl.so: open failed: No such file or directory

it probably means that Perl was compiled with a shared library. mod_perl does detect this and links the
Apache executable to the Perl shared library (libperl.so).

First of all make sure you have Perl installed on the machine, and that you have libperl.so in <perl-
root>/<version>/<architecture>/CORE. For example in /usr/local/lib/perl5/5.00503/sun4-solaris/CORE.

Then make sure that directory is included in the environment variable LD_LIBRARY_PRELOAD. Under
normal circumstances, Apache should have the path configured at compile time, but this way you can
override the library path.

16.5.4 install_driver(Oracle) failed: Can’t load
’.../DBD/Oracle/Oracle.so’ for module DBD::Oracle
 install_driver(Oracle) failed: Can’t load
 ’/usr/lib/perl5/site_perl/5.005/i386-linux/auto/DBD/Oracle/Oracle.so’
 for module DBD::Oracle:
 libclntsh.so.8.0: cannot open shared object file:
 No such file or directory at
 /usr/lib/perl5/5.00503/i386-linux/DynaLoader.pm line 169.
 at (eval 27) line 3
 Perhaps a required shared
 library or dll isn’t installed where expected at
 /usr/local/apache/perl/tmp.pl line 11

On BSD style filesystems LD_LIBRARY_PATH is not searched for setuid programs (a.k.a., Apache). This
isn’t a problem for CGI script since they don’t do a setuid (and are forked off), but Apache does, and
mod_perl is in Apache. Therefore the first solution is to explicitly load the library from the system wide
ldconfig configuration file:

 # echo $ORACLE_HOME/lib >> /etc/ld.so.conf
 # ldconfig

Another solution to this problem is to modify the resulting Makefile (after running perl Make-
file.PL) as follows:

1. search for the line LD_RUN_PATH=

2. replace it with LD_RUN_PATH=(my_oracle_home)/lib

(my_oracle_home) is, of course, the home path to your oracle installation. In particular, the file
libclntsh.so.8.0 should exist in that directory. (If you use CPAN, the build directory for DBD::Oracle
should be in ~/.cpan/build/DBD-Oracle-1.06/ if you’re logged in as root.)

Then, just type make install , and all should go well.

FYI, setting LD_RUN_PATH has the effect of hard-coding the path to (my_oracle_home)/lib in the result-
ing Oracle.so file generated by the DBD::Oracle so that at run-time, it doesn’t have to go searching
through LD_LIBRARY_PATH or the default directories used by ld .

45715 Feb 2014

16.5.4 install_driver(Oracle) failed: Can’t load ’.../DBD/Oracle/Oracle.so’ for module DBD::OracleWarnings and Errors Troubleshooting Index

For more information see the ld manpage and an essay on LD_LIBRARY_PATH:
http://www.visi.com/~barr/ldpath.html

16.5.5 Invalid command ’PerlHandler’...
 Syntax error on line 393 of /etc/httpd/conf/httpd.conf: Invalid
 command ’PerlHandler’, perhaps mis-spelled or defined by a module
 not included in the server configuration [FAILED]

This can happen when you have a mod_perl enabled Apache compiled with DSO (generally it’s an
installed RPM or other binary package) but the mod_perl module isn’t loaded. In this case you have to tell
Apache to load mod_perl by adding:

 AddModule mod_perl.c

in your httpd.conf.

This can also happen when you try to run a non-mod_perl Apache server using the configuration from a
mod_perl server.

16.5.6 symbol __floatdisf: referenced symbol not found

This problem is experienced by users on certain Solaris versions. When the server is built with modules
that use the __floatdisf symbol it can’t be started. e.g.:

 Cannot load /usr/local/apache/libexec/libproxy.so into server:
 ld.so.1: ../bin/httpd: fatal: relocation error: file
 /usr/local/apache/libexec/libproxy.so: symbol __floatdisf: referenced
 symbol not found

The missing symbol is in libgcc.a. Use

 % gcc -print-libgcc-file-name

to see where that file is. Once found you have to relink the module with that file. You can also look for it
in the gcc tree, e.g. under gcc-3.2.1/gcc.

First, configure and install Apache. Next, relink mod_proxy.so or mod_negotiation.so, or whatever the
module that reports the problem with libgcc.a.

 % cd apache_1.3.27/src/modules
 % ld -G -o mod_proxy.so mod_proxy.lo /pathto/libgcc.a

(adjust the /pathto/ to point to the right file from the gcc output stage.)

You can now verify with nm that mod_proxy.so includes that symbol.

15 Feb 2014458

16.5.5 Invalid command ’PerlHandler’...

http://www.visi.com/~barr/ldpath.html

16.5.7 RegistryLoader: Translation of uri [...] to filename failed
 RegistryLoader: Translation of uri [/home/httpd/perl/test.pl] to filename
 failed [tried: /home/httpd/docs/home/httpd/perl/test.pl]

This error shows up when Apache::RegistryLoader fails to translate the URI into the correspond-
ing filesystem path. Most failures happen when one passes a file path instead of URI. (A reminder:
/home/httpd/perl/test.pl is a file path, while /perl/test.pl is a URI). In most cases all you have to do is to
pass something that Apache::RegistryLoader expects to get - the URI, but there are more complex
cases. Apache::RegistryLoader ’s man page shows how to handle these cases as well (look for the
trans() sub).

16.5.8 "Apache.pm failed to load!"

If your server startup fails with:

 Apache.pm failed to load!

try adding this to httpd.conf:

 PerlModule Apache

16.6 Code Parsing and Compilation

16.6.1 Value of $x will not stay shared at - line 5

my () Scoped Variable in Nested Subroutines.

16.6.2 Value of $x may be unavailable at - line 5.

my () Scoped Variable in Nested Subroutines.

16.6.3 Can’t locate loadable object for module XXX

There is no object built for this module. e.g. when you see:

 Can’t locate loadable object for module Apache::Util in @INC...

make sure to give mod_perl’s Makefile.PL PERL_UTIL_API=1 , EVERYTHING=1 or DYNAMIC=1
parameters to enable and build all the components of Apache::Util .

16.6.4 Can’t locate object method "get_handlers"...
 Can’t locate object method "get_handlers" via package "Apache"

45915 Feb 2014

16.6 Code Parsing and CompilationWarnings and Errors Troubleshooting Index

You need to rebuild your mod_perl with stacked handlers, i.e. PERL_STACKED_HANDLERS=1 or more
simply EVERYTHING=1.

16.6.5 Missing right bracket at line ...

Most often you will find that you really do have a syntax error. However the other reason might be that a
script running under Apache::Registry is using __DATA__ or __END__ tokens. Learn why.

16.6.6 Can’t load ’.../auto/DBI/DBI.so’ for module DBI

Check that all your modules are compiled with the same Perl that is compiled into mod_perl. Perl 5.005
and 5.004 are not binary compatible by default.

Other known causes of this problem:

OS distributions that ship with a broken binary Perl installation.

The ‘perl’ program and ‘libperl.a’ library are somehow built with different binary compatibility flags.

The solution to these problems is to rebuild Perl and any extension modules from a fresh source tree. Tip
for running Perl’s Configure script: use the ‘-des’ flags to accepts defaults and ‘-D’ flag to override certain
attributes:

 % ./Configure -des -Dcc=gcc ... && make test && make install

Read Perl’s INSTALL document for more details.

Solaris OS specific:

"Can’t load DBI " or similar error for the IO module or whatever dynamic module mod_perl tries to
pull in first. The solution is to re-configure, re-build and re-install Perl and dynamic modules with the
following flags when Configure asks for "additional LD flags ":

 -Xlinker --export-dynamic

or

 -Xlinker -E

This problem is only known to be caused by installing gnu ld under Solaris.

16.7 Runtime

15 Feb 2014460

16.7 Runtime

16.7.1 print() doesn’t send anything on Mac OS X

On certain Mac OS X builds mod_perl doesn’t seem to able to print() anything to the client. That’s
because STDOUT is not tied to the Apache module. Most likely some core module on Mac OS X
untie’s/re-tie’s STDOUT after mod_perl had it tied. The workaround is to add:

 PerlHeaderParserHandler "sub { tie *STDOUT, ’Apache’ unless tied *STDOUT; }"

Another solution is not to use un unqualified print() , but $r->print() , for example replace:

 print "Hello";

with:

 $r->print("Hello");

If you don’t have $r , you can obtain it with:

 my $r = Apache->request;

16.7.2 "exit signal Segmentation fault (11)" with mysql

If you build mod_perl and mod_php in the same binary, you might get Segmentation fault followed by this
error:

 exit signal Segmentation fault (11)

The solution is to not rely on PHP’s built-in MySQL support, and instead build mod_php with your local
MySQL support files by adding --with-mysql=/path/to/mysql during ./configure .

16.7.3 foo ... at /dev/null line 0

Under mod_perl you may receive a warning or an error in the error_log which specifies /dev/null as the
source file, and line 0 as an line number where the printing of the message was triggered. This is abso-
lutely normal if the code is executed from within a handler, because there is no actual file associated with
the handler. Therefore $0 is set to /dev/null and that’s what you see.

16.7.4 Preventing mod_perl Processes From Going Wild

See the sections "Non-Scheduled Emergency Log Rotation" and "All RAM Consumed"

16.7.5 Segfaults when using XML::Parser

If you have some of the processes segfault when using XML::Parser you should use

46115 Feb 2014

16.7.1 print() doesn’t send anything on Mac OS XWarnings and Errors Troubleshooting Index

 --disable-rule=EXPAT

during the Apache configuration step.

Starting from mod_perl version 1.23 this option is disabled by default.

16.7.6 My CGI/Perl Code Gets Returned as Plain Text Instead of
Being Executed by the Webserver

See My CGI/Perl Code Gets Returned as Plain Text Instead of Being Executed by the Webserver.

16.7.7 Incorrect line number reporting in error/warn log messages

See Use of uninitialized value at (eval 80) line 12.

16.7.8 rwrite returned -1

This message happens when the client breaks the connection while your script is trying to write to the
client. With Apache 1.3.x, you should only see the rwrite messages if LogLevel is set to debug .

There was a bug that reported this debug message regardless of the value of the LogLevel directive. It
was fixed in mod_perl 1.19_01.

Generally LogLevel is either debug or info . debug logs everything, info is the next level, which
doesn’t include debug messages. You shouldn’t use "debug" mode on your production server. At the
moment there is no way to prevent users from aborting connections.

16.7.9 Can’t upgrade that kind of scalar ...

Fixed in mod_perl 1.23.

16.7.10 caught SIGPIPE in process
 [modperl] caught SIGPIPE in process 1234
 [modperl] process 1234 going to Apache::exit with status...

That’s the $SIG{PIPE} handler installed by mod_perl/Apache::SIG , which is called if a connection
times out or if the client presses the ’Stop’ button. It gives you an opportunity to do cleanups if the script
was aborted in the middle of its execution. See Handling the ’User pressed Stop button’ case for more
info.

If your mod_perl version is earlier than 1.17 you might also get the message in the following section...

15 Feb 2014462

16.7.6 My CGI/Perl Code Gets Returned as Plain Text Instead of Being Executed by the Webserver

16.7.11 Client hit STOP or Netscape bit it!
 Client hit STOP or Netscape bit it!
 Process 2493 going to Apache::exit with status=-2

You may see this message in mod_perl versions less than 1.17. See also caught SIGPIPE in process.

16.7.12 Global symbol "$foo" requires explicit package name

The script below will print a warning like that above, moreover it will print the whole script as a part of
the warning message:

 #!/usr/bin/perl -w
 use strict;
 print "Content-type: text/html\n\n";
 print "Hello $undefined";

The warning:

 Global symbol "$undefined" requires
 explicit package name at /usr/apps/foo/cgi/tmp.pl line 4.
 eval ’package Apache::ROOT::perl::tmp_2epl;
 use Apache qw(exit);sub handler {
 #line 1 /usr/apps/foo/cgi/tmp.pl
 BEGIN {$^W = 1;}#!/usr/bin/perl -w
 use strict;
 print "Content-type: text/html\\n\\n";
 print "Hello $undefined";

 }
 ;’ called at
 /usr/apps/lib/perl5/site_perl/5.005/aix/Apache/Registry.pm
 line 168
 Apache::Registry::compile(’package
 Apache::ROOT::perl::tmp_2epl;use Apache qw(exit);sub han...’)
 called at
 /usr/apps/lib/perl5/site_perl/5.005/aix/Apache/Registry.pm
 line 121
 Apache::Registry::handler(’Apache=SCALAR(0x205026c0)’)
 called at /usr/apps/foo/cgi/tmp.pl line 4
 eval {...} called at /usr/apps/foo/cgi/tmp.pl line 4
 [Sun Nov 15 15:15:30 1998] [error] Undefined subroutine
 &Apache::ROOT::perl::tmp_2epl::handler called at
 /usr/apps/lib/perl5/site_perl/5.005/aix/Apache/Registry.pm
 line 135.

 [Sun Nov 15 15:15:30 1998] [error] Goto undefined subroutine
 &Apache::Constants::SERVER_ERROR at
 /usr/apps/lib/perl5/site_perl/5.005/aix/Apache/Constants.pm
 line 23.

46315 Feb 2014

16.7.11 Client hit STOP or Netscape bit it!Warnings and Errors Troubleshooting Index

The error is simple to fix. When you use the use strict; pragma (and you should...), Perl will insist
that all variables are defined before being used, so the error will not arise.

The bad thing is that sometimes the whole script (possibly, thousands of lines) is printed to the error_log
file as code that the server has tried to eval() uate.

May be you have a $SIG{__DIE__} handler installed (Carp::confess() ?). If so that’s what’s
expected.

You might wish to try something more terse such as "local $SIG{__WARN__} = \&Carp::cluck;" The
confess method is very verbose and will tell you more than you might wish to know including full source.

16.7.13 Use of uninitialized value at (eval 80) line 12.

Your code includes some undefined variable that you have used as if it was already defined and initialized.
For example:

 $param = $q->param(’test’);
 print $param;

vs.

 $param = $q->param(’test’) || ’’;
 print $param;

In the second case, $param will always be defined, either with $q->param(’test’) ’s return value or
the default value (’’ empty string in our example).

Also read about Finding the Line Which Triggered the Error or Warning.

16.7.14 Undefined subroutine
&Apache::ROOT::perl::test_2epl::some_function called at

See Names collisions with Modules and libs.

16.7.15 Callback called exit

Callback called exit is just a generic message when some unrecoverable error occurs inside Perl during
perl_call_sv() (which mod_perl uses to invoke all handler subroutines. Such problems seem to
occur far less with 5.005_03 than 5.004.

Sometimes you discover that your server is not responding and its error_log has filled up the remaining
space on the file system. When you get to see the contents of the error_log -- it includes millions of lines,
like:

15 Feb 2014464

16.7.13 Use of uninitialized value at (eval 80) line 12.

 Callback called exit at -e line 33, <HTML> chunk 1.

Why the looping?

Perl can get very confused inside an infinite loop in your code. It doesn’t necessarily mean that your code
did call exit() . Perl’s malloc went haywire and called croak() , but no memory is left to properly
report the error, so Perl is stuck in a loop writing that same message to stderr.

Perl 5.005+ plus is recommended for its improved malloc.c and other features that improve mod_perl and
are turned on by default.

See also Out of memory

16.7.16 Out of memory!

If something goes really wrong with your code, Perl may die with an "Out of memory!" message and/or
"Callback called exit". Common causes of this are never-ending loops, deep recursion, or calling an unde-
fined subroutine.

If you are using perl 5.005 or later, and perl is compiled to use it’s own malloc rutines, you can trap out of
memory errors by setting aside an extra memory pool in the special variable $^M. By default perl uses the
operating system malloc for many popular systems, so unless you build perl with ’usemymalloc=y’ you
probably wont be able to use $^M. Run:

 % perl -V:usemymalloc

if your mod_perl was compiled against perl which uses internal malloc() the answer will be ’y’.

Here is an explanation of $^M from the perlvar manpage:

 By default, running out of memory is an untrap- pable, fatal
 error. However, if suitably built, Perl can use the contents of
 $^M as an emergency memory pool after die()ing. Suppose that
 your Perl were compiled with -DPERL_EMERGENCY_SBRK and used
 Perl’s malloc. Then

 $^M = ’a’ x (1 << 16);

 would allocate a 64K buffer for use in an emer- gency. See the
 INSTALL file in the Perl distribu- tion for information on how
 to enable this option. To discourage casual use of this
 advanced feature, there is no English long name for this
 variable.

If your perl installation supports $^M and you add ’use Apache::Debug level => 4; ’ to your
Perl script, it will allocate the $^M emergency pool and the $SIG{__DIE__} handler will call
Carp::confess , giving you a stack trace which should reveal where the problem is. See the
Apache::Resource module for ways to control httpd processes.

46515 Feb 2014

16.7.16 Out of memory!Warnings and Errors Troubleshooting Index

Note that Perl 5.005 and later have PERL_EMERGENCY_SBRK turned on by default.

Another trick is to have a startup script initialize Carp::confess , like so:

 use Carp ();
 eval { Carp::confess("init") };

this way, when the real problem happens, Carp::confess doesn’t eat memory in the emergency pool
($^M).

Some other mod_perl users have reported that this works well for them:

 # Allocate 64K as an emergency memory pool for use in out of
 # memory situation
 $^M = 0x00 x 65536;

 # Little trick to initialize this routine here so that in the case
 # of OOM, compiling this routine doesn’t eat memory from the
 # emergency memory pool $^M
 use CGI::Carp ();
 eval { CGI::Carp::confess(’init’) };

 # Importing CGI::Carp sets $main::SIG{__DIE__} = \&CGI::Carp::die;
 # Override that to additionally give a stack backtrace
 $main::SIG{__DIE__} = \&CGI::Carp::confess;

Discussion of $^M has come up on PerlMonks, and there is speculation that $^M is a forgotten feature
that’s not well supported. See http://perlmonks.org/index.pl?node_id=287850 for more information.

16.7.17 server reached MaxClients setting, consider raising the
MaxClients setting

See Choosing MaxClients.

16.7.18 syntax error at /dev/null line 1, near "line arguments:"
 syntax error at /dev/null line 1, near "line arguments:"
 Execution of /dev/null aborted due to compilation errors.
 parse: Undefined error: 0

There is a chance that your /dev/null device is broken. Try:

 % echo > /dev/null

Alternatively you should try to remove this special file and recreate it:

 # rm /dev/null
 # mknod /dev/null c 1 3
 # chmod a+rw /dev/null

15 Feb 2014466

16.7.17 server reached MaxClients setting, consider raising the MaxClients setting

http://perlmonks.org/index.pl?node_id=287850

16.7.19 Can’t call method "register_cleanup" (CGI.pm)
 Can’t call method "register_cleanup" on an
 undefined value at /usr/lib/perl5/5.00503/CGI.pm line 263.

caused by this code snippet in CGI.pm:

 if ($MOD_PERL) {
 Apache->request->register_cleanup(\&CGI::_reset_globals);
 undef $NPH;
 }

One solution is to add to httpd.conf:

 PerlPostReadRequestHandler ’sub { Apache->request(shift) }’

But even better, switch to Apache::Cookie :

 use Apache;
 use Apache::Cookie;

 sub handler {
 my $r = shift;
 my $cookies = Apache::Cookie->new($r)->parse;
 my %bar = $cookies->{foo}->value;
 }

16.7.20 readdir() not working

If readdir() either fails with an exception, or in the list context it returns the correct number of items but
each item as an empty string, you have a binary compatibility between mod_perl and Perl problem. Most
likely the two have been built against different glibc versions, which have incompatible struct
dirent .

To solve this problem rebuild mod_perl and Perl against the same glibc version or get new binary pack-
ages built against the same glibc version.

16.8 Shutdown and Restart

16.8.1 Evil things might happen when using PerlFreshRestart

PerlFreshRestart affects the graceful restart process for non-DSO mod_perl builds. If you have
mod_perl enabled Apache built as DSO and you restart it, the whole Perl interpreter is completely torn
down (perl_destruct())and restarted. The value of PerlFreshRestart is irrelevant at this point.

Unfortunately, not all perl modules are robust enough to survive reload. For them this is an unusual situa-
tion. PerlFreshRestart does not much more than:

46715 Feb 2014

16.8 Shutdown and RestartWarnings and Errors Troubleshooting Index

 while (my ($k,$v) = each %INC) {
 delete $INC{$k};
 require $k;
 }

Besides that, it flushes the Apache::Registry cache, and empties any dynamic stacked handlers (e.g.
PerlChildInitHandler).

Some users, who had turned PerlFreshRestart On, reported having segfaults, others have seen no
problems starting the server, no errors written to the logs, but no server running after a restart. Most of the
problems have gone away when it was turned Off .

It doesn’t mean that you shouldn’t use it, if it works for you. Just beware of the dragons...

16.8.2 Constant subroutine XXX redefined

That’s a mandatory warning inside Perl which happens only if you modify your script and
Apache::Registry reloads it. Perl is warning you that the subroutine(s) were redefined. It is mostly harm-
less. If you don’t like seeing these warnings, just kill -USR1 (graceful restart) Apache when you
modify your scripts.

You aren’t supposed to see these warnings if you don’t modify the code with perl 5.004_05 or 5.005+.and
higher. If you still experience a problem with code within a CGI script, moving all the code into a module
(or a library) and require()ing it should solve the problem.

16.8.3 Can’t undef active subroutine
 Can’t undef active subroutine at
 /usr/apps/lib/perl5/site_perl/5.005/aix/Apache/Registry.pm line 102.
 Called from package Apache::Registry, filename
 /usr/apps/lib/perl5/site_perl/5.005/aix/Apache/Registry.pm, line 102

This problem is caused when a client drops the connection while httpd is in the middle of a write. httpd
times out, sending a SIGPIPE, and Perl (in that child) is stuck in the middle of its eval context. This is
fixed by the Apache::SIG module which is called by default. This should not happen unless you have code
that is messing with $SIG{PIPE}. It’s also triggered only when you’ve changed your script on disk and
mod_perl is trying to reload it.

16.8.4 [warn] child process 30388 did not exit, sending another
SIGHUP

From mod_perl.pod: With Apache versions 1.3.0 and higher, mod_perl will call the perl_destruct() Perl
API function during the child exit phase. This will cause proper execution of END blocks found during
server startup as well as invoking the DESTROY method on global objects which are still alive. It is possi-
ble that this operation may take a long time to finish, causing problems during a restart. If your code does
not contain any END blocks or DESTROY methods which need to be run during child server shutdown, this
destruction can be avoided by setting the PERL_DESTRUCT_LEVEL environment variable to -1 . Be
aware that ‘your code’ includes any modules you use and they may well have DESTROY and END blocks...

15 Feb 2014468

16.8.2 Constant subroutine XXX redefined

16.8.5 Processes Get Stuck on Graceful Restart

If you see a process stuck in "G" (Gracefully finishing) after a doing a graceful restart (sending
kill -SIGUSR1) it means that the process is hanging in perl_destruct() while trying to cleanup. This
cleanup normally isn’t a requirement, you can disable it by setting the PERL_DESTRUCT_LEVEL envi-
ronment variable to -1. See the section "Speeding up the Apache Termination and Restart" for more infor-
mation.

16.8.6 httpd keeps on growing after each restart

See the HUP Signal explanation at the section: Server Stopping and Restarting

Also, be aware that <Perl> sections can also cause leaks during graceful restarts. See the (sub)thread:
http://aspn.activestate.com/ASPN/Mail/Message/modperl/304620 (META: we don’t have code samples,
so if you have such please let us know).

16.9 OS Specific Notes

16.9.1 RedHat Linux

16.9.1.1 RH 8 and 9 Locale Issues

RedHat 8 and 9 ship Perl with a locale setting that breaks perl. To solve the problem either change the
locale to en_US.ISO8859-1 or simply remove the UTF8 part.

For more information refer to: http://twiki.org/cgi-bin/view/Codev/UsingPerl58OnRedHat8
http://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=87682

16.9.2 OpenBSD

16.9.2.1 Issues Caused by httpd being chroot’ed

Since OpenBSD 3.2, the Apache httpd(8) server has been chroot(2) ed by default.

A mod_perl enabled OpenBSD httpd will NOT work as is. A proper chroot(2) environment must be
setup for the default chrooted behavior to work. The -u option to httpd disables the chroot behavior, and
returns the httpd to the expanded "unsecure" behavior. See the OpenBSD httpd(8) man page.

For more information see section 10.16 of the OpenBSD FAQ.
http://www.openbsd.org/faq/faq10.html#httpdchroot.

46915 Feb 2014

16.9 OS Specific NotesWarnings and Errors Troubleshooting Index

http://aspn.activestate.com/ASPN/Mail/Message/modperl/304620
http://twiki.org/cgi-bin/view/Codev/UsingPerl58OnRedHat8
http://bugzilla.redhat.com/bugzilla/show_bug.cgi?id=87682
http://www.openbsd.org/faq/faq10.html#httpdchroot

16.9.3 Win FU

16.9.3.1 Apache::DBI

Apache::DBI causes the server to exit when it starts up, with:

 [Mon Oct 25 15:06:11 1999] file .\main\http_main.c, line 5890,
 assertion "start_mutex" failed

Solution: build mod_perl with PERL_STARTUP_DONE_CHECK set (e.g. insert

 #define PERL_STARTUP_DONE_CHECK 1

at the top of mod_perl.h or add it to the defines in the MSVC++ and similar applications’ Options
dialog).

Apache loads all Apache modules twice, to make sure the server will successfully restart when asked to.
This flag disables all PerlRequire and PerlModule statements on the first load, so they can succeed
on the second load. Without that flag, the second load fails.

16.9.4 HP-UX

16.9.4.1 Apache::Status Dumps Core Under HP-UX 10.20

HP-UX 10.20 may dump core when accessing perl-status?sig. This issue is known to happen when perl’s
./Configure doesn’t detect that SIGRTMAX is defined, but not implemented on that platform.

One solution is to upgrade to a recent version of Perl (5.8.0?) that properly detects the implementation of
that signal.

Another solution is to modify Apache/Status.pm to skip that broken signal by replacing the line:

 sort keys %SIG),

with:

 sort grep { $_ ne ’RTMAX’ } keys %SIG),

16.10 Problematic Perl Modules
Here is the list of Perl Modules that are known to have problems under mod_perl 1.0 and possible
workarounds, solutions.

IPC::Open*

use IPC::Run instead. It provides the same functionality as the IPC::Open* family and more...
and it works fine with mod_perl.

15 Feb 2014470

16.10 Problematic Perl Modules

16.11 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

16.12 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

47115 Feb 2014

16.11 MaintainersWarnings and Errors Troubleshooting Index

http://stason.org/
http://stason.org/

17 Debugging mod_perl

15 Feb 2014472

17 Debugging mod_perl

17.1 Description
Tired of Internal Server Errors? Find out how to debug your mod_perl applications, thanks to a number of
features of Perl and mod_perl.

17.2 Warning and Errors Explained
Let’s talk first about things that bother most web (and non-web) programmers. The bothering things are
warning and errors reported by Perl. We are going to learn how to take the best out of both, by turning this
obvious to the newbie programmer enemies into our best friends.

17.2.1 Curing The "Internal Server Error"

You have just installed this new CGI script and when you try it out you see the grey screen of death saying
"Internal Server Error"... Or even worse you have a script running on a production server for a long time
without problems, when the same grey screen starts to show up occasionally for no apparent reason.

How can we find out what the problem is?

First problem:

You have been coding in Perl for years, and whenever an error occurred in the past it was displayed in the
same terminal window that you started the script from. But when you work with a webserver there is no
terminal to show you the errors, since the server in most cases has no terminal to send the error messages
to.

Actually, the error messages don’t disappear, they end up in the error_log file. It is located in the directory
specified by the ErrorLog directive in httpd.conf. The default setting is generally:

 ErrorLog /usr/local/apache/logs/error_log

So whenever you see "Internal Server Error" it’s time to look at this file.

First problem solved!

There are cases when errors don’t go to the error_log file. For example, some errors go to the httpd
process’ STDERR. If you haven’t redirected httpd’s STDERR then the messages are printed to the console
(tty, terminal) from which you executed the httpd. This happens when the server didn’t get as far as
opening the error_log file for writing before it needed to write an error message.

For example, if you have entered a non-existent directory path in your ErrorLog directive, the error
message will be printed to STDERR. If the error happens when the server executes a PerlRequire or
PerlModule directive you might also see output sent to STDERR.

You are probably wondering where all the errors go when you are running the server in single process
mode (httpd -X). They go to STDERR. This is because the error logging for all the httpd children is
normally done by the parent httpd. When httpd runs in single process mode, it has no parent httpd process

47315 Feb 2014

17.1 DescriptionDebugging mod_perl

to perform all the logging. The output to the terminal includes all the status messages that normally go to
the error_log file.

Finally with a PerlLogHandler you can take away from Apache its control of the error logging
process for all HTTP transactions. If you do this, then you are responsible for generating and storing the
error messages. You can do whatever you like with the information, (including throwing it away -- don’t
do it!) and, depending on how you implement you LogHandler , the ErrorLog directive may have no
effect. But you can also do something at this handler and then return DECLINED status, so the default
Apache LogHandler will do the work as usual.

Second problem:

The usefulness of the error message depends to some extent on the programmer’s coding style. An unin-
formative message might not help you to spot and fix the error.

For example, let’s take a function which opens a file passed to it as a parameter. It does nothing else with
the file. Here’s our first version of the code:

 my $r = shift;
 $r->send_http_header(’text/plain’);

 sub open_file{
 my $filename = shift || ’’;
 die "No filename passed!" unless $filename;

 open FILE, $filename or die;
 }

 open_file("/tmp/test.txt");

Let’s assume that /tmp/test.txt doesn’t exist so the open() will fail to open the file. When we call
this script from our browser, the browser returns an "internal error" message and we see the following
error appended to error_log:

 Died at /home/httpd/perl/test.pl line 9.

We can use the hint Perl kindly gave to us to find where in the code the die() was called. However, we still
don’t know what filename was passed to this subroutine to cause the program termination.

If we have only one function call as in the example above, the task of finding the problematic filename
will be trivial. Now let’s add two more open_file() function calls and assume that among the three files
only /tmp/test2.txt exists:

 open_file("/tmp/test.txt");
 open_file("/tmp/test2.txt");
 open_file("/tmp/test3.txt");

When you execute the above call, you will see the same error message twice:

15 Feb 2014474

17.2.1 Curing The "Internal Server Error"

 Died at /home/httpd/perl/test.pl line 9.
 Died at /home/httpd/perl/test.pl line 9.

Based on this error message, can you tell what files your program failed to open? Probably not. Let’s fix it
by passing the name of the file to die():

 sub open_file{
 my $filename = shift || ’’;
 die "No filename passed!" unless $filename;
 open FILE, $filename or die "failed to open $filename";
 }

 open_file("/tmp/test.txt");

When we execute the above code, we see:

 failed to open /tmp/test.txt at /home/httpd/perl/test.pl line 9.

which makes a big difference.

By the way, if you append a newline to the end of the message you pass to die(), Perl won’t report the line
number the error has happened at, so if you code:

 open FILE, $filename or die "failed to open a file\n";

The error message will be:

 failed to open a file

Which gives you very little to go on. It’s very hard to debug with such uninformative error messages.

The warn() function, a kinder sister of die(), which logs the message but doesn’t cause program termina-
tion, behaves in the same way. If you add a newline to the end of the message, the line number warn() was
called at won’t be logged, otherwise it will.

You might want to use warn() instead of die() if the failure isn’t critical. Consider the following code:

 if(open FILE, $filename){
 # do something with file
 } else {
 warn "failed to open $filename";
 }
 # more code here...

Now we’ve improved our code, by reporting the names of the problematic files, but we still don’t know
the reason for the failure. Let’s try to improve the warn() example. The -r operator tests whether the file
is readable:

47515 Feb 2014

17.2.1 Curing The "Internal Server Error"Debugging mod_perl

 if(-r $filename){
 open FILE, $filename;
 # do something with file
 } else {
 warn "Couldn’t open $filename - doesn’t exist or is not readable";
 }

Now if we cannot read the file we do not even try to open it. But we still see a warning in error_log:

 Couldn’t open /tmp/test.txt - doesn’t exist or is not readable
 at /home/httpd/perl/test.pl line 9.

The warning tells us the reason for the failure, so we don’t have to go to the code and check what it was
trying to do with the file.

It could be quite a coding overhead to explain all the possible failure reasons that way, but why reinvent
the wheel? We already have the reason for the failure stored in the $! variable. Let’s go back to the
open_file() function:

 sub open_file{
 my $filename = shift || ’’;
 die "No filename passed!" unless $filename;
 open FILE, $filename or die "failed to open $filename: $!";
 }

 open_file("/tmp/test.txt");

This time, if open() fails we see:

 failed to open /tmp/test.txt: No such file or directory
 at /home/httpd/perl/test.pl line 9.

Now we have all the information we need to debug these problems: we know what line of code triggered
die(), we know what file we were trying to open, and last but not least we know the reason, given to us
through Perl’s $! variable.

Now let’s create the file /tmp/test.txt.

 % touch /tmp/test.txt

When we execute the latest version of the code, we see:

 failed to open /tmp/test.txt: Permission denied
 at /home/httpd/perl/test.pl line 9.

Here we see a different reason: we created a file that doesn’t belong to the user which the server runs as
(usually nobody). It does not have permission to read the file.

Now you can see that it’s much easier to debug your code if you validate the return values of the system
calls, and properly code arguments to die() and warn() calls. The open() function is just one of the many
system calls perl provides to your convenience.

15 Feb 2014476

17.2.1 Curing The "Internal Server Error"

So now you can code and debug CGI scripts and modules as easily as if they were plain Perl scripts that
you execute from a shell.

Second problem solved!

17.2.2 Helping error_log to Help Us

It’s a good idea to keep it open all the time in a dedicated terminal with the help of tail -f or less -S,
whichever you prefer (the latter allows you to page around the file, search etc.)

 % tail -f /usr/local/apache/logs/error_log

or

 % less -S /usr/local/apache/logs/error_log

So you will see all the errors and warning as they happen.

Another tip is to create a shell alias, to make it easier to execute the above command. In tcsh you would
do something like this:

 % alias err "tail -f /usr/local/apache/logs/error_log"

For bash users the command is:

 % alias err=’tail -f /var/log/apache/error_log’

and from now on in the shell you set the alias in, executing

 % err

will call tail -f /usr/local/apache/logs/error_log. Since you want this alias to be available to you all the
time, you should put it into your .tcshrc file or its equivalent. For bash users this is .bashrc, or you can put
it in /etc/profile for use by all users.

If you cannot access your error_log file because you are unable to telnet to your machine (generally the
case when an ISP provides user CGI support but no telnet access), you might want to use a CGI script I
wrote to fetch the latest lines from the file (with a bonus of colored output for easier reading). You might
need to ask your ISP to install this script for general use. See Watching the error_log file without telneting
to the server .

17.2.3 The Importance of Warnings

Just like errors, Perl’s mandatory warnings go to the error_log file, if the they are enabled. Of course you
have enabled them in your development server, haven’t you?

The code you write lives a dual life. In the first life it’s being written, tested, debugged, improved, tested,
debugged, rewritten, tested, debugged. In the second life it’s just used.

47715 Feb 2014

17.2.2 Helping error_log to Help UsDebugging mod_perl

A significant part of the script’s first life is spent on the developer’s machine. The other part is spent on
the production server where the creature is supposed to be perfect.

So when you develop the code you want all the help in the world to help you spot possible problems, and
that’s where enabling warnings is a must. Whenever you see an error or warning in the error_log, you
want to get rid of it. That’s very important.

Why?

If there are warnings, your code is not clean. If they are waved away, expect them to come back on
the production server in the form of errors, when it’s too late.

If each invocation of a script generates more than about five lines of warnings, it will be very hard to
catch real problems. You just can’t see them among all the other warnings which you used to think
were unimportant.

On the other hand, on a production server, you really want to turn warnings off. And there are good
reasons for that:

There is no added value in having the same warning showing up, again and again, triggered by thou-
sands of script invocations. If your code isn’t very clean and generates even a single warning per
script invocation, on the heavily loaded server you will end up with a huge error_log file in a short
time.

The warning elimination phase is supposed to be a part of the development process, and should be
done before the code goes live.

In any Perl script, not just under mod_perl, enabling runtime warnings has a performance impact.

mod_perl gives you a very simple solution to this warnings saga, don’t enable warnings in the scripts
unless you really have to. Let mod_perl control this mode globally. All you need to do is put the directive

 PerlWarn On

in httpd.conf on your development machine and the directive

 PerlWarn Off

on the live box. Here is a complete description on how to manipulate warning modes under mod_perl.

If there is a piece of code that generates warnings and you want to disable them only in this code, you can
do that too. The Perl special variable $^W allows you dynamically to turn on and off warnings mode. So
just put the code into a block, and disable the warnings in the scope of this block. The original value of
$^W will be restored upon exit from the block.

 {
 local $^W=0;
 # some code that generates innocuous warnings
 }

15 Feb 2014478

17.2.3 The Importance of Warnings

Unless you have a really good reason, for your own sake the advice is avoid this technique.

Don’t forget the local() operand! If you do, setting $^W will affect all the requests handled by the
Apache child that changed this variable. And for all the scripts it executes, not just the one which changed
$^W!

The diagnostics pragma can shed more light on errors and warnings, as you will see in a moment.

17.2.3.1 diagnostics pragma

This module extends the terse diagnostics normally emitted by both the Perl compiler and the Perl inter-
preter, augmenting them with the more verbose and endearing descriptions found in the perldiag
manpage. Like the other pragmata, it affects the compilation phase of your scripts as well as the execution
phase.

To use in your program as a pragma, merely invoke

 use diagnostics;

at or near the start of your program. This also turns on -w mode.

This pragma is especially useful when you are new to perl, and want a better explanation of the errors and
warnings. It’s also helpful when you encounter some warning you’ve never seen before, e.g. when a new
warning has been introduced in an upgraded version of Perl.

You may not want to leave diagnostics mode On for your production server. For each warning,
diagnostics mode generates ten times more output than warnings mode. If your code generates warn-
ings, with the diagnostics pragma you will use disk space much faster.

diagnostics mode adds a large performance overhead in comparison with just having warnings mode
On. You can see the benchmark results in the section ’Code Profiling Techniques’.

17.3 Handling the ’User pressed Stop button’ case
When a user presses a STOP or RELOAD button, the current socket connection goes broken (aborted). It
would be nice if Apache could always immediately detect this event. Unfortunately there is no way to tell
whether the connection is still valid unless an attempt to read from or write to connection is made.

Unfortunately the detection technique we are going to present doesn’t work if the connection to the
back-end mod_perl server is coming from the front-end mod_proxy, as the latter doesn’t break the connec-
tion to the back-end when user has aborted the connection.

If the reading of the request’s data is completed and the code does processing without writing anything
back to the client the broken connection won’t be noticed. When an attempt is made to send at least one
character to the client, the broken connection would be noticed and the SIGPIPE signal (Broken pipe)
would be sent to the process. The program could then halt its execution and perform all the cleanup stuff it
has to do.

47915 Feb 2014

17.3 Handling the ’User pressed Stop button’ caseDebugging mod_perl

Prior to Apache version 1.3.6, SIGPIPE was handled by Apache. Currently Apache is not handling
SIGPIPE anymore and mod_perl takes care of it.

Under mod_perl, $r->print (or just print()) returns a true value on success, a false value on failure.
The latter usually happens when the connection is broken.

If you want a similar to the old SIGPIPE behaviour (as it was before Apache version 1.3.6), add the
following configuration directive:

 PerlFixupHandler Apache::SIG

When Apache’s SIGPIPE handler is used, Perl may be left in the middle of it’s eval context, causing
bizarre errors during subsequent requests are handled by that child. When Apache::SIG is used, it
installs a different SIGPIPE handler which rewinds the context to make sure Perl is back to normal state,
preventing these bizarre errors.

But in general case, you don’t need to use the above setting.

If you use this setting and you would like to log when a request was canceled by a SIGPIPE in your
Apache access_log, you must define a custom LogFormat in your httpd.conf, like so:

 PerlFixupHandler Apache::SIG
 LogFormat "%h %l %u %t \"%r\" %s %b %{SIGPIPE}e"

If the server has noticed that the request was canceled via a SIGPIPE , then the log line will end with 1,
otherwise it will just be a dash. e.g.:

 127.0.0.1 - - [09/Jan/2001:10:27:15 +0100]
 "GET /perl/stopping_detector.pl HTTP/1.0" 200 16 1
 127.0.0.1 - - [09/Jan/2001:10:28:18 +0100]
 "GET /perl/test.pl HTTP/1.0" 200 10 -

17.3.1 Detecting Aborted Connections

Let’s use the knowledge we have acquired to trace the execution of the code and watch all the events as
they happen.

Let’s take a little script that obviously "hangs" the server process:

 stopping_detector.pl

 my $r = shift;
 $r->send_http_header(’text/plain’);

 print "PID = $$\n";
 $r->rflush;

 while(1){
 $i++;
 sleep 1;
 }

15 Feb 2014480

17.3.1 Detecting Aborted Connections

The script gets a request object $r by shift()ing it from the @_ argument list passed by the handler()
subroutine. (This magic is done by Apache::Registry). Then the script sends a Content-type
header, telling the client that we are going to send a plain text as a response.

Next the script prints out a single line telling us the id of the process that handles this request, which we
need to know in order to run the tracing utility. Then we flush Apache’s buffer. (If we don’t flush the
buffer we will never see this short information printed. That’s because our output is shorter than the buffer
size and the script intentionally hangs, so the buffer won’t be auto-flushed as the script hangs at the end.)

Then we enter an infinite while(1) loop, which just increments a dummy variable and sleeps for a
second.

Running strace -p PID , where PID is the process ID as printed to the browser, we see the following
output printed every second:

 SYS_175(0, 0xbffff41c, 0xbffff39c, 0x8, 0) = 0
 SYS_174(0x11, 0, 0xbffff1a0, 0x8, 0x11) = 0
 SYS_175(0x2, 0xbffff39c, 0, 0x8, 0x2) = 0
 nanosleep(0xbffff308, 0xbffff308,
 0x401a61b4, 0xbffff308, 0xbffff41c) = 0
 time([941281947]) = 941281947
 time([941281947]) = 941281947

Let’s leave strace running and press the STOP button. Did anything change? No, the same system calls
trace is printed every second. Which means that Apache didn’t detect the broken connection.

Now we are going to write the \0 (NULL) character to the client in attempt to detect the broken connec-
tion as close as possible to the time the Stop button is pressed at. Therefore we modify the loop code in the
following way:

 while(1){
 $r->print("\0");
 last if $r->connection->aborted;
 $i++;
 sleep 1;
 }

We add a print() statement to print a NULL character and then we check whether the connection was
aborted with help of the $r->connection->aborted method. If the connection is broken, we break
out of the loop.

We run this script and strace on it as before, but we see that it still doesn’t work. The trouble is we aren’t
flushing the buffer, which leaves the characters in the buffer and they won’t be printed before the buffer
will get full and will be autoflushed. Since we want to attempt to write to the connection pipe all the time,
after printing the NULL, we add $r->rflush(). Here is a new version of the code:

 stopping_detector2.pl

 my $r = shift;
 $r->send_http_header(’text/plain’);

 print "PID = $$\n";

48115 Feb 2014

17.3.1 Detecting Aborted ConnectionsDebugging mod_perl

 $r->rflush;

 while(1){
 $r->print("\0");
 $r->rflush;

 last if $r->connection->aborted;

 $i++;
 sleep 1;
 }

After starting the strace utility on the running process as we did before and pressing the Stop button,
we have seen the following output.

 SYS_175(0, 0xbffff41c, 0xbffff39c, 0x8, 0) = 0
 SYS_174(0x11, 0, 0xbffff1a0, 0x8, 0x11) = 0
 SYS_175(0x2, 0xbffff39c, 0, 0x8, 0x2) = 0
 nanosleep(0xbffff308, 0xbffff308, 0x401a61b4, 0xbffff308, 0xbffff41c) = 0
 time([941284358]) = 941284358
 write(4, "\0", 1) = -1 EPIPE (Broken pipe)
 --- SIGPIPE (Broken pipe) ---
 select(5, [4], NULL, NULL, {0, 0}) = 1 (in [4], left {0, 0})
 time(NULL) = 941284358
 write(17, "127.0.0.1 - - [30/Oct/1999:13:52"..., 81) = 81
 gettimeofday({941284359, 39113}, NULL) = 0
 times({tms_utime=9, tms_stime=8, tms_cutime=0, tms_cstime=0}) = 41551400
 close(4) = 0
 SYS_174(0xa, 0xbffff4e0, 0xbffff454, 0x8, 0xa) = 0
 SYS_174(0xe, 0xbffff46c, 0xbffff3e0, 0x8, 0xe) = 0
 fcntl(18, F_SETLKW, {type=F_WRLCK, whence=SEEK_SET, start=0, len=0}

Apache detects the broken pipe as you see from this snippet:

 write(4, "\0", 1) = -1 EPIPE (Broken pipe)
 --- SIGPIPE (Broken pipe) ---

Then it stops the script and does all the cleanup work, like access logging:

 write(17, "127.0.0.1 - - [30/Oct/1999:13:52"..., 81) = 81

where 17 is a file descriptor of the opened access_log file

17.3.2 The Importance of Cleanup Code

Cleanup code is a critical issue with aborted scripts.

What happens to locked resources if there are any? Will they be freed or not? If not, scripts using these
resources and the same locking scheme will hang, waiting for them to be freed.

First let’s go one step back and recall what are the problems and solutions for this issue under mod_cgi.

15 Feb 2014482

17.3.2 The Importance of Cleanup Code

Under mod_cgi the resource locking issue is a problem only if you happened to create external lock files
and use them for lock indication, instead of using flock(). If the script running under mod_cgi is aborted
between the lock and the unlock code, and you didn’t bother to write cleanup code to remove old dead
locks then you are in big trouble.

The solution is to use an END block to place the cleanup code in:

 END {
 # some code that ensures that locks are removed
 }

When the script is aborted, Apache will run the END blocks.

If you use flock() things are much simpler, since all opened files will be closed when the script exits.
When the file is closed, the lock is removed as well--all the locked resources get freed. There are systems
where flock(2) is unavailable, and for those you can use Perl’s emulation of this function.

With mod_perl things can be more complex when you use global variables as a filehandlers. Because the
processes don’t exit after processing a request, files won’t be closed unless you explicitly close() them or
reopen with the open() call, which first closes a file. Let’s see what problems we might encounter, and
possible solutions for them.

17.3.2.1 Critical Section

First we want to make a little detour to discuss the "critical section" issue.

Let’s start with a resource locking scheme. A schematic representation of a proper locking technique is as
follows:

 1. lock a resource
 <critical section starts>
 2. do something with the resource
 <critical section ends>
 3. unlock the resource

If the locking is exclusive, only one process can hold the resource at any given time, which means that all
the other processes will have to wait, therefore the code between the locking and unlocking functions can
become a service bottleneck. That’s why this code section is called critical and once started it should be
finished as soon as possible.

Even if you use a shared locking scheme, where many processes are allowed to concurrently access the
resource, if there are processes that sometimes want to get an exclusive lock it’s also important to keep the
critical section as short as possible.

The next example uses a shared lock, but has a poorly-designed critical section:

 critical_section_sh.pl

 use Fcntl qw(:flock);
 use Symbol;
 my $fh = gensym;

48315 Feb 2014

17.3.2 The Importance of Cleanup CodeDebugging mod_perl

 open $fh, "/tmp/foo" or die $!;
 flock $fh, LOCK_SH;
 # start critical section

 seek $fh, 0, 0;
 my @lines = <$fh>;
 for(@lines){
 print if /foo/;
 }

 # end critical section
 close $fh; # close unlocks the file

The code opens the file for reading, locks and rewinds it to the beginning, reads all the lines from the file
and prints out the lines that contain the string ’foo’ .

The gensym() function imported by the Symbol module creates an anonymous glob and returns a
reference to it. Such a glob reference can be used as a file or directory handle. and therefore allows using
lexically scoped variables as filehandlers. Fcntl imports into the script’s namespace file locking symbols
like: LOCK_SH, LOCK_EX and more. Refer to the Fcntl manpage for more information.

If the file the script reads is big, it’d take a relatively long time for this code to complete. All this time the
file remains open and locked. While it’s other processes may access this file for reading (shared lock), the
process that wants to modify the file (which requires an acquisition of the exclusive lock), will be blocked
waiting for this section to complete.

We can optimize the critical section this way:

Once the file has been read, we have all the information we need from it. In order to make the example
simpler we’ve chosen to just print out the matching lines. In reality the code might be much longer.

We don’t need the file to be open while the loop executes, because we don’t access it inside the loop. If we
close the file before we start the loop, we will allow other processes to have an exclusive access to the file
if they need it, instead of blocking them for no reason.

In the following corrected version of the previous example, we only read the content of the file during the
critical section and process it afterwards, without creating a possible bottleneck.

 critical_section_sh2.pl

 use Fcntl qw(:flock);
 use Symbol;
 my $fh = gensym;

 open $fh, "/tmp/foo" or die $!;
 flock $fh, LOCK_SH;
 # start critical section

 seek $fh, 0, 0;
 my @lines = <$fh>;

 # end critical section

15 Feb 2014484

17.3.2 The Importance of Cleanup Code

 close $fh; # close unlocks the file

 for(@lines){
 print if /foo/;
 }

Here is another similar example, but now it uses an exclusive lock. The script reads in a file and writes it
back, adding a number of new text lines to the head of the file.

 critical_section_ex.pl

 use Fcntl qw(:flock);
 use Symbol;
 my $fh = gensym;

 open $fh, "+>>/tmp/foo" or die $!;
 flock $fh, LOCK_EX;

 # start critical section
 seek $fh, 0, 0;
 my @add_lines =
 (
 qq{Complete documentation for Perl, including FAQ lists,\n},
 qq{should be found on this system using ‘man perl’ or\n},
 qq{‘perldoc perl’. If you have access to the Internet, point\n},
 qq{your browser at http://www.perl.com/, the Perl Home Page.\n},
);

 my @lines = (@add_lines, <$fh>);
 seek $fh, 0, 0;
 truncate $fh, 0;
 print $fh @lines;
 # end critical section

 close $fh; # close unlocks the file

Since we want to read the file, modify and write it back, without anyone else changing it on the way, we
open it for read and write with the help of +>> and lock it with an exclusive lock. You cannot safely
accomplish this task by opening the file first for read and then reopening for write, since another process
might change the file between the two events. (You could get away with +< as well, please refer to the
perlfunc manpage for more information about the open() function.)

Next, the code prepares the lines of text it wants to add to the head of the file, and assigns them and the
content of the file to the @lines array. Now we have our data ready to be written back to the file, so we
seek() to the start of the file and truncate() it to zero size. In our example the file always grows, so in this
case there is no need to truncate it, but if there was a chance that the file might shrink then truncating
would be necessary. However it’s good practice to always use truncate(), as you never know what changes
your code might undergo in the future. The truncate() operation does not carry any significant performance
penalty. Finally we write the data back to the file and close it, which unlocks it as well.

Did you notice that we created the text lines to be added as close to the place of usage as possible? This
complies with good "locality of code" style, but it makes the critical section longer. In such cases you
should sacrifice style, in order to make the critical section as short as possible. An improved version of this

48515 Feb 2014

17.3.2 The Importance of Cleanup CodeDebugging mod_perl

script with a shorter critical section looks like this:

 critical_section_ex2.pl

 use Fcntl qw(:flock);
 use Symbol;

 my @lines =
 (
 qq{Complete documentation for Perl, including FAQ lists,\n},
 qq{should be found on this system using ‘man perl’ or\n},
 qq{‘perldoc perl’. If you have access to the Internet, point\n},
 qq{your browser at http://www.perl.com/, the Perl Home Page.\n},
);

 my $fh = gensym;
 open $fh, "+>>/tmp/foo" or die $!;
 flock $fh, LOCK_EX;
 # start critical section

 seek $fh, 0, 0;
 push @lines, <$fh>;

 seek $fh, 0, 0;
 truncate $fh, 0;
 print $fh @lines;

 # end critical section
 close $fh; # close unlocks the file

There are two important differences. First, we prepare the text lines to be added before the file is locked.
Second, instead of creating a new array and copying lines from one array to another, we append the file
directly to the @lines array.

17.3.2.2 Safe Resource Locking and Cleanup Code

Let’s get back to the main issue of this section, which is safe resource locking.

Unless you use the Apache::PerlRun handler that does the cleanup for you, if you don’t make a habit
of closing all the files that you open--in some cases you will encounter lots of problems. If you open a file
but don’t close it, you may have file descriptor leakage. Since the number of file descriptors available to
you is finite, at some point you may run out of them and your service will fail. This is bad, but you can
live with it until you run out of file descriptors (which will happen much faster on a heavily used server).

You can use system utilities to observe the opened and locked files, as well as the processes that has
opened (and locked) the files. On FreeBSD you would use the fstat(1) utility. On many other UN*X
flavors the lsof(1) utility is available.

But this is nothing compared to the trouble you will give yourself if the code terminates and the file stays
locked. Any other process requesting a lock on the same file (or resource) will wait indefinitely for it to
become unlocked. Since this will not happen until the server reboots, all these processes trying to use this
resource will hang.

15 Feb 2014486

17.3.2 The Importance of Cleanup Code

Here is an example of such a terrible mistake:

 flock.pl

 use Fcntl qw(:flock);
 open IN, "+>>filename" or die "$!";
 flock IN, LOCK_EX;
 # do something
 # quit without closing and unlocking the file

Is this safe code? No - we forgot to close the file. So let’s add the close():

 flock2.pl

 use Fcntl qw(:flock);
 open IN, "+>>filename" or die "$!";
 flock IN, LOCK_EX;
 # do something
 close IN;

Is it safe code now? Unfortunately it is not. There is a chance that the user may abort the request (for
example by pressing his browser’s Stop or Reload buttons) during the critical section. The script will
be aborted before it has had a chance to close() the file, which is just as bad as if we forgot to close it.

In fact if the same process will run the same code again, an open() call will close the file first, which will
unlock the resource. This is because IN is a global variable. But it’s quite possible that the process that
created the lock, will not serve the same request for a while, since it would be busy serving other requests.
So relying on it to reopen the file is a bad idea.

This problem happens only if you use global variables as file handles. The following example has the
same problem.

 flock3.pl

 use Fcntl qw(:flock);
 use Symbol ();
 use vars qw($fh);
 $fh = Symbol::gensym();
 open $fh, "+>>filename" or die "$!";
 flock $fh, LOCK_EX;
 # do something
 close $fh;

$fh is still a global variable and therefore the code using it suffers from the same problem.

The simplest solution to this problem is to always use lexically scoped variables (created with my ()).
Whether script gets aborted before close() is called or you forgot the use close() the lexically scoped vari-
able will always go out of scope and therefore if the file was locked it will be unlocked. Here is a good
version of the code:

48715 Feb 2014

17.3.2 The Importance of Cleanup CodeDebugging mod_perl

 flock4.pl

 use Fcntl qw(:flock);
 use Symbol ();
 my $fh = Symbol::gensym();
 open $fh, "+>>filename" or die "$!";
 flock $fh, LOCK_EX;
 # do something
 close $fh;

Please don’t conclude from this example that you don’t have to close files anymore, since they will be
automatically closed for you. It’s a bad style and should be avoided.

mod_perl comes with its own implementation of gensym(), so you don’t even need to load the Symbol
module in order to use this function. In mod_perl this function resides in the Apache package. For
example:

 use Apache;
 my $fh = Apache::gensym();
 open $fh, "+>>filename" or die "$!";
 ...

If you insist on using the file globs, at least make sure that you local()’ize these, and then if the flow of the
code is interrupted before close() was called the filehandle will be automatically closed, since the
local()’ized variable will go out of the scope. The following example shows that the file is indeed closed
even when there is no close():

 /tmp/io.pl

 #!/usr/bin/perl
 # /dev/null so strace output is more readable
 open my $fh, ">/dev/null";
 select $fh;
 $| = 1;
 {
 print "enter";
 local *FH;
 open FH, $0;
 print "leave"
 }
 print "done";

This simple script opens the /dev/null and tells Perl to send all the STDOUT there, which is also made
unbuffered. Then the block is created in which the FH file glob is localized. Then it’s used to open the
source code of the script (which resides in $0). In order to separate event of entering the block scope and
leaving it, the debug print statements are used. Now let’s run the script under strace(1), which proves once
again to be very useful in the tool bag of the mod_perl programmer:

15 Feb 2014488

17.3.2 The Importance of Cleanup Code

 % strace /tmp/io.pl
 write(3, "enter", 5) = 5
 -> open("/tmp/io.pl", O_RDONLY) = 4
 fstat(4, {st_mode=S_ISGID|S_ISVTX|0401, st_size=0, ...}) = 0
 fcntl(4, F_SETFD, FD_CLOEXEC) = 0
 write(3, "leave", 5) = 5
 -> close(4) = 0
 write(3, "done", 4) = 4

So you can see that /tmp/io.pl is actually close()’d.

Under Perl version 5.6 Symbol.pm -like functionality is a built-in feature, so you can do:

 open my $fh, ">/tmp/foo" or die $!;

and $fh will be automatically vivified as a valid filehandle, so you don’t need to use the Symbol module
anymore, if backward compatibility is not a requirement.

You can also use the IO::* modules, such as IO::File or IO::Dir . These are much bigger than the
Symbol module, and worth using for files or directories only if you are already using them for the other
features which they provide. As a matter of fact, these modules use the Symbol module themselves. Here
is an example of their usage:

 use IO::File;
 use IO::Dir;
 my $fh = IO::File->new(">filename");
 my $dh = IO::Dir->new("dirname");

If you still have to use global filehandles, there are a few approaches we can take to solving the locking
problem.

If you are running under Apache::Registry and friends, the END block will perform the cleanup
work for you. You might use END in the same way for scripts running under mod_cgi, or in plain Perl
scripts. Just add the cleanup code to this block and you are safe.

For example if you work with dbm files just like with locking it’s important to flush the dbm buffers, by
calling a sync() method:

 END{
 # make sure that the DB is flushed
 $dbh->sync();
 }

Normally the END blocks will not be executed after the completion of a request, but only when an Apache
child process exits, then if you are writing your own handlers you will need to use the register_cleanup()
function to supply cleanup code similar to that used in END blocks instead of using END blocks.

Under mod_perl, the above will work only for Apache::Registry scripts. Otherwise execution of the
END block will be postponed until the process terminates. If you write a handler in the Perl API use the
register_cleanup() method instead. It accepts a reference to a subroutine as an argument:

48915 Feb 2014

17.3.2 The Importance of Cleanup CodeDebugging mod_perl

 $r->register_cleanup(sub { $dbh->sync() });

Even better would be to check whether the client connection has been aborted. If you don’t check, the
cleanup code will always be executed and for normally terminated scripts this may not be what you want:

 $r->register_cleanup(
 # make sure that the DB is flushed
 sub{
 $dbh->sync() if Apache->request->connection->aborted();
 }
);

So in the case of END block usage you would use:

 END{
 # make sure that the DB is flushed
 $dbh->sync() if Apache->request->connection->aborted();
 }

Note that if you use register_cleanup() it should be called at the beginning of the script, or as soon
as the variables you want to use in this code become available. If you use it at the end of the script, and the
script happens to be aborted before this code is reached, there will be no cleanup performed.

For example CGI.pm registers the cleanup subroutine in its new() method:

 sub new {
 # code snipped
 if ($MOD_PERL) {
 Apache->request->register_cleanup(\&CGI::_reset_globals);
 undef $NPH;
 }
 # more code snipped
 }

There is another way to register a section of cleanup code for Perl API handlers. You may use Perl-
CleanupHandler in the configuration file, like this:

 <Location /foo>
 SetHandler perl-script
 PerlHandler Apache::MyModule
 PerlCleanupHandler Apache::MyModule::cleanup()
 Options ExecCGI
 </Location>

Apache::MyModule::cleanup() performs the cleanup, obviously.

17.4 Handling Server Timeout Cases and Working with
$SIG{ALRM}

15 Feb 2014490

17.4 Handling Server Timeout Cases and Working with $SIG{ALRM}

A similar situation to Pressed Stop button disease happens when the browser times out the connection (is it
about 2 minutes?). There are cases when your script is about to perform a very long operation and there is
a chance that its duration will be longer than the client’s timeout. One example is database interaction,
where the DB engine hangs or needs a long time to return the results. If this is the case, use $SIG{ALRM}
to prevent the timeouts:

 $timeout = 10; # seconds
 eval {
 local $SIG{ALRM} =
 sub { die "Sorry timed out. Please try again\n" };
 alarm $timeout;
 ... db stuff ...
 alarm 0;
 };

 die $@ if $@;

It was recently discovered that local $SIG{’ALRM’} does not restore the original underlying C
handler. This was fixed in mod_perl 1.19_01. As a matter of fact none of the local $SIG{FOO}
signals restores the original C handler - read Debugging Signal Handlers ($SIG{FOO}) for a debug tech-
nique and a possible workaround.

17.5 Looking inside the server
Your server is up and running, but something appears to be wrong. You want to see the numbers to tune
your code or server configuration. You just want to know what’s really going on inside the server.

How do you do it?

There are a few tools that allow you to look inside the server.

17.5.1 Apache::Status -- Embedded Interpreter Status Information

This is a very useful module. It lets you watch what happens to the Perl parts of the server. You can see
the size of all subroutines and variables, variable dumps, lexical information, OPcode trees, and more.

You shouldn’t use it on production server as it adds quite a bit of overhead for each request.

17.5.1.1 Minimal Configuration

This configuration enables the Apache::Status module with its minimum feature set. Add this to
httpd.conf:

 <Location /perl-status>
 SetHandler perl-script
 PerlHandler Apache::Status
 order deny,allow
 #deny from all
 #allow from
 </Location>

49115 Feb 2014

17.5 Looking inside the serverDebugging mod_perl

If you are going to use Apache::Status it’s important to put it as the first module in the start-up file,
or in httpd.conf:

 # startup.pl
 use Apache::Status ();
 use Apache::Registry ();
 use Apache::DBI ();

If you don’t put Apache::Status before Apache::DBI , you won’t get the Apache::DBI menu
entry in the status. For more about Apache::DBI see Persistent DB Connections.

17.5.1.2 Extended Configuration

There are several variables which you can use to modify the behaviour of Apache::Status .

PerlSetVar StatusOptionsAll On

This single directive will enable all of the options described below.

PerlSetVar StatusDumper On

When you are browsing symbol tables, you can view the values of your arrays, hashes and scalars
with Data::Dumper .

PerlSetVar StatusPeek On

With this option On and the Apache::Peek module installed, functions and variables can be
viewed in Devel::Peek style.

PerlSetVar StatusLexInfo On

With this option On and the B::LexInfo module installed, subroutine lexical variable information
can be viewed.

PerlSetVar StatusDeparse On

With this option On and B::Deparse version 0.59 or higher (included in Perl 5.005_59+), subrou-
tines can be "deparsed".

Options can be passed to B::Deparse::new like so:

 PerlSetVar StatusDeparseOptions "-p -sC"

See the B::Deparse manpage for details.

PerlSetVar StatusTerse On

With this option On, text-based op tree graphs of subroutines can be displayed, thanks to B::Terse .

15 Feb 2014492

17.5.1 Apache::Status -- Embedded Interpreter Status Information

PerlSetVar StatusTerseSize On

With this option On and the B::TerseSize module installed, text-based op tree graphs of subrou-
tines and their size can be displayed. See the B::TerseSize docs for more info.

PerlSetVar StatusTerseSizeMainSummary On

With this option On and the B::TerseSize module installed, "Memory Usage" will be added to
the Apache::Status main menu. This option is disabled by default, as it can be rather cpu inten-
sive to summarize memory usage for the entire server. It is strongly suggested that this option only be
used with a development server running in -X mode, as the results will be cached.

Remember to preload B::TerseSize with:

 PerlModule B::Terse

PerlSetVar StatusGraph

When StatusDumper (see above) is enabled, another link "OP Tree Graph" will be present with
the dump if this configuration variable is set to On.

This requires the B module (part of the Perl compiler kit) and the B::Graph module version 0.03 or
higher to be installed along with the ‘dot’ program. Dot is part of the graph visualization toolkit from
AT&T: http://www.research.att.com/sw/tools/graphviz/.

WARNING: Some graphs may produce very large images, and some graphs may produce no image if
B::Graph ’s output is incorrect.

There is more information about Apache::Status in its manpage.

17.5.1.3 Usage

Assuming that your mod_perl server listens on port 81, fetch http://www.myserver.com:81/perl-status

 Embedded Perl version 5.00502 for Apache/1.3.2 (Unix) mod_perl/1.16
 process 187138, running since Thu Nov 19 09:50:33 1998

Below all the sections are links when you view them through /perl-status

 Signal Handlers
 Enabled mod_perl Hooks
 PerlRequire’d Files
 Environment
 Perl Section Configuration
 Loaded Modules
 Perl Configuration
 ISA Tree
 Inheritance Tree
 Compiled Registry Scripts
 Symbol Table Dump

49315 Feb 2014

17.5.1 Apache::Status -- Embedded Interpreter Status InformationDebugging mod_perl

http://www.research.att.com/sw/tools/graphviz/
http://www.myserver.com:81/perl-status

Let’s follow, for example, PerlRequire ’d Files. We see:

 PerlRequire Location
 /home/perl/apache-startup.pl /home/perl/apache-startup.pl

From some menus you can move deeper to peek into the internals of the server, to see the values of the
global variables in the packages, to see the cached scripts and modules, and much more. Just click
around...

17.5.1.4 Compiled Registry Scripts section seems to be empty.

Sometimes when you fetch /perl-status and look at the Compiled Registry Scripts you see no listing of
scripts at all. This is correct: Apache::Status shows the registry scripts compiled in the httpd child
which is serving your request for /perl-status. If the child has not yet compiled the script you are asking
for, /perl-status will just show you the main menu.

17.5.2 mod_status

The Status module allows a server administrator to find out how well the server is performing. An HTML
page is presented that gives the current server statistics in an easily readable form. If required, given a
compatible browser this page can be automatically refreshed. Another page gives a simple machine-read-
able list of the current server state.

This Apache module is written in C. It is compiled by default, so all you have to do to use it is enable it in
your configuration file:

 <Location /status>
 SetHandler server-status
 </Location>

For security reasons you will probably want to limit access to it. If you have installed Apache according to
the instructions you will find a prepared configuration section in httpd.conf: to enable use of the
mod_status module, just uncomment it.

 ExtendedStatus On
 <Location /status>
 SetHandler server-status
 order deny,allow
 deny from all
 allow from localhost
 </Location>

You can now access server statistics by using a Web browser to access the page http://localhost/status (as
long as your server recognizes localhost:).

The details given by mod_status are:

The number of children serving requests
The number of idle children
The status of each child, the number of requests that child has performed and the total number

15 Feb 2014494

17.5.2 mod_status

http://localhost/status

of bytes served by the child
A total number of accesses and the total bytes served
The time the server was last started/restarted and how long it has been running for
Averages giving the number of requests per second, the number of bytes served per second and
the average number of bytes per request
The current percentage CPU used by each child and in total by Apache
The current hosts and requests being processed

17.5.3 Apache::VMonitor -- Visual System and Apache Server
Monitor

This module is covered in the section "Apache::* Modules"

17.6 Sometimes My Script Works, Sometimes It Does Not
See Sometimes it Works Sometimes it does Not

17.7 Code Debug
When the code doesn’t perform as expected, either never or just sometimes, we say that the code needs
debugging. There are several levels of debugging complexity.

The basic level is when Perl terminates the program during the compilation phase, before it tries to run the
resulting byte-code. This usually happens because there are syntax errors in the code, or perhaps a module
is missing. Sometimes it takes quite an effort to solve these problems, since code that uses Apache CORE
modules generally won’t compile when executed from the shell. We will learn how to solve syntax prob-
lems in mod_perl code quite easily.

Once the program compiles and begins to run, there might be logical problems, when the program doesn’t
do what you thought you had programmed it to do. These are somewhat harder to solve, especially when
there is a lot of code to be inspected and reviewed, but it’s just a matter of time. Perl can help a lot, for
example to locate typos, when we enable warnings. For example, if you wanted to compare two numbers,
but you omitted the second ’=’ character so that you had something like if $yes = 1 instead of if
$yes == 1 , it warns us about the missing ’=’.

The next level is when the program does what it’s expected to do most of the time, but occasionally misbe-
haves. Often you find that print() statements or the Perl debugger can help, but inspection of the code
generally doesn’t. Often it’s quite easy to debug with print(), but sometimes typing the debug messages
can become very tedious. That’s where the Perl debugger comes into its own.

While print() statements always work, running the perl debugger for CGI scripts might be quite a chal-
lenge. But with the right knowledge and tools handy the debug process becomes much easier. Unfortu-
nately there is no one easy way to debug your programs, as the debugging depends entirely on your code.
It can be a nightmare to debug really complex code, but as your style matures you can learn ways to write
simpler code that is easier to debug. You will probably find that when you write simpler clearer code it

49515 Feb 2014

17.6 Sometimes My Script Works, Sometimes It Does NotDebugging mod_perl

does not need so much debugging in the first place.

One of the most difficult cases to debug, is when the process just terminates in the middle of processing a
request and dumps core. Often when there is a bug the program tries to access a memory area that doesn’t
belong to it. The operating system halts the process, tidies up and dumps core (it creates a file called core
in the current directory of the process that was running). This is something that you rarely see with plain
perl scripts, but it can easily happen if you use modules written in C or C++ and something goes wrong
with them. Occasionally you will come across a bug in mod_perl itself (mod_perl is written in C), that was
in a deep slumber before your code awakened it.

In the following sections we will go through in detail each of the problems presented, thoroughly discuss
them and present a few techniques to solve them.

17.7.1 Locating and correcting Syntax Errors

While developing code we often make syntax mistakes, like forgetting to put a comma in a list, or a semi-
colon at the end of a statement.

Even at the end of a {} block, where a semicolon is not required at the end of the last statement, it may be
better to put one in: there is a chance that you will add more code later, and when you do you might forget
to add the now required semicolon. Similarly, more items might be added later to a list; unlike many other
languages, Perl has no problem when you end a list with a redundant comma.

One approach to locating syntactically incorrect code is to execute the script from the shell with the -c
flag. This tells Perl to check the syntax but not to run the code (actually, it will execute BEGIN, END
blocks, and use() calls, because these are considered as occurring outside the execution of your program).
(Note also that Perl 5.6.0 has introduced a new special variable, $^C, which is set to true when perl is run
with the -c flag; this provides an opportunity to have some further control over BEGIN and END blocks
during syntax checking.) Also it’s a good idea to add the -w switch to enable warnings:

 perl -cw test.pl

If there are errors in the code, Perl will report the errors, and tell you at which line numbers in your script
the errors were found.

The next step is to execute the script, since in addition to syntax errors there may be run time errors. These
are the errors that cause the "Internal Server Error" page when executed from a browser. With plain CGI
scripts it’s the same as running plain Perl scripts -- just execute them and see that they work.

The whole thing is quite different with scripts that use Apache::* modules which can be used only from
within the mod_perl server environment. These scripts rely on other code, and an environment which isn’t
available when you attempt to execute the script from the shell. There is no Apache request object avail-
able to the code when it is executed from the shell.

If you have a problem when using Apache::* modules, you can make a request to the script from a
browser and watch the errors and warnings as they are logged to the error_log file. Alternatively you can
use the Apache::FakeRequest module.

15 Feb 2014496

17.7.1 Locating and correcting Syntax Errors

17.7.2 Using Apache::FakeRequest to Debug Apache Perl Modules

Apache::FakeRequest is used to set up an empty Apache request object that can be used for debug-
ging. The Apache::FakeRequest methods just set internal variables with the same names as the
methods and return the value of the internal variables. Initial values for methods can be specified when the
object is created. The print method prints to STDOUT.

Subroutines for Apache constants are also defined so that you can use Apache::Constants while
debugging, although the values of the constants are hard-coded rather than extracted from the Apache
source code.

Let’s write a very simple module, which prints "OK" to the client’s browser:

 package Apache::Example;
 use Apache::Constants;

 sub handler{
 my $r = shift;
 $r->send_http_header(’text/plain’);
 print "You are OK ", $r->get_remote_host, "\n";
 return OK;
 }

 1;

You cannot debug this module unless you configure the server to run it, by calling its handler from some-
where. So for example you could put in httpd.conf:

 <Location /ex>
 SetHandler perl-script
 PerlHandler Apache::Example
 </Location>

Then after restarting the server you could start a browser, request the location http://localhost/ex and
examine the output. Tedious, no?

But with the help of Apache::FakeRequest you can write a little script that will emulate a request
and return the output.

 #!/usr/bin/perl

 use Apache::FakeRequest ();
 use Apache::Example ();

 my $r = Apache::FakeRequest->new(’get_remote_host’=>’www.foo.com’);
 Apache::Example::handler($r);

when you execute the script from the command line, you will see the following output:

 You are OK www.foo.com

49715 Feb 2014

17.7.2 Using Apache::FakeRequest to Debug Apache Perl ModulesDebugging mod_perl

http://localhost/ex

17.7.3 Finding the Line Which Triggered the Error or Warning

Perl has no problem with the line numbers and file names for modules that are read from disk in the
normal way, but modules that are compiled via eval() such as Apache::Registry and
Apache::PerlRun sometimes with some versions of Perl get confused.

There is the Perl <<HEREDOC inside eval "" problem that confuses the Perl current linenumber counter,
newer Perls fix this. For older Perls compiling with the experimental PERL_MARK_WHERE=1 should
solve this.

Also if you happen to use line continuation \ your script, the line numbering will be off as well, since eval
eats those \ ’s and combines the lines together. The solution: do not use \ ’s to mark lines as continued in
Perl. Unlike shell languages, Perl doesn’t require you to do that.

There are compiler directives to reset its counter to some value that you decide. You can always pepper
your code with these to help you locate the problem. At the beginning of the line you could write some-
thing of the form:

 #line nnn label

For example:

 #line 298 myscript.pl
 or
 #line 890 some_label_to_be_used_in_the_error_message

The ’#’ must be in the first column, so if you cut and paste from this text you must remember to remove
any leading white space.

The label is optional - the filename of the script will be used by default. This directive sets the line number
of the following line, not the line the directive is on. You can use a little script to stuff every N lines of
your code with these directives, but then you will have to remember to rerun this script every time you add
or remove code lines. The script:

 #!/usr/bin/perl
 # Puts Perl line markers in a Perl program for debugging purposes.
 # Also takes out old line markers.
 die "No filename to process.\n" unless @ARGV;
 my $filename = shift;
 my $lines = 100;
 open IN, $filename or die "Cannot open file: $filename: $!\n";
 open OUT, ">$filename.marked"
 or die "Cannot open file: $filename.marked: $!\n";
 my $counter = 1;
 while (<IN>) {
 print OUT "#line $counter\n" unless $counter++ % $lines;
 next if /^#line /;
 print OUT $_;
 }
 close OUT;
 close IN;
 chmod 0755, "$filename.marked";

15 Feb 2014498

17.7.3 Finding the Line Which Triggered the Error or Warning

Another way of narrowing down the area to be searched is to move most of the code into a separate
modules. This ensures that the line number will be reported correctly.

To have a complete trace of calls add:

 use Carp ();
 local $SIG{__WARN__} = \&Carp::cluck;

17.7.4 Using print() for Debugging

The universal debugging tool across nearly all platforms and programming languages is printf() or the
equivalent output function. This can send data to the console, a file, an application window and so on. In
perl we generally use the print() function. With an idea of where and when the bug is triggered, a devel-
oper can insert print() statements in the source code to examine the value of data at certain stages of
execution.

However, it is rather difficult to anticipate all possible directions a program might take and what data to
suspect of causing trouble. In addition, inline debugging code tends to add bloat and degrade the perfor-
mance of an application and can also make the code harder to read and maintain. And you have to
comment out or remove the debugging print() calls when you think that you have solved the problem. But
if later you discover that you need to debug the same code again, you need at best to uncomment the
debugging code lines or, at worst, to write them again from scratch.

Let’s see a few examples where we use print() to debug some problem. In one of my applications I wrote a
function that returns the date that was one week ago. Here it is:

 print "Content-type: text/plain\r\n\r\n";

 print "A week ago the date was ",date_a_week_ago(),"\n";

 # return a date one week ago as a string in format: MM/DD/YYYY
 ####################
 sub date_a_week_ago{

 my @month_len = (31,28,31,30,31,30,31,31,30,31,30,31);

 my ($day,$month,$year) = (localtime)[3..5];
 for (my $j = 0; $j < 7; $j++) {

 $day--;
 if ($day == 0) {

 $month--;
 if ($month == 0) {
 $year--;
 $month = 12;
 }

 # there are 29 days in February in a leap year
 $month_len[1] =
 (($year % 4 or $year % 100 == 0) and $year % 400)
 ? 28 : 29;

49915 Feb 2014

17.7.4 Using print() for DebuggingDebugging mod_perl

 # set $day to be the last day of the previous month
 $day = $month_len[$month - 1];

 } # end of if ($day == 0)
 } # end of for ($i = 0;$i < 7;$i++)

 return sprintf "%02d/%02d/%04d",$month,$day,$year+1900;
 }

This code is pretty straightforward. We get today’s date and subtract one from the value of the day we get,
updating the month and the year on the way if boundaries are being crossed (end of month, end of year). If
we do it seven times in loop then at the end we should get a date that was a week ago.

Note that since locatime() returns the year as a value of
current_four_digits_format_year-1900 (which means that we don’t have a century bound-
ary to worry about) then if we are in the middle of the first week of the year 2000, the value of year
returned by localtime() will be 100 and not 0 as you might mistakenly assume. So when the code does
$year-- it becomes 99 and not -1 . At the end we add 1900 to get back the correct four-digit year
format. (This is all correct as long as you don’t go to the years prior to 1900)

Also note that we have to account for leap years where there are 29 days in February. For the other months
we have prepared an array containing the month lengths.

Now when we run this code and check the result, we see that something is wrong. For example, if today is
10/23/1999 we expect the above code to print 10/16/1999 . In fact it prints 09/16/1999 , which
means that we have lost a month. The above code is buggy!

Let’s put a few debug print() statements in the code, near the $month variable:

 sub date_a_week_ago{

 my @month_len = (31,28,31,30,31,30,31,31,30,31,30,31);

 my ($day,$month,$year) = (localtime)[3..5];
 print "[set] month : $month\n"; # DEBUG
 for (my $j = 0; $j < 7; $j++) {

 $day--;
 if ($day == 0) {

 $month--;
 if ($month == 0) {
 $year--;
 $month = 12;
 }
 print "[loop $i] month : $month\n"; # DEBUG

 # there are 29 days in February in a leap year
 $month_len[1] =
 (($year % 4 or $year % 100 == 0) and $year % 400)
 ? 28 : 29;

 # set $day to be the last day of the previous month

15 Feb 2014500

17.7.4 Using print() for Debugging

 $day = $month_len[$month - 1];

 } # end of if ($day == 0)
 } # end of for ($i = 0;$i < 7;$i++)

 return sprintf "%02d/%02d/%04d",$month,$day,$year+1900;
 }

When we run it we see:

 [set] month : 9

It is supposed to be the number of the current month (10), but actually it is not. We have spotted a bug,
since the only code that sets the $month variable consists of a call to localtime(). So did we find a bug in
Perl? let’s look at the manpage of the localtime() function:

 % perldoc -f localtime

 Converts a time as returned by the time function to a 9-element
 array with the time analyzed for the local time zone. Typically
 used as follows:

 # 0 1 2 3 4 5 6 7 8
 ($sec,$min,$hour,$mday,$mon,$year,$wday,$yday,$isdst) =
 localtime(time);

 All array elements are numeric, and come straight out of a struct
 tm. In particular this means that C<$mon> has the range C<0..11>
 and C<$wday> has the range C<0..6> with Sunday as day C<0>. Also,
 C<$year> is the number of years since 1900, that is, C<$year> is
 C<123> in year 2023, and I<not> simply the last two digits of the
 year. If you assume it is, then you create non-Y2K-compliant
 programs--and you wouldn’t want to do that, would you?
 [more info snipped]

Which reveals to us that if we want to count months from 1 to 12 and not 0 to 11 we are supposed to incre-
ment the value of $month . Among other interesting facts about locatime() we also see an explanation of
$year , which as I’ve mentioned before is set to the number of years since 1900.

We have found the bug in our code and learned new things about localtime(). To correct the above code
we just increment the month after we call localtime():

 my ($day,$month,$year) = (localtime)[3..5];
 $month++;

17.7.5 Using print() and Data::Dumper for Debugging

Sometimes you need to peek into complex data structures, and trying to print them out can be tricky.
That’s where Data::Dumper comes to our rescue. For example if we create this complex data structure:

50115 Feb 2014

17.7.5 Using print() and Data::Dumper for DebuggingDebugging mod_perl

 $data =
 {
 array => [qw(a b c d)],
 hash => {
 foo => "oof",
 bar => "rab",
 },
 };

How do we print it out? Very easily:

 use Data::Dumper;
 print Dumper \$data;

What we get is a pretty-printed $data :

 $VAR1 = \{
 ’hash’ => {
 ’foo’ => ’oof’,
 ’bar’ => ’rab’
 },
 ’array’ => [
 ’a’,
 ’b’,
 ’c’,
 ’d’
]
 };

While writing this example I made a mistake and wrote qw(a b c d) instead of [qw(a b c d)] .
When I pretty-printed the contents of $data I immediately saw my mistake:

 $VAR1 = \{
 ’b’ => ’c’,
 ’d’ => ’hash’,
 ’HASH(0x80cd79c)’ => undef,
 ’array’ => ’a’
 };

That’s not what I wanted of course, but I spotted the bug and corrected it, as you saw in the original
example from above.

Of course you can use

 print STDERR $variable;

or:

 warn $variable;

instead of print to have all the debug messages in the error_log, which makes it even easier to debug your
code.

15 Feb 2014502

17.7.5 Using print() and Data::Dumper for Debugging

17.7.6 The Importance of a Good Concise Coding Style

Don’t strive for elegant, clever code. Try to develop a good coding style by writing code which is concise
yet easy to understand. It’s much easier to find bugs in concise, simple code. And such code tends to have
less bugs.

The ’one week ago’ example from the previous section is not concise. There is a lot of redundancy in it,
and as a result it is harder to debug than it needs to be. Here is a condensed version of the main loop. As
you can see, this version won’t make it easier to understand the code:

 for (0..6) {
 next if --$day;
 $year--,$month=12 unless --$month;
 $day = $month != 1
 ? $month_len[$month-1]
 : (($year % 4 or $year % 100 == 0) and $year % 400)
 ? 28
 : 29;
 }

Don’t do that at home :)

Why did I present this version? Because it is too obscure, which makes it difficult to understand and main-
tain. On the other hand a part of this code is easier to understand.

Larry Wall, the author of Perl, is a linguist. He tried to define the syntax of Perl in a way that makes
working in Perl much like working in English. So it can be a good idea to learn Perl coding idioms, some
of which might seem odd at first but once you get used to them, you will find it difficult to understand
how you could have lived without them before. I’ll show just a few of the most common Perl coding
idioms.

It’s a good idea to write code which is more readable but which avoids redundancy, so it’s better to write:

 unless ($i) {...}

rather than:

 if ($i == 0) {...}

if you want to test for trueness only.

Use a much more concise, Perlish style:

 for my $j (0..6) {...}

instead of the syntax used in some other languages:

 for (my $j=0; $j<=6; $j++) {...}

50315 Feb 2014

17.7.6 The Importance of a Good Concise Coding StyleDebugging mod_perl

It’s much simpler to write and comprehend code like this:

 print "something" if $debug;

than this:

 if($debug){
 print "something";
 }

A good style that improves understanding, readability and reduces the chances of having a bug is shown
below in the form of yet another rewrite of our ‘one week ago’ code:

 for (0..6) {
 $day--;
 next if $day;

 $month--;
 unless ($month){
 $year--;
 $month=12
 }

 if($month == 1){
 $day = (($year % 4 or $year % 100 == 0) and $year % 400)
 ? 28 : 29;
 } else {
 $day = $month_len[$month-1];
 }
 }

which is a happy medium between the excessively verbose style of the first version and very obscure
second version.

And of course a two liner, which is much faster and easier to understand is:

 sub date_a_week_ago{
 my ($day,$month,$year) = (localtime(time-604800))[3..5];
 return sprintf "%02d/%02d/%04d",$month+1,$day,$year+1900;
 }

Just take the current date in seconds since epoch as time() returns, subtract a week in seconds
(7*24*60*60 = 604800) and feed the result to localtime() - voila we’ve got the date of one week ago!

Why is the last version important, when the first one works just fine? Not because of performance issues
(although this last one is twice as fast as the first), but because there are more ways to put a bug in the first
version than there are in the last one.

15 Feb 2014504

17.7.6 The Importance of a Good Concise Coding Style

17.7.7 Introduction to the Perl Debugger

As we saw earlier, it’s almost always possible to debug code with the help of print(). However, it is impos-
sible to anticipate all the possible directions which a program might take, and difficult to know what code
to suspect when trouble occurs. In addition, inline debugging code tends to add bloat and degrade the
performance of an application, although most applications offer inline debugging as a compile time option
to avoid these hits. In any case, this information tends to only be useful to the programmer who added the
print statements in the first place.

Sometimes you have to debug tens of thousands lines of Perl in an application, and while you may be a
very experienced Perl programmer who can understand Perl code quite well by just looking at it, no mere
mortal can even begin to understand what will actually happen in such a large application, until the code is
running. So you just don’t know where to start adding your trusty print() statements to see what is happen-
ing inside.

The most effective way to track down a bug is to run the program inside an interactive debugger. The
majority of programming languages have such a tool available, allowing one to see what is happening
inside an application while it is running. The basic features of an interactive debugger allow you to:

Stop at a certain point in the code, based on a routine name or source file and line number

Stop at a certain point in the code, based on conditions such as the value of a given variable

Perform an action without stopping, based on the criteria above

View and modify the value of variables at any given point

Provide context information such as stack traces and source windows

It does take practice to learn the most effective ways of using an interactive debugger, but the time and
effort will be paid back many-fold in the long run.

Most C and C++ programmers are familiar with the interactive GNU debugger (gdb). gdb is a
stand-alone program that requires your code to be compiled with debugging symbols to be useful. While
gdb can be used to debug the Perl interpreter itself, it cannot be used to debug your Perl scripts.

Not to worry, Perl provides its own interactive debugger, called perldb . Giving control of your Perl
program to the interactive debugger is simply a matter of specifying the -d command line switch. When
this switch is used, Perl inserts debugging hooks into the program syntax tree, but it leaves the job of
debugging to a Perl module separate from the perl binary itself.

I will start by introducing a few of the basic concepts and commands of the Perl interactive debugger.
These warm-up examples all run from the command line, independent of mod_perl, but are all still rele-
vant when we do finally go inside Apache.

It might be useful to keep the perldebug manpage handy for reference while reading this section, and for
future debugging sessions on your own.

50515 Feb 2014

17.7.7 Introduction to the Perl DebuggerDebugging mod_perl

The interactive debugger will attach to the current terminal and present you with a prompt just before the
first program statement is executed. For example:

 % perl -d -le ’print "mod_perl rules the world"’

 Loading DB routines from perl5db.pl version 1.0402

 Emacs support available.

 Enter h or ‘h h’ for help.

 main::(-e:1): print "mod_perl rules the world"
 DB<1>

The source line shown is the line which Perl is about to execute, the next command (or just n) will cause
this line to be executed after which execution will stop again just before the next line:

 main::(-e:1): print "mod_perl rules the world"
 DB<1> n
 mod_perl rules the world
 Debugged program terminated. Use q to quit or R to restart,
 use O inhibit_exit to avoid stopping after program termination,
 h q, h R or h O to get additional info.
 DB<1>

In this case, our example code is only one line long, so we have finished interacting after the first line of
code is executed. Let’s try again with slightly longer example which is the following script:

 my $word = ’mod_perl’;
 my @array = qw(rules the world);

 print "$word @array\n";

Save the script in a file called domination.pl and run with the -d switch:

 % perl -d domination.pl

 main::(domination.pl:1): my $word = ’mod_perl’;
 DB<1> n
 main::(domination.pl:2): my @array = qw(rules the world);
 DB<1>

At this point, the first line of code has been executed and the variable $word has been assigned the value
mod_perl. We can check this by using the p command (an abbreviation for the print command, the two
are interchangeable):

 main::(domination.pl:2): my @array = qw(rules the world);
 DB<1> p $word
 mod_perl

The print command works just like the Perl’s built-in print() function, but adds a trailing newline and
outputs to the $DB::OUT file handle, which is normally opened on the terminal where Perl was launched
from. Let’s carry on:

15 Feb 2014506

17.7.7 Introduction to the Perl Debugger

 DB<2> n
 main::(domination.pl:4): print "$word @array\n";
 DB<2> p @array
 rulestheworld
 DB<3> n
 mod_perl rules the world
 Debugged program terminated. Use q to quit or R to restart,
 use O inhibit_exit to avoid stopping after program termination,
 h q, h R or h O to get additional info.

Ouch, p @array printed rulestheworld and not rules the world , as you might expect it to,
but that’s absolutely correct. If you print an array without expanding it first into a string it will be printed
without adding the content of the $" variable (otherwise known as $LIST_SEPARATOR if the English
pragma is being used) between the elements of the array.

If you type:

 print "@array";

the output will be rules the world since the default value of the $" variable is a single space.

You should have noticed by now that there is some valuable information to the left of each executable
statement:

 main::(domination.pl:4): print "$word @array\n";
 DB<2>

First is the current package name, in this case main:: . Next is the current filename and statement line
number, domination.pl and 4 in the example above. The number presented at the prompt is the command
number which can be used to recall commands from the session history, using the ! command followed by
this number. For example, !1 would repeat the first command:

 % perl -d -e0

 main::(-e:1): 0
 DB<1> p $]
 5.00503
 DB<2> !1
 p $]5.00503
 DB<3>

Where $] is the perl’s version number. As you see !1 prints the value of $] , preceded by the command
that was executed.

Things start to get more interesting as the code does. In the example script below (save it to a file called
test.pl) we’ve increased the number of source files and packages by including the standard Symbol
module, along with an invocation of its gensym() function:

 use Symbol ();

 my $sym = Symbol::gensym();

 print "$sym\n";

50715 Feb 2014

17.7.7 Introduction to the Perl DebuggerDebugging mod_perl

 % perl -d test.pl

 main::(test.pl:3): my $sym = Symbol::gensym();
 DB<1> n
 main::(test.pl:5): print "$sym\n";
 DB<1> n
 GLOB(0x80c7a44)

First, notice the debugger did not stop at the first line of the file. This is because use ... is a
compile-time statement, not a run-time statement. Also notice there was more work going on than the
debugger revealed. That’s because the next command does not enter subroutine calls. To step into a
subroutine code use the step command (or its abbreviated form s):

 % perl -d test.pl

 main::(test.pl:3): my $sym = Symbol::gensym();
 DB<1> s
 Symbol::gensym(/usr/lib/perl5/5.00503/Symbol.pm:86):
 86: my $name = "GEN" . $genseq++;
 DB<1>

Notice the source line information has changed to the Symbol::gensym package and the Symbol.pm
file. We can carry on by hitting the return key at each prompt, which causes the debugger to repeat the last
step or next command. It won’t repeat a print command though. The debugger will eventually return
from the subroutine back to our main program:

 DB<1>
 Symbol::gensym(/usr/lib/perl5/5.00503/Symbol.pm:87):
 87: my $ref = *{$genpkg . $name};
 DB<1>
 Symbol::gensym(/usr/lib/perl5/5.00503/Symbol.pm:88):
 88: delete $$genpkg{$name};
 DB<1>
 Symbol::gensym(/usr/lib/perl5/5.00503/Symbol.pm:89):
 89: $ref;
 DB<1>
 main::(test.pl:5): print "$sym\n";
 DB<1>
 GLOB(0x80c7a44)

Our line-by-line debugging approach has served us well for this small program, but imagine the time it
would take to step through a large application at the same pace. There are several ways to speed up a
debugging session, one of which is known as setting a breakpoint. The breakpoint command (b) can
be used for instructing the debugger to stop at a named subroutine or at any line of any file. In this
example session, at the first debugger prompt we will set a breakpoint at the Symbol::gensym subrou-
tine, telling the debugger to stop at the first line of this routine when it is called. Rather than move along
with next or step we give the continue command (c) which tells the debugger to execute the script
without stopping until it reaches a breakpoint:

15 Feb 2014508

17.7.7 Introduction to the Perl Debugger

 % perl -d test.pl

 main::(test.pl:3): my $sym = Symbol::gensym();
 DB<1> b Symbol::gensym
 DB<2> c
 Symbol::gensym(/usr/lib/perl5/5.00503/Symbol.pm:86):
 86: my $name = "GEN" . $genseq++;

Now let’s pretend we are debugging a large application where Symbol::gensym might be called in
various places. When the subroutine breakpoint is reached, by default the debugger does not reveal where
it was called from. One way to find out this information is with the Trace command (T):

 DB<2> T
 $ = Symbol::gensym() called from file ‘test.pl’ line 3

In this example, the call stack is only one level deep, so only that line is printed. We’ll look at an example
with a deeper stack later. The left-most character reveals the context in which the subroutine was called. $
represents scalar context, in other examples you may see @ which represents list context or . which repre-
sents void context. In our case we have called:

 my $sym = Symbol::gensym();

which calls the Symbol::gensym() in scalar context.

Below we’ve made our test.pl example a little more complex. First, we’ve added a My::World package
declaration at the top of the script, so we are no longer working in the main:: package. Next, we’ve
added a subroutine named do_work() which invokes the familiar Symbol::gensym , along with another
function called Symbol::qualify and then returns a hash reference of the results. The do_work()
routine is invoked inside a for loop which will be run twice:

 package My::World;

 use Symbol ();

 for (1,2) {
 do_work("now");
 }

 sub do_work {
 my ($var) = @_;

 return undef unless $var;

 my $sym = Symbol::gensym();
 my $qvar = Symbol::qualify($var);

 my $retval = {
 ’sym’ => $sym,
 ’var’ => $qvar,
 };

 return $retval;
 }

50915 Feb 2014

17.7.7 Introduction to the Perl DebuggerDebugging mod_perl

We’ll start by setting a few breakpoints and then we use the List command (L) to display them:

 % perl -d test.pl

 My::World::(test.pl:5): for (1,2) {
 DB<1> b Symbol::qualify
 DB<2> b Symbol::gensym
 DB<3> L
 /usr/lib/perl5/5.00503/Symbol.pm:
 86: my $name = "GEN" . $genseq++;
 break if (1)
 95: my ($name) = @_;
 break if (1)

The filename and line number of the breakpoint are displayed just before the source line itself. Because
both breakpoints are located in the same file, the filename is displayed only once. After the source line we
see the condition on which to stop. In this case, as the constant value 1 indicates, we will always stop at
these breakpoints. Later on you’ll see how to specify a condition.

As we will see, when the continue command is executed, the execution of the program stops at one of
these breakpoints, either on line 86 or 95 of the /usr/lib/perl5/5.00503/Symbol.pm file,
whichever is reached first. The displayed code lines are the first rows of the two subroutines from
Symbol.pm . Breakpoints may only be applied to lines of run-time executable code, you cannot put
breakpoints on empty lines or comments for example.

In our example the List command shows which lines the breakpoints were set on, but we cannot tell
which breakpoint belongs to which subroutine. There are two ways to find this out. One is to run the
continue command and when it stops, execute the Trace command we saw before:

 DB<3> c
 Symbol::gensym(/usr/lib/perl5/5.00503/Symbol.pm:86):
 86: my $name = "GEN" . $genseq++;
 DB<3> T
 $ = Symbol::gensym() called from file ‘test.pl’ line 14
 . = My::World::do_work(’now’) called from file ‘test.pl’ line 6

So we see that it was Symbol::gensym . The other way is to ask for a listing of a range of lines from the
code. For example, let’s check which subroutine line 86 is a part of. We use the list (lowercase!)
command (l), which displays parts of the code. The list command accepts various arguments, the one
that we want to use here is a range of lines. Since the breakpoint is at line 86, let’s print a few lines above
and below that line:

 DB<3> l 85-87
 85 sub gensym () {
 86==>b my $name = "GEN" . $genseq++;
 87: my $ref = *{$genpkg . $name};

Now we know it’s the gensym sub and we also see the breakpoint displayed with the help of the ==>b
markup. We could also use the name of the sub to display its code:

15 Feb 2014510

17.7.7 Introduction to the Perl Debugger

 DB<4> l Symbol::gensym
 85 sub gensym () {
 86==>b my $name = "GEN" . $genseq++;
 87: my $ref = *{$genpkg . $name};
 88: delete $$genpkg{$name};
 89: $ref;
 90 }

The delete command (d) is used to remove a breakpoint by specifying the line number of the break-
point. Let’s remove the first one:

 DB<5> d 95

The Delete command (with a capital ‘D’) or D removes all currently installed breakpoints.

Now let’s look again at the trace produced at the breakpoint:

 DB<3> c
 Symbol::gensym(/usr/lib/perl5/5.00503/Symbol.pm:86):
 86: my $name = "GEN" . $genseq++;
 DB<3> T
 $ = Symbol::gensym() called from file ‘test.pl’ line 14
 . = My::World::do_work(’now’) called from file ‘test.pl’ line 6

As you can see, the stack trace prints the values which are passed into the subroutine. Ah, and perhaps
we’ve found our first bug, as we can see do_work() was called in void context, so the return value was lost
into thin air. Let’s change the ’for’ loop to check the return value of do_work():

 for (1,2) {
 my $stuff = do_work("now");
 if ($stuff) {
 print "work is done\n";
 }
 }

In this session we will set a breakpoint at line 7 of test.pl where we check the return value of
do_work():

 % perl -d test.pl

 My::World::(test.pl:5): for (1,2) {
 DB<1> b 7
 DB<2> c
 My::World::(test.pl:7): if ($stuff) {
 DB<2>

Our program is still small, but already it is getting more difficult to understand the context of just one line
of code. The window command (w) will list a few lines of code that surround the current line:

51115 Feb 2014

17.7.7 Introduction to the Perl DebuggerDebugging mod_perl

 DB<2> w
 4
 5: for (1,2) {
 6: my $stuff = do_work("now");
 7==>b if ($stuff) {
 8: print "work is done\n";
 9 }
 10 }
 11
 12 sub do_work {
 13: my ($var) = @_;

The arrow points to the line which is about to be executed and also contains a ’b’ indicating that we have
set a breakpoint at this line. The breakable lines of code include a ‘:’ immediately after the line number.

Please notice that this demonstration was done before perl 5.8 was released, which redefined some of the
letters to have a different meaning. For example w was replaced with v . Please see the perldebug
manpage.

Now, let’s take a look at the value of the $stuff variable with the trusty old print command:

 DB<2> p $stuff
 HASH(0x82b89b4)

That’s not very useful information. Remember, the print command works just like the built-in print()
function does. The debugger’s x command evaluates a given expression and prints the results in a "pretty"
fashion:

 DB<3> x $stuff
 0 HASH(0x82b89b4)
 ’sym’ => GLOB(0x826a944)
 -> *Symbol::GEN0
 ’var’ => ’My::World::now’

There, things seem to be okay, let’s double check by calling do_work() with a different value and print the
results:

 DB<4> x do_work(’later’)
 0 HASH(0x82bacc8)
 ’sym’ => GLOB(0x818f16c)
 -> *Symbol::GEN1
 ’var’ => ’My::World::later’

We can see the symbol was incremented from GEN0 to GEN1 and the variable later was qualified, as
expected.

Now let’s change the test program a little to iterate over a list of arguments held in @args and print a
slightly different message:

 package My::World;

 use Symbol ();

15 Feb 2014512

17.7.7 Introduction to the Perl Debugger

 my @args = qw(now later);
 for my $arg (@args) {
 my $stuff = do_work($arg);
 if ($stuff) {
 print "do your work $arg\n";
 }
 }

 sub do_work {
 my ($var) = @_;

 return undef unless $var;

 my $sym = Symbol::gensym();
 my $qvar = Symbol::qualify($var);

 my $retval = {
 ’sym’ => $sym,
 ’var’ => $qvar,
 };

 return $retval;
 }

There are only two arguments in the list, so stopping to look at each one isn’t too time consuming, but
consider the debugging pace if we had a large list of 100 or so entries. It is possible to customize break-
points by specifying a condition. Each time a breakpoint is reached, the condition is evaluated, stopping
only if the condition is true. In the session below, the window command shows breakable lines and we set
a breakpoint at line 7 with the condition $arg eq ’later’ . As we continue, the breakpoint is skipped
when $arg has the value of now but not when it has the value of later:

 % perl -d test.pl

 My::World::(test.pl:5): my @args = qw(now later);
 DB<1> w
 2
 3: use Symbol ();
 4
 5==> my @args = qw(now later);
 6: for my $arg (@args) {
 7: my $stuff = do_work($arg);
 8: if ($stuff) {
 9: print "do your work $arg\n";
 10 }
 11 }

The ==> symbol shows us the line of code that’s about to be executed.

 DB<1> b 7 $arg eq ’later’
 DB<2> c
 do your work now
 My::World::(test.pl:7): my $stuff = do_work($arg);
 DB<2> n
 My::World::(test.pl:8): if ($stuff) {
 DB<2> x $stuff

51315 Feb 2014

17.7.7 Introduction to the Perl DebuggerDebugging mod_perl

 0 HASH(0x82b90e4)
 ’sym’ => GLOB(0x82b9138)
 -> *Symbol::GEN1
 ’var’ => ’My::World::later’
 DB<5> c
 do your work later
 Debugged program terminated. Use q to quit or R to restart,

There are plenty more tricks left to pull from the perldb bag, but you should now understand enough about
the debugger to try them on your own with the perldebug manpage by your side. Quick online help from
inside the debugger can be reached by typing the h command. It will display a list of the most useful
commands and a short explanation of what they do.

17.7.8 Interactive Perl Debugging under mod_cgi

Devel::ptkdb is a visual Perl debugger that uses perlTk for the user interface and requires a windows
system like X-Windows or Windows to run.

To debug a plain perl script with ptkdb, invoke it as:

 % perl -d:ptkdb myscript.pl

The Tk application will be loaded. Now you can do most of the debugging you did with the command line
Perl debugger, but using a simple GUI to set/remove breakpoints, browse the code, step through it and
more.

With the help of ptkdb you can debug your CGI scripts running under mod_cgi. Be sure that the web
server’s Perl installation includes the Tk package. In order to enable the debugger you should change your
"shebang" line from

 #! /usr/local/bin/perl -Tw

to

 #! /usr/local/bin/perl -Twd:ptkdb

You can debug scripts remotely if you’re using a Unix based server and if the machine where you are
writing the script has an X-server. The X-server can be another Unix workstation, or a Macintosh or
Win32 platform with an appropriate X-Windows package. You must insert the following BEGIN subrou-
tine into your script:

 BEGIN {
 $ENV{’DISPLAY’} = "myHostname:0.0" ;
 }

You can use either the IP (123.123.123.123:0.0) or the DNS convention (myhost.com:0.0). You must be
sure that your web server has permission to open windows on your X-server (see the xhost manpage for
more info).

15 Feb 2014514

17.7.8 Interactive Perl Debugging under mod_cgi

Access the web page with the browser and Submit the script as normal. The ptkdb window should appear
on the monitor if you have correctly set the $ENV{’DISPLAY’} variable. At this point you can start
debugging your script. Be aware that the browser may timeout waiting for the script to run.

To expedite debugging you may want to set your breakpoints in advance with a .ptkdbrc file and use the
$DB::no_stop_at_start variable. NOTE: for debugging web scripts you may have to have the
.ptkdbrc file installed in the server account’s home directory (~www) or whatever username the webserver
is running under. Also try installing a .ptkdbrc file in the same directory as the target script.

META: insert snapshots of ptkdb screen

ptkdb is not part of the standard perl distribution; it is available from CPAN:
http://www.perl.com/CPAN/authors/id/A/AE/AEPAGE/

Some fixes for ptkdb to work under mod_perl are listed here:
http://article.gmane.org/gmane.comp.apache.mod-perl/7562

17.7.9 Non-Interactive Perl Debugging under mod_perl

To debug scripts running under mod_perl either use Apache::DB (interactive Perl debugging) or an older
non-interactive method as described below.

The NonStop debugger option enables you to get some decent debugging information when running
under mod_perl. For example, before starting the server:

 % setenv PERL5OPT -d
 % setenv PERLDB_OPTS "NonStop=1 LineInfo=db.out AutoTrace=1 frame=2"

Now watch db.out for line:filename info. This is most useful for tracking those core dumps that normally
leave us guessing, even with a stack trace from gdb. db.out will show you what Perl code triggered the
core dump. ’man perldebug’ for more PERLDB_OPTS. Note that Perl will ignore PERL5OPT if Perl-
TaintCheck is On.

17.7.10 Interactive mod_perl Debugging

Now we’ll turn to looking at how the interactive debugger is used in a mod_perl environment. The
Apache::DB module available from CPAN provides a wrapper around perldb for debugging Perl
code running under mod_perl.

The server must be run in non-forking mode to use the interactive debugger, this mode is turned on by
passing the -X flag to the httpd executable. It is convenient to use an IfDefine section around the
Apache::DB configuration, the example below does this using the name PERLDB. With this setup,
debugging is only turned on when starting the server with the httpd -D PERLDB command.

This section should be at the top of the Perl configuration section of the configuration file, before any
other Perl code is pulled in, so that debugging symbols will be inserted into the syntax tree, triggered by
the call to Apache::DB->init . The Apache::DB::handler can be configured using any of the
Perl*Handler directives, in this case you use a PerlFixupHandler so handlers in the response

51515 Feb 2014

17.7.9 Non-Interactive Perl Debugging under mod_perlDebugging mod_perl

http://www.perl.com/CPAN/authors/id/A/AE/AEPAGE/
http://article.gmane.org/gmane.comp.apache.mod-perl/7562

phase will bring up the debugger prompt:

 <IfDefine PERLDB>

 <Perl>
 use Apache::DB ();
 Apache::DB->init;
 </Perl>

 <Location />
 PerlFixupHandler Apache::DB
 </Location>

 </IfDefine>

Since we have used / as the argument to the Location directive, the debugger will be invoked for any
kind of request (even for static documents and images) but of course it will immediately quit unless there
is some Perl module registered to handle these requests.

In our first example, we will debug the standard Apache::Status module, which is configured like
this:

 PerlModule Apache::Status
 <Location /perl-status>
 PerlHandler Apache::Status
 SetHandler perl-script
 </Location>

When the server is started with the debugging flag, a notice will be printed to the console:

 % httpd -X -D PERLDB
 [notice] Apache::DB initialized in child 950

The debugger prompt will not be available until the first request is made, in our case to http://local-
host/perl-status. Once we are at the prompt, all the standard debugging commands are available. First we
run window to get some of the context for the code being debugged, then we move to the next statement
after a value has been assigned to $r , and finally we print the request URI. If no breakpoints are set, the
continue command will give control back to Apache and the request will finish with the
Apache::Status main menu showing in the browser window:

 Loading DB routines from perl5db.pl version 1.0402
 Emacs support available.

 Enter h or ‘h h’ for help.

 Apache::Status::handler(/usr/lib/perl5/site_perl/5.005/i386-linux/Apache/Status.pm:55):
 55: my ($r) = @_;
 DB<1> w
 52 }
 53
 54 sub handler {
 55==> my ($r) = @_;
 56: Apache->request($r); #for Apache::CGI
 57: my $qs = $r->args || "";

15 Feb 2014516

17.7.10 Interactive mod_perl Debugging

http://localhost/perl-status
http://localhost/perl-status

 58: my $sub = "status_$qs";
 59: no strict ’refs’;
 60
 61: if($qs =~ s/^(noh_\w+).*/$1/) {
 DB<1> n
 Apache::Status::handler(/usr/lib/perl5/site_perl/5.005/i386-linux/Apache/Status.pm:56):
 56: Apache->request($r); # for Apache::CGI
 DB<1> p $r->uri
 /perl-status
 DB<2> c

All the techniques we saw while debugging plain perl scripts can be applied to this debugging session.

Debugging Apache::Registry scripts is somewhat different, because the handler routine does quite a
bit of work before it reaches your script. In this example, we make a request for /perl/test.pl ,
which consists of this code:

 use strict;

 my $r = shift;
 $r->send_http_header(’text/plain’);

 print "mod_perl rules";

When a request is issued, the debugger stops at line 28 of Apache/Registry.pm. We set a breakpoint at line
140, which is the line that actually calls the script wrapper subroutine. The continue command will
bring us to that line, where we can step into the script handler:

 Apache::Registry::handler(/usr/lib/perl5/site_perl/5.005/i386-linux/Apache/Registry.pm:28):
28: my $r = shift;
 DB<1> b 140
 DB<2> c
 Apache::Registry::handler(/usr/lib/perl5/site_perl/5.005/i386-linux/Apache/Registry.pm:140):
 140: eval { &{$cv}($r, @_) } if $r->seqno;
 DB<2> s
 Apache::ROOT::perl::test_2epl::handler((eval 87):3):
 3: my $r = shift;

Notice the funny package name, that’s generated from the URI of the request for namespace protection.
The filename is not displayed, since the code was compiled via eval(), but the print command can be
used to show you $r->filename :

 DB<2> n
 Apache::ROOT::perl::test_2epl::handler((eval 87):4):
 4: $r->send_http_header(’text/plain’);
 DB<2> p $r->filename
 /home/httpd/perl/test.pl

The line number might seem off too, but the window command will give you a better idea where you are:

51715 Feb 2014

17.7.10 Interactive mod_perl DebuggingDebugging mod_perl

 DB<4> w
 1: package Apache::ROOT::perl::test_2epl;use Apache qw(exit);
 sub handler { use strict;
 2
 3: my $r = shift;
 4==> $r->send_http_header(’text/plain’);
 5
 6: print "mod_perl rules";
 7
 8 }
 9 ;

The code from the test.pl file is between lines 2 and 7, the rest is the Apache::Registry magic to
cache your code inside a handler subroutine.

It will always take some practice and patience when putting together debugging strategies that make effec-
tive use of the interactive debugger for various situations. Once you have a good strategy, bug squashing
can actually be quite a bit of fun!

17.7.11 ptkdb and Interactive mod_perl Debugging

As you saw earlier you can use the ptkdb visual debugger to debug CGI scripts running under mod_cgi.
But it won’t work for mod_perl using the same configuration as used in mod_cgi. We have to tweak the
Apache/DB.pm module to use Devel/ptkdb.pm instead of Apache/perl5db.pl.

Open the file in your favorite editor and replace:

 require ’Apache/perl5db.pl’;

with:

 require ’Devel/ptkdb.pm’;

Now when you use the interactive mod_perl debugger configuration from the previous section and issue a
request, the ptkdb visual debugger will be loaded.

If you are debugging Apache::Registry scripts, as in the terminal debugging mode example, go to
line 140 (or to whatever line the eval { &{$cv}($r, @_) } if $r->seqno; statement is
located) and press the step in button to start the debug of the script itself.

Note that you can use Apache with ptkdb in plain multi-server mode, you don’t have to start httpd
with the -X option.

META: One caveat:

When the request is completed, ptkdb hangs. Does anyone know what code should be registered for it to
exit on completion? To replace the original Apache::DB cleanup code, as:

15 Feb 2014518

17.7.11 ptkdb and Interactive mod_perl Debugging

 if (ref $r) {
 $SIG{INT} = \&DB::catch;
 $r->register_cleanup(sub {
 $SIG{INT} = \&DB::ApacheSIGINT();
 });
 }

Any Perl/Tk guru to assist???

17.7.12 Debugging when Server Crashes on Startup before Writing to
Log File.

If your server crashes on startup, you need to start it under gdb and ask it to generate a stack trace.

I’ll emulate a faulty server by starting a startup file with the dump() command:

 startup.pl

 dump;
 1;

and then requiring this file from the httpd.conf:

 PerlRequire /path/to/startup.pl

Make sure no server is running on port 80 or use an alternate config with an alternate port if using a
production server.

 % gdb /path/to/httpd
 (gdb) set args -X

Use:

 set args -X -f /path/to/alternate/serverconfig_ifneeded.conf

if the server must be started from an alternative configuration file.

Now run the program:

 (gdb) run

 Starting program: /usr/local/apache/bin/httpd -X

 Program received signal SIGABRT, Aborted.
 0x400da4e1 in __kill () from /lib/libc.so.6

At this point the server should die because of the call to dump() . When that happens we use bt or
where to ask for a stack back trace.

51915 Feb 2014

17.7.12 Debugging when Server Crashes on Startup before Writing to Log File.Debugging mod_perl

 (gdb) where

 #0 0x400da4e1 in __kill () from /lib/libc.so.6
 #1 0x80d43bc in Perl_my_unexec ()
 #2 0x8119544 in Perl_pp_goto ()
 #3 0x8118990 in Perl_pp_dump ()
 #4 0x812b2ad in Perl_runops_standard ()
 #5 0x80d3a9c in perl_eval_sv ()
 #6 0x807ef1c in perl_do_file ()
 #7 0x807ef4f in perl_load_startup_script ()
 #8 0x807b7ec in perl_cmd_require ()
 #9 0x8092af7 in ap_clear_module_list ()
 #10 0x8092f43 in ap_handle_command ()
 #11 0x8092fd7 in ap_srm_command_loop ()
 #12 0x80933e0 in ap_process_resource_config ()
 #13 0x8093ca2 in ap_read_config ()
 #14 0x809db63 in main ()
 #15 0x400d41eb in __libc_start_main (main=0x809d8dc <main>, argc=2,
 argv=0xbffffab4, init=0x80606f8 <_init>, fini=0x812b38c <_fini>,
 rtld_fini=0x4000a610 <_dl_fini>, stack_end=0xbffffaac)
 at ../sysdeps/generic/libc-start.c:90

If you do not know what this trace means, you could send it to the mod_perl mailing list to ask for help.
Make sure to include the version numbers of Apache, mod_perl and Perl, and use a subject line that says
something about the problem rather than ’help’.

In our case we already know that the server is supposed to die when compiling the startup file and we can
clearly see that from the trace. We always read it from the bottom upward:

We are in config file:

 #13 0x8093ca2 in ap_read_config ()

We do require:

 #8 0x807b7ec in perl_cmd_require ()

We load the file and compile it:

 #6 0x807ef1c in perl_do_file ()
 #5 0x80d3a9c in perl_eval_sv ()

dump() gets executed:

 #3 0x8118990 in Perl_pp_dump ()

dump() calls __kill() :

 #0 0x400da4e1 in __kill () from /lib/libc.so.6

15 Feb 2014520

17.7.12 Debugging when Server Crashes on Startup before Writing to Log File.

17.8 Hanging Processes: Detection and Diagnostics
Sometimes a httpd process might hang in the middle of processing a request, either because there is a bug
in your code (e.g. the code is stuck in a while loop), it gets blocked by some system call or because of a
resource deadlock) or for some other reason. In order to fix the problem we need to learn what circum-
stances the process hangs in (detection), so we can reproduce the problem and after that to discover why
there is problem (diagnostics).

17.8.1 Hanging because of the OS Problem

Sometimes you can find a process hanging because of some kind of the system problem. For example if
the processes was doing some disk IO operation it might get stuck in uninterruptable sleep (’D’ disk wait
in ps(1) report, ’U’ in top(1)) which indicates that either something is broken in your kernel or that you’re
using NFS. Or and you cannot kill -9 this process.

Another process that cannot be killed with kill -9 is a zombie process (’Z’ disk wait in ps(1) report,
<defunc> in top(1)), in which case the process is already dead and Apache didn’t wait on it properly.

In the case of disk wait you can actually get the wait channel from ps(1) and look it up in your kernel
symbol table to find out what resource it was waiting on. It might point the way to what component of the
system was misbehaving if the problem occurred frequently.

17.8.2 An Example of Code that Might Hang a Process

Deadlock is the situation where, for example, two processes, say X and Y, need two resources, A and B to
continue. X holds onto A and Y holds onto B. There is no possibility for Y to continue before X releases
A. But X cannot release A before it gets Y.

Look at the following example. Your process has to gain a lock on some resource (e.g. a file) before it
continues. So it makes an attempt, and if that fails it sleep()s for a second and increments a counter:

 until(gain_lock()){
 $tries++;
 sleep 1;
 }

Because there are many processes competing for this resource, or perhaps because there is a deadlock,
gain_lock() always fails. The process is hung.

Another situation that you may very often encounter is exclusive lock starvation. Generally there are two
lock types in use: SHARED locks, which allow many processes to perform READ operations simultane-
ously, and EXCLUSIVE locks. The latter permits access only by a single process and so makes a safe
WRITE operation possible.

You can lock any kind of resource, although in our examples we will talk about files.

52115 Feb 2014

17.8 Hanging Processes: Detection and DiagnosticsDebugging mod_perl

If there is a READ lock request, it is granted as soon as the file becomes unlocked or immediately if it is
already READ locked. The lock status becomes READ on success.

If there is a WRITE lock request, it is granted as soon as the file becomes unlocked. Lock status becomes
WRITE on success.

Normally it is the WRITE lock request which is the most important. If the file is being READ locked, a
process that requests to write will poll until there are no reading or writing process left. However, lots of
processes can successfully read the file, since they do not block each other from doing so. This means that
a process that wants to write to the file (first obtaining an exclusive lock) never gets a chance to squeeze
in. The following diagram represents a possible scenario where everybody can read but no one can write:

 [-p1-] [--p1--]
 [--p2--]
 [---------p3---------]
 [------p4-----]
 [--p5--] [----p5----]

Let’s look at some real code and see it in action. The following script imports flock() related parameters
from the Fcntl module, and opens a file that will be locked. It then defines and sets two variables:
$lock_type and $lock_type_verbose . These are set to LOCK_EX and EX respectively if the first
command line argument ($ARGV[0]) is defined and equal to w. This indicates
that this process will try to gain a WRITE (exclusive) lock. Otherwise
the two are set to LOCK_SH and <SH for a SHARED (read) lock.

Once the variables are set, we enter the infinite while(1) loop that attempts to lock the file by the mode
set in $lock_type . It report success and the type of lock that was gained, then it sleeps for a random
period between 0 and 9 seconds and unlocks the file. The loop then starts from the beginning.

 lock.pl

 #!/usr/bin/perl -w
 use Fcntl qw(:flock);

 $lock = "/tmp/lock";

 open LOCK, ">$lock" or die "Cannot open $lock for writing: $!";
 my $lock_type = LOCK_SH;
 my $lock_type_verbose = ’SH’;
 if (defined $ARGV[0] and $ARGV[0] eq ’w’){
 $lock_type = LOCK_EX;
 $lock_type_verbose = ’EX’;
 }

 while(1){
 flock LOCK,$lock_type;
 # start of critical section
 print "$$: $lock_type_verbose\n";
 sleep int(rand(10));
 # end of critical section
 flock LOCK, LOCK_UN;
 }
 close LOCK;

15 Feb 2014522

17.8.2 An Example of Code that Might Hang a Process

It’s very easy to see WRITE process starvation if you spawn a few of the above scripts simultaneously.
Start the first few as READ processes and then start one WRITE process like this:

 % ./lock.pl r & ; ./lock.pl r & ; ./lock.pl r & ; ./lock.pl w &

You see something like:

 24233: SH
 24232: SH
 24232: SH
 24233: SH
 24232: SH
 24233: SH
 24231: SH
 24231: SH
 24231: SH

and not a single EX line... When you kill off the reading processes, then the write process will gain its
lock. Note that as this is a rough example, I used the sleep() function. To simulate a real situation you need
to use the Time::HiRes module, which allows you to choose more precise intervals to sleep.

The interval between lock and unlock is called a Critical Section, which should be kept as short as possi-
ble (in terms of the time taken to execute the code, and not in terms of the number of lines of code). As
you just saw, a single sleep statement can make the critical section long.

To summarize, if you have a script that uses both READ and WRITE locks and the critical section isn’t
very short, the writing process might be starved. After a while a browser that initiated this request will
timeout the connection and abort the request, but it’s much more likely that user will press the Stop or
Reload button before that happens. Since the process in question is just waiting, there is no way for
Apache to know that the request was aborted. It will hang until the lock is gained. Only when a write to a
client’s broken connection is attempted will Apache terminate the script.

17.8.3 Detecting hanging processes

It’s not so easy to detect hanging processes. There is no way you can tell how long the request is taking to
process by using plain system utilities like ps() and top(). The reason is that each Apache process serves
many requests without quitting. System utilities can tell how long the process has been running since its
creation, but this information is useless in our case, since Apache processes normally run for extended
periods.

However there are a few approaches that can help to detect a hanging process.

If the process hangs and demands lots of resources it’s quite easy to spot it by using the top() utility. You
will see the same process show up in the first few lines of the automatically refreshed report. But often the
hanging process uses few resources, e.g. when waiting for some event to happen.

Another easy case is when some process thrashes the error_log, writing millions of error messages there.
Generally this process uses lots of resources and is also easily spotted by using top().

52315 Feb 2014

17.8.3 Detecting hanging processesDebugging mod_perl

There are other tools that report the status of Apache processes.

The mod_status module, which is usually accessed from the /server_status location.
The Apache::VMonitor module.

Both tools provide counters of processed requests per Apache process.

You can watch the report for a few minutes, and try to spot any process which has the same number of
processed requests while its status is ’W’ (waiting). This means that it has hung.

But if you have fifty processes, it can be quite hard to spot such a process. Apache::Watchdog::RunAway
is a hanging processes monitor and terminator that implements this feature and should be used to solve this
kind of problem.

If you’ve got a real problem, and the processes hang one after the other, the time will come when the
number of hanging processes is equal to the value of MaxClients . This means that no more processes
will be spawned. As far as the users are concerned your server is down. It is easy to detect this situation,
attempt to resolve it and notify the administrator using a simple crontab watchdog that requests some very
light script periodically. (See Monitoring the Server. A watchdog.)

In the watchdog you set a timeout appropriate for your service, which may be anything from a few
seconds to a few minutes. If the server fails to respond before the timeout expires, the watchdog has
spotted trouble and attempts to restart the server. After a restart an email report is sent to the administrator
saying that there was a problem and whether or not the restart was successful.

If you get such reports constantly something is wrong with your web service and you should revise your
code. Note that it’s possible that your server is being overloaded by more requests than it can handle, so
the requests are being queued and not processed for a while, which triggers the watchdog’s alarm. If this is
a case you may need to add more servers or more memory, or perhaps split your single machine across a
cluster of machines.

17.8.4 Determination of the reason

Given the process id (PID), there are three ways to find out where the server is hanging.

1. Deploying the Perl calls tracing mechanism. This will allow to spot the location of the Perl code that
has triggered the problem.

2. Using the system calls tracing utilities, like strace(1) or truss(1). This approach reveals low level
details about a potential misbehavior of some part of the system.

3. Using an interactive debugger, like gdb(1). When the process is stuck, and you don’t know what it
was doing just before it has got stuck, with gdb you can attach to this process and print its calls stack,
to reveal where the last call was made from. Just like with strace or truss you see the system call trace
and not the Perl calls.

15 Feb 2014524

17.8.4 Determination of the reason

17.8.4.1 Using the Perl Trace

To see where an httpd is "spinning", try adding this to your script or a startup file:

 use Carp ();
 $SIG{’USR2’} = sub {
 Carp::confess("caught SIGUSR2!");
 };

The above code assigns a signal handler for the USR2 signal. This signal has been chosen because it’s
least likely to be used by the other parts of the server.

We check the registered signal handlers with help of Apache::Status. What we see at http://local-
host/perl-status?sig is :

 USR2 = \&MyStartUp::__ANON__

MyStartUp is the name of the package I’ve used in mine startup.pl.

After applying this server configuration, let’s use this simple code example, where sleep(10000) will
emulate a hanging process:

 debug/perl_trace.pl

 $|=1;
 print "Content-type:text/plain\r\n\r\n";
 print "[$$] Going to sleep\n";
 hanging_sub();
 sub hanging_sub {sleep 10000;}

We execute the above script as http://localhost/perl/debug/perl_trace.pl, we have used $|=1; and printed
the PID with $$ to learn what process ID we want to work with.

No we issue the command line, using the PID we have just saw being printed to the browser’s window:

 % kill -USR2 PID

And watch this showing up at the error_log file:

 caught SIGUSR2!
 at /home/httpd/perl/startup/startup.pl line 32
 MyStartUp::__ANON__(’USR2’) called
 at /home/httpd/perl/debug/perl_trace.pl line 5
 Apache::ROOT::perl::debug::perl_trace_2epl::hanging_sub() called
 at /home/httpd/perl/debug/perl_trace.pl line 4
 Apache::ROOT::perl::debug::perl_trace_2epl::handler(’Apache=SCALAR(0x8309d08)’)
 called
 at /usr/lib/perl5/site_perl/5.005/i386-linux/Apache/Registry.pm
 line 140
 eval {...} called
 at /usr/lib/perl5/site_perl/5.005/i386-linux/Apache/Registry.pm
 line 140

52515 Feb 2014

17.8.4 Determination of the reasonDebugging mod_perl

http://localhost/perl-status?sig
http://localhost/perl-status?sig
http://localhost/perl/debug/perl_trace.pl

 Apache::Registry::handler(’Apache=SCALAR(0x8309d08)’) called
 at PerlHandler subroutine ‘Apache::Registry::handler’ line 0
 eval {...} called
 at PerlHandler subroutine ‘Apache::Registry::handler’ line 0

We can clearly see that the process "hangs" in the code executed at line 5 of the
/home/httpd/perl/debug/perl_trace.pl script, and it was called by the hanging_sub() routine defined at line
4.

17.8.4.2 Using the System Calls Trace

Depending on the operating system you should have one of the truss(1) or strace(1) utilities avail-
able. In the following examples we will use strace(1) .

There are two ways to get the trace of the process with strace(1) (similar to gdb(1)). The first one is to tell
strace(1) to start the process and do the tracing on it:

 % strace perl -le ’print "mod_perl rules"’

The second is tell strace(1) to attach to the process that’s already running. You need to know the PID of
the process.

 % strace -p PID

Replace PID with the process number you want to check on.

There are many more useful arguments accepted by strace(1) that you might find useful. For example you
can tell it to trace only specific system calls:

 % strace -e trace=open,write,close,nanosleep \
 perl -le ’print "mod_perl rules"’

In this example we have asked strace(1) to show us only the open, write, close, nanosleep which simplifies
the observing of the output generated by strace(1) if you know what you are looking for.

Let’s write a mod_perl script that hangs, and deploy strace(1) to find the point it hangs at:

 hangme.pl

 $|=1;
 my $r = shift;
 $r->send_http_header(’text/plain’);

 print "PID = $$\n";

 while(1){
 $i++;
 sleep 1;
 }

15 Feb 2014526

17.8.4 Determination of the reason

The reason this simple code hangs is obvious. It never breaks from the while loop. As you have noticed, it
prints the PID of the current process to the browser. Of course in a real situation you cannot use the same
trick. In the previous section I have presented a few ways to detect the runaway processes and their PIDs.

I save the above code in a file and execute it from the browser. Note that I’ve made STDOUT unbuffered
with $|=1; so I will immediately see the process ID. Once the script is requested, the script prints the
process PID and obviously hangs. So we press the ’Stop’ button, but the process continues to hang in
this code. Isn’t apache supposed to detect the broken connection and abort the request? Yes and No, you
will understand soon what’s really happening.

First let’s attach to the process and see what it’s doing. I use the PID the script printed to the browser,
which is 10045 in this case:

 % strace -p 10045

 [...truncated identical output...]
 SYS_175(0, 0xbffff41c, 0xbffff39c, 0x8, 0) = 0
 SYS_174(0x11, 0, 0xbffff1a0, 0x8, 0x11) = 0
 SYS_175(0x2, 0xbffff39c, 0, 0x8, 0x2) = 0
 nanosleep(0xbffff308, 0xbffff308, 0x401a61b4, 0xbffff308, 0xbffff41c) = 0
 time([940973834]) = 940973834
 time([940973834]) = 940973834
 [...truncated the identical output...]

It isn’t what we expected to see, is it? These are some system calls we don’t see in our little example.
What we actually see is how Perl translates our code into system calls. Since we know that our code hangs
in this snippet:

 while(1){
 $i++;
 sleep 1;
 }

We "easily" figure out that the first three system calls implement the $i++ , while the other three are
responsible for the sleep 1 call.

Generally the situation is the reverse of our example. You detect the hanging process, you attach to it and
watch the trace of calls it does (or the last few commands if the process is hanging waiting for something,
e.g. when blocking on a file lock request). From watching the trace you figure out what it’s actually doing,
and probably find the corresponding lines in your Perl code. For example let’s see how one process
"hangs" while requesting an exclusive lock on a file exclusively locked by another process:

 excl_lock.pl

 use Fcntl qw(:flock);
 use Symbol;

 if (fork()) {
 my $fh = gensym;
 open $fh, ">/tmp/lock" or die "cannot open /tmp/lock $!";
 print "$$: I’m going to obtain the lock\n";
 flock $fh, LOCK_EX;

52715 Feb 2014

17.8.4 Determination of the reasonDebugging mod_perl

 print "$$: I’ve got the lock\n";
 sleep 20;
 close $fh;

 } else {
 my $fh = gensym;
 open $fh, ">/tmp/lock" or die "cannot open /tmp/lock $!";
 print "$$: I’m going to obtain the lock\n";
 flock $fh, LOCK_EX;
 print "$$: I’ve got the lock\n";
 sleep 20;
 close $fh;
 }

The code is simple. The process executing the code forks a second process, and both do the same thing:
generate a unique symbol to be used as a file handler, open the lock file for writing using the generated
symbol, lock the file in exclusive mode, sleep for 20 seconds (pretending to do some lengthy operation)
and close the lock file, which also unlocks the file.

The gensym function is imported from the Symbol module. The Fcntl module provides us with a
symbolic constant LOCK_EX. This is imported via the :flock tag, which imports this and other flock()
constants.

The code used by both processes is identical, therefore we cannot predict which one will get its hands on
the lock file and succeed in locking it first, so we add print() statements to find the PID of the process
blocking (waiting to get the lock) on a lock request.

When the above code executed from the command line, we see that one of the processes gets the lock:

 % ./excl_lock.pl

 3038: I’m going to obtain the lock
 3038: I’ve got the lock
 3037: I’m going to obtain the lock

Here we see that process 3037 is blocking, so we attach to it:

 % strace -p 3037

 about to attach c10
 flock(3, LOCK_EX

It’s clear from the above trace, that the process waits for an exclusive lock. (Note, that the missing closing
parentheses is not a typo!)

As you become familiar with watching the traces of different processes, you will understand what is
happening more easily.

15 Feb 2014528

17.8.4 Determination of the reason

17.8.4.3 Using the Interactive Debugger

Another approach to see a trace of the running code is to use a debugger such as gdb (the GNU debug-
ger). It’s supposed to work on any platform which supports the GNU development tools. Its purpose is to
allow you to see what is going on inside a program while it executes, or what it was doing at the moment it
crashed.

To trace the execution of a process, gdb needs to know the process id (PID) and the path to the binary that
the process is executing. For Perl code it’s /usr/bin/perl (or whatever is the path to your Perl), for httpd
processes it will be the path to your httpd executable.

Here are a few examples using gdb.

Let’s go back to our last locking example, execute it as before and attach to the process that didn’t get the
lock:

 % gdb /usr/bin/perl 3037

After starting the debugger we execute the where command to see the trace:

 (gdb) where
 #0 0x40131781 in __flock ()
 #1 0x80a5421 in Perl_pp_flock ()
 #2 0x80b148d in Perl_runops_standard ()
 #3 0x80592b8 in perl_run ()
 #4 0x805782f in main ()
 #5 0x400a6cb3 in __libc_start_main (main=0x80577c0 <main>, argc=2,
 argv=0xbffff7f4, init=0x8056af4 <_init>, fini=0x80b14fc <_fini>,
 rtld_fini=0x4000a350 <_dl_fini>, stack_end=0xbffff7ec)
 at ../sysdeps/generic/libc-start.c:78

That’s not what we expected to see and now it’s a different trace. #0 tells us the most recent call that was
executed, which is a C language flock() implementation. But the previous call (#1) isn’t print(), as we
would expect, but a higher level of Perl’s internal flock(). If we follow the trace of calls what we actually
see is an Opcodes tree, which can be better presented as:

 __libc_start_main
 main ()
 perl_run ()
 Perl_runops_standard ()
 Perl_pp_flock ()
 __flock ()

So I would say that it’s less useful than strace , since if there are several flock()s it’s almost impossible
to know which of them was called. This problem is solved by strace , which shows the sequence of the
system calls executed. Using this sequence we can locate the corresponding lines in the code.

(META: the above is wrong - you can ask to display the previous command executed by the program (not
gdb)! What is it?)

52915 Feb 2014

17.8.4 Determination of the reasonDebugging mod_perl

When you attach to a running process with debugger, the program stops executing and control of the
program is passed to the debugger. You can continue the normal program run with the continue
command or execute it step by step with the next and step commands which you type at the gdb
prompt. (next steps over any function calls in the line, while step steps into them).

C/C++ debuggers are a very large topic and beyond the scope of this document, but the gdb man page is
quite good and you can try info gdb as well. You might also want to check the ddd (Data Display
Debugger) which provides a visual interface to gdb and other debuggers. It even knows how to debug
Perl programs!

For completeness, let’s see the gdb trace of the httpd process that’s still hanging in the while(1) loop of
the first example in this section:

 % gdb /usr/local/apache/bin/httpd 1005

 (gdb) where
 #0 0x4014a861 in __libc_nanosleep ()
 #1 0x4014a7ed in __sleep (seconds=1) at ../sysdeps/unix/sysv/linux/sleep.c:78
 #2 0x8122c01 in Perl_pp_sleep ()
 #3 0x812b25d in Perl_runops_standard ()
 #4 0x80d3721 in perl_call_sv ()
 #5 0x807a46b in perl_call_handler ()
 #6 0x8079e35 in perl_run_stacked_handlers ()
 #7 0x8078d6d in perl_handler ()
 #8 0x8091e43 in ap_invoke_handler ()
 #9 0x80a5109 in ap_some_auth_required ()
 #10 0x80a516c in ap_process_request ()
 #11 0x809cb2e in ap_child_terminate ()
 #12 0x809cd6c in ap_child_terminate ()
 #13 0x809ce19 in ap_child_terminate ()
 #14 0x809d446 in ap_child_terminate ()
 #15 0x809dbc3 in main ()
 #16 0x400d3cb3 in __libc_start_main (main=0x809d88c <main>, argc=1,
 argv=0xbffff7e4, init=0x80606f8 <_init>, fini=0x812b33c <_fini>,
 rtld_fini=0x4000a350 <_dl_fini>, stack_end=0xbffff7dc)
 at ../sysdeps/generic/libc-start.c:78

As before we can see a complete trace of the last executed call.

As you have noticed, I still haven’t explained why the process hanging in the while(1) loop isn’t
aborted by Apache. The next section covers this.

To easily detect the hanging location, you can go through these steps while running gdb:

 (gdb) where
 (gdb) source ~/.gdbinit
 (gdb) curinfo

(adjust the path to .gdbinit if needed.)

15 Feb 2014530

17.8.4 Determination of the reason

After loading the special macros file (.gdbinit) you can use the curinfo gdb macro to figure out the file and
line number the code stuck in.

17.9 Debugging Hanging processes (continued)
META: incomplete

mod_perl comes with a number of useful of gdb macros to ease the debug process. You will find the file
with macros in the mod_perl source distribution in the .gdbinit file (mod_perl-x.xx/.gdbinit). You might
want to modify the macro definitions.

In order to use this you need to compile mod_perl with PERL_DEBUG=1.

To debug the server, start it:

 % httpd -X

Issue a request to the offending script that hangs. Find the PID number of the process that hangs.

Go to the server root:

 % cd /usr/local/apache

Now attach to it with gdb (replace the PID with the actual process id) and load the macros from .gdbinit:

 % gdb /path/to/httpd PID
 % source /usr/src/mod_perl-x.xx/.gdbinit

Now you can start the server (httpd below is a gdb macro):

 (gdb) httpd

Now run the curinfo macro:

 (gdb) curinfo

It should tell you the line/filename of the offending Perl code.

Add this to .gdbinit:

 define longmess
 set $sv = perl_eval_pv("Carp::longmess()", 1)
 printf "%s\n", ((XPV*) ($sv)->sv_any)->xpv_pv
 end

and when you reload the macros, run:

 (gdb) longmess

53115 Feb 2014

17.9 Debugging Hanging processes (continued)Debugging mod_perl

to produce a Perl stacktrace.

17.9.1 Debugging core Dumping Code
 $ perl -e dump
 Abort(coredump)

META: should I move the Apache::StatINC here? (I think not, since it relates to other topics like
reloading config files, but you should mention it here with a pointer to it)

17.10 PERL_DEBUG=1 Build Option
Building mod_perl with PERL_DEBUG=1:

 perl Makefile.PL PERL_DEBUG=1

will:

1. Add ‘-g’ to EXTRA_CFLAGS

2. Turn on PERL_TRACE

3. Set PERL_DESTRUCT_LEVEL=2

4. Link against libperld if -e $Config{archlibexp}/CORE/libperld$Config{lib_ext}

17.11 Apache::Debug
(META: to be written)

 use Apache::Debug ();
 Apache::Debug::dump($r, SERVER_ERROR, "Uh Oh!");

This module sends what may be helpful debugging information to the client rather than to error_log.

Also, you could try using a larger emergency pool, try this instead of Apache::Debug:

 $^M = ’a’ x (1<<18); #256k buffer
 use Carp ();
 $SIG{__DIE__} = \&Carp::confess;
 eval { Carp::confess("init") };

17.12 Debug Tracing
To enable mod_perl debug tracing, configure mod_perl with the PERL_TRACE option:

15 Feb 2014532

17.10 PERL_DEBUG=1 Build Option

 perl Makefile.PL PERL_TRACE=1

The trace levels can then be enabled via the MOD_PERL_TRACE environment variable which can contain
any combination of:

c

Trace directive handling during Apache (non-mod_perl) configuration directive handling. (Startup.)

d

Trace directive handling during mod_perl directive processing during configuration read. (Startup.)

s

Trace processing of <Perl> sections. (Startup.)

h

Trace Perl handler callbacks. (RunTime.)

g

Trace global variable handling, interpreter construction, END blocks, etc. (RunTime.)

all

all of the options listed above. (Startup + RunTime.)

One way of setting this variable is by adding this directive to httpd.conf:

 PerlSetEnv MOD_PERL_TRACE all

For example if you want to see a trace of the PerlRequire and PerlModule directives as they are
executed, use:

 PerlSetEnv MOD_PERL_TRACE d

Of course you can use the command line environment setting:

 % setenv MOD_PERL_TRACE all
 % httpd -X

17.13 gdb says there are no debugging symbols
During make install Apache strips all the debugging symbols. To prevent this you should use
--without-execstrip ./configure option. So if you configure Apache via mod_perl, you should do:

53315 Feb 2014

17.13 gdb says there are no debugging symbolsDebugging mod_perl

 panic% perl Makefile.PL USE_APACI=1 \
 APACI_ARGS=’--without-execstrip’ [other options]

Alternatively you can copy the unstripped binary manually. For example we did:

 panic# cp apache_1.3.17/src/httpd /home/httpd/httpd_perl/bin/httpd_perl

As you know you need an unstripped executable to be able to debug it. While you can compile mod_perl
with -g (or PERL_DEBUG=1), the Apache install strips the symbols.

Makefile.tmpl contains a line:

 IFLAGS_PROGRAM = -m 755 -s

Removing the -s does the trick (If you cannot find it in Makefile.tmpl do it directly in Makefile). Alterna-
tively you rerun make and copy the unstripped httpd binary away.

17.14 Debugging Signal Handlers ($SIG{FOO})
The current Perl implementation does not restore the original Apache C handler when you use the local
$SIG{FOO} clause. While the save/restore of $SIG{ALRM} was fixed in mod_perl 1.19_01 (SVN
version), other signals are not yet fixed. The real fix should probably be in Perl itself.

Until recently local $SIG{ALRM} restored the SIGALRM handler to Perl’s handler, not the handler it
was in the first place (Apache’s alrm_handler()). If you build mod_perl with PERL_TRACE=1 and
set the MOD_PERL_TRACE environment variable to g, you will see this in the error_log file:

 mod_perl: saving SIGALRM (14) handler 0x80b1ff0
 mod_perl: restoring SIGALRM (14) handler from: 0x0 to: 0x80b1ff0

If nobody has touched $SIG{ALRM} , 0x0 will be the same address as the others.

If you work with signal handlers you should take a look at the Sys::Signal module, which solves the
problem:

Sys::Signal - Set signal handlers with restoration of the existing C sighandler. Get it from CPAN.

The usage is simple. If the original code was:

 # If a timeout happens and C<SIGALRM> is thrown, the alarm() will be
 # reset, otherwise C<alarm 0> is reached and timer is reset as well.
 eval {
 local $SIG{ALRM} = sub { die "timeout\n" };
 alarm $timeout;
 ... db stuff ...
 alarm 0;
 };
 die $@ if $@;

15 Feb 2014534

17.14 Debugging Signal Handlers ($SIG{FOO})

Now you would write:

 use Sys::Signal ();
 eval {
 my $h = Sys::Signal->set(ALRM => sub { die "timeout\n" });
 alarm $timeout;
 ... do something that may timeout ...
 alarm 0;
 };
 die $@ if $@;

This should be fixed in Perl 5.6.1, so if you use this version of Perl, chances are that you don’t need to use
Sys::Signal .

mod_perl tries to deal only with those signals that cause conflict with Apache’s. Currently this is only
SIGALRM. If there is another one that gives you trouble, you can add it to the list in perl_config.c after
"ALRM", before NULL.

 static char *sigsave[] = { "ALRM", NULL };

17.15 Code Profiling
(META: duplication??? I’ve started to write about profiling somewhere in this file)

It is possible to profile code run under mod_perl with the Devel::DProf module available on CPAN.
However, you must have apache version 1.3b3 or higher and the PerlChildExitHandler enabled.
When the server is started, Devel::DProf installs an END block (to write the tmon.out file) which
will be run when the server is shutdown. Here’s how to start and stop a server with the profiler enabled:

 % setenv PERL5OPT -d:DProf
 % httpd -X -d ‘pwd‘ &
 ... make some requests to the server here ...
 % kill ‘cat logs/httpd.pid‘
 % unsetenv PERL5OPT
 % dprofpp

See also: Apache::DProf

17.16 Devel::Peek
Devel::Peek - A data debugging tool for the XS programmer

Let’s see an example of Perl allocating a buffer only once, regardless of my () scoping, although it will
realloc() if the size is bigger than SvLEN:

 use Devel::Peek;

 for (1..3) {
 foo();
 }

53515 Feb 2014

17.15 Code ProfilingDebugging mod_perl

 sub foo {
 my $sv;
 Dump $sv;
 $sv = ’x’ x 100_000;
 $sv = "";
 }

The output:

 SV = NULL(0x0) at 0x8138008
 REFCNT = 1
 FLAGS = (PADBUSY,PADMY)
 SV = PV(0x80e5794) at 0x8138008
 REFCNT = 1
 FLAGS = (PADBUSY,PADMY)
 PV = 0x815f808 ""\0
 CUR = 0
 LEN = 100001
 SV = PV(0x80e5794) at 0x8138008
 REFCNT = 1
 FLAGS = (PADBUSY,PADMY)
 PV = 0x815f808 ""\0
 CUR = 0

We can see that on the second and subsequent calls $sv already has previously allocated memory.

So, if you can afford the memory, a larger buffer means fewer brk() syscalls. If you watch that example
with strace you will only see calls to brk() the first time through the loop. So this is a case where
your module might want to pre-allocate the buffer like this:

 package Your::Proxy;

 my $buffer = ’ ’ x 100_000;
 $buffer = "";

Now only the parent has to brk() at server startup, each child already will already have an allocated buffer.
Just reset to "" when you are done.

Note: Previously allocating a scalar in this way saves reallocation in v5.005 but may not do so in other
versions.

17.17 How can I find out if a mod_perl code has a memory
leak
The Apache::Leak module (derived from Devel::Leak) should help you detecting the leakages in
your code. For example:

15 Feb 2014536

17.17 How can I find out if a mod_perl code has a memory leak

 leaktest.pl

 use Apache::Leak;

 my $global = "FooAAA";

 leak_test {
 $$global = 1;
 ++$global;
 };

The argument to leak_test() is an anonymous sub, so you can just throw it any code you suspect
might be leaking. Beware, it will run the code twice! The first time in, new SVs are created, but does not
mean you are leaking. The second pass will give better evidence. You do not need to be inside mod_perl
to use it. From the command line, the above script outputs:

 ENTER: 1482 SVs
 new c28b8 : new c2918 :
 LEAVE: 1484 SVs
 ENTER: 1484 SVs
 new db690 : new db6a8 :
 LEAVE: 1486 SVs
 !!! 2 SVs leaked !!!

Build a debuggable Perl to see dumps of the SVs. The simple way to have both a normal Perl and debug-
gable Perl is to follow hints in the SUPPORT doc for building libperld.a . When that is built, copy the
perl from that directory to your Perl bin directory, but name it dperl .

Our example’s leak explanation: $$global = 1; : new global variable FooAAA created with value of
1, this will not be destroyed until this module is destroyed. Under mod_perl the module doesn’t get
destroyed until the process quits.

Apache::Leak is not very user-friendly, have a look at B::LexInfo . It is possible to see something
that might appear to be a leak, but is actually just a Perl optimization. e.g. consider this code:

 sub foo {
 my $string = shift;
 }

 foo("a string");

B::LexInfo will show you that Perl does not release the value from $string, unless you undef() it. This
is because Perl anticipates the memory will be needed for another string, the next time the subroutine is
entered. You’ll see similar behaviour for @array length, %hash keys, and scratch areas of the pad-list
for OPs such as join() , ‘. ’, etc.

Apache::Status includes a StatusLexInfo option which can show you the internals of your code.

53715 Feb 2014

17.17 How can I find out if a mod_perl code has a memory leakDebugging mod_perl

17.18 Debugging your code in Single Server Mode
Running in httpd -X mode is good only for testing during the development phase.

You want to test that your application correctly handles global variables (if you have any - the less you
have of them the better of course - but sometimes you just can’t do without them). It’s hard to test with
multiple servers serving your cgi since each child has a different value for its global variables. Imagine
that you have a random() sub that returns a random number and you have the following script.

 use vars qw($num);
 $num ||= random();
 print ++$num;

This script initializes the variable $num with a random value, then increments it on each request and prints
it out. Running this script in a multiple server environments will result in something like 1, 9, 4, 19 (a
different number each time you hit the browser’s reload button) since each time your script will be served
by a different child. (On some operating systems, e.g. AIX, the parent httpd process will assign all of the
requests to the same child process if all of the children are idle). But if you run in httpd -X single
server mode you will get 2, 3, 4, 5... (assuming that random() returned 1 at the first call)

But do not get too obsessive with this mode, since working in single server mode sometimes hides prob-
lems that show up when you switch to normal (multi-server) mode.

Consider an application that allows you to change the configuration at run time. Let’s say the script
produces a form to change the background color of the page. It’s not good design, but for the sake of
demonstrating the potential problem we will assume that our script doesn’t write the changed background
color to the disk, but simply changes it in memory, like this:

 use vars qw($bgcolor);
 # assign default value at first invocation
 $bgcolor ||= "white";
 # modify the color if requested to
 $bgcolor = $q->param(’bgcolor’) || $bgcolor;

So you have typed in a new color, and in response, your script prints back the html with a new color - you
think that’s it! It was so simple. If you keep running in single server mode you will never notice that you
have a problem...

If you run the same code in normal server mode, after you submit the color change you will get the result
as expected, but when you call the same URL again (not reload!) the chances are that you will get back the
original default color (white in our case), since only the child which processed the color change request
knows about the global variable change. Just remember that children can’t share information, other than
that which they inherited from their parent on their birth. Of course you could use a hidden variable for the
color to be remembered, or store it on the server side (database, shared memory, etc).

If you use the Netscape client while your server is running in single-process mode, if the output returns
HTML with tags, then the loading of the images will take a long time, since Netscape’s
KeepAlive feature gets in the way. Netscape tries to open multiple connections and keep them open.
Because there is only one server process listening, each connection has to time-out before the next

15 Feb 2014538

17.18 Debugging your code in Single Server Mode

succeeds. Turn off KeepAlive in httpd.conf to avoid this effect. Alternatively (assuming you use the
image size parameters, so that Netscape will be able to render the rest of the page) you can press STOP
after a few seconds.

In addition you should be aware that when running with -X you will not see the status messages that the
parent server normally writes to the error_log. ("server started", "server stopped", etc.). Since httpd -X
causes the server to handle all requests itself, without forking any children, there is no controlling parent to
write the status messages.

17.19 Apache::DumpHeaders - Watch HTTP Transaction
Via Headers
This module is used to watch an HTTP transaction, looking at client and servers headers.

With Apache::ProxyPassThru configured, you are able to watch your browser talk to any server
besides the one with this module living inside.

Apache::DumpHeaders has the ability to filter on IP addresses, has an interface for other modules to
decide if the headers should be dumped or not and a function to only dump n% of the transactions.

For more information read the module’s manpage.

Download the module from CPAN.

17.20 Apache::DebugInfo - Log Various Bits Of Per-Request
Data
Apache::DebugInfo offers the ability to monitor various bits of per-request data. Its functionality is
similar to Apache::DumpHeaders while offering several additional features, including the ability to:

- separate inbound from outbound HTTP headers
- view the contents of $r->notes and $r->pnotes
- view any of these at the various points in the request cycle
- add output for any request phase from a single entry point
- use as a PerlInitHandler or with direct method calls
- use partial IP addresses for filtering by IP
- offer a subclassable interface

See the module’s manpage for more details.

53915 Feb 2014

17.19 Apache::DumpHeaders - Watch HTTP Transaction Via HeadersDebugging mod_perl

17.21 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

17.22 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014540

17.21 Maintainers

http://stason.org/
http://stason.org/

18 Getting Help

54115 Feb 2014

18 Getting HelpGetting Help

18.1 Description
If your question isn’t answered by reading this guide, check this section for information on how to get help
on mod_perl, Apache, or other topics discussed here.

18.2 READ ME FIRST
If, after reading this guide, the general docs and the other documents listed on this site, you still don’t have
the answers, please ask for help on the mod_perl users mailing list. But please, first try to browse the
mailing list archive. Most of the time you will find the answers to your questions by searching the archive,
since it is very likely that someone else has already encountered the same problem and found a solution for
it. If you ignore this advice, you should not be surprised if your question is left unanswered -- it bores
people to answer the same question again and again. This does not mean that you should avoid asking
questions, but you should not abuse the available help and you should RTFM before you call for HELP.
(Remember the fable of the shepherd boy and the wolves).

Another possibilty is to look in the general Getting Help section of this site for a commercial training or
consulting company.

18.2.1 Please Ask Only Questions Related to mod_perl

If you have general Apache questions, please refer to: http://httpd.apache.org/lists.html.

If you have general Perl questions, please refer to: http://lists.perl.org/.

For other remotely related to mod_perl questions see the references to other documentation.

Finally, if you are posting to the list for the first time, please refer to the mod_perl mailing lists’ Guide-
lines.

18.3 How to Report Problems
Make sure to include a good subject like explaining the problem in a few words. Also please mention that
this a problem with mod_perl 1.0 (since now we have mod_perl 2.0 too). Here is an example of a good
subject:

 Subject: [mp1] response handler randomly segfaults

The most important thing to understand is that you should try hard to provide all the information that
may assist to understand and reproduce the problem. When you prepare a bug report, put yourself in the
position of a person who is going to try to help you, realizing that a guess-work on behalf of that helpful
person, more often doesn’t work than it does. Unfortunately most people don’t realize that, and it takes
several emails to squeeze the needed details from the person reporting the bug, a process which may drag
for days.

15 Feb 2014542

18.1 Description

http://httpd.apache.org/lists.html
http://lists.perl.org/

Always send the following details:

Anything in the error_log file that looks suspicious and possibly related to the problem.

Output of perl -V

Version of mod_perl (hint: it’s logged into the error_log file when the server has just started)

Version of apache (hint: it’s logged into the error_log file when the server has just started)

Options given to mod_perl’s Makefile.PL while building it. If you are using a pre-compiled binary
(e.g., rpm), find the source package that was used to build this binary and retrieve this information
from there.

Server configuration details (that’s the relevant parts of your httpd.conf, usually just the relevant
mod_perl configuration sections).

Relevant sections of your ErrorLog (make test’s is: t/logs/error_log)

If some other code doesn’t work, minimize that code to a minimal size while it reproduces the
problem and attach it to the report.

If you build from source, make sure that make test passes 100%.

If make test fails, run the failing tests separately, using the verbose mode and attach the output of
the run and the relevant sections of your ErrorLog to the report.

If this is a script which doesn’t use mod_perl api, try to test under mod_cgi if applicable

You should try to isolate the problem and send the smallest possible code snippet, that reproduces the
problem.

Remember, that if we cannot reproduce the problem, we might not be able to solve it.

To further increase the chances that bugs your code exposes will be investigated, try using
Apache-Test to create a self-contained environment that core developers can use to easily reproduce
your bug. To get you started, an Apache-Test bug skeleton has been created:

http://perl.apache.org/~geoff/bug-reporting-skeleton-mp1.tar.gz

Detailed instructions are contained within the README.

Getting the Backtrace From Core Dumps

If you get a core file dump (Segmentation fault), please send a backtrace if possible. Before you try to
produce it, re-build mod_perl with:

54315 Feb 2014

18.3 How to Report ProblemsGetting Help

http://perl.apache.org/~geoff/bug-reporting-skeleton-mp1.tar.gz

 panic% perl Makefile.PL PERL_DEBUG=1

which will:

add -g to EXTRA_CFLAGS
turn on PERL_TRACE
set PERL_DESTRUCT_LEVEL=2 (additional checks during Perl cleanup)
link against libperld if it exists

Here is a summary of how to get a backtrace:

 % cd mod_perl-x.xx
 % touch t/conf/srm.conf
 % gdb ../apache_x.xx/src/httpd
 (gdb) run -X -f ‘pwd‘/t/conf/httpd.conf -d ‘pwd‘/t
 [now make request that causes core dump]
 (gdb) bt

So you go to the mod_perl source directory, create an empty srm.conf file, and start gdb with a path
to the httpd binary, which is at least located in the Apache source tree after you built it. (Of course
replace x with real version numbers). Next step is to start the httpd from within gdb and issue a
request, which causes a core dump. when the code has died with SEGV sygnal, run bt to get the back-
trace.

Alternatively you can also attach to an already running process like so:

 % gdb httpd <process id number>

If the dump is happening in libperl you have to rebuild Perl with -DDEBUGGING enabled. A quick
way to this is to go to your Perl source tree and run these commands:

 % rm *.[oa]
 % make LIBPERL=libperld.a
 % cp libperld.a $Config{archlibexp}/CORE

where $Config{archlibexp} is:

 % perl -V:archlibexp

If the trace includes Apache calls and you see no arguments, you need to rebuild Apache with
--without-execstrip. If building a static mod_perl, you need to rebuild it with:

 % perl Makefile.PL ... APACI_ARGS=’--without-execstrip’

Spinning Processes

The gdb attaching to the live process approach is helpful when debugging a spinning process. You
can also get a Perl stacktrace of a spinning process by install a $SIG{USR1} handler in your code:

15 Feb 2014544

18.3 How to Report Problems

 use Carp ();
 $SIG{USR1} = \&Carp::confess;

While the process is spinning, send it a USR1 signal:

 % kill -USR1 <process id number>

and the Perl stack trace will be printed.

alternatively you can use gdb to find which Perl code is causing the spin:

 % gdb httpd <pid of spinning process>
 (gdb) where
 (gdb) source mod_perl-x.xx/.gdbinit
 (gdb) curinfo

After loading the special macros file (.gdbinit) you can use the curinfo gdb macro to figure out the
file and line number the code stuck in.

Finally send all these details to the modperl mailing list.

18.4 Help on Related Topics
When developing with mod_perl, you often find yourself having questions regarding other projects and
topics like Apache, Perl, SQL, etc. This document will help you find the right resource where you can find
the answers to your questions.

18.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

18.6 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

54515 Feb 2014

18.4 Help on Related TopicsGetting Help

http://stason.org/
http://stason.org/

Table of Contents:
................ 1mod_perl 1.0 User Guide
................. 4Getting Your Feet Wet
................ 41 Getting Your Feet Wet
.................. 51.1 Description
............. 51.2 Installing mod_perl in Three Steps
............ 61.3 Installing mod_perl for Unix Platforms
.......... 61.3.1 Obtaining and Unpacking the Source Code
............... 71.3.2 Building mod_perl
............... 81.3.3 Installing mod_perl
......... 91.3.4 Configuring and Starting the mod_perl Server
............. 101.4 Installing mod_perl for Windows
............. 111.5 Preparing the Scripts Directory
............. 121.6 A Sample Apache::Registry Script
........ 141.6.1 Porting Existing CGI Scripts to run under mod_perl
........... 141.7 A Simple Apache Perl Content Handler
.......... 161.8 Is This All we Need to Know About mod_perl?
.................. 171.9 References
................ 19Introduction and Incentives
............... 192 Introduction and Incentives
.................. 202.1 Description
................ 202.2 What is mod_perl?
................. 202.2.1 mod_cgi
.................. 212.2.2 C API
................. 222.2.3 Perl API
............... 232.2.4 Apache::Registry
............... 252.2.5 Apache::PerlRun
................ 252.3 What you will learn
.................. 262.4 Maintainers
.................. 262.5 Authors
................. 27mod_perl Installation
................ 273 mod_perl Installation
.................. 283.1 Description
.......... 283.2 A Summary of a Basic mod_perl Installation
................ 293.3 The Gory Details
.......... 293.3.1 Source Configuration (perl Makefile.PL ...)
............. 313.3.1.1 Configuration parameters
.............. 313.3.1.1.1 APACHE_SRC
........ 323.3.1.1.2 DO_HTTPD, NO_HTTPD, PREP_HTTPD
.............. 323.3.1.1.3 Callback Hooks
.............. 333.3.1.1.4 EVERYTHING
.............. 333.3.1.1.5 PERL_TRACE
.......... 333.3.1.1.6 APACHE_HEADER_INSTALL
............ 343.3.1.1.7 PERL_STATIC_EXTS
.............. 343.3.1.1.8 APACI_ARGS

i15 Feb 2014

Table of Contents:Getting Help

.............. 343.3.1.1.9 APACHE_PREFIX

............... 353.3.1.2 Environment Variables

......... 353.3.1.2.1 APACHE_USER and APACHE_GROUP

............ 353.3.1.3 Reusing Configuration Parameters

........ 363.3.1.4 Discovering Whether Some Option Was Configured

........... 373.3.1.5 Using an Alternative Configuration File

............ 373.3.1.6 perl Makefile.PL Troubleshooting

..... 373.3.1.6.1 "A test compilation with your Makefile configuration failed..."

.......... 383.3.1.6.2 Missing or Misconfigured libgdbm.so

........... 393.3.1.6.3 About gdbm, db and ndbm libraries

........ 393.3.1.6.4 Undefined reference to ‘PL_perl_destruct_level’

............ 393.3.1.6.5 Further notes on libperl.(a|so)

............... 403.3.2 mod_perl Building (make)

............... 403.3.2.1 make Troubleshooting

.......... 403.3.2.1.1 Undefined reference to ’Perl_newAV’

........... 403.3.2.1.2 Unrecognized format specifier for...

.............. 413.3.3 Built Server Testing (make test)

................ 413.3.3.1 Manual Testing

.............. 423.3.3.2 make test Troubleshooting

................ 423.3.3.2.1 make test fails

...... 423.3.3.2.2 mod_perl.c is incompatible with this version of Apache

......... 423.3.3.2.3 make test......skipping test on this platform

....... 433.3.3.2.4 make test Fails Due to Misconfigured localhost Entry

............... 433.3.4 Installation (make install)

............ 433.3.5 Building Apache and mod_perl by Hand

........... 443.4 Installation Scenarios for Standalone mod_perl

................ 453.4.1 The All-In-One Way

................. 453.4.2 The Flexible Way

............... 463.4.3 When DSO can be Used

..... 473.4.4 Build mod_perl as a DSO inside the Apache Source Tree via APACI

............... 473.4.4.1 libperl.so and libperl.a

..... 483.4.5 Build mod_perl as a DSO outside the Apache Source Tree via APXS

......... 483.5 Installation Scenarios for mod_perl and Other Components

............. 493.5.1 mod_perl and mod_ssl (+openssl)

........... 513.5.2 mod_perl and mod_ssl Rolled from RPMs

............. 533.5.3 mod_perl and apache-ssl (+openssl)

............... 543.5.4 mod_perl and Stronghold

.............. 553.5.4.1 Note For Solaris 2.5 users

............... 553.5.5 mod_perl and mod_php

......... 563.6 mod_perl Installation with the CPAN.pm Interactive Shell

............... 583.7 Installing on multiple machines

.......... 593.8 using RPM and other packages to install mod_perl

............. 593.8.1 A word on mod_perl RPM packages

................. 593.8.2 Getting Started

.............. 603.8.3 Compiling RPM source files

............. 603.8.4 Mix and Match RPM and source

........... 603.8.5 Installing a single apache+mod_perl RPM

15 Feb 2014ii

Table of Contents:

..... 613.8.6 Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl RPM

.......... 633.8.7 Installing separate Apache and mod_perl RPMs

............... 633.8.8 Testing the mod_perl API

............ 643.9 Installation Without Superuser Privileges

......... 643.9.1 Installing Perl Modules into a Directory of Choice

........ 653.9.2 Making Your Scripts Find the Locally Installed Modules

......... 683.9.3 The CPAN.pm Shell and Locally Installed Modules

............. 703.9.4 Making a Local Apache Installation

......... 713.9.5 Manual Local mod_perl Enabled Apache Installation

................ 723.9.5.1 Resource Usage

....... 733.9.6 Local mod_perl Enabled Apache Installation with CPAN.pm

................ 743.10 Automating installation

........... 753.11 How can I tell whether mod_perl is running?

............... 753.11.1 Checking the error_log

.............. 753.11.2 Testing by viewing /perl-status

................. 753.11.3 Testing via telnet

............... 763.11.4 Testing via a CGI script

............... 773.11.5 Testing via lwp-request

.................. 773.12 General Notes

........ 773.12.1 Is it possible to run mod_perl enabled Apache as suExec?

......... 783.12.2 Should I Rebuild mod_perl if I have Upgraded Perl?

.............. 783.12.3 Perl installation requirements

............... 783.12.4 mod_auth_dbm nuances

.......... 793.12.5 Stripping Apache to make it almost a Perl-server

... 793.12.6 Saving the config.status Files with mod_perl, php, ssl and Other Components

......... 793.12.7 What Compiler Should Be Used to Build mod_perl?

............... 803.12.8 Unescaping error_log

................. 803.13 OS Related Notes

........... 803.14 Pros and Cons of Building mod_perl as DSO

................... 813.15 Maintainers

.................... 823.16 Authors

.................. 83mod_perl Configuration

................. 834 mod_perl Configuration

................... 844.1 Description

................. 844.2 Server Configuration

................. 844.3 Apache Configuration

............... 854.3.1 Configuration Directives

.................. 854.3.2 .htaccess files

.......... 854.3.3 <Directory>, <Location> and <Files> Sections

........ 884.3.4 How Directory, Location and Files Sections are Merged

...... 894.3.5 Sub-Grouping of <Location>, <Directory> and <Files> Sections

................. 894.3.6 Options Directive

................ 904.4 mod_perl Configuration

................ 904.4.1 Alias Configurations

... 914.4.1.1 Running CGI, PerlRun, and Registry Scripts Located in the Same Directory

............... 924.4.2 <Location> Configuration

.......... 944.4.3 Overriding <Location> Setting in "Sub-Location"

iii15 Feb 2014

Table of Contents:Getting Help

............ 944.4.4 PerlModule and PerlRequire Directives

................. 944.4.5 Perl*Handlers

................ 964.4.6 The handler subroutine

................. 974.4.7 Stacked Handlers

................ 1004.4.8 Perl Method Handlers

................. 1024.4.9 PerlFreshRestart

.............. 1024.4.10 PerlSetEnv and PerlPassEnv

.............. 1034.4.11 PerlSetVar and PerlAddVar

................. 1054.4.12 PerlSetupEnv

.............. 1054.4.13 PerlWarn and PerlTaintCheck

.. 1064.4.14 MinSpareServers MaxSpareServers StartServers MaxClients MaxRequestsPerChild

.................. 1064.5 The Startup File

............... 1064.5.1 The Sample Startup File

....... 1094.5.2 What Modules You Should Add to the Startup File and Why

......... 1094.5.3 The Confusion with use() in the Server Startup File

............... 1104.6 Apache Configuration in Perl

................... 1104.6.1 Usage

................... 1124.6.2 Enabling

................... 1134.6.3 Caveats

................... 1134.6.4 Verifying

............... 1144.6.5 Strict <Perl> Sections

.................. 1144.6.6 Debugging

................ 1154.6.7 Perl Section Tricks

.................. 1154.6.8 References

.............. 1154.7 Validating the Configuration Syntax

........... 1154.8 Enabling Remote Server Configuration Reports

............. 1164.9 Publishing Port Numbers other than 80

.......... 1164.10 Configuring Apache + mod_perl with mod_macro

.................. 1184.11 General Pitfalls
4.11.1 My CGI/Perl Code Gets Returned as Plain Text Instead of Being Executed by the

.................... 118Webserver
1194.11.2 My Script Works under mod_cgi, but when Called via mod_perl I Get a ’Save-As’ Prompt

.1194.11.3 Is There a Way to Provide a Different startup.pl File for Each Individual Virtual Host

... 1194.11.4 Is There a Way to Modify @INC on a Per-Virtual-Host or Per-Location Basis.
4.11.5 A Script From One Virtual Host Calls a Script with the Same Path From the Other Virtual

..................... 119Host

.... 1194.11.6 the Server no Longer Retrieves the DirectoryIndex Files for a Directory

....... 1214.11.7 Do Perl* Directives Affect Code Running under mod_cgi?

.............. 1214.12 Configuration Security Concerns

............... 1214.12.1 Choosing User and Group

................. 1214.12.2 Taint Checking

........ 1224.12.3 Exposing Information About the Server’s Component

.............. 1224.13 Apache Restarts Twice On Start

........... 1234.14 Knowing the proxy_pass’ed Connection Type

............ 1234.15 Adding Custom Configuration Directives

................... 1254.16 Maintainers

.................... 1254.17 Authors

15 Feb 2014iv

Table of Contents:

........... 126CGI to mod_perl Porting. mod_perl Coding guidelines.

.......... 1265 CGI to mod_perl Porting. mod_perl Coding guidelines.

................... 1275.1 Description

................ 1275.2 Before you start to code

.............. 1285.3 Exposing Apache::Registry secrets

................. 1295.3.1 The First Mystery

................ 1325.3.2 The Second Mystery

............ 1335.4 Sometimes it Works, Sometimes it Doesn’t

................. 1335.4.1 An Easy Break-in

................. 1345.4.2 Thinking mod_cgi

.............. 1355.4.3 Regular Expression Memory

................. 1355.5 Script’s name space

................. 1355.6 @INC and mod_perl

............. 1365.7 Reloading Modules and Required Files

................ 1365.7.1 Restarting the server

......... 1375.7.2 Using Apache::StatINC for the Development Process

................ 1385.7.3 Using Apache::Reload

............. 1385.7.3.1 Register Modules Implicitly

............. 1385.7.3.2 Register Modules Explicitly

............... 1395.7.3.3 Special "Touch" File

.................. 1395.7.3.4 Caveats

................. 1395.7.3.5 Availability

...... 1395.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

.............. 1405.7.4.1 Writing Configuration Files

............. 1465.7.4.2 Reloading Configuration Files

........... 1485.7.4.3 Dynamically updating configuration files

................ 1545.7.5 Reloading handlers

............. 1545.8 Name collisions with Modules and libs

.............. 1605.9 More package name related issues

.............. 1605.10 __END__ and __DATA__ tokens

................ 1615.11 Output from system calls

............... 1615.12 Using format() and write()

.... 1625.13 Terminating requests and processes, the exit() and child_terminate() functions

................. 1635.14 die() and mod_perl

.................. 1645.15 Return Codes

.............. 1645.16 Testing the Code from the Shell

.................. 1645.17 I/O is different

............ 1645.18 STDIN, STDOUT and STDERR streams

.............. 1655.19 Redirecting STDOUT into a Scalar

.............. 1655.20 Apache::print() and CORE::print()

............... 1655.21 Global Variables Persistence

.............. 1665.22 Generating correct HTTP Headers

.............. 1725.23 NPH (Non Parsed Headers) scripts

.................. 1725.24 BEGIN blocks

................... 1735.25 END blocks

............... 1735.26 CHECK And INIT Blocks

............. 1745.27 Command Line Switches (-w, -T, etc)

v15 Feb 2014

Table of Contents:Getting Help

.................. 1745.27.1 Warnings

.................. 1755.27.2 Taint Mode

................. 1765.27.3 Other switches

................. 1765.28 The strict pragma

............... 1765.29 Passing ENV variables to CGI

........... 1775.30 -M and other time() file tests under mod_perl

................. 1785.31 Apache and syslog

................. 1785.32 File tests operators

.............. 1785.33 Filehandlers and locks leakages

...... 1795.34 Code has been changed, but it seems the script is running the old code

... 1795.35 The Script Is Too Dirty, But It Does The Job And I Cannot Afford To Rewrite It.

.............. 1805.36 Apache::PerlRun--a closer look

............. 1815.37 Sharing variables between processes

........... 1815.38 Preventing Apache::Constants Stringification

......... 1825.39 Transitioning from Apache::Registry to Apache handlers

........... 1835.39.1 Starting with mod_cgi Compatible Script

............ 1855.39.2 Converting into Perl Content Handler

........... 1875.39.3 Converting to use Apache Perl Modules

.................. 1915.39.4 Conclusion

................... 1915.40 Maintainers

.................... 1915.41 Authors

.............. 192How to use mod_perl’s Method Handlers

............. 1926 How to use mod_perl’s Method Handlers

................... 1936.1 Description

.................... 1936.2 Synopsis

.................... 1946.3 Why?

.................. 1946.4 Simple example

................. 1946.5 A little more advanced

.................... 1956.6 Traps

.................... 1966.7 Author

.................... 1966.8 See Also

................... 1966.9 Maintainers

.................... 1966.10 Authors

............... 197mod_perl and Relational Databases

.............. 1977 mod_perl and Relational Databases

................... 1987.1 Description

.............. 1987.2 Why Relational (SQL) Databases

......... 1987.3 Apache::DBI - Initiate a persistent database connection

.................. 1987.3.1 Introduction

...... 1997.3.2 When should this module be used and when shouldn’t it be used?

.................. 1997.3.3 Configuration

.............. 1997.3.4 Preopening DBI connections

............... 2007.3.5 Debugging Apache::DBI

............... 2007.3.6 Database Locking Risks

................. 2017.3.7 Troubleshooting

................ 2017.3.7.1 The Morning Bug

......... 2017.3.7.2 Opening Connections With Different Parameters

15 Feb 2014vi

Table of Contents:

............. 2037.3.7.3 Cannot find the DBI handler

.............. 2037.3.7.4 Apache:DBI does not work

......... 2037.3.7.5 Skipping connection cache during server startup

............ 2047.3.7.6 Debugging code which deploys DBI

............ 2047.4 mysql_use_result vs. mysql_store_result.

......... 2057.5 Transactions Not Committed with MySQL InnoDB Tables

............. 2057.6 Optimize: Run Two SQL Engine Servers

........ 2067.7 Some useful code snippets to be used with relational Databases

........ 2067.7.1 Turning SQL query writing into a short and simple task

................ 2067.7.2 The My::DB module

............. 2197.7.3 My::DB Module’s Usage Examples

................... 2227.8 Maintainers

.................... 2227.9 Authors

.................. 223mod_perl and dbm files

................. 2238 mod_perl and dbm files

................... 2248.1 Description

.............. 2248.2 Where and Why to use dbm files

................. 2268.3 mod_perl and dbm

......... 2268.4 Locking dbm Handlers and Write Lock Starvation Hazards

.......... 2278.5 Flawed Locking Methods Which Must Not Be Used

............... 2298.6 Locking Wrappers Overview

.................. 2298.7 Tie::DB_Lock

.................. 2308.8 DB_File::Lock2

................... 2338.9 Maintainers

.................... 2338.10 Authors

................... 234Protecting Your Site

.................. 2349 Protecting Your Site

................... 2359.1 Description

............. 2359.2 The Importance of Your site’s Security

............... 2369.3 Illustrated Security Scenarios

..... 2369.3.1 Non authenticated access for internal IPs, Authenticated for external IPs

............... 2389.4 Authentication code snippets

............... 2389.4.1 Forcing re-authentication

..... 2389.4.2 OK, AUTH_REQUIRED and FORBIDDEN in Authentication handlers

................ 2399.5 Apache::Auth* modules

................... 2409.6 Maintainers

.................... 2409.7 Authors

.................... 241Code Snippets

................... 24110 Code Snippets

................... 24210.1 Description

.............. 24210.2 File Upload with Apache::Request

.......... 24310.3 Redirecting Errors to the Client Instead of error_log

.............. 24710.4 Reusing Data from POST request

............... 24810.5 Redirecting POST Requests

......... 24810.6 Redirecting While Maintaining Environment Variables

.......... 24810.7 Terminating a Child Process on Request Completion

..... 24810.8 Setting Content-type and Content-encoding headers in non-OK responses

vii15 Feb 2014

Table of Contents:Getting Help

................ 24910.9 More on Relative Paths

........ 24910.10 Watching the error_log File Without Telneting to the Server

........... 25110.11 Accessing Variables from the Caller’s Package

................. 25110.12 Handling Cookies

........... 25210.13 Sending Multiple Cookies with the Perl API

............ 25210.14 Sending Cookies in REDIRECT Response

..... 25210.15 Apache::Cookie example: Login Pages by Setting Cookies and Refreshing

................... 25210.15.1 Logic

................ 25310.15.2 Example Situation

.................. 25310.15.2.1 Code

...... 25410.16 Passing and Preserving Custom Data Structures Between Handlers

..... 25410.17 Passing Notes Between mod_perl and other (non-Perl) Apache Modules

.......... 25510.18 Passing Environment Variables Between Handlers

..... 25610.19 Verifying Whether A Request Was Received Over An SSL Connection

............. 25610.20 CGI::params in the mod_perl-ish Way

............... 25710.21 Subclassing Apache::Request

.............. 25710.22 Sending Email from mod_perl

......... 25910.23 A Simple Handler To Print The Environment Variables

................. 25910.24 mod_rewrite in Perl

.............. 26010.25 URI Rewrite in PerlTransHandler

............ 26110.26 Setting PerlHandler Based on MIME Type

.............. 26110.27 SSI and Embperl -- Doing Both

........ 26210.28 Getting the Front-end Server’s Name in the Back-end Server

................ 26310.29 Authentication Snippets

............ 26310.30 Emulating the Authentication Mechanism

........ 26310.31 An example of using Apache::Session::DBI with cookies

................ 26410.32 Detecting a Client Abort

............. 26510.33 Using DESTROY to Finalize Output

.............. 26710.34 Passing Arguments to a SSI script

....... 26710.35 Setting Environment Variables For Scripts Called From CGI.

............. 26810.36 Mysql Backup and Restore Scripts

.................. 27310.37 Maintainers

................... 27310.38 Authors

................... 274Apache::* modules

.................. 27411 Apache::* modules

................... 27511.1 Description

....... 27511.2 Apache::Session - Maintain session state across HTTP requests

......... 27711.3 Apache::DBI - Initiate a persistent database connection

.... 27711.4 Apache::Watchdog::RunAway - Hanging Processes Monitor and Terminator

....... 27711.5 Apache::VMonitor -- Visual System and Apache Server Monitor

................ 27711.5.0.1 Configuration

.......... 27811.6 Apache::GTopLimit - Limit Apache httpd processes

....... 27811.7 Apache::Request (libapreq) - Generic Apache Request Library
11.8 Apache::RequestNotes - Allow Easy, Consistent Access to Cookie and Form Data Across Each

................... 279Request Phase

........ 27911.9 Apache::PerlRun - Run unaltered CGI scripts under mod_perl

........ 27911.10 Apache::RegistryNG -- Apache::Registry New Generation

15 Feb 2014viii

Table of Contents:

......... 28011.11 Apache::RegistryBB -- Apache::Registry Bare Bones

......... 28011.12 Apache::OutputChain -- Chain Stacked Perl Handlers

......... 28111.13 Apache::Filter - Alter the output of previous handlers

..... 28211.14 Apache::GzipChain - compress HTML (or anything) in the OutputChain

.......... 28211.15 Apache::Gzip - Auto-compress web files with Gzip

.. 28311.16 Apache::PerlVINC - Allows Module Versioning in Location blocks and Virtual Hosts

................ 28511.17 Apache::LogSTDERR

................ 28511.18 Apache::RedirectLogFix

................. 28611.19 Apache::SubProcess

.......... 28811.20 Module::Use - Log and Load used Perl modules

...... 28811.21 Apache::ConfigFile - Parse an Apache style httpd.conf config file

.... 28811.22 Apache::Admin::Config - Object oriented access to Apache style config files

.................. 28811.23 Maintainers

................... 28811.24 Authors

................. 290Choosing the Right Strategy

................ 29012 Choosing the Right Strategy

................... 29112.1 Description

................. 29112.2 Do it like I do it!?

.............. 29112.3 mod_perl Deployment Overview

......... 29212.4 Alternative architectures for running one and two servers

.......... 29312.4.1 Standalone mod_perl Enabled Apache Server

....... 29412.4.2 One Plain Apache and One mod_perl-enabled Apache Servers

...... 29512.4.3 One light non-Apache and One mod_perl enabled Apache Servers

........... 29612.5 Adding a Proxy Server in http Accelerator Mode

.............. 29912.6 Implementations of Proxy Servers

................. 29912.6.1 The Squid Server

................ 30012.6.2 Apache’s mod_proxy

.......... 30112.6.3 Closing Lingering Connections with Lingerd

..... 30112.7 When One Machine is not Enough for RDBMS Database and mod_perl

............... 30212.7.1 Servers’ Requirements

.................. 30312.7.2 The Problem

.................. 30412.7.3 The Solution

.................. 30412.7.3.1 Pros

.................. 30412.7.3.2 Cons

............... 30512.7.4 Three Machines Model

....... 30512.8 Running More than One mod_perl Server on the Same Machine.

............ 30712.9 SSL functionality and a mod_perl Server

.................. 30812.10 Maintainers

................... 30912.11 Authors

................... 310Real World Scenarios

................. 31013 Real World Scenarios

................... 31113.1 Description

.................. 31113.2 Assumptions

........... 31113.3 Standalone mod_perl Enabled Apache Server

............... 31113.3.1 Installation in 10 lines

.............. 31113.3.2 Installation in 10 paragraphs

................. 31313.3.3 Configuration

ix15 Feb 2014

Table of Contents:Getting Help

......... 31513.4 One Plain and One mod_perl enabled Apache Servers

.......... 31613.4.1 Configuration and Compilation of the Sources.

............ 31613.4.1.1 Building the httpd_docs Server

............. 31713.4.1.2 Building the httpd_perl Server

.............. 31913.4.2 Configuration of the servers

........... 31913.4.2.1 Basic httpd_docs Server Configuration

........... 31913.4.2.2 Basic httpd_perl Server Configuration

....... 32113.5 Running Two webservers and Squid in httpd Accelerator Mode

....... 32713.6 Running One Webserver and Squid in httpd Accelerator Mode

................... 32813.7 mod_proxy

............ 32813.7.1 Concepts and Configuration Directives

................. 32813.7.1.1 ProxyPass

............... 32913.7.1.2 ProxyPassReverse

................ 32913.7.1.3 Security Issues

................ 33013.7.2 Buffering Feature

.......... 33113.7.3 Setting the Buffering Limits on Various OSs

........... 33113.7.3.1 IOBUFSIZE Source Code Definition

........ 33213.7.3.2 ProxyReceiveBufferSize Configuration Directive

............... 33313.7.3.3 Hacking the Code

................. 33313.7.4 Caching Feature

................. 33313.7.5 Build Process

.......... 33313.8 Front-end Back-end Proxying with Virtual Hosts

..... 33513.9 Getting the Remote Server IP in the Back-end server in the Proxy Setup

................... 33513.9.1 Build

................... 33613.9.2 Usage

................... 33613.9.3 Security

................... 33713.9.4 Caveats

........ 33713.9.5 mod_proxy_add_forward Module’s Order Precedence

......... 33813.10 HTTP Authentication With Two Servers Plus a Proxy

................ 33813.11 mod_rewrite Examples

.......... 33813.11.1 Rewriting Requests Based on File Extension

............ 33913.11.2 Internet Exporer 5 favicon.ico 404

............ 33913.11.3 Hiding Extensions for Dynamic Pages

...... 33913.11.4 Serving Static Content Locally and Rewriting Everything Else

......... 34013.11.5 Upgrading mod_perl Heavy Application Instances

............... 34013.11.6 Blocking IP Addresses

................ 34113.12 Caching in mod_proxy

.................. 34113.13 Maintainers

................... 34113.14 Authors

................... 342Performance Tuning

................. 34214 Performance Tuning

................... 34314.1 Description

.................. 34314.2 The Big Picture

.................. 34414.3 System Analysis

............... 34414.3.1 Software Requirements

............... 34414.3.2 Hardware Requirements

.................. 34514.4 Essential Tools

15 Feb 2014x

Table of Contents:

.............. 34514.4.1 Benchmarking Applications

.............. 34514.4.1.1 Benchmarking Perl Code

.... 34614.4.1.2 Benchmarking a Graphic Hits Counter with Persistent DB Connections

............ 34614.4.1.3 Benchmarking Response Times

............... 34714.4.1.3.1 ApacheBench

................. 34714.4.1.3.2 httperf

................ 34814.4.1.3.3 http_load

.............. 34914.4.1.3.4 the crashme Script

............. 35214.4.1.4 Benchmarking PerlHandlers

............. 35314.4.1.5 Other Benchmarking Tools

.............. 35414.4.2 Code Profiling Techniques

............ 35714.4.3 Measuring the Memory of the Process

.......... 36014.4.4 Measuring the Memory Usage of Subroutines

............... 36214.5 Know Your Operating System

................. 36314.5.1 Sharing Memory

............. 36314.5.1.1 How Shared Is My Memory?

............ 36414.5.1.2 Calculating Real Memory Usage

............. 36514.5.1.3 Are My Variables Shared?

.......... 36914.5.1.4 Preloading Perl Modules at Server Startup

......... 37114.5.1.5 Preloading Registry Scripts at Server Startup

........... 37314.5.1.6 Modules Initializing at Server Startup

.............. 37314.5.1.6.1 Initializing DBI.pm

.............. 37614.5.1.6.2 Initializing CGI.pm

.......... 37914.5.2 Increasing Shared Memory With mergemem

......... 37914.5.3 Forking and Executing Subprocesses from mod_perl

.............. 38014.5.3.1 Forking a New Process

.............. 38114.5.3.2 Freeing the Parent Process

............. 38214.5.3.3 Detaching the Forked Process

............. 38214.5.3.4 Avoiding Zombie Processes

............. 38414.5.3.5 A Complete Fork Example

.......... 38614.5.3.6 Starting a Long Running External Program

.......... 38814.5.3.7 Starting a Short Running External Program

......... 38914.5.3.8 Executing system() or exec() in the Right Way

............ 38914.5.4 OS Specific Parameters for Proxying

......... 38914.6 Performance Tuning by Tweaking Apache Configuration

........... 39014.6.1 Configuration Tuning with ApacheBench

................ 39514.6.2 Choosing MaxClients

............. 39714.6.3 Choosing MaxRequestsPerChild

...... 39814.6.4 Choosing MinSpareServers, MaxSpareServers and StartServers

......... 39814.6.5 Summary of Benchmarking to tune all 5 parameters

.................. 40014.6.6 KeepAlive

................ 40114.6.7 PerlSetupEnv Off

........ 40214.6.8 Reducing the Number of stat() Calls Made by Apache

......... 40614.7 TMTOWTDI: Convenience and Habit vs. Performance

........ 40714.7.1 Apache::Registry PerlHandler vs. Custom PerlHandler

................ 41014.7.2 "Bloatware" modules

........ 41214.7.3 Apache::args vs. Apache::Request::param vs. CGI::param

xi15 Feb 2014

Table of Contents:Getting Help

....... 41514.7.4 Using $|=1 Under mod_perl and Better print() Techniques.

............ 41714.7.5 Global vs. Fully Qualified Variables

........... 41814.7.6 Object Methods Calls vs. Function Calls

........... 41814.7.6.1 The Overhead with Light Subroutines

........... 41914.7.6.2 The Overhead with Heavy Subroutines

.......... 42014.7.6.3 Are All Methods Slower than Functions?

............ 42114.7.7 Imported Symbols and Memory Usage

............ 42214.7.8 Interpolation, Concatenation or List

............ 42414.7.9 Using Perl stat() Call’s Cached Results

................ 42414.7.10 Optimizing Code

.......... 42514.8 Apache::Registry and Derivatives Specific Notes

............. 42514.8.1 Be Careful with Symbolic Links

............. 42614.9 Improving Performance by Prevention

................. 42614.9.1 Memory leakage

.............. 42614.9.1.1 Reading In A Whole File

........... 42614.9.1.2 Copying Variables Between Functions

............... 42814.9.1.3 Work With Databases

................ 43114.9.2 Avoid the Evil Troika

........... 43114.9.3 Preventing Your Processes from Growing

....... 43214.9.3.1 Defining the Minimum Shared Memory Size Threshold

........ 43314.9.3.2 Potential Drawbacks of Memory Sharing Restriction

......... 43414.9.3.3 Defining the Maximum Memory Size Threshold

...... 43514.9.3.4 Defining the Maximum Unshared Memory Size Threshold

....... 43514.9.4 Limiting Other Resources Used by Apache Child Processes

............... 43614.9.4.1 OS Specific notes

....... 43714.9.5 Limiting the Number of Processes Serving the Same Resource

......... 43814.9.6 Limiting the Request Rate Speed (Robot Blocking)

........... 43814.10 Perl Modules for Performance Improvement

.......... 43814.10.1 Sending Plain HTML as Compressed Output

........... 43814.10.2 Caching Components with HTML::Mason

........... 43814.11 Efficient Work with Databases under mod_perl

.............. 43914.11.1 Persistent DB Connections

...... 44014.11.1.1 Preopening Connections at the Child Process’ Fork Time

............. 44014.11.1.2 Caching prepare() Statements

.......... 44014.11.2 mod_perl Database Performance Improving

.............. 44114.11.2.1 Analysis of the Problem

............ 44114.11.2.2 Optimizing Database Connections

........... 44314.11.2.3 Utilizing the Database Server’s Cache

........... 44414.11.2.4 Eliminating SQL Statement Parsing

................. 44614.11.2.5 Conclusion

............... 44614.12 Using 3rd Party Applications

............. 44714.12.1 Proxying the mod_perl Server

............. 44714.13 Upload and Download of Big Files

.............. 44714.14 Apache/mod_perl Build Options

.44714.14.1 mod_perl Process Size as a Function of Compiled in C Modules and mod_perl Features

................. 44914.15 Perl Build Options

.... 44914.15.1 -DTWO_POT_OPTIMIZE and -DPACK_MALLOC Perl Build Options

15 Feb 2014xii

Table of Contents:

............ 44914.15.2 -Dusemymalloc Perl Build Option

............ 45014.16 Architecture Specific Compile Options

.................. 45014.17 Maintainers

................... 45014.18 Authors

................. 451Frequent mod_perl problems

................ 45115 Frequent mod_perl problems

................... 45215.1 Description

............ 45215.2 my () scoped variable in nested subroutines

............. 45215.3 Segfaults caused by PerlFreshRestart

................... 45215.4 Maintainers

.................... 45215.5 Authors

............. 453Warnings and Errors Troubleshooting Index

............ 45316 Warnings and Errors Troubleshooting Index

................... 45416.1 Description

.................. 45416.2 General Advice

................ 45416.3 Building and Installation

......... 45416.3.1 Bareword "gensym" not allowed while "strict subs"

....... 45416.3.2 No rule to make target ... CORE/config.h

.................. 45516.4 make test Issues

................ 45516.5 Configuration and Startup

........... 45516.5.1 ’relocation errors’ or ’undefined symbol’

............... 45616.5.2 SegFaults During Startup

........ 45616.5.3 libexec/libperl.so: open failed: No such file or directory
16.5.4 install_driver(Oracle) failed: Can’t load ’.../DBD/Oracle/Oracle.so’ for module

................... 457DBD::Oracle

............. 45816.5.5 Invalid command ’PerlHandler’...

.......... 45816.5.6 symbol __floatdisf: referenced symbol not found

........ 45916.5.7 RegistryLoader: Translation of uri [...] to filename failed

.............. 45916.5.8 "Apache.pm failed to load!"

............... 45916.6 Code Parsing and Compilation

........... 45916.6.1 Value of $x will not stay shared at - line 5

........... 45916.6.2 Value of $x may be unavailable at - line 5.

.......... 45916.6.3 Can’t locate loadable object for module XXX

........... 45916.6.4 Can’t locate object method "get_handlers"...

.............. 46016.6.5 Missing right bracket at line ...

......... 46016.6.6 Can’t load ’.../auto/DBI/DBI.so’ for module DBI

................... 46016.7 Runtime

........... 46116.7.1 print() doesn’t send anything on Mac OS X

.......... 46116.7.2 "exit signal Segmentation fault (11)" with mysql

............... 46116.7.3 foo ... at /dev/null line 0

......... 46116.7.4 Preventing mod_perl Processes From Going Wild

............. 46116.7.5 Segfaults when using XML::Parser
16.7.6 My CGI/Perl Code Gets Returned as Plain Text Instead of Being Executed by the

.................... 462Webserver

....... 46216.7.7 Incorrect line number reporting in error/warn log messages

................ 46216.7.8 rwrite returned -1

............. 46216.7.9 Can’t upgrade that kind of scalar ...

xiii15 Feb 2014

Table of Contents:Getting Help

.............. 46216.7.10 caught SIGPIPE in process

............ 46316.7.11 Client hit STOP or Netscape bit it!

........ 46316.7.12 Global symbol "$foo" requires explicit package name

.......... 46416.7.13 Use of uninitialized value at (eval 80) line 12.

.. 46416.7.14 Undefined subroutine &Apache::ROOT::perl::test_2epl::some_function called at

................ 46416.7.15 Callback called exit

................. 46516.7.16 Out of memory!

.... 46616.7.17 server reached MaxClients setting, consider raising the MaxClients setting

........ 46616.7.18 syntax error at /dev/null line 1, near "line arguments:"

.......... 46716.7.19 Can’t call method "register_cleanup" (CGI.pm)

............... 46716.7.20 readdir() not working

................ 46716.8 Shutdown and Restart

........ 46716.8.1 Evil things might happen when using PerlFreshRestart

............ 46816.8.2 Constant subroutine XXX redefined

.............. 46816.8.3 Can’t undef active subroutine

...... 46816.8.4 [warn] child process 30388 did not exit, sending another SIGHUP

........... 46916.8.5 Processes Get Stuck on Graceful Restart

........... 46916.8.6 httpd keeps on growing after each restart

................. 46916.9 OS Specific Notes

................. 46916.9.1 RedHat Linux

.............. 46916.9.1.1 RH 8 and 9 Locale Issues

.................. 46916.9.2 OpenBSD

.......... 46916.9.2.1 Issues Caused by httpd being chroot ’ed

................... 47016.9.3 Win FU

................ 47016.9.3.1 Apache::DBI

................... 47016.9.4 HP-UX

....... 47016.9.4.1 Apache::Status Dumps Core Under HP-UX 10.20

............... 47016.10 Problematic Perl Modules

.................. 47116.11 Maintainers

................... 47116.12 Authors

................... 472Debugging mod_perl

................. 47217 Debugging mod_perl

................... 47317.1 Description

............... 47317.2 Warning and Errors Explained

............. 47317.2.1 Curing The "Internal Server Error"

.............. 47717.2.2 Helping error_log to Help Us

.............. 47717.2.3 The Importance of Warnings

............... 47917.2.3.1 diagnostics pragma

........... 47917.3 Handling the ’User pressed Stop button’ case

............. 48017.3.1 Detecting Aborted Connections

............. 48217.3.2 The Importance of Cleanup Code

................ 48317.3.2.1 Critical Section

.......... 48617.3.2.2 Safe Resource Locking and Cleanup Code

....... 49017.4 Handling Server Timeout Cases and Working with $SIG{ALRM}

................ 49117.5 Looking inside the server

....... 49117.5.1 Apache::Status -- Embedded Interpreter Status Information

.............. 49117.5.1.1 Minimal Configuration

15 Feb 2014xiv

Table of Contents:

.............. 49217.5.1.2 Extended Configuration

.................. 49317.5.1.3 Usage

....... 49417.5.1.4 Compiled Registry Scripts section seems to be empty.

.................. 49417.5.2 mod_status

...... 49517.5.3 Apache::VMonitor -- Visual System and Apache Server Monitor

......... 49517.6 Sometimes My Script Works, Sometimes It Does Not

................... 49517.7 Code Debug

............ 49617.7.1 Locating and correcting Syntax Errors

....... 49717.7.2 Using Apache::FakeRequest to Debug Apache Perl Modules

........ 49817.7.3 Finding the Line Which Triggered the Error or Warning

.............. 49917.7.4 Using print() for Debugging

.......... 50117.7.5 Using print() and Data::Dumper for Debugging

.......... 50317.7.6 The Importance of a Good Concise Coding Style

............. 50517.7.7 Introduction to the Perl Debugger

........... 51417.7.8 Interactive Perl Debugging under mod_cgi

.......... 51517.7.9 Non-Interactive Perl Debugging under mod_perl

............. 51517.7.10 Interactive mod_perl Debugging

........... 51817.7.11 ptkdb and Interactive mod_perl Debugging

.... 51917.7.12 Debugging when Server Crashes on Startup before Writing to Log File.

........... 52117.8 Hanging Processes: Detection and Diagnostics

............ 52117.8.1 Hanging because of the OS Problem

.......... 52117.8.2 An Example of Code that Might Hang a Process

.............. 52317.8.3 Detecting hanging processes

.............. 52417.8.4 Determination of the reason

............... 52517.8.4.1 Using the Perl Trace

............. 52617.8.4.2 Using the System Calls Trace

............ 52917.8.4.3 Using the Interactive Debugger

............ 53117.9 Debugging Hanging processes (continued)

............. 53217.9.1 Debugging core Dumping Code

.............. 53217.10 PERL_DEBUG=1 Build Option

.................. 53217.11 Apache::Debug

.................. 53217.12 Debug Tracing

............ 53317.13 gdb says there are no debugging symbols

............ 53417.14 Debugging Signal Handlers ($SIG{FOO})

.................. 53517.15 Code Profiling

.................. 53517.16 Devel::Peek

........ 53617.17 How can I find out if a mod_perl code has a memory leak

........... 53817.18 Debugging your code in Single Server Mode

....... 53917.19 Apache::DumpHeaders - Watch HTTP Transaction Via Headers

........ 53917.20 Apache::DebugInfo - Log Various Bits Of Per-Request Data

.................. 54017.21 Maintainers

................... 54017.22 Authors

..................... 541Getting Help

................... 54118 Getting Help

................... 54218.1 Description

................. 54218.2 READ ME FIRST

.......... 54218.2.1 Please Ask Only Questions Related to mod_perl

xv15 Feb 2014

Table of Contents:Getting Help

................ 54218.3 How to Report Problems

................ 54518.4 Help on Related Topics

................... 54518.5 Maintainers

.................... 54518.6 Authors

15 Feb 2014xvi

Table of Contents:

	1€€Getting Your Feet Wet
	1.1€€Description
	1.2€€Installing mod_perl in Three Steps
	1.3€€Installing mod_perl for Unix Platforms
	1.3.1€€Obtaining and Unpacking the Source Code
	1.3.2€€Building mod_perl
	1.3.3€€Installing mod_perl
	1.3.4€€Configuring and Starting the mod_perl Server

	1.4€€Installing mod_perl for Windows
	1.5€€Preparing the Scripts Directory
	1.6€€A Sample Apache::Registry Script
	1.6.1€€Porting Existing CGI Scripts to run under mod_perl

	1.7€€A Simple Apache Perl Content Handler
	1.8€€Is This All we Need to Know About mod_perl?
	1.9€€References

	2€€Introduction and Incentives
	2.1€€Description
	2.2€€What is mod_perl?
	2.2.1€€mod_cgi
	2.2.2€€C API
	2.2.3€€Perl API
	2.2.4€€Apache::Registry
	2.2.5€€Apache::PerlRun

	2.3€€What you will learn
	2.4€€Maintainers
	2.5€€Authors

	3€€mod_perl Installation
	3.1€€Description
	3.2€€A Summary of a Basic mod_perl Installation
	3.3€€The Gory Details
	3.3.1€€Source Configuration (perl Makefile.PL ...)
	3.3.1.1€€Configuration parameters
	3.3.1.1.1€€APACHE_SRC
	3.3.1.1.2€€DO_HTTPD, NO_HTTPD, PREP_HTTPD
	3.3.1.1.3€€Callback Hooks
	3.3.1.1.4€€EVERYTHING
	3.3.1.1.5€€PERL_TRACE
	3.3.1.1.6€€APACHE_HEADER_INSTALL
	3.3.1.1.7€€PERL_STATIC_EXTS
	3.3.1.1.8€€APACI_ARGS
	3.3.1.1.9€€APACHE_PREFIX

	3.3.1.2€€Environment Variables
	3.3.1.2.1€€APACHE_USER and APACHE_GROUP

	3.3.1.3€€Reusing Configuration Parameters
	3.3.1.4€€Discovering Whether Some Option Was Configured
	3.3.1.5€€Using an Alternative Configuration File
	3.3.1.6€€perl Makefile.PL Troubleshooting
	3.3.1.6.1€€"A test compilation with your Makefile configuration failed..."
	3.3.1.6.2€€Missing or Misconfigured libgdbm.so
	3.3.1.6.3€€About gdbm, db and ndbm libraries
	3.3.1.6.4€€Undefined reference to `PL_perl_destruct_level'
	3.3.1.6.5€€Further notes on libperl.(a|so)

	3.3.2€€mod_perl Building (make)
	3.3.2.1€€make Troubleshooting
	3.3.2.1.1€€Undefined reference to 'Perl_newAV'
	3.3.2.1.2€€Unrecognized format specifier for...

	3.3.3€€Built Server Testing (make test)
	3.3.3.1€€Manual Testing
	3.3.3.2€€make test Troubleshooting
	3.3.3.2.1€€make test fails
	3.3.3.2.2€€mod_perl.c is incompatible with this version of Apache
	3.3.3.2.3€€make test......skipping test on this platform
	3.3.3.2.4€€make test Fails Due to Misconfigured localhost Entry

	3.3.4€€Installation (make install)
	3.3.5€€Building Apache and mod_perl by Hand

	3.4€€Installation Scenarios for Standalone mod_perl
	3.4.1€€The All-In-One Way
	3.4.2€€The Flexible Way
	3.4.3€€When DSO can be Used
	3.4.4€€Build mod_perl as a DSO inside the Apache Source Tree via APACI
	3.4.4.1€€libperl.so and libperl.a

	3.4.5€€Build mod_perl as a DSO outside the Apache Source Tree via APXS

	3.5€€Installation Scenarios for mod_perl and Other Components
	3.5.1€€mod_perl and mod_ssl (+openssl)
	3.5.2€€mod_perl and mod_ssl Rolled from RPMs
	3.5.3€€mod_perl and apache-ssl (+openssl)
	3.5.4€€mod_perl and Stronghold
	3.5.4.1€€Note For Solaris 2.5 users

	3.5.5€€mod_perl and mod_php

	3.6€€mod_perl Installation with the CPAN.pm Interactive Shell
	3.7€€Installing on multiple machines
	3.8€€using RPM and other packages to install mod_perl
	3.8.1€€A word on mod_perl RPM packages
	3.8.2€€Getting Started
	3.8.3€€Compiling RPM source files
	3.8.4€€Mix and Match RPM and source
	3.8.5€€Installing a single apache+mod_perl RPM
	3.8.6€€Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl RPM
	3.8.7€€Installing separate Apache and mod_perl RPMs
	3.8.8€€Testing the mod_perl API

	3.9€€Installation Without Superuser Privileges
	3.9.1€€Installing Perl Modules into a Directory of Choice
	3.9.2€€Making Your Scripts Find the Locally Installed Modules
	3.9.3€€The CPAN.pm Shell and Locally Installed Modules
	3.9.4€€Making a Local Apache Installation
	3.9.5€€Manual Local mod_perl Enabled Apache Installation
	3.9.5.1€€Resource Usage

	3.9.6€€Local mod_perl Enabled Apache Installation with CPAN.pm

	3.10€€Automating installation
	3.11€€How can I tell whether mod_perl is running?
	3.11.1€€Checking the error_log
	3.11.2€€Testing by viewing /perl-status
	3.11.3€€Testing via telnet
	3.11.4€€Testing via a CGI script
	3.11.5€€Testing via lwp-request

	3.12€€General Notes
	3.12.1€€Is it possible to run mod_perl enabled Apache as suExec?
	3.12.2€€Should I Rebuild mod_perl if I have Upgraded Perl?
	3.12.3€€Perl installation requirements
	3.12.4€€mod_auth_dbm nuances
	3.12.5€€Stripping Apache to make it almost a Perl-server
	3.12.6€€Saving the config.status Files with mod_perl, php, ssl and Other Components
	3.12.7€€What Compiler Should Be Used to Build mod_perl?
	3.12.8€€Unescaping error_log

	3.13€€OS Related Notes
	3.14€€Pros and Cons of Building mod_perl as DSO
	3.15€€Maintainers
	3.16€€Authors

	4€€mod_perl Configuration
	4.1€€Description
	4.2€€Server Configuration
	4.3€€Apache Configuration
	4.3.1€€Configuration Directives
	4.3.2€€.htaccess files
	4.3.3€€<Directory>, <Location> and <Files> Sections
	4.3.4€€How Directory, Location and Files Sections are Merged
	4.3.5€€Sub-Grouping of <Location>, <Directory> and <Files> Sections
	4.3.6€€Options Directive

	4.4€€mod_perl Configuration
	4.4.1€€Alias Configurations
	4.4.1.1€€Running CGI, PerlRun, and Registry Scripts Located in the Same Directory

	4.4.2€€<Location> Configuration
	4.4.3€€Overriding <Location> Setting in "Sub-Location"
	4.4.4€€PerlModule and PerlRequire Directives
	4.4.5€€Perl*Handlers
	4.4.6€€The handler subroutine
	4.4.7€€Stacked Handlers
	4.4.8€€Perl Method Handlers
	4.4.9€€PerlFreshRestart
	4.4.10€€PerlSetEnv and PerlPassEnv
	4.4.11€€PerlSetVar and PerlAddVar
	4.4.12€€PerlSetupEnv
	4.4.13€€PerlWarn and PerlTaintCheck
	4.4.14€€MinSpareServers MaxSpareServers StartServers MaxClients MaxRequestsPerChild

	4.5€€The Startup File
	4.5.1€€The Sample Startup File
	4.5.2€€What Modules You Should Add to the Startup File and Why
	4.5.3€€The Confusion with use() in the Server Startup File

	4.6€€Apache Configuration in Perl
	4.6.1€€Usage
	4.6.2€€Enabling
	4.6.3€€Caveats
	4.6.4€€Verifying
	4.6.5€€Strict <Perl> Sections
	4.6.6€€Debugging
	4.6.7€€Perl Section Tricks
	4.6.8€€References

	4.7€€Validating the Configuration Syntax
	4.8€€Enabling Remote Server Configuration Reports
	4.9€€Publishing Port Numbers other than 80
	4.10€€Configuring Apache + mod_perl with mod_macro
	4.11€€General Pitfalls
	4.11.1€€My CGI/Perl Code Gets Returned as Plain Text Instead of Being Executed by the Webserver
	4.11.2€€My Script Works under mod_cgi, but when Called via mod_perl I Get a 'Save-As' Prompt
	4.11.3€€Is There a Way to Provide a Different startup.pl File for Each Individual Virtual Host
	4.11.4€€Is There a Way to Modify @INC on a Per-Virtual-Host or Per-Location Basis.
	4.11.5€€A Script From One Virtual Host Calls a Script with the Same Path From the Other Virtual Host
	4.11.6€€the Server no Longer Retrieves the DirectoryIndex Files for a Directory
	4.11.7€€Do Perl* Directives Affect Code Running under mod_cgi?

	4.12€€Configuration Security Concerns
	4.12.1€€Choosing User and Group
	4.12.2€€Taint Checking
	4.12.3€€Exposing Information About the Server's Component

	4.13€€Apache Restarts Twice On Start
	4.14€€Knowing the proxy_pass'ed Connection Type
	4.15€€Adding Custom Configuration Directives
	4.16€€Maintainers
	4.17€€Authors

	5€€CGI to mod_perl Porting. mod_perl Coding guidelines.
	5.1€€Description
	5.2€€Before you start to code
	5.3€€Exposing Apache::Registry secrets
	5.3.1€€The First Mystery
	5.3.2€€The Second Mystery

	5.4€€Sometimes it Works, Sometimes it Doesn't
	5.4.1€€An Easy Break-in
	5.4.2€€Thinking mod_cgi
	5.4.3€€Regular Expression Memory

	5.5€€Script's name space
	5.6€€@INC and mod_perl
	5.7€€Reloading Modules and Required Files
	5.7.1€€Restarting the server
	5.7.2€€Using Apache::StatINC for the Development Process
	5.7.3€€Using Apache::Reload
	5.7.3.1€€Register Modules Implicitly
	5.7.3.2€€Register Modules Explicitly
	5.7.3.3€€Special "Touch" File
	5.7.3.4€€Caveats
	5.7.3.5€€Availability

	5.7.4€€Configuration Files: Writing, Dynamically Updating and Reloading
	5.7.4.1€€Writing Configuration Files
	5.7.4.2€€Reloading Configuration Files
	5.7.4.3€€Dynamically updating configuration files

	5.7.5€€Reloading handlers

	5.8€€Name collisions with Modules and libs
	5.9€€More package name related issues
	5.10€€__END__ and __DATA__ tokens
	5.11€€Output from system calls
	5.12€€Using format() and write()
	5.13€€Terminating requests and processes, the exit() and child_terminate() functions
	5.14€€die() and mod_perl
	5.15€€Return Codes
	5.16€€Testing the Code from the Shell
	5.17€€I/O is different
	5.18€€STDIN, STDOUT and STDERR streams
	5.19€€Redirecting STDOUT into a Scalar
	5.20€€Apache::print() and CORE::print()
	5.21€€Global Variables Persistence
	5.22€€Generating correct HTTP Headers
	5.23€€NPH (Non Parsed Headers) scripts
	5.24€€BEGIN blocks
	5.25€€END blocks
	5.26€€CHECK And INIT Blocks
	5.27€€Command Line Switches (-w, -T, etc)
	5.27.1€€Warnings
	5.27.2€€Taint Mode
	5.27.3€€Other switches

	5.28€€The strict pragma
	5.29€€Passing ENV variables to CGI
	5.30€€-M and other time() file tests under mod_perl
	5.31€€Apache and syslog
	5.32€€File tests operators
	5.33€€Filehandlers and locks leakages
	5.34€€Code has been changed, but it seems the script is running the old code
	5.35€€The Script Is Too Dirty, But It Does The Job And I Cannot Afford To Rewrite It.
	5.36€€Apache::PerlRun--a closer look
	5.37€€Sharing variables between processes
	5.38€€Preventing Apache::Constants Stringification
	5.39€€Transitioning from Apache::Registry to Apache handlers
	5.39.1€€Starting with mod_cgi Compatible Script
	5.39.2€€Converting into Perl Content Handler
	5.39.3€€Converting to use Apache Perl Modules
	5.39.4€€Conclusion

	5.40€€Maintainers
	5.41€€Authors

	6€€How to use mod_perl's Method Handlers
	6.1€€Description
	6.2€€Synopsis
	6.3€€Why?
	6.4€€Simple example
	6.5€€A little more advanced
	6.6€€Traps
	6.7€€Author
	6.8€€See Also
	6.9€€Maintainers
	6.10€€Authors

	7€€mod_perl and Relational Databases
	7.1€€Description
	7.2€€Why Relational (SQL) Databases
	7.3€€Apache::DBI - Initiate a persistent database connection
	7.3.1€€Introduction
	7.3.2€€When should this module be used and when shouldn't it be used?
	7.3.3€€Configuration
	7.3.4€€Preopening DBI connections
	7.3.5€€Debugging Apache::DBI
	7.3.6€€Database Locking Risks
	7.3.7€€Troubleshooting
	7.3.7.1€€The Morning Bug
	7.3.7.2€€Opening Connections With Different Parameters
	7.3.7.3€€Cannot find the DBI handler
	7.3.7.4€€Apache:DBI does not work
	7.3.7.5€€Skipping connection cache during server startup
	7.3.7.6€€Debugging code which deploys DBI

	7.4€€mysql_use_result vs. mysql_store_result.
	7.5€€Transactions Not Committed with MySQL InnoDB Tables
	7.6€€Optimize: Run Two SQL Engine Servers
	7.7€€Some useful code snippets to be used with relational Databases
	7.7.1€€Turning SQL query writing into a short and simple task
	7.7.2€€The My::DB module
	7.7.3€€My::DB Module's Usage Examples

	7.8€€Maintainers
	7.9€€Authors

	8€€mod_perl and dbm files
	8.1€€Description
	8.2€€Where and Why to use dbm files
	8.3€€mod_perl and dbm
	8.4€€Locking dbm Handlers and Write Lock Starvation Hazards
	8.5€€Flawed Locking Methods Which Must Not Be Used
	8.6€€Locking Wrappers Overview
	8.7€€Tie::DB_Lock
	8.8€€DB_File::Lock2
	8.9€€Maintainers
	8.10€€Authors

	9€€Protecting Your Site
	9.1€€Description
	9.2€€The Importance of Your site's Security
	9.3€€Illustrated Security Scenarios
	9.3.1€€Non authenticated access for internal IPs, Authenticated for external IPs

	9.4€€Authentication code snippets
	9.4.1€€Forcing re-authentication
	9.4.2€€OK, AUTH_REQUIRED and FORBIDDEN in Authentication handlers

	9.5€€Apache::Auth* modules
	9.6€€Maintainers
	9.7€€Authors

	10€€Code Snippets
	10.1€€Description
	10.2€€File Upload with Apache::Request
	10.3€€Redirecting Errors to the Client Instead of error_log
	10.4€€Reusing Data from POST request
	10.5€€Redirecting POST Requests
	10.6€€Redirecting While Maintaining Environment Variables
	10.7€€Terminating a Child Process on Request Completion
	10.8€€Setting Content-type and Content-encoding headers in non-OK responses
	10.9€€More on Relative Paths
	10.10€€Watching the error_log File Without Telneting to the Server
	10.11€€Accessing Variables from the Caller's Package
	10.12€€Handling Cookies
	10.13€€Sending Multiple Cookies with the Perl API
	10.14€€Sending Cookies in REDIRECT Response
	10.15€€Apache::Cookie example: Login Pages by Setting Cookies and Refreshing
	10.15.1€€Logic
	10.15.2€€Example Situation
	10.15.2.1€€Code

	10.16€€Passing and Preserving Custom Data Structures Between Handlers
	10.17€€Passing Notes Between mod_perl and other (non-Perl) Apache Modules
	10.18€€Passing Environment Variables Between Handlers
	10.19€€Verifying Whether A Request Was Received Over An SSL Connection
	10.20€€CGI::params in the mod_perl-ish Way
	10.21€€Subclassing Apache::Request
	10.22€€Sending Email from mod_perl
	10.23€€A Simple Handler To Print The Environment Variables
	10.24€€mod_rewrite in Perl
	10.25€€URI Rewrite in PerlTransHandler
	10.26€€Setting PerlHandler Based on MIME Type
	10.27€€SSI and Embperl -- Doing Both
	10.28€€Getting the Front-end Server's Name in the Back-end Server
	10.29€€Authentication Snippets
	10.30€€Emulating the Authentication Mechanism
	10.31€€An example of using Apache::Session::DBI with cookies
	10.32€€Detecting a Client Abort
	10.33€€Using DESTROY to Finalize Output
	10.34€€Passing Arguments to a SSI script
	10.35€€Setting Environment Variables For Scripts Called From CGI.
	10.36€€Mysql Backup and Restore Scripts
	10.37€€Maintainers
	10.38€€Authors

	11€€Apache::* modules
	11.1€€Description
	11.2€€Apache::Session - Maintain session state across HTTP requests
	11.3€€Apache::DBI - Initiate a persistent database connection
	11.4€€Apache::Watchdog::RunAway - Hanging Processes Monitor and Terminator
	11.5€€Apache::VMonitor -- Visual System and Apache Server Monitor
	
	11.5.0.1€€Configuration

	11.6€€Apache::GTopLimit - Limit Apache httpd processes
	11.7€€Apache::Request (libapreq) - Generic Apache Request Library
	11.8€€Apache::RequestNotes - Allow Easy, Consistent Access to Cookie and Form Data Across Each Request Phase
	11.9€€Apache::PerlRun - Run unaltered CGI scripts under mod_perl
	11.10€€Apache::RegistryNG -- Apache::Registry New Generation
	11.11€€Apache::RegistryBB -- Apache::Registry Bare Bones
	11.12€€Apache::OutputChain -- Chain Stacked Perl Handlers
	11.13€€Apache::Filter - Alter the output of previous handlers
	11.14€€Apache::GzipChain - compress HTML (or anything) in the OutputChain
	11.15€€Apache::Gzip - Auto-compress web files with Gzip
	11.16€€Apache::PerlVINC - Allows Module Versioning in Location blocks and Virtual Hosts
	11.17€€Apache::LogSTDERR
	11.18€€Apache::RedirectLogFix
	11.19€€Apache::SubProcess
	11.20€€Module::Use - Log and Load used Perl modules
	11.21€€Apache::ConfigFile - Parse an Apache style httpd.conf config file
	11.22€€Apache::Admin::Config - Object oriented access to Apache style config files
	11.23€€Maintainers
	11.24€€Authors

	12€€Choosing the Right Strategy
	12.1€€Description
	12.2€€Do it like I do it!?
	12.3€€mod_perl Deployment Overview
	12.4€€Alternative architectures for running one and two servers
	12.4.1€€Standalone mod_perl Enabled Apache Server
	12.4.2€€One Plain Apache and One mod_perl-enabled Apache Servers
	12.4.3€€One light non-Apache and One mod_perl enabled Apache Servers

	12.5€€Adding a Proxy Server in http Accelerator Mode
	12.6€€Implementations of Proxy Servers
	12.6.1€€The Squid Server
	12.6.2€€Apache's mod_proxy
	12.6.3€€Closing Lingering Connections with Lingerd

	12.7€€When One Machine is not Enough for RDBMS Database and mod_perl
	12.7.1€€Servers' Requirements
	12.7.2€€The Problem
	12.7.3€€The Solution
	12.7.3.1€€Pros
	12.7.3.2€€Cons

	12.7.4€€Three Machines Model

	12.8€€Running More than One mod_perl Server on the Same Machine.
	12.9€€SSL functionality and a mod_perl Server
	12.10€€Maintainers
	12.11€€Authors

	13€€Real World Scenarios
	13.1€€Description
	13.2€€Assumptions
	13.3€€Standalone mod_perl Enabled Apache Server
	13.3.1€€Installation in 10 lines
	13.3.2€€Installation in 10 paragraphs
	13.3.3€€Configuration

	13.4€€One Plain and One mod_perl enabled Apache Servers
	13.4.1€€Configuration and Compilation of the Sources.
	13.4.1.1€€Building the httpd_docs Server
	13.4.1.2€€Building the httpd_perl Server

	13.4.2€€Configuration of the servers
	13.4.2.1€€Basic httpd_docs Server Configuration
	13.4.2.2€€Basic httpd_perl Server Configuration

	13.5€€Running Two webservers and Squid in httpd Accelerator Mode
	13.6€€Running One Webserver and Squid in httpd Accelerator Mode
	13.7€€mod_proxy
	13.7.1€€Concepts and Configuration Directives
	13.7.1.1€€ProxyPass
	13.7.1.2€€ProxyPassReverse
	13.7.1.3€€Security Issues

	13.7.2€€Buffering Feature
	13.7.3€€Setting the Buffering Limits on Various OSs
	13.7.3.1€€IOBUFSIZE Source Code Definition
	13.7.3.2€€ProxyReceiveBufferSize Configuration Directive
	13.7.3.3€€Hacking the Code

	13.7.4€€Caching Feature
	13.7.5€€Build Process

	13.8€€Front-end Back-end Proxying with Virtual Hosts
	13.9€€Getting the Remote Server IP in the Back-end server in the Proxy Setup
	13.9.1€€Build
	13.9.2€€Usage
	13.9.3€€Security
	13.9.4€€Caveats
	13.9.5€€mod_proxy_add_forward Module's Order Precedence

	13.10€€HTTP Authentication With Two Servers Plus a Proxy
	13.11€€mod_rewrite Examples
	13.11.1€€Rewriting Requests Based on File Extension
	13.11.2€€Internet Exporer 5 favicon.ico 404
	13.11.3€€Hiding Extensions for Dynamic Pages
	13.11.4€€Serving Static Content Locally and Rewriting Everything Else
	13.11.5€€Upgrading mod_perl Heavy Application Instances
	13.11.6€€Blocking IP Addresses

	13.12€€Caching in mod_proxy
	13.13€€Maintainers
	13.14€€Authors

	14€€Performance Tuning
	14.1€€Description
	14.2€€The Big Picture
	14.3€€System Analysis
	14.3.1€€Software Requirements
	14.3.2€€Hardware Requirements

	14.4€€Essential Tools
	14.4.1€€Benchmarking Applications
	14.4.1.1€€Benchmarking Perl Code
	14.4.1.2€€Benchmarking a Graphic Hits Counter with Persistent DB Connections
	14.4.1.3€€Benchmarking Response Times
	14.4.1.3.1€€ApacheBench
	14.4.1.3.2€€httperf
	14.4.1.3.3€€http_load
	14.4.1.3.4€€the crashme Script

	14.4.1.4€€Benchmarking PerlHandlers
	14.4.1.5€€Other Benchmarking Tools

	14.4.2€€Code Profiling Techniques
	14.4.3€€Measuring the Memory of the Process
	14.4.4€€Measuring the Memory Usage of Subroutines

	14.5€€Know Your Operating System
	14.5.1€€Sharing Memory
	14.5.1.1€€How Shared Is My Memory?
	14.5.1.2€€Calculating Real Memory Usage
	14.5.1.3€€Are My Variables Shared?
	14.5.1.4€€Preloading Perl Modules at Server Startup
	14.5.1.5€€Preloading Registry Scripts at Server Startup
	14.5.1.6€€Modules Initializing at Server Startup
	14.5.1.6.1€€Initializing DBI.pm
	14.5.1.6.2€€Initializing CGI.pm

	14.5.2€€Increasing Shared Memory With mergemem
	14.5.3€€Forking and Executing Subprocesses from mod_perl
	14.5.3.1€€Forking a New Process
	14.5.3.2€€Freeing the Parent Process
	14.5.3.3€€Detaching the Forked Process
	14.5.3.4€€Avoiding Zombie Processes
	14.5.3.5€€A Complete Fork Example
	14.5.3.6€€Starting a Long Running External Program
	14.5.3.7€€Starting a Short Running External Program
	14.5.3.8€€Executing system() or exec() in the Right Way

	14.5.4€€OS Specific Parameters for Proxying

	14.6€€Performance Tuning by Tweaking Apache Configuration
	14.6.1€€Configuration Tuning with ApacheBench
	14.6.2€€Choosing MaxClients
	14.6.3€€Choosing MaxRequestsPerChild
	14.6.4€€Choosing MinSpareServers, MaxSpareServers and StartServers
	14.6.5€€Summary of Benchmarking to tune all 5 parameters
	14.6.6€€KeepAlive
	14.6.7€€PerlSetupEnv Off
	14.6.8€€Reducing the Number of stat() Calls Made by Apache

	14.7€€TMTOWTDI: Convenience and Habit vs. Performance
	14.7.1€€Apache::Registry PerlHandler vs. Custom PerlHandler
	14.7.2€€"Bloatware" modules
	14.7.3€€Apache::args vs. Apache::Request::param vs. CGI::param
	14.7.4€€Using $|=1 Under mod_perl and Better print() Techniques.
	14.7.5€€Global vs. Fully Qualified Variables
	14.7.6€€Object Methods Calls vs. Function Calls
	14.7.6.1€€The Overhead with Light Subroutines
	14.7.6.2€€The Overhead with Heavy Subroutines
	14.7.6.3€€Are All Methods Slower than Functions?

	14.7.7€€Imported Symbols and Memory Usage
	14.7.8€€Interpolation, Concatenation or List
	14.7.9€€Using Perl stat() Call's Cached Results
	14.7.10€€Optimizing Code

	14.8€€Apache::Registry and Derivatives Specific Notes
	14.8.1€€Be Careful with Symbolic Links

	14.9€€Improving Performance by Prevention
	14.9.1€€Memory leakage
	14.9.1.1€€Reading In A Whole File
	14.9.1.2€€Copying Variables Between Functions
	14.9.1.3€€Work With Databases

	14.9.2€€Avoid the Evil Troika
	14.9.3€€Preventing Your Processes from Growing
	14.9.3.1€€Defining the Minimum Shared Memory Size Threshold
	14.9.3.2€€Potential Drawbacks of Memory Sharing Restriction
	14.9.3.3€€Defining the Maximum Memory Size Threshold
	14.9.3.4€€Defining the Maximum Unshared Memory Size Threshold

	14.9.4€€Limiting Other Resources Used by Apache Child Processes
	14.9.4.1€€OS Specific notes

	14.9.5€€Limiting the Number of Processes Serving the Same Resource
	14.9.6€€Limiting the Request Rate Speed (Robot Blocking)

	14.10€€Perl Modules for Performance Improvement
	14.10.1€€Sending Plain HTML as Compressed Output
	14.10.2€€Caching Components with HTML::Mason

	14.11€€Efficient Work with Databases under mod_perl
	14.11.1€€Persistent DB Connections
	14.11.1.1€€Preopening Connections at the Child Process' Fork Time
	14.11.1.2€€Caching prepare() Statements

	14.11.2€€mod_perl Database Performance Improving
	14.11.2.1€€Analysis of the Problem
	14.11.2.2€€Optimizing Database Connections
	14.11.2.3€€Utilizing the Database Server's Cache
	14.11.2.4€€Eliminating SQL Statement Parsing
	14.11.2.5€€Conclusion

	14.12€€Using 3rd Party Applications
	14.12.1€€Proxying the mod_perl Server

	14.13€€Upload and Download of Big Files
	14.14€€Apache/mod_perl Build Options
	14.14.1€€mod_perl Process Size as a Function of Compiled in C Modules and mod_perl Features

	14.15€€Perl Build Options
	14.15.1€€-DTWO_POT_OPTIMIZE and -DPACK_MALLOC Perl Build Options
	14.15.2€€-Dusemymalloc Perl Build Option

	14.16€€Architecture Specific Compile Options
	14.17€€Maintainers
	14.18€€Authors

	15€€Frequent mod_perl problems
	15.1€€Description
	15.2€€my () scoped variable in nested subroutines
	15.3€€Segfaults caused by PerlFreshRestart
	15.4€€Maintainers
	15.5€€Authors

	16€€Warnings and Errors Troubleshooting Index
	16.1€€Description
	16.2€€General Advice
	16.3€€Building and Installation
	16.3.1€€Bareword "gensym" not allowed while "strict subs"
	16.3.2€€No rule to make target ... CORE/config.h

	16.4€€make test Issues
	16.5€€Configuration and Startup
	16.5.1€€'relocation errors' or 'undefined symbol'
	16.5.2€€SegFaults During Startup
	16.5.3€€libexec/libperl.so: open failed: No such file or directory
	16.5.4€€install_driver(Oracle) failed: Can't load '.../DBD/Oracle/Oracle.so' for module DBD::Oracle
	16.5.5€€Invalid command 'PerlHandler'...
	16.5.6€€symbol __floatdisf: referenced symbol not found
	16.5.7€€RegistryLoader: Translation of uri [...] to filename failed
	16.5.8€€"Apache.pm failed to load!"

	16.6€€Code Parsing and Compilation
	16.6.1€€Value of $x will not stay shared at - line 5
	16.6.2€€Value of $x may be unavailable at - line 5.
	16.6.3€€Can't locate loadable object for module XXX
	16.6.4€€Can't locate object method "get_handlers"...
	16.6.5€€Missing right bracket at line ...
	16.6.6€€Can't load '.../auto/DBI/DBI.so' for module DBI

	16.7€€Runtime
	16.7.1€€print() doesn't send anything on Mac OS X
	16.7.2€€"exit signal Segmentation fault (11)" with mysql
	16.7.3€€foo ... at /dev/null line 0
	16.7.4€€Preventing mod_perl Processes From Going Wild
	16.7.5€€Segfaults when using XML::Parser
	16.7.6€€My CGI/Perl Code Gets Returned as Plain Text Instead of Being Executed by the Webserver
	16.7.7€€Incorrect line number reporting in error/warn log messages
	16.7.8€€rwrite returned -1
	16.7.9€€Can't upgrade that kind of scalar ...
	16.7.10€€caught SIGPIPE in process
	16.7.11€€Client hit STOP or Netscape bit it!
	16.7.12€€Global symbol "$foo" requires explicit package name
	16.7.13€€Use of uninitialized value at (eval 80) line 12.
	16.7.14€€Undefined subroutine &Apache::ROOT::perl::test_2epl::some_function called at
	16.7.15€€Callback called exit
	16.7.16€€Out of memory!
	16.7.17€€server reached MaxClients setting, consider raising the MaxClients setting
	16.7.18€€syntax error at /dev/null line 1, near "line arguments:"
	16.7.19€€Can't call method "register_cleanup" (CGI.pm)
	16.7.20€€readdir() not working

	16.8€€Shutdown and Restart
	16.8.1€€Evil things might happen when using PerlFreshRestart
	16.8.2€€Constant subroutine XXX redefined
	16.8.3€€Can't undef active subroutine
	16.8.4€€[warn] child process 30388 did not exit, sending another SIGHUP
	16.8.5€€Processes Get Stuck on Graceful Restart
	16.8.6€€httpd keeps on growing after each restart

	16.9€€OS Specific Notes
	16.9.1€€RedHat Linux
	16.9.1.1€€RH 8 and 9 Locale Issues

	16.9.2€€OpenBSD
	16.9.2.1€€Issues Caused by httpd being chroot'ed

	16.9.3€€Win FU
	16.9.3.1€€Apache::DBI

	16.9.4€€HP-UX
	16.9.4.1€€Apache::Status Dumps Core Under HP-UX 10.20

	16.10€€Problematic Perl Modules
	16.11€€Maintainers
	16.12€€Authors

	17€€Debugging mod_perl
	17.1€€Description
	17.2€€Warning and Errors Explained
	17.2.1€€Curing The "Internal Server Error"
	17.2.2€€Helping error_log to Help Us
	17.2.3€€The Importance of Warnings
	17.2.3.1€€diagnostics pragma

	17.3€€Handling the 'User pressed Stop button' case
	17.3.1€€Detecting Aborted Connections
	17.3.2€€The Importance of Cleanup Code
	17.3.2.1€€Critical Section
	17.3.2.2€€Safe Resource Locking and Cleanup Code

	17.4€€Handling Server Timeout Cases and Working with $SIG{ALRM}
	17.5€€Looking inside the server
	17.5.1€€Apache::Status -- Embedded Interpreter Status Information
	17.5.1.1€€Minimal Configuration
	17.5.1.2€€Extended Configuration
	17.5.1.3€€Usage
	17.5.1.4€€Compiled Registry Scripts section seems to be empty.

	17.5.2€€mod_status
	17.5.3€€Apache::VMonitor -- Visual System and Apache Server Monitor

	17.6€€Sometimes My Script Works, Sometimes It Does Not
	17.7€€Code Debug
	17.7.1€€Locating and correcting Syntax Errors
	17.7.2€€Using Apache::FakeRequest to Debug Apache Perl Modules
	17.7.3€€Finding the Line Which Triggered the Error or Warning
	17.7.4€€Using print() for Debugging
	17.7.5€€Using print() and Data::Dumper for Debugging
	17.7.6€€The Importance of a Good Concise Coding Style
	17.7.7€€Introduction to the Perl Debugger
	17.7.8€€Interactive Perl Debugging under mod_cgi
	17.7.9€€Non-Interactive Perl Debugging under mod_perl
	17.7.10€€Interactive mod_perl Debugging
	17.7.11€€ptkdb and Interactive mod_perl Debugging
	17.7.12€€Debugging when Server Crashes on Startup before Writing to Log File.

	17.8€€Hanging Processes: Detection and Diagnostics
	17.8.1€€Hanging because of the OS Problem
	17.8.2€€An Example of Code that Might Hang a Process
	17.8.3€€Detecting hanging processes
	17.8.4€€Determination of the reason
	17.8.4.1€€Using the Perl Trace
	17.8.4.2€€Using the System Calls Trace
	17.8.4.3€€Using the Interactive Debugger

	17.9€€Debugging Hanging processes (continued)
	17.9.1€€Debugging core Dumping Code

	17.10€€PERL_DEBUG=1 Build Option
	17.11€€Apache::Debug
	17.12€€Debug Tracing
	17.13€€gdb says there are no debugging symbols
	17.14€€Debugging Signal Handlers ($SIG{FOO})
	17.15€€Code Profiling
	17.16€€Devel::Peek
	17.17€€How can I find out if a mod_perl code has a memory leak
	17.18€€Debugging your code in Single Server Mode
	17.19€€Apache::DumpHeaders - Watch HTTP Transaction Via Headers
	17.20€€Apache::DebugInfo - Log Various Bits Of Per-Request Data
	17.21€€Maintainers
	17.22€€Authors

	18€€Getting Help
	18.1€€Description
	18.2€€READ ME FIRST
	18.2.1€€Please Ask Only Questions Related to mod_perl

	18.3€€How to Report Problems
	18.4€€Help on Related Topics
	18.5€€Maintainers
	18.6€€Authors

