mod_perl 1.0 User Guide

15 Feb 2014

Table of Contents:

mod_perl 1.0 User Guide

Deploying mod_perl technology to give rocket speed to
your CGl/Perl scripts.

Last modified Sun Feb 16 01:32:59 2014 GMT

Table of Contents:

Part I: Getting Started

|- 1. Getting Your Feet Wet
This chapter gives you step-by-step instructions to get a basic statically-compiled mod_perl-enabled
Apache server up and running. Having a running server allows you to experiment with mod_perl as
you learn more about it.

|- 2. Introduction and Incentivies
An introduction to what mod_perl is all about, its different features, and some explanations of the C
API, Apache::Registry , Apache::PerlRun , and the Apache/Perl API.

|- 3. mod perl Installatign
An in-depth explanation of the mod_perl installation process, from the basic installation (in 10 steps),
to a more complex one (with all the possible options you might want to use, including DSO build). It
includes troubleshooting tips too.

|- 4. mod perl Configuration
This section documents the various configuration options available for Apache and mod_perl, as well
as the Perl startup files, and more esoteric possibilites such as configuring Apache with Perl.

Part II: Coding

|- 5. CGIl to mod perl Porting. mod perl Coding guidelines.
This chapter is relevant both to writing a new CGI script or perl handler from scratch and to migrat-
ing an application from plain CGI to mod_perl.

[6. How to use mod_perl's Method Handlers
Described here are a few examples and hints on how to use method handlers with mod_perl.

|- 7. mod perl and Relational Databases
Creating dynamic websites with mod_perl often involves using relational databpaeke::DBI
which provides a database connections persistence which boosts the mod_perl performance, is
explained in this chapter.

|- 8. mod perl and dbm filps
Small databases can be implemented pretty efficiently using dbm files, but there are still some
precautions that must be taken to use them properly under mod_perl.

|- 9. Protecting Your Site
Securing your site should be your first priority, because of the consequences a break-in might have.
We discuss the various authentication and authorization technigues available, a very interesting use of
mod_perl.

|- 10. Code Snippdts
A collection of mod_perl code snippets which you can either adapt to your own use or integrate
directly into your own code.

2 15 Feb 2014

mod_perl 1.0 User Guide Table of Contents:

[11. Apache::* modul¢s
Overview of some of the most popular modules for mod_perl, both to use directly from your code
and as mod_perl handlers.

Part lll: Advanced Setup and Performance

[12. Choosing the Right Strat¢gy
This document discusses various mod_perl setup strategies used to get the best performance and scal-
ability of the services.

|- 13. Real World Scenarios
This chapter provides a step-by-step installation guide for the various setups discu3sedsing
the Right Strategy

[14. Performance Tunihg
An exhaustive list of various techniques you might want to use to get the most performance possible
out of your mod_ perl server: configuration, coding, memory use, and more.

Part IV: Troubleshooting

|- 15. Frequent mod perl problgms
Some problems come up very often on the mailing list. If there is some important problem that is
being reported frequently on the list which is not included below, even if it is found elsewhere in the
Guide, please report taod_perl mailing list

|- 16. Warnings and Errors Troubleshooting Index
If you encounter an error or warning you don’t understand, check this chapter for solutions to
common warnings and errors that the mod_perl community has encountered in the last few years.

|- 17. Debugging mod pérl
Tired of Internal Server Errors? Find out how to debug your mod_perl applications, thanks to a
number of features of Perl and mod_perl.

|- 18. Getting Help
If your question isn’t answered by reading this guide, check this section for information on how to get
help on mod_perl, Apache, or other topics discussed here.

15 Feb 2014 3

1 Getting Your Feet Wet

1 Getting Your Feet Wet

4 15 Feb 2014

Getting Your Feet Wet 1.1 Description

1.1 Description

This chapter gives you step-by-step instructions to get a basic statically-compiled mod_perl-enabled
Apache server up and running. Having a running server allows you to experiment with mod_perl as you
learn more about it.

(Of course, you'll be experimenting on a private machine, not on a production server, right?) The remain-
der of the guide, along with the documentation supplied with mod_perl, gives the detailed information
required for fine-tuning your mod_perl-enabled server to deliver the best possible performance.

Although there are binary distributions of mod_perl-enabled Apache servers available for various plat-
forms, we recommend that you always build mod_perl from source. It's simple to do (provided you have
all the proper tools on your machine), and building from source circumvents possible problems with the
binary distributions (such as the reported bugs with the RPM packages built for RedHat Linux).

The mod_perl installation that follows has been tested on many mainstream Unix and Linux platforms.
Unless you're using a very non-standard system, you should have no problems when building the basic
mod_perl server.

For Windows users, the simplest solution is to use the binary package. Windows users may skip to the
linstalling mod perl for Windows.

1.2 Installing mod_perl in Three Steps

You can install mod_perl in three easy steps: Obtaining the source files required to build mod_perl, build-
ing mod_perl, and installing it.

Building mod_perl from source requires a machine with basic development tools. In particular, you will
need an ANSI-compliant C compiler (suchges) and themakeutility. All standard Unix-like distribu-

tions include these tools. If a required tool is not already installed, then use the package manager that is
provided with the systemm, apt, yast etc.) to install them.

A recent version of Perl is also required, at least version 5.004. Perl is available as an installable package,
although most Unix-like distributions will have installed Perl by default. To check that the tools are avail-
able and learn about their version numbers, try:

% make -v
% gcc -v
% perl -v

If any of these responds wi@ommand not found , it will need to be installed.

Once all the tools are in place the installation process can begin. Experienced Unix users will need no
explanation of the commands that follow and can simply copy and paste them into a terminal window to
get the server installed.

15 Feb 2014 5

1.3 Installing mod_perl for Unix Platforms

Acquire the source code distrubutions of Apache and mod_perl from the Internet, using your favorite web
browser or one of the command line clients likget Iwp-download etc. These two distributions are
available fronthttp://www.apache.org/dist/httpahdhttp://apache.org/dist/petl/

Remember that mod_perl 1.0 works only with Apache 1.3, and mod_perl 2.0 requires Apache 2.0. In this
chapter we talk about mod_perl 1.0/Apache 1.3, hence the packages that you want are named
apache_1.3.xx.tar.gandmod_perl-1.xx.tar.gavherexx should be replaced with the real version numbers

of mod_perl and Apache.

Move the downloaded packages into a directory of your cheige,/home/stas/sr¢/proceed with the
described steps and you will have mod_perl installed:

% cd /home/stas/src

% tar -zvxf apache_1.3.xx.tar.gz

% tar -zvxf mod_perl-1.xx.tar.gz

% cd mod_perl-1.xx

% perl Makefile.PL APACHE_SRC-=../apache_1.3.xx/src \
APACHE_PREFIX=/home/httpd DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

% make && make test

% su

make install

That's all!

All that remains is to add a few configuration lines to the Apache configuration file,
(/usr/local/apache/conf/httpd.conktart the server, and enjoy mod_perl.

The following detailed explanation of each step should help you solve any problems that may have arisen
when executing the commands above.

1.3 Installing mod_perl for Unix Platforms

Here is a more detailed explanation of the installation process, with each step explained in detail and with
some troubleshooting advice. If the build worked and you are in a hurry to boot yotittpdwou may
skip to the next section, talking about configuration of the server.

Before installing Apache and mod_perl, you usually have to becootso that the files can be installed

in a protected area. A user who does not hraee access, however, can still install all files under their
home directory. The proper approach is to build Apache in an unprivileged location and then oy use
access to install it. We will talk about the nuances of this approach |in_the dedicated installation| process

[chapte.

1.3.1 Obtaining and Unpacking the Source Code

The first step is to obtain the source code distributions of Apache, available from
[http://www.apache.org/dist/httpd/ and mod_perl, available from http://apache.org/d}st/perl/. Of course you
can use your favorite mirror sites to get these distributions.

6 15 Feb 2014

http://www.apache.org/dist/httpd/
http://apache.org/dist/perl/
http://www.apache.org/dist/httpd/
http://apache.org/dist/perl/

Getting Your Feet Wet 1.3.2 Building mod_perl

Even if you have the Apache server running on your machine, usually you need to download its source
distribution, because you need to re-build it from scratch with mod_perl.

The source distributions of Apache and mod_perl should be downloaded into directory of your choice. For
the sake of consistency, we assume throughout the guide that all builds are being done in the
/home/stas/sralirectory. However, using a different location is perfectly possible and merely requires
changing this part of the path in the examples to the actual path being used.

The next step is to move to the directory with the source files:
% cd /home/stas/src

Uncompress and untar both sources. Ghiallows this using a single command per file:

% tar -zvxf apache_1.3.xx.tar.gz
% tar -zvxf mod_perl-1.xx.tar.gz

For non-GNUtar's, you may need to do this with two steps (which you can combine via a pipe):

% gzip -dc apache_1.3.xx.tar.gz | tar -xvf -
% gzip -dc mod_perl-1.xx.tar.gz | tar -xvf -

Linux distributions suppltar andgzip and install them by default; for other systems these utilities
should be obtained frofmttp://www.gnu.orgbr other sources, and installed--the GNU versions are avail-
able for every platform that Apache supports.

1.3.2 Building mod_perl

Move into thelhome/stas/src/mod_perl-1.>s@urce distribution directory:

% cd mod_perl-1.xx

The next step is to create thkakefile This step is no different in principle from the creation ofifake-
file for any other Perl module.

% perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

(Replacex.x.xwith the Apache distribution version number.)

mod_perl accepts a variety of parameters. The options specified above will enable almost everything that
mod_perl offers. There are many other options for fine-tuning mod_perl to suit particular circumstances;
these are explained in detail in the dedicated installation process chapter.

RunningMakefile.PLwill cause Perl to check for prerequisites and identify any required software pack-
ages which are missing. If it reports missing Perl packages, these will have to be installed before proceed-
ing. They are all available from CPAt{p://cpan.ord) and can be easily downloaded and installed.

15 Feb 2014 7

http://www.gnu.org/
http://cpan.org/

1.3.3 Installing mod_perl

An advantage to installing mod_perl with the help of GfAN.pmmodule is that all the missing modules
will be installed with théBundle::Apache bundle:

% perl -MCPAN -e 'install("Bundle::Apache")’

We will talk about usin@CPAN.pmin-depth in th¢ installation process chgpter.

RunningMakefile.PLalso transparently executes thmonfigurescript from Apache’s source distribution
directory, which prepares the Apache build configuration files. If parameters must be passed to Apache’s
Jconfigure script, they can be passed as optioridagefile.PL

The httpd executable can now be built by using thake utility. (Note that the current working directory
is still /home/stas/src/mod_perl-1.)x/

% make

This command prepares the mod_perl extension files, installs them in the Apache source tree and builds
the httpd executable (the web server itself) by compiling all the required files. Upon completion of the
makeprocess, the working directory is restoredhimme/stas/src/mod_perl-1.xx/

Runningmake test will execute various mod_perl tests on the freshly Intifid executable.

% make test

This command starts the server on a non-standard port (8529) and tests whether all parts of the built server
function correctly. The process will report anything that does not work properly.

1.3.3 Installing mod_perl

Runningmake install completes the installation process of mod_perl by installing all the Perl files
required for mod_perl to run--and, of course, the server documentation (man pages). Typically, you need
to beroot to have permission to do this, but another user account can be used if the appropriate options
were set on thperl Makefile.PL command line. To becomeot, use thesucommand.

% su
make install

If you have the proper permission, you might also chain all tiedecommands into a single command
line:

make && make test && make install

&& in shell program is similar to Perl&& Each section of the statement will be executed left to right,
untill all sections will be executed and return true (success) or one of them will return false (failure).

The single-line version simplifies the installation, since there is no need to wait for each command to
complete before starting the next one. Of course, if you need to becotie order to rummake install
you'll either need to run it as a separate command or begmhbefore running the single-line version.

8 15 Feb 2014

Getting Your Feet Wet 1.3.4 Configuring and Starting the mod_perl Server

If the all-in-one approach is chosen and any ofntlake commands fail, execution will stop at that point.
For example ifnake alone fails themake test andmake install will not be attempted; similarly
if make test fails thenmake install will not be attempted.

Finally, change to the Apache source distribution directory and run make install to create the Apache
directory tree and install Apache’s header filéh)(default configuration files*(conf), the httpd
executable, and a few other programs.

cd ../Japache_1.3.xx
make install

Note that, as with a plain Apache installation, any configuration files left from a previous installation will
not be overwritten by this process. So there is no need to backup the previously working configuration
files before the installation, although backing up is never unwise.

At the end of thenake installprocess, it will list the path to thapachectl utility that you can use to

start and stop the server, and the path to the installed configuration files. It is important to write down
these paths since they will frequently be needed when maintaining and configuring Apache. On our
machines these two important paths are:

lusr/local/apache/bin/apachectl
lusr/local/apache/conf/httpd.conf

The mod_perl Apache server is now built and installed. All that needs to be done before it can be run is to
edit the configuration filéttpd.confand write a little test script.

1.3.4 Configuring and Starting the mod_ perl Server

The first thing to do is ensure that Apache was built correctly and that it can serve plain HTML files. This
helps to minimize the number of possible problem areas: once you have confirmed that Apache can serve
plain HTML files, you know that any problems with mod_perl are with mod_ perl itself.

Apache should be configured just the same as when it did not have mod_perl. BettthdJser ,
Group, ErrorLog and other directives in thetpd.conffile. Use the defaults as suggested, customizing
only when necessary. Values that will probably need to be customiz&terName , Port , User ,
Group, ServerAdmin , DocumentRoot and a few others. There are helpful hints preceding each
directive in the configuration files themselves, with further information in Apache’s documentation.
Follow the advice in the files and documentation if in doubt.

When the configuration file has been edited, it is time to start the server. One of the ways to start and stop
the server is to use tlagpachectl utility. This can be used to start the server with:

lusr/local/apache/bin/apachectl start

And stop it with:

Jusr/local/apache/bin/apachectl stop

15 Feb 2014 9

1.4 Installing mod_perl for Windows

Note that if the server is going to listen on @0dtor another privileged port (Any port with a number less
than 1024 can be accessed only by the programs runniogtgds the user executingpachectl must
beroot.

After the server has started, check inéh®r_log file (/usr/local/apache/logs/error_logy default) to see
if the server has indeed started. Do not rely on the ségtashectl reports. Theerror_log should
contain something like the following:

[Thu Jun 22 17:14:07 2000] [notice] Apache/1.3.12 (Unix)
mod_perl/1.24 configured -- resuming normal operations

Now point the browser thttp://localhost/or |http://example.namieds configured with th&erverName
directive. If thePort directive has been set with a value different fi@dn add this port number at the
end of the server name. For example, if the port is 8080, test the servéttpithocalhost:8080/or
[http://example.com:8080/The infamous'lt worked" page should appear in the browser, which is an
index.html file that make install in the Apache source tree installs automatically. If this page
does not appear, something went wrong and the contentsatdhelog file should be checked. The path
of the error log file is specified in th&rrorLog directive section imttpd.conf

If everything works as expected, shut the server down, logped.confwith a plain text editor, and scroll
to the end of the file. The mod_perl configuration directives are added to the latpdofonfby conven-
tion. It is possible to place mod_perl’s configuration directives anywhdripd.conf but adding them at
the end seems to work best in practice.

Assuming that all the scripts that should be executed by the mod_perl enabled server are located in the
/home/stas/modpedirectory, add the following configuration directives:

Alias /perl/ /Thome/stas/modperl/

PerlIModule Apache::Registry
<Location /perl/>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGl
PerlSendHeader On
allow from all
</Location>

Save the modified file.

This configuration causes every URI starting wikerl to be handled by the Apache mod_perl module
with the handler from the Perl modMpache::Registry

1.4 Installing mod_perl for Windows

Apache runs on many flavors of Unix and Unix-like operating systems. Version 1.3 introduced a port to
the Windows family of operating systems, often nariéiti32 after the name of the common API.

Because of many deep differences between Unix and Windows, the Win32 port of Apache is still branded
as beta quality, because it hasn’t yet reached the stability and performance of the native Unix counterpart.

10 15 Feb 2014

http://localhost/
http://example.name/
http://localhost:8080/
http://example.com:8080/

Getting Your Feet Wet 1.5 Preparing the Scripts Directory

Another hindrance to using mod_perl 1.0 on Windows is that current versions of Perl are not thread-safe
on Win32. As a consequence, mod_perl calls to the embedded Perl interpreter must be serialized, i.e.
executed one at a time. See the discussion on multithreading on Win32 mod_perl 1.xx for details. This
situation changes with Apache/mod_perl 2.0, which is based on a multi-process/multi-thread approach
using a native Win32 threads implementation - see the mod_perl 2 overview for more details, and the
discussion of modperl 2.0 in Win32 on getting modperl-2 for Win32 in particular.

Building mod_perl from source on Windows is a bit of a challenge. Development tools such as a C
compiler are not bundled with the operating system, and most users expect a point-and-click installation as
with most Windows software. Additionally, all software packages need to be built with the same compiler
and compile options. This means building Perl, Apache, and mod_perl from source, quite a daunting task.
For details on building mod_perl on Windows, see the documentation for modperl 1.0 in Win32 or
modperl 2.0 in Win32.

For those who prefer binary distributions, there are a number of alternatives. For mod_perl 1.0, one can
obtain either mod_perl 1.0 PPM packages, suitable for use with Activepart'stility, or else mod_perl

1.0 all-in-one packages containing binaries of Perl and Apache, including mod_perl. For mod_perl 2.0,
similar mod_perl 2.0 PPM packages and mod_perl 2.0 all-in-one packages are available.

1.5 Preparing the Scripts Directory

Now you have to select a directory where all the mod_perl scripts and modules will be placed to. We
usually use create a directorgodperl under our home directory, e.ghome/stas/modperifor this
purpose. Your mileage may vary.

First create this directory if it doesn’t yet exist.

% mkdir /Thome/stas/modperl

What about file permissions? Remember that when scripts are executed from a shell, they are being
executed with permissions of the user's account. Usually you want to have a read, write and execute
access for yourself, but only read and execute permissions for the server. When the scripts are run by
Apache, however, the server needs to be able to read and execute them. Apache runs under an account
specified by thdJser directive, typicallynobody If you modify theUser directive to run the server

under your username, e.g.,

User stas

the permissions on all files and directories should usuallpmze----- , SO we can set the directory
permissions to:

% chmod 0700 /home/stas/modperl

Now, no-one, but you and the server can access the files in this directory. You should set the same permis-
sions for all the files you place under this directory. (You don't need to se&thiidor files that aren’t
going to be executed, for those m@#®0 would be sufficient.)

15 Feb 2014 11

1.6 A Sample Apache::Registry Script

If the server is running under accounabody you have to set the permissionswxr-xr-x or 0755
for your files and directories, which is insecure since other users on the same machine can read your files.

chmod 0755 /home/stas/modperl

If you aren’t running the server with your username, you have to set these permissions for all the files
created under this directory, so Apache can read and execute these.

If you need to have an Apache write files you have to set the file permissiomgriaxrwx or 0777

which is very undesirable, since any user on the same machine can read and write your files. If this is the
case, you should run the server under your username, and then only you and the server have a write access
to your files. (Assuming of course that other users have no access to your server, since if they do, they can
access your files through this server.)

In the following examples we assume that you run the server under your username, and hence we set the
scripts permissions 1700 .

1.6 A Sample Apache::Registry Script

One of mod_perl's benefits is that it can run existing CGI scripts written in Perl which were previously
used under mod_cgi (the standard Apache CGI handler). Indeed mod_perl can be used for running CGI
scripts without taking advantage of any of mod_perl's special features, while getting the benefit of the
potentially huge performance boost. Here is an example of a very simple CGl-style mod_perl script:

mod_perl_rulesl.pl

print "Content-type: text/plain\n\n";
print "mod_perl rules\n";

Save this script in ththome/stas/modperl/mod_perl_ruleslfi#. Notice that the#! line (colloquially
known as theshebandine) is not needed with mod_perl, although having one causes no problems, as can
be seen here:

mod_perl_rulesl.pl

#!/usr/bin/perl
print "Content-type: text/plain\n\n";
print "mod_perl rules\n";
Now make the script executable and readable by the server, as explained in the previous section.
chmod 0700 /home/stas/modperl/mod_perl_rulesl.pl

The mod_perl_rulesl.pcript can be tested from the command line, since it is essentially a regular Perl
script.

% perl /home/stas/modperl/mod_perl_rulesl.pl

12 15 Feb 2014

Getting Your Feet Wet 1.6 A Sample Apache::Registry Script

This should produce the following output:
Content-type: text/plain
mod_perl rules!

Make sure the server is running and issue these requests using a browser:
http://localhost/perl/mod_perl_rulesl.pl

If you see it-eongratulations! You have a working mod_perl server.

If something went wrong, go through the installation process again, making sure that none of the steps are
missed and that each is completed successfully. If this does not solve the problem, the installatipn chapter
will attempt to salvage the situation.

If the port being used is not 80, for example 8080, then the port number should be included in the URL:

http://localhost:8080/perl/mod_perl_rulesl.pl

Thelocalhost approach will work only if the browser is running on the same machine as the server. If
not, use the real server name for this test. For example:

http://fexample.com/perl/mod_perl_rulesl.pl
If there is any problem please refer to éneor_log file for the error messages.

Jumping a little bit ahead, we would like to show the same CGI script written using mod_perl API:

mod_perl_rules2.pl

my $r = shift;
$r->send_http_header('text/plain’);
$r->print("mod_perl rules\n");

mod_perl API needs a request objéct to communicate with Apache. The script gets this object first
thing, after that it uses the object to send the HTTP header and print the irrefutable fact about mod_perl’s
coolness.

This script generates the same output as the previous one.

As you can see it’s not much harder to write your code in mod_perl API, all you need to know is the API,
but the concepts are the same. As we will show in the later chapters, usually you will want to use
mod_perl API for a better performance or when you need a functionality that plain Perl API doesn’t
provide.

15 Feb 2014 13

1.7 A Simple Apache Perl Content Handler

1.6.1 Porting Existing CGI Scripts to run under mod_perl

Now it is time to move any existing CGI scripts from thgomewhere/cgi-bindirectory to
/home/stas/modperDnce moved they should run much faster when requested from the newly configured
base URL fperl/). For example, a CGI script callégst.plthat was previously accessed/egi-bin/test.pl

can now be accessed under mod_pefpas/test.pl

Some of the scripts might not work immediately and may require some minor tweaking or even a partial
rewrite to work properly with mod_perl. We will talk in-depth about these things in the Coding Ehapter.
Most scripts that have been written with care and especially developed with enabled warnings and the
strict pragma will probably work without any modifications at all.

A quick solution that avoids most rewriting or editing of existing scripts that do not run properly under
Apache::Registry is to run them undeApache::PerlRun . This can be achieved by simply
replacingApache::Registry with Apache::PerlRun in httpd.conf Put the following configura-

tion directives instead inttpd.confand restart the server:

Alias /perl/ /Thome/stas/modperl/
PerlModule Apache::PerlRun
<Location /perl/>
SetHandler perl-script
PerlHandler Apache::PerlRun
Options ExecCGl
PerlSendHeader On
allow from all
</Location>

Almost every script should now run without problems; the few exceptions will almost certainly be due to
the few minor limitations that mod_perl or its handlers have, but these are all solvable and covered in

Coding chaptgr.

Apache::PerlRun is usually useful in the transition period, while the scripts are being cleaned up to
run properly undeApache::Registry . Though it gives you a significant speedup over mod_cgi, it's
still not as fast afpache::Registry and mod_perl handlers.

1.7 A Simple Apache Perl Content Handler

As we mentioned in the beginning of this chapter, mod_perl lets you run both scripts and handlers. The
previous example showed a script, since that is probably the most familiar approach to web programming,
but the more advanced use of mod_perl involves writing handlers. Have no fear: writing handlers is almost
as easy as writing scripts and offers a level of access to Apache’s internals that is simply not possible with
conventional CGl scripts.

To create a mod_perl handler module, all that is necessary is to wrap the code that would have been the
body of a script into &andler subroutine, add a statement to return the status to the server when the
subroutine has successfully completed, and add a package declaration at the top of the code.

14 15 Feb 2014

Getting Your Feet Wet 1.7 A Simple Apache Perl Content Handler

Just as with scripts, the familiar CGI API may be used:

ModPerl/Rules1.pm

package ModPerl::Rules1;
use Apache::Constants qw(:common);

sub handler {
print "Content-type: text/plain\n\n";
print "mod_perl rules\n";
return OK; # We must return a status to mod_perl

}

1; # This is a perl module so we must return true to perl

Alternatively, the mod_perl API can be used. This API provides almost complete access to the Apache
core. In the simple example shown, using either approach is fine, but when lower level access to Apache is
required the mod_perl API must be used.

ModPerl/Rules2.pm

package ModPerl::Rules2;
use Apache::Constants gw(:common);

sub handler {
my $r = shift;
$r->send_http_header('text/plain’);
$r->print("mod_perl rules\n");
return OK; # We must return a status to mod_perl

}

1; # This is a perl module so we must return true to perl

Create a directory calledModPerl under one of the directories IN@INC (e.g. under
{usr/lib/perl5/site_perl/5.00%/ and putRulesl.pmandRules2.pminto it (Note that you will need ot

access in order to do that.). The files should include the code from the above examples. To find out what
the @INCdirectories are, execute:

% perl -le "print join "\n", @INC’
On our machine it reports:

lusr/lib/perl5/5.00503/i386-linux

lusr/lib/perl5/5.00503

lustr/lib/perl5/site_perl/5.005/i386-linux
lusr/lib/perl5/site_perl/5.005

So on our machine, we might place the files in the diredusylib/perl5/site_perl/5.005/ModPerBy
default when you work a®ot the files are created with permissions allowing everybody to read them, so
here we don’t have to adjust the file permissions, since the server only needs to be able to read those.

Now add the following snippet tsr/local/apache/conf/httpd.cot configure mod_perl to execute the
ModPerl::Rules::handler subroutine whenever a requestriod_perl_rulesis made:

15 Feb 2014 15

1.8 Is This All we Need to Know About mod_perl?

PerIModule ModPerl::Rules1
<Location /mod_perl_rules1>
SetHandler perl-script
PerlHandler ModPerl::Rules1
PerlSendHeader On
</Location>

Now issue a request to:
http://localhost/mod_perl_rulesl
and just as with thenod_perl_rules.p$cripts,

mod_perl rules!

should be rendered as the response. (Don't forget to include the port number if not using port 80; from
now on we will assume this is done, ¢.g. http://localhost:8080/mod _perl]rulesl.)

To test the second moduléodPerl::Rules2 add a similar configuration, while replacing all 1's with
2's:

PerIModule ModPerl::Rules2
<Location /mod_perl_rules2>
SetHandler perl-script
PerlHandler ModPerl::Rules2
PerlSendHeader On
</Location>

As we will see later ip_ Configuration chagter you can removeéPtrtSendHeader directive for this
particular module.

And to test use the URI:

http://localhost/mod_perl_rules2

You should see the same response from the server as we have seen when issuing a request for the former
mod_perl handler.

1.8 Is This All we Need to Know About mod_perl?

Obviously the next question i4s this all | need to know about mod_perl?"
The answer is: "Yes and No".
TheYespart:

e Just like with Perl, really cool stuff can be written even with very little mod_perl knowledge. With
the basic unoptimized setup presented in this chapter, visitor counters and guest books and any other
CGil scripts will run much faster and amaze friends and colleagues, usually without changing a single
line of code.

16 15 Feb 2014

http://localhost:8080/mod_perl_rules1

Getting Your Feet Wet 1.9 References

TheNo part:

® A 50 times improvement in guest book response times is great--but when deploying a very heavy
service with thousands of concurrent users, a delay of even a few milliseconds might lose a customer,
and probably many of them.

Of course when testing a single script with the developer as the only user, squeezing yet another millisec-

ond from the response time seems unimportant. But it becomes a real issue when these milliseconds add
up at the production site, with hundreds or thousands of users concurrently generating requests to various
scripts on the site. Users are not merciful nowadays. If there is another site that provides the same kind but
a significantly faster service, chances are that users will switch to the competing site.

Testing scripts on an unloaded machine can be very misleading, Everything might seem so perfect. But
when they are moved into a production machine, things do not behave as well as they did on the develop-
ment box. For example, the production machine may run out of memory on very busy services. In the
[performance tuning chapter it will be explained how to optimize code to use less memory and how to
make as much memory as possible shared.

Debugging is something that some developers prefer not to think about, since the process can be very
tedious at times. Learning how to make the debugging process simpler and efficient is essential for web
programmers. This task can be difficult enough when debugging CGI scripts, but it can be even more

complicated with mod_perl. The Debugging Chgpter explains how to approach debugging in the mod_perl

environment.

mod_perl has many features unavailable under mod_cgi when working with databases. Amongst others
the most important are persistent database connections. Persistent database connections require a slightly
different approach and this is explained in|the Databases ghapter.

Most web services, especially those which are aimed at an international audience, must run non-stop 24x7.
But at the same time new scripts may need to be added, old ones removed, and the server software will
need upgrades and security fixes. And if the server goes down, fast recovery is essential. These issues are
considered in the Controlling your server chapter.

Finally, the most important aspect of mod_perl is the Apache Perl API, which allows intervention at any
or every stage of request processing. This provides incredible flexibility, allowing the creation of scripts
and processes which would simply be impossible with mod_cgi.

There are many more things to learn about mod_perl and web programming in general. The rest of this
guide will attempt to provide as much information as possible about these and other related matters.

1.9 References

® CPAN is the Comprehensive Perl Archive Network. Comprehensive: its aim is to contain all the Perl
material you will need. Archive: close to a gigabyte in size at the time of this writing. Network:
CPAN is mirrored at more than one hundred sites around the world.

15 Feb 2014 17

1.9 References

The CPAN home pagg: http://cpan.prg/

e The libwww-perl distribution is a collection of Perl modules and programs which provide a simple
and consistent programming interface (API) to the World Wide Web. The main focus of the library is
to provide classes and functions that facilitate writing WWW clients, thus libwww-perl is said to be a
WWW client library. The library also contains modules that are of more general use, as well as some
useful programs.

The libwww-perl home pagg: http://www.linpro.no/lvp/

18 15 Feb 2014

http://cpan.org/
http://www.linpro.no/lwp/

Introduction and Incentives 2 Introduction and Incentives

2 Introduction and Incentives

15 Feb 2014 19

2.1 Description

2.1 Description

An introduction to what mod_perl is all about, its different features, and some explanations of the C API,
Apache::Registry , Apache::PerlRun |, and the Apache/Perl API.

2.2 What is mod_perl?

The Apache/Perl integration project brings together the full power of the Perl programming language and
the Apache HTTP server. With mod_perl, it is possible to write Apache modules entirely in Perl, letting
you easily do things (such as running sub-requests) that are more difficult or impossible in regular CGI
programs. In addition, the persistent Perl interpreter embedded in the server saves the overhead of starting
an external interpreter, i.e. the penalty of Perl start-up time. And not the least important feature is code
caching, where modules and scripts are loaded and compiled only once, and for the rest of the server’s life
they are served from the cache. Thus the server spends its time only running already loaded and compiled
code, which is very fast.

The primary advantages of mod_perl are power and speed. You have full access to the inner workings of
the web server and can intervene at any stage of request processing. This allows for customized processing
of (to name just a few of the phases) URI->filename translation, authentication, response generation, and
logging. There is very little run-time overhead. In particular, it is not necessary to start a separate process,
as is often done with web-server extensions. The most wide-spread such extension, the Common Gateway
Interface (CGIl), can be replaced entirely with Perl code that handles the response generation phase of
request processing. mod_perl includes two general purpose modules for this purpose:
Apache::Registry , which can transparently run existing perl CGI scriptsapache::PerlRun

which does a similar job but allows you to run "dirtier" (to some extent) scripts.

You can configure your httpd server and handlers in Perl (fFeri§etVar , and <Perl> sections). You
can even define your own configuration directives.

For examples on how you use mod_perl, see our What is mod_perl? section.

Many people ask "How much of a performance improvement does mod_perl give?" Well, it all depends

on what you are doing with mod_perl and possibly who you ask. Developers report speed boosts from
200% to 2000%. The best way to measure is to try it and see for yourself! (See Technologie Extraordinaire
for the facts.)

2.2.1 mod_cgi

When you run your CGI scripts by using a configuration like this:

ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/

you are running them under a mod_cgi handler, although you never define it explicitly. Apache does all
the configuration work behind the scenes, when you use a ScriptAlias.

20 15 Feb 2014

Introduction and Incentives 2.2.2 CAPI

By the way, don’t confus8criptAlias with theExecCGI configuration option, which we enable so
that the script will be executed rather than returned as a plain text file. For example for mod_perl and
Apache::Registry you would use a configuration such as:

<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options +ExecCGl
PerlSendHeader On
</Location>

2.2.2 CAPI

The Apache C API has been present for a long time, and has been the usual way to program extensions
(such as mod_perl) to Apache. When you write C extension modules, you write C code that is not inde-
pendent, but will be linked into the Apachigpd executable either at build time (if the module is statically
linked), or at runtime (if it is compiled as a Dynamic Shared Object, or DSO). Either way, you do as with
any C library: you write functions that receive a certain number of arguments and make use of external
API functions, provided by Apache or by other libraries.

The difference is that with Apache extension modules, these functionegasteredinside a module

record: you tell Apache already at compile-time for which phases you wish to run any functions. Of
course, you probably won't be handling all the phases. Here is an example of a module handling only the
content generation phase:

/* Dispatch list of content handlers */

static const handler_rec hello_handlers[] = {
{"hello", hello_handler },
{ NULL, NULL }

g

/* Dispatch list for API hooks */
module MODULE_VAR_EXPORT hello_module ={
STANDARD_MODULE_STUFF,

NULL, /* module initializer */

NULL, /* create per-dir config structures */
NULL, /* merge per-dir config structures */
NULL, [* create per-server config structures */
NULL, /* merge per-server config structures */
NULL, /* table of config file commands */
hello_handlers, /* [#8] MIME-typed-dispatched handlers */
NULL, [* [#1] URI to filename translation */
NULL, /* [#4] validate user id from request */
NULL, [* [#5] check if the user is ok _here_ */
NULL, /* [#3] check access by host address */
NULL, [* [#6] determine MIME type */
NULL, [* [#7] pre-run fixups */

NULL, /* [#9] log a transaction */
NULL, [* [#2] header parser */
NULL, /* child_init */

NULL, /* child_exit */

NULL [* [#0] post read-request */

15 Feb 2014 21

2.2.3 Perl API

Using this configuration (and a correctly buikllo _handler() function), you'd then be able to use
the following configuration to allow your module to handle the requests fdnétie URI.

<Location /hello>
SetHandler hello
</Location>

When Apache sees a request for Ahello URI, it will then figure out what the "hello" handler corre-
sponds to by looking it up in the handler record, and match that helloe handler function pointer,

which will execute thehello_handler function of your module with @equest_rec *r as an
argument. From that point, your handler is free to do whatever it wants, returning content, declining the
request, or doing other bizarre things based on user input.

It is not the object of this guide to explain how to program C handlers. However, this example lets you in
on some of the secrets of the Apache core, which you will probably understand anyway by using
mod_perl. If you want more information on writing C modules, you should read the Apache API docu-
mentation af http://httpd.apache.org/docs/misc/APIlhtml and more import&ntiyg Apache Modules

with Perl and G which will teach you abouiothmod_perl and C modules!

2.2.3 Perl API

After a while, C modules were found hard to write and difficult to maintain, mostly because code had to
be recompiled or just because of the low-level nature of the C language, and because these modules were
so intricately linked with Apache that a small bug could put at risk your whole server environment. In
comes mod_perl. Programmed in C and using all the techniques described above and more, it allows Perl
modules, written in good Perl style, to access the (almost) complete APl provided to the conventional C
extensions.

However, the structure used for Perl Apache modules is a little different. If you've programmed normal
Perl modules (like those found on CPAN) before, you'll be happy to know that programming for mod_perl
using the Apache API doesn't involve anything else than writing a Perl module that ddfimedler
subroutine (that is the convention--we’ll see that that doesn’'t necessarily have to be the name). This
subroutine accepts an argumedtt, which is the Perl API equivalent of the C ARBfuest_rec *r

$r is your entry point to the whole Perl Apache API. Through it you access methods in good
object-oriented fashion, which makes it slightly easier than with C, and looks a lot more familiar to Perl
programmers.

Furthermore, Perl Apache modules do not define handler records like C modules. You only need to create
your handler subroutine(s), and then control which requests they should handle solely with mod_perl
configuration directives inside your Apache configuration.

Let's look at a sample handler that returns a greeting and the current local time.

file:My/Greeting.pm

package My::Greeting;
use strict;

22 15 Feb 2014

http://httpd.apache.org/docs/misc/API.html

Introduction and Incentives 2.2.4 Apache::Registry

use Apache::Constants qw(OK);

sub handler {
my $r = shift;
my $now = scalar localtime;
my $server_name = $r->server->server_hostname;

$r->send_http_header('text/plain’);

print <<EOT;
Thanks for visiting $server_name.
The local time is $now.
EOT

return OK;
}

1; # modules must return true

As you can see, we're mixing Perl standard functions (laaltime()) with Apache functions
($r->send_http_header()). To return the above greeting when accessing/lieo URI, you
would configure Apache like this:

<Location /hello>
SetHandler perl-script
PerlHandler My::Greeting
</Location>

When it sees this configuration, mod_perl loads Nhe:Greeting module, finds thenandler()
subroutine, and calls it to allow it to return the appropriate content. There are equRealdiandler
directives for the different phases we saw were available to C handlers.

The Perl API gives you an incredible number of possibilities, which you can then use to be more produc-
tive or creative. mod_perl is an enabling technology; it won't make you smarter or more creative, but it
will do its best to make you lose less time becausaafidental difficulties'of programming, and let you
concentrate more on the important parts.

2.2.4 Apache::Registry

From the viewpoint of the Perl API, Apache::Registry is simply another handler that's not conceptually
different from any other handleipache::Registry reads in the script file, compiles, executes it and
stores into the cache. Since the perl interpreter keeps running from child process’ creation to its death, any
code compiled by the interpreter is kept in memory until the child dies.

To prevent script name collision&pache::Registry creates a unigue key for each cached script by
prependingApache::ROOT:: to the mangled path of the script's URI. This key is actually the package
name that the script resides in. So if you have requested a /fpaifiproject/test.pl , the
scripts would be wrapped in code which starts with a package declaration of:

package Apache::ROOT::perl::project::test_e2pl;

15 Feb 2014 23

2.2.4 Apache::Registry

Apache::Registry also stores the script's last modification time. Everytime the script changes, the
cached code is discarded and recompiled using the modified source. However, it doesn’t check the modifi-
cation times of any of the perl libraries the script might use.

Apache::Registry overridesCORE::exit() with Apache::exit() , SO CGI scripts that use
exit() will run correctly. We will talk about all these details in depth later.

From the viewpoint of the programmer, there is almost no difference between running a script as a plain
CGil script under mod_cgi and running it under mod_perl. There is however a great speed improvement,
but at the expense of much heavier memory usage (there is no free lunch :).

When they run under mod_cgi, your CGI scripts are loaded each time they are called and then they exit.
Under mod_perl they are loaded once and cached. This gives a big performance boost. But because the
code is cached and doesn't exit, it won’t cleanup memory as it would under mod_cgi. This can have unex-
pected effects.

Your scripts will be recompiled and reloaded by mod_perl when it detects that you have changed them,
but remember that any libraries that your scripts might require() or use() will not be recompiled when they
are changed. You will have to take action yourself to ensure that they are recompiled.

Of course the guide will answer all these issues in depth.

Let's see what happens to your script when it's being executed Apdehe::Registry . If we take
the simplest code of (URperl/project/test.pl)

print "Content-type: text/htmi\n\n";
print "It works\n";

Apache::Registry will convert it into the following:

package Apache::ROOT::perl::project::test_e2pl;
use Apache gw(exit);
sub handler {

print "Content-type: text/html\n\n";

print "It works\n";

}

The first line provides a unigue namespace for the code to use, and a unigue key by which the code can be
referenced from the cache.

The second line impor#spache::exit which over-rides perl’s built-iexit

The sub handler subroutine is wrapped around your code. By default (i.e. if you do not specify an
alternative), when you use mod_perl and your code’s URI is called, mod_perl will seek to execute the
URI’s associatettandler subroutine.

Apache::Registry is usually configured in this way:

24 15 Feb 2014

Introduction and Incentives 2.3 What you will learn

Alias /perl/ /usr/local/apache/bin/
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
</Location>

In short, we see thaipache::Registry is just another mod_perl handler, which is executed when
requests are made for theerl directory, and then does some special handling of the Perl scripts in that
directory to turrtheminto Apache handlers.

2.2.5 Apache::PerlRun

Apache::PerlRun is very similar #pache::Registry . It uses the same basic concepts, i.e. it runs
CGIl scripts under mod_perl for additional speed. However, unliqgache::Registry ,
Apache::PerlRun will not cache scripts. The reason for this is that it's designed for use with CGl
scripts that may have been "dirty", which might cause problems when run persistently under mod_perl.
Apart from that, the configuration is the same. We diséyssche::PerlRun in|Apache::PerlRun,|a

closer look.

2.3 What you will learn

This document was written in an effort to help you start using Apache’s mod_perl extension as quickly
and easily as possible. It includes information about the installation and configuration of both Perl and the
Apache web server and delves deeply into the issues of writing and porting existing Perl scripts to run
under mod_perl. Note that it does not attempt to enter the big world of using the Perl API or C API. You
will find pointers to coverage of these topics in the Offsite resources section of this site. This guide tries to
cover the most of thApache::Registry andApache::PerlRun modules. Along with mod_perl

related topics, there are many more issues related to administering Apache servers, debugging scripts,
using databases, mod_perl related Perl, code snippets and more.

It is assumed that you know at least the basics of building and installing Perl and Apache. (If you do not,
just read the INSTALL documents which are part of the distribution of each package.) However, in this
guide you will find specific Perl and Apache installation and configuration notes, which will help you
successfully complete the mod_perl installation and get the server running in a short time.

If after reading this guide and the other documentation you feel that your questions remain unanswered,
you could try asking the apache/mod_perl mailing list to help you. But first try to browse the mailing list
archive. Often you will find the answer to your question by searching the mailing list archive, since most
guestions have been asked and answered already! If you ignore this advice, do not be surprised if your
guestion goes unanswered - it bores people when they’re asked to answer the same question repeatedly -
especially if the answer can be found in the archive or in the documentation. This does not mean that you
should avoid asking questions, just do not abuse the available her&m before you call foHELP.

When asking your question, be sure to have read the email-etiqudtte and How to report|problems

If you find errors in these documents, please contact the maintainer, after having read about how to submit
documentation patches.

15 Feb 2014 25

2.4 Maintainers

2.4 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

2.5 Authors

e Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

26

15 Feb 2014

http://stason.org/
http://stason.org/

mod_perl Installation 3 mod_perl Installation

3 mod_perl Installation

15 Feb 2014 27

3.1 Description

3.1 Description

An in-depth explanation of the mod_perl installation process, from the basic installation (in 10 steps), to a
more complex one (with all the possible options you might want to use, including DSO build). It includes
troubleshooting tips too.

First of all:

Apache 2.0 doesn’t work with mod_perl 1.0.
Apache 1.0 doesn’t work with mod_perl 2.0.

3.2 A Summary of a Basic mod_perl Installation

The following 10 commands summarize the execution steps required to build and install a basic mod_perl
enabled Apache server on almost any standard flavor of Unix OS.

% cd /usr/src

% lwp-download http://www.apache.org/dist/httpd/apache_1.3.xx.tar.gz

% lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz

% tar xzvf apache_1.3.xx.tar.gz

% tar xzvf mod_perl-1.xx.tar.gz

% cd mod_perl-1.xx

% perl Makefile.PL APACHE_SRC-=../apache_1.3.xx/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

% make && make test && make install

% cd ../apache_1.3.xx

% make install

Of course you should replatexxandl.3.xwith the real version numbers of mod_perl and Apache.

All that's left is to add a few configuration lineshitipd.conf |, the Apache configuration file, start the
server and enjoy mod_perl.

If you have stumbled upon a problem at any of the above steps, don’t despair, the next sections will
explain in detail each and every step.

Of course there is a way of installing mod_perl in only a couple of minutes if you are using a Linux distri-
bution that uses RPM packages:

% rpm -i apache-1.3.xx.rpm
% rpm -i mod_perl-1.xx.rpm

or apt system:
% apt-get install libapache-mod-perl

These should set up both Apache and mod_perl correctly for your system. Using a packaged distribution
can make installing and reinstalling a lot quicker and easier. (Note that the filenames will vaoywilhd
differ.)

28 15 Feb 2014

mod_perl Installation 3.3 The Gory Details

Since mod_perl can be configured in many different ways (features can be enabled or disabled, directories
can be modified, etc.) it's preferable to use a manual installation, as a prepackaged version might not suit
your needs. Manual installation will allow you to make the fine tuning for the best performance as well.

In this chapter we will talk extensively about the prepackaged versions, and ways to prepare your own
packages for reuse on many machines. Win32 users should consult the Win32 documentation for details
on that platform.

3.3 The Gory Details

We saw that the basic mod_perl installation is quite simple and takes about 10 commands. You can copy
and paste them from these pages. The parafB®ERYTHING=1selects a lot of options, but sometimes

you will need different ones. You may need to pass only specific parameters, to bundle other components
with mod_perl etc. You may want to build mod_perl as a loadable object instead of compiling it into
Apache, so that it can be upgraded without rebuilding Apache itself.

To accomplish this you will need to understand various techniques for mod_perl configuration and build-
ing. You need to know what configuration parameters are available to you and when and how to use them.

As with Perl, with mod_perl simple things are simple. But when you need to accomplish more compli-
cated tasks you may have to invest some time to gain a deeper understanding of the process. In this chapter
| will take the following route. I'll start with a detailed explanation of the four stages of the mod_perl
installation process, then continue with the different paths each installation might take according to your
goal, followed by a few copy-and-paste real world installation scenarios. Towards the end of the chapter |
will show you various approaches that make the installations easier, automating most of the steps. Finally
I'll cover some of the general issues that can cause new users to stumble while installing mod_perl.

We can clearly separate the installation process into the following stages:

® Source Configuration,
e Building,

® Testing and

e |nstallation.

3.3.1 Source Configuration (perl Makefile.PL ...)

Before building and installing mod_perl you have to configure it. You configure mod_perl just like any
other Perl module:

% perl Makefile.PL [parameters]

In this section we will go through most of the parameters mod_perl can accept and explain each one of
them.

First let's see what configuration mechanisms we have available. Basically they all define a special set of
parameters to be passedperl Makefile.PL . Depending on the chosen configuration, the final
product might be a stand-alone httpd binary or a loadable object.

15 Feb 2014 29

3.3.1 Source Configuration (perl Makefile.PL ...)

The source configuration mechanism in Apache 1.3 provides four major features (which of course are
available to mod_perl):

® Per-module configuration scripts (ConfigStart/End)

30

This is a mechanism modules can use to link themselves into the configuration process. It is useful
for automatically adjusting the configuration and build parameters from the modules sources. It is
triggered by ConfigStart /ConfigEnd sections inside modulename.modulefiles (e.g.
libperl.modulg.

Apache Autoconf-style Interface (APACI)

This is the new top-levelonfigure script from Apache 1.3 which provides a GNU Autoconf-style
interface. It is useful for configuring the source tree without manually editingraf@onfiguration
files. Any parameterization can be done via command line options twtiigure script. Inter-
nally this is just a nifty wrapper to the addc/Configure script.

Since Apache 1.3 this is the way to install mod_perl as cleanly as possible. Currently this is a pure
Unix-based solution because at present the complete Apache 1.3 source configuration mechanism is
only available under Unix. It doesn’t work on the Win32 platform for example.

Dynamic Shared Object (DSO) support

Besides Windows NT support this is one of most interesting features in Apache 1.3. Its a way to build
Apache modules as so-calldgnamic shared objec{sisually namednodulename.gavhich can be
loaded via thd_.oadModule directive in Apache’ittpd.conffile. The benefit is that the modules

are part of théattpd executable only on demand, i.e. only when the user wants a module it is loaded
into the address space of tgpd executable. This is interesting for instance in relation to memory
consumption and upgrading.

The DSO mechanism is provided by Apachazd_so module which needs to be compiled into the
httpd binary. This is done automatically when DSO is enabled for madotk foo via:

.Jconfigure --enable-module=foo
or by explicitly addingmod_so via:
Jconfigure --enable-module=so

APache eXtenSion (APXS) support tool

This is a new support tool from Apache 1.3 which can be used to build an Apache module as a DSO
evenoutsidethe Apache source-tree. One can ARXSis for Apache whalakeMaker andXS are

for Perl. It knows the platform dependent build parameters for making DSO files and provides an
easy way to run the build commands with them.

(MakeMaker allows an easy automatic configuration, build, testing and installation of the Perl
modules, an&S allows to call functions implemented in C/C++ from Perl code.)

15 Feb 2014

mod_perl Installation 3.3.1 Source Configuration (perl Makefile.PL ...)

Taking these four features together provides a way to integrate mod_perl into Apache in a very clean and
smooth wayNo patchingof the Apache source tree is needed in the standard situation and in the APXS
situation not even the Apache source tree is needed.

To benefit from the above features a new hybrid build environment was created for the Apache side of
mod_perl. The Apache-side consists of the mod_perl C source files which have to be compiled into the
httpd program. They are usually copied to the subdirecdozimodules/perlin the Apache source tree.

To integrate this subtree into the Apache build process a lot of adjustments were done by mod_perl’s
Makefile.PLin the past. And additionally thdakefile.PL controlled the Apache build process.

This approach is problematic in several ways. It is very restrictive and not very clean because it assumes
that mod_perl is the only third-party module which has to be integrated into Apache.

The new approach described below avoids these problems. It prepares anb/rttuelules/perlsubtree

inside the Apache source tregthout adjusting or editing anything else. This way, no conflicts can occur.
Instead, mod_perl is activated later (when the Apache source tree is configured, via APACI calls) and then
it configures itself.

We will return to each of the above configuration mechanisms when describing different installation
passes, once the overview of the four building steps is completed.

3.3.1.1 Configuration parameters

The commandgerl Makefile.PL , Which is also known as'@onfiguration stage"accepts various
parameters. In this section we will learn what they are, and when should they be used.

3.3.1.1.1 APACHE_SRC

If you specify neither th&®O_HTTPDnor theNO_HTTPDparameters you will be asked the following
guestion during the configuration stage:

Configure mod_perl with ../apache_1.3.xx/src ?
APACHE_SRGhould be used to define Apache’s source tree directory. For example:
APACHE_SRC-=../apache_1.3.xx/src

UnlessAPACHE_SRG specifiedMakefile.PLmakes an intelligent guess by looking at the directories at
the same level as the mod_perl sources and suggests a directory with the highest version of Apache found
there.

Answering’y’ confirms eitheMakefile.PL's guess about the location of the tree, or the directory you have
specified withAPACHE_SRC

If you useDO_HTTPD=1or NO_HTTPDthe first Apache source tree found or the one you have defined
will be used for the rest of the build process.

15 Feb 2014 31

3.3.1 Source Configuration (perl Makefile.PL ...)

3.3.1.1.2 DO_HTTPD, NO_HTTPD, PREP_HTTPD

Unless any oDO_HTTPDNO_HTTPDor PREP_HTTPDs used, you will be prompted by the following
guestion:

Shall | build httpd in ../apache_1.3.xx/src for you?
Answering’y’ will make sure an httpd binary will be built idapache 1.3.xx/snvhen you rurmake.

To avoid this prompt when the answelrissspecify the following argument:

DO_HTTPD=1

Note that if you seDO_HTTPD=1but do not us&PACHE_SRC=../apache_1.3.xx/src then the
first apache source tree found will be used to configure and build against. Therefore it's highly advised to
always use an explicRPACHE_SR@arameter, to avoid confusion.

PREP_HTTPD=Jjust means defaulth’ to the latter prompt, meanino not build (make) httpd in the
Apache source tredBut it will still ask you about Apache’s source location even if you have used the
APACHE_SR@arameter. Providing thePACHE_SR@arameter will just eliminate the need fuerl
Makefile.PL to make a guess.

To avoid the two prompts:

Configure mod_perl with ../apache_1.3.xx/src ?
Shall | build httpd in ../apache_1.3.xx/src for you?

and avoid building httpd, use:

NO_HTTPD=1

If you choose not to build the binary you will have to do that manually. We will talk about it later. In any
case you will need to rumake install in the mod_perl source tree, so the Perl side of mod_perl will
be installed. Note thamake test won’t work until you have built the server.

3.3.1.1.3 Callback Hooks

A callback hook (abbrewallback) is a reference to a subroutine. In Perl we create callbacks with the
$callback = \&subroutine syntax, where in this examptallback contains a reference to the subrou-

tine called"subroutine" Callbacks are used when we want some action (subroutine call) to occur when
some event takes place. Since we don’t know exactly when the event will take place we give the event
handler a callback to the subroutine we want executed. The handler will call our subroutine at the right
time.

By default, most of the callback hooks except ferlHandler ,PerlChildinitHandler ,
PerlChildExitHandler , PerlConnectionApi , andPerlServerApi are turned off. You may
enable them by editingrc/modules/perl/Makefileor when runningerl Makefile.PL

32 15 Feb 2014

mod_perl Installation 3.3.1 Source Configuration (perl Makefile.PL ...)

The possible parameters for the appropriate hooks are:

PERL_POST_READ_REQUEST
PERL_TRANS

PERL_INIT

PERL_RESTART (experimental)

PERL_HEADER_PARSER
PERL_AUTHEN
PERL_AUTHZ
PERL_ACCESS
PERL_TYPE
PERL_FIXUP
PERL_LOG
PERL_CLEANUP
PERL_CHILD_INIT
PERL_CHILD_EXIT
PERL_DISPATCH

PERL_STACKED_HANDLERS
PERL_METHOD_HANDLERS
PERL_SECTIONS

PERL_SSI

As with any parameters that are either defined or not,PERL_hookname=1 to enable them (e.g.
PERL_AUTHEN=L

To enable all, but the last 4 callback hooks use:

ALL_HOOKS=1

3.3.1.1.4 EVERYTHING

To enable everything set:

EVERYTHING=1

3.3.1.1.5 PERL_TRACE

To enabl¢ debug tracihg SBEERL_TRACE=1
3.3.1.1.6 APACHE_HEADER_INSTALL

By default, the Apache source headers files are installed into $@®nfig{sitearch-
exp}auto/Apache/includdirectory.

The reason for installing the header files is to make life simpler for module authors/users when build-
ing/installing a module that taps into some Apache C functiongzmbperl , Apache::Peek , etc.

If you don’t wish to install these files use:

15 Feb 2014 33

3.3.1 Source Configuration (perl Makefile.PL ...)

APACHE_HEADER_INSTALL=0

3.3.1.1.7 PERL_STATIC_EXTS

Normally, if an extension is statically linked with Perl it is listed i@onfig.pom 's
$Config{static_exts} , iIn which case mod_perl will also statically link this extension with httpd.
However, if an extension is statically linked with Perl after it is installed, it is not list€dnfig.pm

You may either edi€onfig.om and add these extensions, or configure mod_perl like this:

perl Makefile.PL "PERL_STATIC_EXTS=Something::Static Another::One"

3.3.1.1.8 APACI_ARGS

When you use th&JSE_APACI=1 parameter, you can telllakefile.PL to pass any arguments you
want to the Apachéconfigure utility, e.qg:

% perl Makefile.PL USE_APACI=1\

APACI_ARGS="--shindir=/usr/local/httpd_perl/shin, \
--sysconfdir=/usr/local/httpd_perl/etc, \
--localstatedir=/usr/local/httpd_perl/var, \
--runtimedir=/usr/local/httpd_perl/var/run, \
--logfiledir=/usr/local/httpd_perl/var/logs, \
--proxycachedir=/usr/local/httpd_perl/var/proxy’

Notice thatall APACI_ARGS (above) must be passed as one long line if you work t¥icsh !!!

However it works correctly as shown above (breaking the long lines Wjtlwvith (ba)?sh . If you use

t?csh it does not work, sinc&csh passes thAPACI_ARGSarguments to/configure leaving

the newlines untouched, but stripping the backslashes. This causes all the arguments except the first to be
ignored by the configuration process.

3.3.1.1.9 APACHE_PREFIX

Alternatively to:

APACI_ARGS='"--prefix=/usr/local/httpd_perl’

from the previous section you can use ARACHE_PREFIXparameter. WhetdSE_APACIis enabled,
this attribute will specify the-prefix option just like the above setting does.

In addition when theAPACHE_PREFIXoption is usednake install be executed in the Apache
source directory, which makes these two equivalent:

34 15 Feb 2014

mod_perl Installation 3.3.1 Source Configuration (perl Makefile.PL ...)

% perl Makefile.PL APACHE_SRC-=../apache_1.3.xx/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1\
APACI_ARGS='"--prefix=/usr/local/httpd_perl’

% make && make test && make install

% cd ../apache_1.3.xx

% make install

% perl Makefile.PL APACHE_SRC-=../apache_1.3.xx/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1\
APACHE_PREFIX=/usr/local/httpd_perl

% make && make test && make install

Now you can pick your favorite installation method.

3.3.1.2 Environment Variables

There are a few environment variables that influence the build/test process.

3.3.1.2.1 APACHE_USER and APACHE_GROUP

You can use the environment variabBBACHE_USERnd APACHE_GROU® override the default
User andGroup settings in théattpd.confused for 'make test’ stage. (Introduced in mod_perl v1.23.)

3.3.1.3 Reusing Configuration Parameters

When you have to upgrade the server, it's quite hard to remember what parameters were used in a
mod_perl build. So it's better to save them in a file. For example if you create a file at
~/.mod_perl_build_optionsvith contents:

APACHE_SRC=. /apache_1.3.xx/src DO_HTTPD=1 USE_APACI=1\
EVERYTHING=1

You can build the server with the following command:

% perl Makefile.PL ‘cat ~/.mod_per|_build_options'
% make && make test && make install

But mod_perl has a standard method to perform this trick. If a file namakdpl_args.mod_peis$ found
in the same directory as the mod_perl build location with any of these options, it will be reddakedsy
file.PL. Parameters supplied at the command line will override the parameters given in this file.

% Is -1 /usr/src
apache_1.3.xx/
makepl_args.mod_perl
mod_perl-1.xx/

% cat makepl_args.mod_perl
APACHE_SRC-=../apache_1.3.xx/src DO_HTTPD=1 USE_APACI=1\
EVERYTHING=1

% cd mod_perl-1.xx

% perl Makefile.PL
% make && make test && make install

15 Feb 2014 35

3.3.1 Source Configuration (perl Makefile.PL ...)

Now the parameters fromakepl_args.mod_pefile will be used, as if they were directly typed in.

Notice that this file can be located in your home directory or in.tltkrectory relative to the mod_perl
distribution directory. This file can also start with dohg&kepl_args.mod_pgrso you can keep it nicely
hidden along with the rest of the dot files in your home directory.

There is a samplenakepl_args.mod_perh the eg/ directory of the mod_perl distribution package, in
which you might find a few options to enable experimental features to play with too!

If you are faced with a compiled Apache and no trace of the parameters used to build it, you can usually
still find them if the sources were notake clean ’'d. You will find the Apache specific parameters in
apache_1.3.xx/config.status and the mod_perl parameters in
mod_perl-1.xx/apaci/mod_perl.config

3.3.1.4 Discovering Whether Some Option Was Configured

mod_perl version 1.25 has introduo®plache::Myconfig , which provides access to the various hooks
and features set when mod_perl is built. This circumvents the need to set up a live server just to find out if
a certain callback hook is available.

To see whether some feature was built in or not, checkothygache::MyConfig::Setup hash. For
example after installing mod_perl with the following options:

panic% perl Makefile.PL EVERYTHING=1

but on the next day we don’t remember what callback hooks were enabled, and we want to know whether
PERL_LOCcallback hook is enabled. One of the ways to find this out is to run the following code:

panic% perl -MApache::MyConfig \
-e 'print $Apache::MyConfig::Setup{PERL_LOGY}
1

which prints '1’--meaning thaPERL_LOGcallback hook was enabled. (That's becaa8&RYTHING=1
enables them all.)

Another approach is to configufgache::Status and run http://localhost/perl-status?hqoks to check
for enabled hooks.

You also may try to look at the symbols inside the httpd executable with helm(@) or a similar
utility. For example if you want to see whether you enaBIERL_LOG=1while building mod_perl, we
can search for a symbol with the same name but in lowercase:

panic% nm httpd | grep perl_log
08071724 T perl_logger

Indeed we can see that in our exanPiERL L OG=1was enabled. But this will only work if you have an
unstripped httpd binary. By defaultpake install strips the binary before installing it. Use the
--without-execstrip .IConfigure option to prevent stripping durimgake instalphase.

36 15 Feb 2014

http://localhost/perl-status?hooks

mod_perl Installation 3.3.1 Source Configuration (perl Makefile.PL ...)

Yet another approach that will work in most of the cases is to try to use the feature in question. If it wasn’t
configured Apache will give an error message

3.3.1.5 Using an Alternative Configuration File

By default mod_perl provides its own copy of tBenfigurationfile to Apache’s./configure utility.
If you wish to pass it your own version, do this:

% perl Makefile.PL CONFIG=Configuration.custom

Where Configuration.custonis the pathname of the filelative to the Apache source tree you build
against

3.3.1.6 perl Makefile.PL Troubleshooting

3.3.1.6.1 "A test compilation with your Makefile configuration failed..."

When you see this during tiperl Makefile.PL stage:

** A test compilation with your Makefile configuration

** failed. This is most likely because your C compiler

** is not ANSI. Apache requires an ANSI C Compiler, such
** as gcc. The above error message from your compiler

** will also provide a clue.

Aborting!

you've got a problem with your compiler. It is possible that it's improperly installed or not installed at all.
Sometimes the reason is that your Perl executable was built on a different machine, and the software
installed on your machine is not the same. Generally this happens when you install the prebuilt packages,
like RPM or deb. The dependencies weren't properly defined in the Perl binary package and you were
allowed to install it, although some essential package is not installed.

The most frequent pitfall is a missing gdbm library. See Missing or Misconfigured libgdbm.so for more
info.

But why guess, when we can actually see the real error message and understand what the real problem is.
To get a real error message, edit the Apash&Configurescript. Down around line 2140 you will see a
line like this:

if ./helpers/TestCompile sanity; then

change it to:

if ./helpers/TestCompile -v sanity; then

and try again. Now you should get a useful error message.

15 Feb 2014 37

3.3.1 Source Configuration (perl Makefile.PL ...)

3.3.1.6.2 Missing or Misconfigured libgdbm.so

On some Linux RedHat systems you might encounter a problem duripgrtidakefile.PL stage,
when the installed from the rpm package Perl was built witiydben library, but the library isn’t actually
installed. If this is your situation make sure you install it before proceeding with the build process.

You can check how Perl was built by running pleel -V command:
% perl -V | grep libs

On my machine | get:
libs=-Insl -Indbm -lgdbm -Idb -IdI -Im -Ic -Iposix -Icrypt

Sometimes the problem is even more obscure: you do liimydbm installed but it's not properly
installed. Do this:

% Is /usr/lib/libgdbm.so*
If you get at least three lines like | do:
Irwxrwxrwx /usr/lib/libgdbm.so -> libgdbm.s0.2.0.0

Irwxrwxrwx /usr/lib/libgdbm.so.2 -> libgdbm.s0.2.0.0
-rw-r--r-- fusr/lib/libgdbm.s0.2.0.0

you are all set. On some installations lihgdbm.sasymbolic link is missing, so you get only:

Inwxrwxrwx /usr/lib/libgdbm.so.2 -> libgdbm.s0.2.0.0
-rw-r--r-- fusr/lib/libgdbm.s0.2.0.0

To fix this problem add the missing symbolic link:

% cd /usr/lib
% In -s libgdbm.s0.2.0.0 libgdbm.so

Now you should be able to build mod_perl without any problems.

Note that you might need to prepare this symbolic link as well:
Inwxrwxrwx fusr/lib/libgdbm.so.2 -> libgdbm.s0.2.0.0

with:
% In -s libgdbm.s0.2.0.0 libgdbm.so.2

Of course if when you read this a new version oflittgdbm library will be released, you will have to
adjust the version numbers. We didn’'t use the usyalersion replacement here, to make it easier to
understand how the symbolic links should be set.

38 15 Feb 2014

mod_perl Installation 3.3.1 Source Configuration (perl Makefile.PL ...)

3.3.1.6.3 About gdbm, db and ndbm libraries

Both the gdbm and db libraries offer ndbm emulation, which is the interface that Apache actually uses, so
when you build mod_perl you end up with whichever library was linked first by the perl compile. If you
build apache without mod_perl you end up with whatever appears to be your ndbm library which will vary
between systems, and especially Linux distributions. You may have to work a bit to get both Apache and
Perl to use the same library and you are likely to have trouble copying the dbm file from one system to
another or even using it after an upgrade.

3.3.1.6.4 Undefined reference to ‘PL_perl_destruct_level’

When manually building mod_perl using the shared library:

cd mod_perl-1.xx

perl Makefile.PL PREP_HTTPD=1
make

make test

make install

cd ../apache_1.3.xx
Jconfigure --with-layout=RedHat --target=perlhttpd
--activate-module=src/modules/perl/libperl.a

you might get:

gcce -¢ -l./os/unix -l./include -DLINUX=2 -DTARGET=\"perlhttpd\" -DUSE_HSREGEX
-DUSE_EXPAT -l./lib/expat-lite ‘./apaci‘ buildmark.c

gcc -DLINUX=2 -DTARGET=\"perlhttpd\" -DUSE_HSREGEX -DUSE_EXPAT
-I./lib/expat-lite ‘./apaci® \

-0 perlhttpd buildmark.o modules.o modules/perl/libperl.a
modules/standard/libstandard.a main/libmain.a ./os/unix/libos.a ap/libap.a
regex/libregex.a lib/expat-lite/libexpat.a -Im -lcrypt
modules/perl/libperl.a(mod_perl.o): In function ‘perl_shutdown’:
mod_perl.o(.text+0xf8): undefined reference to ‘PL_perl_destruct_level’
mod_perl.o(.text+0x102): undefined reference to ‘PL_perl_destruct_level’
mod_perl.o(.text+0x10c): undefined reference to ‘PL_perl_destruct_level’
mod_perl.o(.text+0x13b): undefined reference to ‘Perl_av_undef’

[more errors snipped]

This happens when you have a statically linked perl build (i.e. without a digred.solibrary). Build a
dynamically linked perl (witHibperl.sg and the problem will disappear. See the "Building a shared Perl
library" section from théNSTALLfile that comes with Perl source.

Also seg¢ "Chapter 15.4 - Perl Build Optidns" filom Practical mod perl.

3.3.1.6.5 Further notes on libperl.(a|so)

Library files such a$ibfoo.aare archives that are used at linking time - these files are completely included
in the final application that linked it.

15 Feb 2014 39

http://modperlbook.org/html/ch15_04.html
http://modperlbook.org/

3.3.2 mod_perl Building (make)

Whereadibfoo.soindicates that it's a shared library. At the linking time the application only knows which
library it wants. Only at the loading time (runtime) that shared library will be loaded.

One of the benefits of using a shared library, is that it's loaded only once. If there are two application
linking to libperl.sothat run at the same time, only the first application will need to load it. The second
application will share that loaded library (that service is provided by the OS kernel). In the case of static
libfoo.a, it'll be loaded as many times as there are applications that included it, thus consuming more
memory. Of course this is not the only benefit of using shared libs.

In mod_perl 1.0, the library file is unfortunately nantiégperl.(soja) So you havdibperl.(sola)which is
perl, and you havébperl.(so|a) which is modperl. You are certainly looking at the modperl version of
libperl.a if you find it in the apache directory. perllibperl.(sola) lives under the perl tree (e.g. in
5.8.6/i1686-linux/CORE/libperl.90

Some distributions (notably Debian) have chosen tolipperl.so andlibperl.a into the global library
loader path (e.g/ust/lib) which will cause linking problems when compiling mod_perl (if compiling
against static perl), in which case you should move asidégerl.a while building mod_perl or else will
likely encounter further errors. If building against the dynamic péHdiserl.sq you may have similar
problems but at startup time. It's the best to get rid of perl that installs its libsignfiib (or similar) and
reinstall a new perl, which puts its library under the perl tree. Also see libperl.so and libperl.a.

3.3.2 mod_perl Building (make)

After completing the configuration you build the server, by calling:

% make

which compiles the source files and creates an httpd binary and/or a separate library for each module,
which can either be inserted into the httpd binary winake is called from the Apache source directory
or loaded later, at run time.

Note: don't put the mod_perl directory inside the Apache directory. This confuses the build process.
3.3.2.1 make Troubleshooting

3.3.2.1.1 Undefined reference to 'Perl_newAV’

This and similar error messages may show up duringntidee process. Generally it happens when you
have a broken Perl installation. Make sure it's not installed from a broken RPM or another binary package.
If it is, build Perl from source or use another properly built binary packagep&urv to learn what
version of Perl you are using and other important details.

3.3.2.1.2 Unrecognized format specifier for...

This error usually reported due to the problems with some versions of SFIO library. Try to use the latest
version to get around this problem. Or if you don't really need SFIO, rebuild Perl without this library.

40 15 Feb 2014

mod_perl Installation 3.3.3 Built Server Testing (make test)

3.3.3 Built Server Testing (make test)

After building the server, it's a good idea to test it thoroughly, by calling:

% make test

Fortunately mod_perl comes with a bunch of tests, which attempt to use all the features you asked for at
the configuration stage. If any of the tests fails,ntake test stage will fail.

Runningmake test will start a freshly built httpd on port 8529 running under the uid and gid of the
perl Makefile.PL process. The httpd will be terminated when the tests are finished.

Each file in the testing suite generally includes more than one test, but when you do the testing, the
program will only report how many tests were passed and the total number of tests defined in the test file.
However if only some of the tests in the file fail you want to know which ones failed. To gain this infor-
mation you should run the tests in verbose mode. You can enable this mode by using the
TEST_VERBOSIparameter:

% make test TEST_VERBOSE=1
To change the default port (8529) used for the test do this:
% perl Makefile.PL PORT=xxxx
To start the newly built Apache:
% make start_httpd
To shutdown Apache:
% make kill_httpd

NOTE to Ben-SSL users: httpsd does not seem to hddelénull as the location of certain files (for
example some of the configuration files mentionedhtipd.confcan be ignored by reading them from
/dev/nul) so you'll have to change these by hand. The tests are run wlisthgisable directive.

3.3.3.1 Manual Testing

Tests are invoked by running thH@EST script located in thet directory. Use thev option for verbose
tests. You might run an individual test like this:

% t/TEST -v modulesf/file.t

or all tests in a test sub-directory:

% t/TEST modules

The TEST script starts the server before the test is executed. If for some reason it fails to stagleise
start_httpd to start it manually.

15 Feb 2014 41

3.3.3 Built Server Testing (make test)

3.3.3.2 make test Troubleshooting

3.3.3.2.1 make test fails

You cannot rummake test before you build Apache, so if you tghérl Makefile.PL not to build
the httpd executable, there is no httpd to run the test against. Go to the Apache source tremalel run
then return to the mod_perl source tree and continue with the server testing.

3.3.3.2.2 mod_perl.c is incompatible with this version of Apache

If you had a stale old Apache header layout in one oinitlade paths during the build process you will
see this message when you try to execute httpd. Ruinthe (or locate) utility in order to locate the
file ap_mmn.hDelete it and rebuild Apache. RedHat installed a copysflocal/include/ap_mmn.bn
my system.

For all RedHat fans, before you build Apache yourself, do:
% rpm -e apache

to remove the pre-installed RPM package first!

Users with apt systems would do:
% apt-get remove apache

instead.

3.3.3.2.3 make test......skipping test on this platform

While doingmake test you will notice that some of the tests are reporteskgmped The reason is that

you are missing some optional modules for these test to be passed. For a hint you might want to peek at
the content of each test (you will find them all in the directory (mnemonic - t, tests). I'll list a few
examples, but of course things may change in the future.

modules/cookie......skipping test on this platform
modules/request.....skipping test on this platform

Install libapreq package which includes among otherd\glaehe::Request andApache::Cookie
modules.

modules/psections...skipping test on this platform

Install Devel::Symdump andData::Dumper

modules/sandwich....skipping test on this platform

Install Apache::Sandwich

42 15 Feb 2014

mod_perl Installation 3.3.4 Installation (make install)

modules/stage....... skipping test on this platform
Install Apache::Stage

modules/symbol......skipping test on this platform
Install Devel::Symdump

Chances are that all of these are installed if youQlBs&N.pmto install Bundle::Apache

3.3.3.2.4 make test Fails Due to Misconfigured localhost Entry

The make test suite usedocalhostto run the tests that require a network. Make sure you have this
entry in/etc/hosts

127.0.0.1 localhost.localdomain localhost

Also make sure that you have the loopback device [lo] configured. [Hint: try 'ifconfig lo’ to test for its
existence.]

3.3.4 Installation (make install)

After testing the server, the last step left is to install it. First install all the Perl side files:

% make install

Then go to the Apache source tree and complete the Apache installation (installing the configuration files,
httpd and utilities):

% cd ../apache_1.3.xx
% make install

Now the installation should be considered complete. You may now configure your server and start using
it.

3.3.5 Building Apache and mod_perl by Hand

If you wish to build httpd separately from mod_perl, you should us&l@eHTTPD=1Ioption during the

perl Makefile.PL (mod_perl build) stage. Then you will need to configure various things by hand
and proceed to build Apache. You shouldn't noerl Makefile.PL before following the steps
described in this section.

If you choose to manually build mod_perl, there are three things you may need to set up before the build
stage:

e mod_perl's Makefile

When perl Makefile.PL is executedpAPACHE_SRC/modules/perl/Makefiteay need to be
modified to enable various options (eAd.L_ HOOKS=]L

15 Feb 2014 43

3.4 Installation Scenarios for Standalone mod_perl

Optionally, instead of tweaking the options duripgrl Makefile.PL you may edit
mod_perl-1.xx/src/modules/perl/Makefilefore runningperl Makefile.PL

® Configuration
Add toapache_1.3.xx/src/Configuration
AddModule modules/perl/libperl.a

We suggest you add this entry at the end ofxbefigurationfile if you want your callback hooks to
have precedence over core handlers.

Add the following toEXTRA_LIBS:
EXTRA_LIBS="perl -MExtUtils::Embed -e Idopts*

Add the following toEXTRA_CFLAGS
EXTRA_CFLAGS="perl -MExtUtils::Embed -e ccopts'

e mod_perl Source Files

Return to the mod_perl directory and copy the mod_perl source files into the apache build directory:

% cp -r src/modules/perl apache_1.3.xx/src/modules/
When you have done with the configuration parts, run:

% perl Makefile.PL NO_HTTPD=1 DYNAMIC=1 EVERYTHING=1\
APACHE_SRC-=../apache_1.3.xx/src

DYNAMIC=1enables a build of the shared mod_perl library. Add other options if required.
% make install

Now you may proceed with the plain Apache build process. Note that in order for your changes to the
apache_1.3.xx/src/Configuratidite to take effect, you must ruapache_1.3.xx/src/Configure
instead of the defauttpache_1.3.xx/configurscript:

% cd ../apache_1.3.xx/src

% ./Configure

% make
% make install

3.4 Installation Scenarios for Standalone mod_perl

There are various ways available to build Apache with the new hybrid build environment (using
USE_APACI=1):

44 15 Feb 2014

mod_perl Installation 3.4.1 The All-In-One Way

3.4.1 The All-In-One Way

If your goal is just to build and install Apache with mod_perl out of their source trees and have no special
interest in further adjusting or enhancing Apache proceed as before:

% tar xzvf apache_1.3.xx.tar.gz

% tar xzvf mod_perl-1.xx.tar.gz

% cd mod_perl-1.xx

% perl Makefile.PL APACHE_SRC-=../apache_1.3.xx/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

% make && make test && make install

% cd ../apache_1.3.xx

% make install

This builds Apache statically with mod_perl, installs Apache under the défaulocal/apache
tree and mod_perl into tleite perl hierarchy of your existing Perl installation. All in one step.

3.4.2 The Flexible Way

This is the normal situation where you want to be flexible while building. Statically building mod_perl

into the Apache binaryhftpd) but via different steps, so you have a chance to include other third-party
Apache modules, etc.

1. Prepare the Apache source tree

The first step is as before, extract the distributions:

% tar xvzf apache_1.3.xx.tar.gz
% tar xzvf mod_perl-1.xx.tar.gz

2. Install mod_perl's Perl-side and prepare the Apache-side

The second step is to install the Perl-side of mod_perl into the Perl hierarchy and prepare the
src/modules/perl/ subdirectory inside the Apache source tree:

$ cd mod_perl-1.xx

$ perl Makefile.PL \
APACHE_SRC=../apache_1.3.xx/src\
NO_HTTPD=1\
USE_APACI=1\
PREP_HTTPD=1\
EVERYTHING=1\
[-]

$ make

$ make install

$cd..

The APACHE_SROption sets the path to your Apache source treedN@eHTTPDoption forces this
path and only this path to be used, tH&E APACIoption triggers the new hybrid build environment
and thePREP_HTTPDoption forces preparation of tiRPACHE_SRC/modules/perl/ tree but
no automatic build.

15 Feb 2014 45

3.4.3 When DSO can be Used

Then the configuration process prepares the Apache-side of mod_perl in the Apache source tree but
doesn’t touch anything else in it. It then just builds the Perl-side of mod_perl and installs it into the Perl
installation hierarchy.

Important: If you usePREP_HTTPIas described above, to complete the build you must go into the
Apache source directory and rorake andmake install

3. Additionally prepare other third-party modules

Now you have a chance to prepare third-party modules. For instance the PHP language can be added
in a manner similar to the mod_perl procedure.

4. Build the Apache Package

Finally it's time to build the Apache package and thus also the Apache-side of mod_perl and any
other third-party modules you've prepared:

$ cd apache_1.3.xx

$./configure \
--prefix=/path/to/install/of/apache \
--activate-module=src/modules/perl/libperl.a\

[-]
$ make
$ make install

The --prefix option is needed if you want to change the default target directory of the Apache
installation and the-activate-module option activates mod_perl for the configuration process
and thus also for the build process. If you choegeefix=/usr/share/apache the Apache
directory tree will be installed ifusr/share/apache

Note that the files activated byactivate-module do not exist at this time. They will be gener-
ated during compilation.

The last three steps build, test and install the Apache-side of the mod_perl enabled server. Presum-
ably your new server includes third-party components, otherwise you probably won’t choose this
method of building.

The method described above enables you to insert mod_perl into Apache without having to mangle the
Apache source tree for mod_perl. It also gives you the freedom to add third-party modules.

3.4.3 When DSO can be Used

Perl versions prior to 5.6.0, built wittbusemymalloc , and versions 5.6.0 and newer, built with
-Dusemymalloc and-Dbincompat5005 , pollute the mairttpd program withfree and malloc
symbols. Wherhttpd restarts (happens at startup too), any references in the main programand
mallocbecome invalid, and this causes memory leaks and segfaults.

46 15 Feb 2014

mod_perl Installation 3.4.4 Build mod_perl as a DSO inside the Apache Source Tree via APACI

To determine if you can use a DSO mod_perl with your version of Perl, first find out which malloc your
Perl was built with by running:

% perl -V:usemymalloc

If you get:

usemymalloc="n’;
then it means that Perl is using the system malloc, so mod_perl will work fine as DSO.
If you get:

usemymalloc="y";

it means that Perl is using its own malloc. If you are running Perl older than 5.6 .@wugbtiebuild Perl

with -Uusemymalloc in order to use it with a DSO mod_perl. If you are running Perl 5.6.0 or newer,
you must either rebuild Perl wittJusemymalloc , or make sure that binary compatibility with Perl
5.005 turned off. To find out, run:

% perl -V:bincompat5005
If you get:
bincompat5005="define’;

then youmusteither rebuild Perl withUbincompat5005 or with -Uusemymalloc to use it with a
DSO mod_perl. We recommend that you rebuild Perl withincompat5005 if Perl’s malloc is a
better choice for your OS.

Note that mod_perl's build system issues a warning about this problem.

If you needed to rebuild Perl don't forget to rebuild mod_perl too.

3.4.4 Build mod_perl as a DSO inside the Apache Source Tree via
APACI

We have already said that the new mod_perl build environriSE (APAC) is a hybrid. What does it
mean? It means for instance that the sarognodules/perl/ stuff can be used to build mod_perl as
a DSO or not, without having to edit anything especially for this. When you want tdibpéd.so

all you have to do is to add one single option to the above steps.

3.4.4.1 libperl.so and libperl.a

libmodperl.so would be more correct for the mod_perl file, but the name has libgegl.so

because of prehistoric Apache issues. Don’t confusébpperl.so for mod_perl with the file of the

same name which comes with Perl itself. They are two different things. It is unfortunate that they happen
to have the same name.

15 Feb 2014 47

3.5 Installation Scenarios for mod_perl and Other Components

There is also dbperl.a which comes with the Perl installation. That's different too.

You have two options here, depending on which way you have chosen above: If you choose the
All-In-One way from above then add

USE_DSO=1
to theperl Makefile.PL options. If you choose the Flexible way then add:

--enable-shared=perl
to Apache’s/configure options.

As you can see only an additiond6E_DSO=1or --enable-shared=perl option is needed. Every-
thing else is done automaticaliytod_so is automatically enabled, the Makefiles are adjusted automati-
cally and even thastall target from APACI now additionally installbperl.so into the Apache
installation tree. And even more: theadModule andAddModule directives (which dynamically load
and insert mod_perl into httpd) are automatically addéxitpal.conf

3.4.5 Build mod_perl as a DSO outside the Apache Source Tree via
APXS

Above we've seen how to build mod_perl as a D8€)e the Apache source tree. But there is a nifty
alternative: building mod_perl as a D®0tsidethe Apache source tree via the new Apache 1.3 support
tool apxs (APache eXtension). The advantage is obvious: you can extend an already installed Apache
with mod_perl even if you don’t have the sources (for instance, you may have installed an Apache binary
package from your vendor).

Here are the build steps:
% tar xzvf mod_perl-1.xx.tar.gz
% cd mod_perl-1.xx
% perl Makefile.PL \
USE_APXS=1\
WITH_APXS=/path/to/bin/apxs \
EVERYTHING=1\

% make && make test && make install

This will build the DSOlibperl.so outsidethe Apache source tree with the new Apache 1.3 support
tool apxs and install it into the existing Apache hierarchy.

3.5 Installation Scenarios for mod_perl and Other Compo-
nents

([ReaderMETA]: Please send more scenarios of mod_perl + other components installation guidelines.
Thanks!)

48 15 Feb 2014

mod_perl Installation 3.5.1 mod_perl and mod_ssl (+openssl)

You have now seen very detailed installation instructions for specific cases, but since mod_perl is used
with many other components that plug into Apache, you will definitely want to know how to build them
together with mod_perl.

Since all the steps are simple, and assuming that you now understand how the build process works, Ill
show only the commands to be executed with no comments unless there is something we haven't
discussed before.

Generally every example that I'm going to show consist of:

1. downloading the source distributions of the components to be used

N

. un-packing them

w

. configuring them

N

. building Apache using the parameters appropriate to each component
5. make test andmake install

All these scenarios were tested on a Linux platform, you might need to refer to the specific component’s
documentation if something doesn’t work for you as described below. The intention of this section is not
to show you how to install other non-mod_perl components alone, but how to do this in a bundle with
mod_perl.

Also, notice that the links I've used below are very likely to have changed by the time you read this docu-
ment. That's why | have used tRex.xconvention, instead of using hardcoded version numbers. Remem-
ber to replace thex place-holders with the version numbers of the distributions you are about to use. To
find out the latest stable version number, visit the components’ sites. So if the instructions say:

http://apache.org/dist/perl/mod_perl-1.xx.tar.gz

go to| http://perl.apache.org/downlgad/ in order to learn the version number of the latest stable release and
download the appropriate file.

Unless otherwise noted, all the components install themselves into a default location. Whennyakerun
install the installation program tells you where it's going to install the files.

3.5.1 mod_perl and mod_ssl (+openssl)

mod_ssl provides strong cryptography for the Apache 1.3 webserver via the Secure Sockets Layer (SSL
v2/v3) and Transport Layer Security (TLS v1) protocols by the help of the Open Source SSL/TLS toolkit
OpenSSL, which is based on SSLeay from Eric A. Young and Tim J. Hudson.

Download the sources:

15 Feb 2014 49

http://perl.apache.org/download/

3.5.1 mod_perl and mod_ssl (+openssl)

% lwp-download http://www.apache.org/dist/apache_1.3.xx.tar.gz

% Iwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz

% Iwp-download http://www.modssl.org/source/mod_ssl-X.X.X-X.x.x.tar.gz
% Iwp-download http://www.openssl.org/source/openssl|-x.x.x.tar.gz

Un-pack:

% tar xvzf mod_perl-1.xx

% tar xvzf apache_1.3.xx.tar.gz

% tar xvzf mod_ssl-x.x.x-x.x.x.tar.gz
% tar xvzf openssl-x.x.x.tar.gz

Configure, build and install openssl:

% cd openssl-x.x.x
% ./config
% make && make test && make install

Configure mod_ssl:

% cd mod_SSI-X.X.X-X.X.X
% ./configure --with-apache=../apache_1.3.xx

Configure mod_perl:

% cd ../mod_perl-1.xx

% perl Makefile.PL USE_APACI=1 EVERYTHING=1\
DO_HTTPD=1 SSL_BASE=/usr/local/ssl \
APACHE_PREFIX=/usr/local/apachessl| \
APACHE_SRC=../apache_1.3.xx/src \
APACI_ARGS="--enable-module=ssl,--enable-module=rewrite’

Note: Do not forget that if you ussh ortcsh you may need to put all the arguments to ‘perl Make-
file.PL’ on a single command line.

Note: If when specifyingSSL_BASE=/usr/local/ssl| Apache’s configure doesn't find the ssl
libraries, please refer to the mod_ssl documentation to figure outS@8latBASEargument it expects
(usually needed when ssl is not installed in the standard places). This topic is out of scope of this docu-
ment. For some setups usi@8§L_BASE=/usr/local does the trick.

Build, test and install:

% make && make test && make install
% cd ../apache_1.3.xx

% make certificate

% make install

Now proceed with the mod_ssl and mod_perl parts of the server configuration before starting the server.

When the server starts you should see the following or similar iertbe log file:

50 15 Feb 2014

mod_perl Installation 3.5.2 mod_perl and mod_ssl Rolled from RPMs

[Fri Nov 12 16:14:11 1999] [notice] Apache/1.3.9 (Unix)
mod_perl/1.21_01-dev mod_ssl/2.4.8 OpenSSL/0.9.4 configured
-- resuming normal operations

3.5.2 mod_perl and mod_ssl Rolled from RPMs

As in the previous section this shows an installation of mod_perl and mod_ssl, but this time using
sources/binaries prepackaged in RPMs.

As always, replacex with the proper version numbers. And replé@®86 with the identifier for your
platform if it is different.

1.
% get apache-mod_SSI-X.X.X.X-X.X.X.Src.rpm
Source} http://www.modssl.grg
2.
% get openssl-x.x.x.i386.rpm
Source} http://www.openssl.ofg/
3.
% lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz
Source} http://apache.org/dist/perl
4.
% lwp-download http://www.engelschall.com/sw/mm/mm-x.x.xx.tar.gz
Source} http://www.engelschall.com/sw/mm/
5.
% rpm -ivh openssl-x.x.x.i386.rpm
6.
% rpm -ivh apache-mod_ssl-x.X.X.X-X.X.X.Src.rpm
7.
% cd /usr/src/redhat/SPECS
8.
% rpm -bp apache-mod_ssl.spec
9.

15 Feb 2014 51

http://www.modssl.org/
http://www.openssl.org/
http://apache.org/dist/perl
http://www.engelschall.com/sw/mm/

3.5.2 mod_perl and mod_ssl Rolled from RPMs

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

52

% cd /usr/src/redhat/BUILD/apache-mod_ssl-X.X.X.X-X.X.X

% tar xvzf mod_perl-1.xx.tar.gz

% cd mod_perl-1.xx

% perl Makefile.PL APACHE_SRC-=../apache_1.3.xx/src \
DO_HTTPD=1\
USE_APACI=1\
PREP_HTTPD=1\
EVERYTHING=1

Add or remove parameters if appropriate.

% make

% make install

% cd ../ mm-Xx.x.xx/

% ./configure --disable-shared

% make

% cd ../mod_ssl-x.x.x-x.X.X

% ./configure \
--with-perl=/usr/bin/perl \
--with-apache=../apache_1.3.xx\
--With-ssI=SYSTEM \
--with-mm=../mm-x.x.x \
--with-layout=RedHat \
--disable-rule=WANTHSREGEX \
--enable-module=all \
--enable-module=define \
--activate-module=src/modules/perl/libperl.a \
--enable-shared=max \
--disable-shared=perl

15 Feb 2014

mod_perl Installation 3.5.3 mod_perl and apache-ssl (+openssl)

20.
% make
21.
% make certificate
with whatever option is suitable to your configuration.
22.

% make install
You should be all set.

Note: If you use the standard config for mod_ssl don’t forget to run Apache like this:

% httpd -DSSL

3.5.3 mod_perl and apache-ssl (+openssl)

Apache-SSL is a secure Webserver, based on Apache and SSLeay/OpenSSL. It is licensed under a
BSD-style license which means, in short, that you are free to use it for commercial or non-commercial
purposes, so long as you retain the copyright notices.

Download the sources:

% lwp-download http://www.apache.org/dist/apache_1.3.xx.tar.gz

% lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz

% lwp-download http://www.apache-ssl.org/.../apache_1.3.xx+ssl_x.xx.tar.gz
% lwp-download http://www.openssl.org/source/openssl-x.x.x.tar.gz

Un-pack:
% tar xvzf mod_perl-1.xx

% tar xvzf apache_1.3.xx.tar.gz
% tar xvzf openssl-x.x.x.tar.gz

Configure and install openssl:

% cd openssl-x.x.x
% ./config
% make && make test && make install

Patch Apache with SSLeay paths

% cd apache_x.xx

% tar xzvf ../apache_1.3.xx+ssl|_x.xx.tar.gz

% FixPatch

Do you want me to apply the fixed-up Apache-SSL patch for you? [n] y

15 Feb 2014 53

3.5.4 mod_perl and Stronghold

Now edit thesrc/Configurationfile if needed and then configure:

% cd ../mod_perl-1.xx

% perl Makefile.PL USE_APACI=1 EVERYTHING=1\
DO_HTTPD=1 SSL_BASE=/usr/local/ssl \
APACHE_SRC=../apache_1.3.xx/src

Build, test and install:

% make && make test && make install
% cd ../apache_1.3.xx/src

% make certificate

% make install

Note that you might need to modify the 'make test’ stage, as it takes much longer for this server to get
started ananake test waits only a few seconds for Apache to start before it times out.

Now proceed with configuration of the apache_ssl and mod_perl parts of the server configuration files,
before starting the server.

3.5.4 mod_perl and Stronghold

Stronghold is a secure SSL Web server for Unix which allows you to give your web site full-strength,
128-bit encryption.

You must first build and install Stronghold without mod_perl, following Stronghold’s install procedure.
For more information visjt http://www.c2.net/products/sh2/ .

Having done that, download the sources:
% lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz
Unpack:
% tar xvzf mod_perl-1.xx.tar.gz
Configure (assuming that you have the Stronghold sources extratisdlatal/strongholt

% cd mod_perl-1.xx
% perl Makefile.PL APACHE_SRC-=/usr/local/stronghold/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

Build:
% make

Before runningmake test , you must add you6trongholdKey to t/conf/httpd.conf If you are
configuring by hand, be sure to esit/modules/perl/Makefiland uncomment tAPACHE_SSlLdirec-
tive.

54 15 Feb 2014

http://www.c2.net/products/sh2/

mod_perl Installation 3.5.5 mod_perl and mod_php

Test and Install:
% make test && make install

% cd /ustr/local/stronghold
% make install

3.5.4.1 Note For Solaris 2.5 users

There has been a report related to REeEGEXIibrary that comes with Stronghold, that after building
Apache with mod_perl it would produce core dumps. To work around this problem, in
$STRONGHOLD/src/Configuratiachange:

Rule WANTHSREGEX=default

to:

Rule WANTHSREGEX=no

3.5.5 mod_perl and mod_php
This is a simple installation scenario of the mod_perl and mod_php in Apache server:

1. Configure Apache.

% cd apache_1.3.xx
% ./configure --prefix=/usr/localletc/httpd

(this step might be redundant with the recent versions of mod_php, but it's harmless.)

2. Build mod_perl.

% cd ../mod_perl-1.xx

% perl Makefile.PL APACHE_SRC-=../apache_1.3.xxx/src NO_HTTPD=1\
USE_APACI=1 PREP_HTTPD=1 EVERYTHING=1

% make

3. Build mod_php.

% cd ../php-Xx.x.xx

% ./configure --with-apache=../apache_1.3.xxx \
--with-mysqg| --enable-track-vars

% make

% make install

4. Build Apache:

% cd ../apache_1.3.xxx

% ./configure --prefix=/usr/local/etc/httpd \
--activate-module=src/modules/perl/libperl.a \
--activate-module=src/modules/php4/libphp4.a \
--enable-module=stats \
--enable-module=rewrite

% make

15 Feb 2014 55

3.6 mod_perl Installation with the CPAN.pm Interactive Shell

Note:libperl.a andlibphp4.ado not exist at this time. They will be generated during compilation.

5. Test and install mod_perl
% cd ../mod_perl-1.xx

% make test
make install.

6. Complete the Apache installation.

% cd ../apache_1.3.xxx
make install

Note: If you need to build mod_ssl as well, make sure that you add the mod_ssl first.

3.6 mod_perl Installation with the CPAN.pm Interactive
Shell

Installation of mod_perl and all the required packages is much easier with helpG#i#AiNepmmodule,
which provides you among other features with a shell interface to the CPAN repository. CPAN is the
Comprehensive Perl Archive Network, a repository of thousands of Perl modules, scripts as well as a vast

amount of documentation. See http://cpan.org for more information.

The first thing first is to download the Apache source code and unpack it into a directory -- the name of
which you will need very soon.

Now execute:

% perl -MCPAN -eshell

If it's the first time that you have used @PAN.pmwill ask you about a dozen questions to configure the
module. It's quite easy to accomplish this task, and very helpful hints come along with the questions.
When you are finished you will see t6® ANprompt:

cpan>

It can be a good idea to install a speC€iBIANbundle of modules to make using the CPAN module easier.
Installation is as simple as typing:

cpan> install Bundle::CPAN

The CPANshell can download mod_perl for you, unpack it, check for prerequisites, detect any missing
third party modules, and download and install them. All you need to do to install mod_perl is to type at the
prompt:

cpan> install mod_perl

56 15 Feb 2014

http://cpan.org/

mod_perl Installation 3.6 mod_perl Installation with the CPAN.pm Interactive Shell

You will see (I'll usex.xx as a placeholder for real version numbers, since these change very frequently):

Running make for DOUGM/mod_perl-1.xx.tar.gz
Fetching with LWP:
http://www.cpan.org/authors/id/DOUGM/mod_perl-1.xx.tar.gz

CPAN.pm: Going to build DOUGM/mod_perl-1.xx.tar.gz
Enter ‘q’ to stop search

Please tell me where | can find your apache src
[../apache_1.3.xx/src]

CPAN.pmwill search for the latest Apache sources and suggest a directory. Here, unless the CPAN shell
found it and suggested the right directory, you need to type the directory into which you unpacked
Apache. The next question is about #te directory, which resides at the root level of the unpacked
Apache distribution. In most cases the CPAN shell will suggest the correct directory.

Please tell me where | can find your apache src
[../apache_1.3.xx/src]

Answer yes to all the following questions, unless you have a reason not to do that.

Configure mod_perl with /usr/src/apache_1.3.xx/src ? [y]
Shall | build httpd in /usr/src/apache_1.3.xx/src for you? [y]

Now we will build Apache with mod_perl enabled. Quit @ANshell, or use another terminal. Go to the
Apache sources root directory and run:

% make install

which will complete the installation by installing Apache’s headers and the binary in the appropriate direc-
tories.

The only caveat of the process I've described is that you don’t have control over the configuration process.
Actually, that problem is easy to solve -- you can@AN.pmto pass whatever parameters you want to
perl Makefile.PL . You do this witho conf makepl_arg command:

cpan> o conf makepl_arg 'DO_HTTPD=1 USE_APACI=1 EVERYTHING=1"

Just list all the parameters as if you were passing them to the fameilidviakefile.PL . If you add
the APACHE_SRC=/usr/src/apache_1.3.xx/src andDO_HTTPD=Iparameters, you will not be
asked a single question. Of course you must give the correct path to the Apache source distribution.

Now proceed withinstall mod_perl as before. When the installation is completed, remember to
unset thanakepl_arg variable by executing:

cpan> o conf makepl_arg ”

If you have previously sehakepl_arg to some value, before you alter it for the mod_perl installation
you will probably want to save it somewhere so that you can restore it when you have finished with the
mod_perl installation. To see the original value, use:

15 Feb 2014 57

3.7 Installing on multiple machines

cpan> o conf makepl_arg

You can now install all the modules you might want to use with mod_perl. You install them all by typing a
singe command:

cpan> install Bundle::Apache

This will install mod_perl if isn’t yet installed, and many other packages sudixtdtils::Embed ,
MIME::Base64 , URI:URL , Digest::MD5 , Net:FTP , LWR HTML:TreeBuilder , CGlI,
Devel::Symdump , Apache::DB , Tie::lxHash , Data::Dumper efc.

A helpful hint: If you have a system with all the Perl modules you use and you want to replicate them all
elsewhere, and if you cannot just copy the whaka/lib/perl5 directory because of a possible
binary incompatibility on the other system, making your own bundle is a handy solution. To accomplish
this the commandutobundle can be used on the CPAN shell command line. This command writes a
bundle definition file for all modules that are installed for the currently running perl interpreter.

With the clever bundle file you can then simply say

cpan> install Bundle::my_bundle

and after answering a few questions, go out for a coffee.

3.7 Installing on multiple machines

You may wish to build httpd once, then copy it to other machines. The Perl side of mod_perl needs the
Apache headers files to compile. To avoid dragging and build Apache on all your other machines, there
are a few Makefile targets to help you out:

% make tar_Apache

This will tar all files mod_perl installs in your Perbgte_perldirectory, into a file calledpache.tar You
can then unpack this under thitge_perldirectory on another machine.

% make offsite-tar

This will copy all the header files from the Apache source directory which you configured mod_perl
against, then it willmake dist which creates a mod_perl-1.xx.tar.gz, ready to unpack on another
machine to compile and install the Perl side of mod_perl.

If you really want to make your life easy you should use one of the more advanced packaging systems. For
example, almost all Linux OS distributions use packaging tools on top of plain tar.gz, allowing you to
track prerequisites for each package, and providing easy installation, upgrade and cleanup. One of the
most widely-used packagers is RPM (Red Hat Package Managdr). See http://wwwirpm.org for more infor-
mation.

All you have to do is prepare a SRPM (source distribution package), then build a binary release. This can
be installed on any number of machines in a matter of seconds.

58 15 Feb 2014

http://www.rpm.org/

mod_perl Installation 3.8 using RPM and other packages to install mod_perl

It will even work on live machines! If you have two identical machines (identical software and hardware,
although depending on your setup hardware may be less critical). Let's say that one is a live server and the
other is in development. You build an RPM with a mod_perl binary distribution, install it on the develop-
ment machine and satisfy yourself that it is working and stable. You can then install the RPM package on
the live server without any fear. Make sure thi#tbd.confis correct, since it generally includes parameters

such as hostname which are unique to the live machine.

When you have installed the package, just restart the server. It can be a good idea to keep a package of the
previous system, in case something goes wrong. You can then easily remove the installed package and put
the old one back.

([ReaderMETA]: Dear reader, Can you please share a step by step scenario of preparation of SRPMs for
mod_perl? Thanks!!!)

3.8 using RPM and other packages to install mod_perl

[ReaderMETA]: Currently only RPM package. Please submit info about other available packages if you
use such.

3.8.1 A word on mod_perl RPM packages

The virtues of RPM packages is a subject of much debate among mod_perl users. While RPMs do take the
pain away from package installation and maintenance for most applications, the nuances of mod_perl
make RPMs somewhat less than ideal for those just getting started. The following help and advice is for
those new to mod_perl, Apache, Linux, and RPMs. If you know what you are doing, this is probably Old
Hat - contributing your past experiences is, as always, welcomed by the community.

3.8.2 Getting Started

If you are new to mod_perl and are using this Guide and the Eagle Book to help you on your way, it is
probably better to grab the latest Apache and mod_perl sources and compile the sources yourself. Not only
will you find that this is less daunting than you suspect, but it will probably save you a few headaches
down the line for several reasons.

First, given the pace at which the open source community produces software, RPMs, especially those
found on distribution CDs, are often several versions out of date. The most recent version will not only be
more stable, but will likely incorporate some new functionality that you will eventually want to play with.

It is also unlikely that the file system layout of an RPM package will match what you see in the Eagle
Book and this Guide. If you are new to mod_perl, Apache, or both you will probably want to get familiar
with the file system layout used by the examples given here before trying something non-standard.

Finally, the RPMs found on a typical distribution’s CDs use mod_perl built with Apache’s Dynamic
Shared ObjectdXSQ support. While mod_perl can be successfully used as a DSO module, it adds a layer
of complexity that you may want to live without for now.

15 Feb 2014 59

3.8.3 Compiling RPM source files

All that being said, should you still feel that rolling your own mod_perl enabled Apache server is not
likely, here are a few helpful hints...

3.8.3 Compiling RPM source files

It is possible to compile the source files provided by RPM packages, but if you are using RPMs to ease
mod_perl installation, that is not the way to do it. Both Apache and mod_perl RPMs are designed to be
install-and-go. If you really want to compile mod_perl to your own specific needs, your best bet is to get

the most recent sources from CPAN.

3.8.4 Mix and Match RPM and source

It is probably not the best idea to use a self-compiled Apache with a mod_perl RPM (or vice versa). Stick-
ing with one format or the other at first will result in fewer headaches and more hair.

3.8.5 Installing a single apache+mod_perl RPM

If you use an Apache+mod_perl RPM, chances@ame-i orglint (GUI for RPM) will have you up

and running immediately, no compilation necessary. If you encounter problems, try downloading from
another mirror site or searchipg http://rpmfindjnet/ for a different package - there are plenty out there to
choose from.

David Harris has started an effort to build better RPM/SRPM mod_perl packages. You will find the link to
David's site from Binary distributions.

Features of this RPM:

e |Installs mod_perl as an "add in" to the RedHat Apache package, but does not install mod_perl as a
DSO.

® Includes the four header files required for buildibgpreq (Apache::Request)

® Distributes plain text forms of the pod documentation files that come with mod_perl.

® Checks the module magic number on the existing Apache package to see if things are compatible
Notes on this un-conventional RPM packaging of mod_perl
by David Harris <dharris (at) drh.net> on Oct 13, 1999

This package will install the mod_perl library files on your machine along with the following two Apache
files:

lusr/lib/apache/mod_include_modperl.so
{usr/sbin/httpd_modperl

60 15 Feb 2014

http://rpmfind.net/

mod_perl Installation 3.8.6 Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl RPM

This package does not install a complete Apache subtree built with mod_perl, but rather just the two above
files that are different for mod_perl. This conceptually thinks of mod_perl as a kind of an "add on" that we
would like to add to the regular Apache tree. However, we are prevented from distributing mod_perl as an
actual DSO, because it is not recommended by the mod_perl developers and various features must be
turned off. So, instead, we distribute an httpd binary with mod_perl statically linked (httpd_modperl) and
the special modified mod_include.so required for this binary (mod_include_modperl.so). You can use the
exact same configuration files and other DSO modules, but you just "enable" the mod_perl "add on" by
following the directions below.

To enable mod_perl, do the following:
(1) Configure /etc/rc.d/init.d/httpd to run httpd_modperl instead of
httpd by changing the "daemon” command line.
(2) Replace mod_include.so with mod_include_modperl.so in the

module loading section of /etc/httpd/conf/httpd.conf
(3) Uncomment the "AddModule mod_perl.c" line in /etc/httpd/conf/httpd.conf

Or run the following command:
lusr/sbin/modperl-enable on

and to disable mod_perl:

lusr/sbin/modperl-enable off

3.8.6 Compiling libapreq (Apache::Request) with the RH 6.0 mod_ perl
RPM

Libapreq provides the Apache::Request module.

Despite many reports of libapreq not working properly with various RPM packages, it is possible to inte-
grate libapreq with mod_perl RPMs. It just requires a few additional steps.

1. Make certain you have thapache-devel-x.x.x-X.i386.rpm package installed. Also,
download the latest version of libapreq from CPAN.

2. Install the source RPM for your mod_perl RPM and then do a build prep, (pith-bp
apache-devel-x.x.x-x.src.rpm) which unpacks the sources. From there, copy the four
header files rhod_perl.h mod_perl_version,h mod_perl_xs.h and mod_PL.h to
/usrf/include/apache

® 2.1 Getthe SRPM frormomemir-
ror.../redhat-x.x'SRPMS/mod_ perl-1.xx-X.src.rpm

e 22 Install the SRPM. This creates files ifusr/src/redhat/SPECS and
Jusr/src/redhat/SOURCES . Run:

15 Feb 2014 61

3.8.6 Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl RPM

62

% rpm -ih mod_perl-1.xx-x.src.rpm

e 2.3 Do a"prep" build of the package, which just unpackages the sources and applies any

patches.

% rpm -bp /usr/src/redhat/'SPECS/mod_perl.spec
Executing: %prep

+ umask 022

+ cd /usr/src/redhat/BUILD

+ cd /usr/src/redhat/BUILD

+ rm -rf mod_perl-1.19

+ /bin/gzip -dc /usr/src/redhat/'SOURCES/mod_perl-1.19.tar.gz
+ tar -xf -

+ STATUS=0

+[0-ne0]

+ cd mod_perl-1.19

++ /usr/bin/id -u

+[0=0]

+ /bin/chown -Rf root .

++ /usr/bin/id -u

+[0=0]

+ /bin/chgrp -Rf root .

+ /bin/chmod -Rf a+rX,g-w,o-w .
+ echo Patch #0:

Patch #0:

+ patch -p1 -b --suffix .rh -s

+ exit 0

NOTE: Steps 2.1 through 2.3 are just a fancy un-packing of the source tree that builds the RPM
into /usr/src/redhat/BUILD/mod_perl-1.xx . You could unpack the
mod_perl-1.xx.tar.gz file somewhere and then do the following steps on that source
tree. The method shown above is more "pure" because you're grabbing the header files from the
same tree that built the RPM. But this does not matter because RedHat is not patching that file.
So, it might be better if you just grab the mod_perl source and unpack it to get these files. Less
fuss and mess.

2.4 Look at the files you will copy: (this is not really a step, but useful to show)
% find /usr/src/redhat/BUILD/mod_perl-1.19 -name *.h’
lusr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/mod_perl.h
lusr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/mod_perl_xs.h

lusr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/mod_perl_version.h
lusr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/perl_PL.h

2.5 Copy the files intéusr/include/apache

% find /usr/src/redhat/BUILD/mod_perl-1.19 -name ™*.h’ \
-exec cp {} /usr/include/apache \;

NOTE: You should not have to do:

15 Feb 2014

mod_perl Installation 3.8.7 Installing separate Apache and mod_perl RPMs

% mkdir /usr/include/apache

because that directory should be created by apache-devel.

3. Apply this patch to libaprefy: http://www.davideous.com/modperl-
[rpm/distrib/libapreg-0.31 include.patch

4. Follow the libapreq directions as usual:

% perl Makefile.PL
% make && make test && make install

3.8.7 Installing separate Apache and mod_perl RPMs

If you are trying to install separate Apache and mod_perl RPMs, like those provided by the RedHat distri-
butions, you may be in for a bit of a surprise. Installing the Apache RPM will go just firfe, and httd://local-

will bring up some type of web page for you. However, after installation of the mod_perl RPM, the

How can | tell whether mod_perl is running test will show that Apache is not mod_perl enabled. This is
because mod_perl needs to be added as a separate module using Apache’s Dynamic Shared Obijects.

To use mod_perl as a DSO, make the following modifications to your Apache configuration files:

httpd.conf:
LoadModule perl_module modules/libperl.so
AddModule mod_perl.c

PerlModule Apache::Registry
Alias /perl/ /home/httpd/perl/
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
PerlSendHeader On
Options +ExecCGl
</Location>

After a complete shutdown and startup of the server, mod_perl should be up and running.

3.8.8 Testing the mod_perl API

Some people have reported that even when the server responds positively to the How can | tell whether
mod_perl is running tests, the mod_perl API will not function properly. You may want to run the follow-
ing script to verify the availability of the mod_perl API.

use strict;

my $r = shift;
$r->send_http_header('text/html’);
$r->print("lt worked!!"\n");

15 Feb 2014 63

http://www.davideous.com/modperlrpm/distrib/libapreq-0.31_include.patch
http://www.davideous.com/modperlrpm/distrib/libapreq-0.31_include.patch
http://localhost/
http://localhost/

3.9 Installation Without Superuser Privileges

3.9 Installation Without Superuser Privileges

As you have already learned, mod_perl enabled Apache consists of two main components: Perl modules
and Apache itself. Let’s tackle the tasks one at a time.

I'll show a complete installation example usistgasas a username, assuming ttame/stass the home
directory of that user.

3.9.1 Installing Perl Modules into a Directory of Choice

Since without superuser permissions you aren’t allowed to install modules into system directories like
{usr/lib/perl5 you need to find out how to install the modules under your home directory. It's easy.

First you have to decide where to install the modules. The simplest approach is to simulate the portion of
the/ file system relevant to Perl under your home directory. Actually we need only two directories:

/home/stas/bin
/home/stas/lib

We don’t have to create them, since that will be done automatically when the first module is installed.
99% of the files will go into théib directory. Occasionally, when some module distribution comes with
Perl scripts, these will go into thén directory. This directory will be created if it doesn'’t exist.

Let's install theCGl.pmpackage, which includes a few otl&Gl::* modules. As usual, download the
package from the CPAN repository, unpack it andir to the newly-created directory.

Now do a standargerl Makefile.PL to prepare Makefile but this time telMakeMaker to use
your Perl installation directories instead of the defaults.

% perl Makefile.PL PREFIX=/home/stas

PREFIX=/home/stas is the only part of the installation process which is different from usual. Note
that if you don’t like howMakeMaker chooses the rest of the directories, or if you are using an older
version of it which requires an explicit declaration of all the target directories, you should do this:

% perl Makefile.PL PREFIX=/home/stas \
INSTALLPRIVLIB=/home/stas/lib/perl5 \
INSTALLSCRIPT=/home/stas/bin \
INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
INSTALLBIN=/home/stas/bin \
INSTALLMAN1DIR=/home/stas/lib/perl5/man \
INSTALLMAN3DIR=/home/stas/lib/perl5/man3

The rest is as usual:
% make

% make test
% make install

64 15 Feb 2014

mod_perl Installation 3.9.2 Making Your Scripts Find the Locally Installed Modules

make install installs all the files in the private repository. Note that all the missing directories are
created automatically, so there is no need to create them in first place. Here (slightly edited) is what it does

Installing /home/stas/lib/perl5/CGl/Cookie.pm

Installing /home/stas/lib/perl5/CGl.pm

Installing /home/stas/lib/perl5/man3/CGI.3

Installing /home/stas/lib/perl5/man3/CGl::Cookie.3

Writing /home/stas/lib/perl5/auto/CGl/.packlist

Appending installation info to /home/stas/lib/perl5/perllocal.pod

If you have to use the explicit target parameters, instead of a SIRBEHEIX parameter, you will find it
useful to create a file called for exampleperl_dirs(where~ is/home/stas in our example) contain-
ing:

PREFIX=/home/stas \

INSTALLPRIVLIB=/home/stas/lib/perl5 \

INSTALLSCRIPT=/home/stas/bin \

INSTALLSITELIB=/home/stas/lib/perl5/site_perl \

INSTALLBIN=/home/stas/bin \

INSTALLMAN1DIR=/home/stas/lib/perl5/man \
INSTALLMAN3DIR=/home/stas/lib/perl5/man3

From now on, any time you want to install perl modules locally you simply execute:
% perl Makefile.PL ‘cat ~/.perl_dirs’
% make

% make test
% make install

Using this method you can easily maintain several Perl module repositories. For example, you could have
one for production Perl and another for development:

% perl Makefile.PL ‘cat ~/.perl_dirs.production’

or

% perl Makefile.PL ‘cat ~/.perl_dirs.develop*

3.9.2 Making Your Scripts Find the Locally Installed Modules

Perl modules are generally placed in four main directories. To find these directories, execute:
% perl -V

The output contains important information about your Perl installation. At the end you will see:

15 Feb 2014 65

3.9.2 Making Your Scripts Find the Locally Installed Modules

Characteristics of this binary (from libperl):

Built under linux

Compiled at Apr 6 1999 23:34:07

@INC:
lusr/lib/perl5/5.00503/i386-linux
lusr/lib/perl5/5.00503
lusr/lib/perl5/site_perl/5.005/i386-linux
lusrllib/perl5/site_perl/5.005

It shows us the content of the Perl special vari@lBC which is used by Perl to look for its modules. It
is equivalent to th@ ATHenvironment variable in Unix shells which is used to find executable programs.

Notice that Perl looks for modules in thdirectory too, which stands for the current directory. It's the last
entry in the above output.

Of course this example is from versiér0D0503of Perl installed on my x86 architecture PC running
Linux. That's why you se&886-linuxand5.00503 If your system runs a different version of Perl, operat-
ing system, processor or chipset architecture, then some of the directories will have different names.

| also have a perl-5.6.0 installed undsr/local/lib/ so when | do:

% /usr/local/bin/perl5.6.0 -V

| see:

@INC:
lusr/locall/lib/perl5/5.6.0/i586-linux
lusr/local/lib/perl5/5.6.0
lusr/locall/lib/site_perl/5.6.0/i586-linux
lusr/localllib/site_perl

Note that it's stillLinux, but the newer Perl version uses the version of my Pentium processor (thus the
i586 and noti386). This makes use of compiler optimizations for Pentium processors when the binary Perl
extensions are created.

All the platform specific files, such as compiled C files glued to Perl &lor SWIG are supposed to go
into thei386-linux -like directories.

Important: As we have installed the Perl modules into non-standard directories, we have to let Perl know
where to look for the four directories. There are two ways to accomplish this. You can either set the
PERLS5LIB environment variable, or you can modify {B#NCvariable in your scripts.

Assuming that we use perl-5.00503, in our example the directories are:

/home/stasl/lib/perl5/5.00503/i386-linux
/home/stasl/lib/perl5/5.00503
/home/stasl/lib/perl5/site_perl/5.005/i386-linux
/home/stasl/lib/per|5/site_perl/5.005

66 15 Feb 2014

mod_perl Installation 3.9.2 Making Your Scripts Find the Locally Installed Modules

As mentioned before, you find the exact directories by execpéngV and replacing the global Perl
installation’s base directory with your home directory.

Modifying @INCis quite easy. The best approach is to usdilthe module (pragma), by adding the
following snippet at the top of any of your scripts that require the locally installed modules.

use lib gw(/home/stas/lib/perl5/5.00503/
/home/stas/lib/perl5/site_perl/5.005);

Another way is to write code to modi@INCexplicitly:

BEGIN {
unshift @INC,
gw(/home/stas/lib/perl5/5.00503
/home/stas/lib/perl5/5.00503/i386-linux
/home/stasl/lib/perl5/site_perl/5.005
/home/stas/lib/perl5/site_perl/5.005/i386-linux);

}

Note that with thdib module we don't have to list the corresponding architecture specific directories,
since it adds them automatically if they exist (to be exact, Btafbarchname/aut@xists).

Also, notice that both approachpeependthe directories to be searched@NC This allows you to
install a more recent module into your local repository and Perl will use it instead of the older one installed
in the main system repository.

Both approaches modify the value @iINCat compilation time. Théb module uses thBEGIN block
as well, but internally.

Now, let’'s assume the following scenario. | have installed.W&package in my local repository. Now |
want to install another module (e.g. mod_perl) and itth&®listed in its prerequisites list. | know that |
haveLWPinstalled, but when | ruperl Makefile.PL for the module I'm about to install I'm told
that | don't havd.WPinstalled.

There is no way for Perl to know that we have some locally installed modules. All it does is search the
directories listed ir@ING and since the latter contains only the default four directories (plusdirec-

tory), it cannot find the locally installeldWPpackage. We cannot solve this problem by adding code to
modify @ING but changing thd®’ERL5LIB environment variable will do the trick. If you are using
t?csh for interactive work, do this:

setenv PERL5LIB /home/stas/lib/perl5/5.00503:
/home/stasl/lib/perl5/site_perl/5.005

It should be a single line with directories separated by cotonar(d no spaces. If you arglaa)?sh
user, do this:

export PERL5LIB=/home/stas/lib/perl5/5.00503:
/home/stasl/lib/perl5/site_perl/5.005

15 Feb 2014 67

3.9.3 The CPAN.pm Shell and Locally Installed Modules

Again make it a single line. If you use bash you can use multi-line commands by terminating split lines
with a backslash\(), like this:

export PERL5LIB=/home/stas/lib/perl5/5.00503:\
/home/stas/lib/perl5/site_perl/5.005

As withuse lib , perl automatically prepends the architecture specific director@N&if those exist.

When you have done this, verify the value of the newly config@édChby executingperl -V as
before. You should see the modified valugiNC

% perl -V

Characteristics of this binary (from libperl):

Built under linux

Compiled at Apr 6 1999 23:34:07

%ENV:
PERL5LIB="/home/stas/lib/perl5/5.00503:
/home/stas/lib/perl5/site_perl/5.005"

@INC:
/home/stas/lib/perl5/5.00503/i386-linux
/home/stas/lib/perl5/5.00503
/home/stas/lib/perl5/site_perl/5.005/i386-linux
/home/stas/lib/perl5/site_perl/5.005
lusr/lib/perl5/5.00503/i386-linux
{usr/lib/perl5/5.00503
lusr/lib/perl5/site_perl/5.005/i386-linux
lusr/lib/perl5/site_perl/5.005

When everything works as you want it to, add these commands totgsturc or .bashrcfile. The next
time you start a shell, the environment will be ready for you to work with the new Perl.

Note that if you have RERL5LIB setting, you don’t need to alter ti@INCvalue in your scripts. But if

for example someone else (who doesn’t have this setting in the shell) tries to execute your scripts, Perl will
fail to find your locally installed modules. The best example is a crontab scriphigifatuse a different
SHELL environment and therefore tRERL5LIB setting won't be available to it.

So the best approach is to have bothRERL5LIB environment variable and the expli@INCexten-
sion code at the beginning of the scripts as described above.

3.9.3 The CPAN.pm Shell and Locally Installed Modules

As we saw in the section describing the usage oC#AN.pmshell to install mod_perl, it saves a great

deal of time. It does the job for us, even detecting the missing modules listed in prerequisites, fetching and
installing them. So you might wonder whether you can@RAN.pmto maintain your local repository as

well.

When you start th€PANinteractive shell, it searches first for the user’s private configuration file and
then for the system wide one. When I’'m logged as stser the two files on my setup are:

68 15 Feb 2014

mod_perl Installation 3.9.3 The CPAN.pm Shell and Locally Installed Modules

/home/stas/.cpan/CPAN/MyConfig.pm
{usr/lib/perl5/5.00503/CPAN/Config.pm

If there is noOCPANSshell configured on your system, when you start the shell for the first time it will ask
you a dozen configuration questions and then creai@adhég.pmfile for you.

If you've got it already system-wide configured, you should have a
lusr/lib/perl5/5.00503/CPAN/Config.pm . If you have a different Perl version, alter the path
to use your Perl's version number, when looking up the file. Create the direciadir ¢p creates the
whole path at once) where the local configuration file will go:

% mkdir -p /home/stas/.cpan/CPAN

Now copy the system wide configuration file to your local one.

% cp /ust/lib/perl5/5.00503/CPAN/Config.pm \
/home/stas/.cpan/CPAN/MyConfig.pm

The only thing left is to change the base directorycpénin your local file to the one under your home
directory. On my machine | repladasr/src/.cpan (that's where my system’span directory
resides) withhome/stas . | use Perl of course!

% perl -pi -e 's|/usr/src|/home/stas|’ \
/home/stas/.cpan/CPAN/MyConfig.pm

Now you have the local configuration file ready, you have to tell it what special parameters you need to
pass when executing tiperl Makefile.PL stage.

Open the file in your favorite editor and replace line:
'makepl_arg’ => q[],

with:
'makepl_arg’ => q[PREFIX=/home/stas],

Now you've finished the configuration. Assuming that you are logged in as the same user you have
prepared the local installation fatésin our example), start it like this:

% perl -MCPAN -e shell

From now on any module you try to install will be installed locally. If you need to install some system
modules, just become the superuser and install them in the same way. When you are logged in as the supe-
ruser, the system-wide configuration file will be used instead of your local one.

If you have used more than just tRREFIX variable, modifyMyConfig.pmto use them. For example if
you have used these variables:

15 Feb 2014 69

3.9.4 Making a Local Apache Installation

perl Makefile.PL PREFIX=/home/stas \
INSTALLPRIVLIB=/home/stas/lib/perl5 \
INSTALLSCRIPT=/home/stas/bin \
INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
INSTALLBIN=/home/stas/bin \
INSTALLMAN1DIR=/home/stas/lib/perl5/man \
INSTALLMAN3DIR=/home/stas/lib/perl5/man3

then replac®REFIX=/home/stas in the line:

'makepl_arg’ => q[PREFIX=/home/stas],

with all the variables from above, so that the line becomes:

'makepl_arg’ => q[PREFIX=/home/stas \
INSTALLPRIVLIB=/home/stas/lib/perl5 \
INSTALLSCRIPT=/home/stas/bin \
INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
INSTALLBIN=/home/stas/bin \
INSTALLMAN1DIR=/home/stas/lib/perl5/man \
INSTALLMAN3DIR=/home/stas/lib/perl5/man3],

If you arrange all the above parameters in one line, you can remove the backshashes (

3.9.4 Making a Local Apache Installation

Just like with Perl modules, if you don’t have permissions to install files into the system area you have to
install them locally under your home directory. It's almost the same as a plain installation, but you have to
run the server listening to a port number greater than 1024 since only root processes can listen to lower
numbered ports.

Another important issue you have to resolve is how to add startup and shutdown scripts to the directories
used by the rest of the system services. You will have to ask your system administrator to assist you with
this issue.

To install Apache locally, all you have to do is to tetinfigure in the Apache source directory what
target directories to use. If you are following the convention that | use, which makes your home directory
look like the/ (base) directory, the invocation parameters would be:

Jconfigure --prefix=/home/stas

Apache will use the prefix for the rest of its target directories instead of the default
/usr/local/apache . If you want to see what they are, before you proceed ade shew-layout
option:

Jconfigure --prefix=/home/stas --show-layout

You might want to put all the Apache files undeome/stas/apache following Apache’s conven-
tion:

70 15 Feb 2014

mod_perl Installation 3.9.5 Manual Local mod_perl Enabled Apache Installation

Jconfigure --prefix=/home/stas/apache

If you want to modify some or all of the names of the automatically created directories:

Jconfigure --prefix=/home/stas/apache \
--sbindir=/home/stas/apache/sbin
--sysconfdir=/home/stas/apache/etc
--localstatedir=/home/stas/apache/var \
--runtimedir=/home/stas/apache/var/run \
--logfiledir=/home/stas/apache/var/logs \
--proxycachedir=/home/stas/apache/var/proxy

That's all!

Also remember that you can start the script only under a user and group you belong to. You must set the
User andGroup directives irhttpd.confto appropriate values.

3.9.5 Manual Local mod_perl Enabled Apache Installation

Now when we have learned how to install local Apache and Perl modules separately, let's see how to
install mod_perl enabled Apache in our home directory. It's almost as simple as doing each one separately,
but there is one wrinkle you need to know about which I'll mention at the end of this section.

Let's say you have unpacked the Apache and mod_perl sources/lhmherstas/srand they look like
this:

% Is /home/stas/src
/home/stas/src/apache_1.3.xx
/home/stas/src/mod_perl-1.xx

wherexx are the version numbers as usual. You want the Perl modules from the mod_perl package to be
installed underhome/stas/lib/perland the Apache files to go unddlome/stas/apachéhe following
commands will do that for you:

% perl Makefile.PL \
PREFIX=/home/stas \
APACHE_PREFIX=/home/stas/apache \
APACHE_SRC-=../apache_1.3.xx/src\
DO_HTTPD=1\

USE_APACI=1\

EVERYTHING=1

% make && make test && make install
% cd ../apache_1.3.xx

% make install

If you need some parameters to be passed tadoméigure script, as we saw in the previous section
useAPACI_ARGS For example:

15 Feb 2014 71

3.9.5 Manual Local mod_perl Enabled Apache Installation

APACI_ARGS='"--shindir=/home/stas/apache/sbin, \
--sysconfdir=/home/stas/apache/etc, \
--localstatedir=/home/stas/apache/var, \
--runtimedir=/home/stas/apache/var/run, \
--logfiledir=/home/stas/apache/var/logs, \
--proxycachedir=/home/stas/apache/var/proxy’

Note that the above multiline splitting will work only witba)?sh , t?csh users will have to list all the
parameters on a single line.

Basically the installation is complete. The only remaining problem igth¢Cvariable. This won't be
correctly set if you rely on thBERL5LIB environment variable unless you set it explicitly in a startup
file which isrequire 'd before loading any other module that resides in your local repository. A much
nicer approach is to use thie pragma as we saw before, but in a slightly different way--we use it in the
startup file and it affects all the code that will be executed under mod_perl handlers. For example:

PerlRequire /home/stas/apache/perl/startup.pl

wherestartup.pl starts with:

use lib gw(/home/stas/lib/perl5/5.00503/
/home/stas/lib/perl5/site_perl/5.005);

Note that you can still use the hard-cog@@tNCmaodifications in the scripts themselves, but be aware that
scripts modify@INCin BEGIN blocks and mod_perl executes BEGIN blocks only when it performs
script compilation. As a resul@INCwill be reset to its original value after the scripts are compiled and
the hard-coded settings will be forgotten. See the seg¢tion '@INC and mod_perl’ for more information.

The only place you can alter the "original" value is during the server configuration stage either in the
startup file or by putting

PerlSetEnv Perl5LIB \
/home/stas/lib/perl5/5.00503/:/lhome/stas/lib/perl5/site_perl/5.005

in httpd.conf but the latter setting will be ignored if you use BexlTaintcheck setting, and | hope
you do use it.

The rest of the mod_perl configuration and use is just the same as if you were installing mod_perl as supe-
ruser.

3.9.5.1 Resource Usage

Another important thing to keep in mind is the consumption of system resources. mod_perl is memory
hungry. If you run a lot of mod_perl processes on a public, multiuser machine, most likely the system

administrator of this machine will ask you to use less resources and may even shut down your mod_perl
server and ask you to find another home for it. You have a few options:

® Reduce resources usage (see Preventing Your Processes from {Growing).

72 15 Feb 2014

mod_perl Installation 3.9.6 Local mod_perl Enabled Apache Installation with CPAN.pm

® Ask your ISP’s system administrator whether they can setup a dedicated machine for you, so that you
will be able to install as much memory as you need. If you get a dedicated machine the chances are
that you will want to have root access, so you may be able to manage the administration yourself.
Then you should consider keeping on the list of the system administrator's responsibilities the
following items: a reliable electricity supply and network link. And of course making sure that the
important security patches get applied and the machine is configured to be secure. Finally having the
machine physically protected, so no one will turn off the power or break it.

® | ook for another ISP with lots of resources or one that supports mod_perl. You can find a list of these
ISPs on this site.

3.9.6 Local mod_perl Enabled Apache Installation with CPAN.pm

Again, CPAN makes installation and upgrades simpler. You have seen how to install a mod_perl enabled
server usindCPAN.pnis interactive shell. You have seen how to install Perl modules and Apache locally.
Now all you have to do is to merge these techniques into a single "local mod_perl Enabled Apache Instal-
lation with CPAN.pm" technique.

Assuming that you have configur€ePAN.pm to install Perl modules locally, the installation is very
simple. Start th&€PAN.pmshell, set the arguments to be passegerb Makefile.PL (modify the
example setting to suit your needs), and@&AN.pmto do the rest for you:

% perl -MCPAN -eshell

cpan> o conf makepl_arg 'DO_HTTPD=1 USE_APACI=1 EVERYTHING=1\

PREFIX=/home/stas APACHE_PREFIX=/home/stas/apache’
cpan> install mod_perl

When you us€PAN.pmfor local installations, after the mod_perl installation is complete you must make
sure that the value ofiakepl_arg is restored to its original value.

The simplest way to do this is to quit the interactive shell by tygingand reenter it. But if you insist
here is how to make it work without quitting the shell. You really want to skip this :)

If you want to continue working wit@PAN*without* quitting the shell, you must:

1. remember the value ofrakepl _arg

2. change it to suit your new installation

3. build and install mod_perl

4. restore it after completing mod_perl installation

this is quite a cumbersome task as of this writing, but | believeCAN.pmwill eventually be improved
to handle this more easily.

So if you are still with me, start the shell as usual:

% perl -MCPAN -eshell

15 Feb 2014 73

3.10 Automating installation

First, read the value of theakepl_arg
cpan> o conf makepl_arg

PREFIX=/home/stas

It will be something likePREFIX=/home/stas if you configuredCPAN.pmto install modules locally.
Save this value:

cpan> o conf makepl_arg.save PREFIX=/home/stas

Second, set a new value, to be used by the mod_perl installation process. (You can add parameters to this
line, or remove them, according to your needs.)

cpan> o conf makepl_arg 'DO_HTTPD=1 USE_APACI=1 EVERYTHING=1\
PREFIX=/home/stas APACHE_PREFIX=/home/stas/apache’

Third, letCPAN.pmbuild and install mod_perl for you:
cpan> install mod_perl

Fourth, reset the original value moakepl_arg . We do this by printing the value of the saved variable
and assigning it tmmakepl_arg

cpan> o conf makepl_arg.save
PREFIX=/home/stas

cpan> o conf makepl_arg PREFIX=/home/stas
Not so neat, but a working solution. You could have written the value on a piece of paper instead of saving
it to makepl_arg.save , but you are more likely to make a mistake that way.
3.10 Automating installation

e Apache Builder

James G Smith wrote an Apache Builder, that can install a combination of Apache, mod_perl, and
mod_ssl -- it also has limited support for including mod_php in the mix. The builder is available from
James’ CPAN directory: $CPAN/authors/id/J/JS/JSMITH/ in the padkaidgt-apache-xx.tar.gz

® Aphid Apache Installer

Aphid provides a facility for bootstrapping SSL-enabled Apache web servers (mod_ssl) with an
embedded Perl interpreter (mod_perl). Source is downloaded from the Internet, compiled, and the
resulting system is installed in the directory you specify.

|http://sourceforge.net/projects/aphid/

74 15 Feb 2014

http://sourceforge.net/projects/aphid/

mod_perl Installation 3.11 How can | tell whether mod_perl is running?

3.11 How can | tell whether mod_perl is running?

There are a few ways. In older versions of apache (< 1.3.6 ?) you could check that by httpding
-v , but it no longer works. Now you should Usigpd -I . Please note that it is not enough to have it
installed, you have to configure it for mod_perl and restart the server too.

3.11.1 Checking the error_log

When starting the server, just check ¢éneor_log file for the following message:
[Thu Dec 3 17:27:52 1998] [notice] Apache/1.3.1 (Unix) mod_perl/1.15 configured

NANANNNNNNNNNNNNNNNNNNNNNNNNNNNNNNN

-- resuming normal operations

3.11.2 Testing by viewing /perl-status

Assuming that you have configured the <Location /perl-status> section in the server configuration file
fetch:| http://www.example.com/perl-status using your favorite Mozilla browser :-)

You should see something like this:

Embedded Perl version 5.00503 for Apache/1.3.9 (Unix) mod_perl/1.21
process 50880, running since Mon Dec 6 14:31:45 1999

3.11.3 Testing via telnet
Knowing the port you have configured apache to listen on, you carlnose to talk directly to it.

Assuming that your mod_perl enabled server listens to port 8080, telnet to your server at port 8080, and
typeHEAD / HTTP/1.0 then press thENTERkey TWICE:

% telnet localhost 8080<ENTER>
HEAD / HTTP/1.0<ENTER><ENTER>

You should see a response like this:
HTTP/1.1 200 OK
Date: Mon, 06 Dec 1999 12:27:52 GMT
Server: Apache/1.3.9 (Unix) mod_perl/1.21
Connection: close
Content-Type: text/html

Connection closed.

The line

Server: Apache/1.3.9 (Unix) mod_perl/1.21

15 Feb 2014 75

http://www.example.com/perl-status

3.11.4 Testing via a CGlI script

confirms that you have mod_perl installed and its versiar2it .

However, just because you have got mod_perl linked in there, that does not mean that you have configured
your server to handle Perl scripts with mod_perl. You will find configuration assistance at ModRerlCon-

3.11.4 Testing via a CGl script

Another method is to invoke a CGlI script which dumps the server’s environment.

| assume that you have configured the server so that scripts running under lgpeaticare handled by
the Apache::Registry handler and that you have tRerlSendHeader directive set t®n.

Copy and paste the script below (no need for a shebang line!). Let's say you teshp|isave it at the
root of the CGl scripts and CGI root is mapped directly tdgkd location of your server.

print "Content-type: text/plain\r\in\r\n";
print "Server’s environment\n";
foreach (keys %ENV) {

print "$_USENV{$_Hn";
}

Make it readable and executable by server (you may need to tune these permissions on a public host):

% chmod a+rx test.pl

Now fetch the URLhttp://www.example.com:8080/perl/test.pl | (replace 8080 with the
port your mod_perl enabled server is listening to). You should see something like this (the output has been
edited):

SERVER_SOFTWARE Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
GATEWAY_INTERFACE CGl-Perl/1.1

DOCUMENT_ROOT /home/httpd/docs

REMOTE_ADDR 127.0.0.1

[more environment variables snipped]

MOD_PERL mod_perl/1.21_01-dev

[more environment variables snipped]

If you see the that the value GATEWAY_INTERFACE CGI-Perl/1.1 everything is OK.

If there is an error you might have to add a shebanglitusr/bin/perl as a first line of the CGI
script and then try it again. If you see:

GATEWAY_INTERFACE CGl/1.1
it means that you have configured this location to run under mod_cgi and not mod_perl.

Also note that there isOD_PERIenvironment variable if you run under a mod_perl handler, it's set to
themod_perl/x.x»string, wherex.xxis the version number of mod_perl.

76 15 Feb 2014

http://www.example.com:8080/perl/test.pl

mod_perl Installation 3.12 General Notes

Based on this difference you can write code like this:

BEGIN {
perl5.004 or better is a must under mod_perl
require 5.004 if SENV{MOD_PERL};

}

You might wonder why in the world you would need to know what handler you are running under. Well,
for example you will want to us@&pache::exit() and notCORE::exit() in your modules, but if

you think that your script might be used in both environments (mod_cgi and mod_perl) you will have to
override theexit() ~ subroutine and to make decision what method to use at the runtime.

Note that if you run scripts under tigpache::Registry handler, it takes care of overriding the
exit() call for you, so it's not an issue. For reasons and implementations see: Terminating reguests and
[processes, exit() functipn and dlso Writing Mod Perl scripts and Porting plain CGls to it.

3.11.5 Testing via lwp-request

Yet another one. Why do | show all these approaches? While here they serve a very simple purpose, they
can be helpful in other situations.

Assuming you have thiowww-perl (LWB package installed (you will need it installed in order to
pass mod_perl'make test anyway):

% Iwp-request -e -d http://www.example.com

Will show you all the headers. Theé option disables printing the response content.

% Iwp-request -e -d http://www.example.com | egrep "*Server:’
To see the server version only.

Specify the port number if your server is listening to a port other than port 80. For example:
|http://www.example.com:8080 !

This technique works only iBerverTokens directive is set td-ull or not specified irhttpd.conf
That's because this directive controls whether the components information is displayed or not.

3.12 General Notes

3.12.1 Is it possible to run mod_perl enabled Apache as suExec?

The answer ido. The reason is that you catduid" a part of a process. mod_perl lives inside the Apache
process, so its UID and GID are the same as the Apache process.

You have to use mod_cgi if you need this functionality.

15 Feb 2014 77

http://www.example.com:8080/

3.12.2 Should I Rebuild mod_perl if | have Upgraded Perl?

Another solution is to use a crontab to call some script that will check whether there is something to do
and will execute it. The mod_perl script will be able to create and update this todo list.

3.12.2 Should | Rebuild mod_perl if | have Upgraded Perl?

Yes, you should. You have to rebuild the mod_perl enabled server since it has a har@tdGedri-
able. This points to the old Perl and it is probably linked to ariluperl library. If for some reason
you need to keep the old Perl version around you can m@Ii§Cin the startup script, but it is better to
build afresh to save you getting into a mess.

3.12.3 Perl installation requirements

Make sure you have Perl installed! The latest stable version if possible. Minimum perl 5.004! If you don’t
have it, install it. Follow the instructions in the distributioiSTALL file.

During the configuration stage (while runniniConfigure), to be able to dynamically load Perl
module extensions, make sure you ansviEegto the question:

Do you wish to use dynamic loading? [y]

3.12.4 mod_auth_dbm nuances

If you are amod_auth_dbm or mod_auth_db user you may need to edit PerConfig module.

When Perl is configured it attempts to find libraries for ndbm, gdbm, db, etc., for the DB*_File modules.
By default, these libraries are linked with Perl and remembered yahitgy module. When mod_perl

is configured with apache, thiextUtils::Embed module requires these libraries to be linked with
httpd so Perl extensions will work under mod_perl. However, the order in which these libraries are stored
in Config.pm may confusenod_auth_db* . If mod_auth_db* does not work with mod_perl, take a

look at the order with the following command:

% perl -V:libs
Here’s an example:
libs="-Inet -Insl_s -Ilgdbm -Indbm -Idb -IdId -Im -Ic -Indir -lcrypt’;

If -lgdbm or-ldb is before-lndbm (as it is in the example) edtonfig.pmand movelgdbm and
-ldb to the end of the list. Here’s how to fibnfig.pm

% perl -MConfig -e ’print "$Config{archlibexp}/Config.pm\n™

Under Solaris, another solution for building Apache/mod_perl+mod_auth_dbm is to remove the DBM and
NDBM "emulation" fromlibgdbm.a It seems that Solaris already provides its own DBM and NDBM, and
in our installation we found there’s no reason to build GDBM with them.

In our Makefile for GDBM, we changed

78 15 Feb 2014

mod_perl Installation 3.12.5 Stripping Apache to make it almost a Perl-server

OBJS = $(DBM_OF) $(NDBM_OF) $(GDBM_OF)
to
OBJS = $(GDBM_OF)

Rebuild libgdbm before Apache/mod_perl.

3.12.5 Stripping Apache to make it almost a Perl-server

Since most of the functionality that various apache mod_* modules provide is implemented in the
Apache::{*} Perl modules, it was reported that one can build an Apache server with mod_perl only. If
you can reduce the requirements to whatever mod_perl can handle, you can eliminate almost every other
module. Then basically you will have a Perl-server, with C code to handle the tricky HTTP bits. The only
module you will need to leave infsod_actions

3.12.6 Saving the config.status Files with mod_perl, php, ssl and Other
Components
Typically, when building the bloated Apache that sits behind Squid or whatever, you need mod_perl, php,

mod_ssl and the rest. As you install each they typically overwrite each atbafig.status files.
Save them after each step, so you will be able to reuse them later.

3.12.7 What Compiler Should Be Used to Build mod_perl?

All Perl modules that use C extensions must be compiled using the same compiler that your copy of Perl
was built with and the same compile options.

When you rurperl Makefile.PL , aMakefileis created. ThiMakefileincludes the same compilation
options that were used to build Perl itself. They are stored i@ahéig.pmmodule and can be displayed
with thePerl -V command. All these options are re-applied when compiling Perl modules.

If you use a different compiler to build Perl extensions, chances are that the options that a different
compiler uses won't be the same, or they might be interpreted in a completely different way. So the code
either won't compile or it will dump core when run or maybe it will behave in most unexpected ways.

Since mod_perl uses Perl, Apache and third party modules, and they all work together, it's essential to use
the same compiler while building each of the components.

You shouldn’t worry about this when compiling Perl modules since Perl will choose what's right automat-
ically. Unless you override things. If you do that, you are on your own...

Similarly, if you compile a non-Perl component separately, you should make sure to use both the same
compiler and the same options used to build Perl.

15 Feb 2014 79

3.13 OS Related Notes

3.12.8 Unescaping error_log

Starting from 1.3.30, the Apache logging APl escapes everything that geesotolog, therefore if
you're annoyed by this feature during the development phase (as your error messages will be all messed
up) you can disable the escaping during the Apache build time:

% CFLAGS="-DAP_UNSAFE_ERROR_LOG_UNESCAPED" ./configure ...

Or if you build a static perl

% perl Makefile.PL ... PERL_EXTRA_CFLAGS=-DAP_UNSAFE_ERROR_LOG_UNESCAPED

Do not use that CFLAGS in production unless you know what you are doing.

3.13 OS Related Notes

® Gary Shea <shea (at) xmission.com> discovered a nasty BSDI bug (seen in versions 2.1 and 3.0)
related to dynamic loading and found two workarounds:

It turns out that they usargv[0] to determine where to find the link tables at run-time, so if a
program either changesgv[0] , or does a chdir() (like Apache!) it can easily confuse the dynamic
loader. The short-term solutions to the problem are simple. Either of the following will work:

1) Call httpd with a full path, e.g. /opt/www/bin/httpd

2) Put the httpd you wish to run in a directory in your PAJdfioreany other directory containing a
version of httpd, then call it as 'httpd’. Don’t use a relative path!

3.14 Pros and Cons of Building mod_perl as DSO

On modern Unix derivatives there is a nifty mechanism usually called dynamic linking/loading of
Dynamic Shared Objects (DSO), which provides a way to build a piece of program code in a special
format for loading in at run-time into the address space of an executable program.

As of Apache 1.3, the configuration system supports two optional features for taking advantage of the
modular DSO approach: compilation of the Apache core program into a DSO library for shared usage and
compilation of the Apache modules into DSO files for explicit loading at run-time.

Should you use this method? Read the pros and cons and decide for yourself.
Pros:

® The server package is more flexible at run-time because the actual server process can be assembled at
run-time viaLoadModule httpd.confconfiguration commands instead @bnfigurationAddMod-
ule commands at build-time. For instance this way one is able to run different server instances (stan-
dard & SSL version, with and without mod_perl) with only one Apache installation.

80 15 Feb 2014

mod_perl Installation 3.15 Maintainers

The server package can be easily extended with third-party modules even after installation. This is at
least a great benefit for vendor package maintainers who can create an Apache core package and
additional packages containing extensions like PHP4, mod_perl, mod_fastcgi, etc.

Easier Apache module prototyping because with the DSO/apxs pair you can both work outside the
Apache source tree and only need an apxs -i command followed by an apachectl restart to bring a new
version of your currently developed module into the running Apache server.

Cons:

The DSO mechanism cannot be used on every platform because not all operating systems support
dynamic loading of code into the address space of a program.

The server starts up approximately 20% slower because of the symbol resolving overhead the Unix
loader now has to do.

The server runs approximately 5% slower on some platforms because position independent code
(PIC) sometimes needs complicated assembler tricks for relative addressing which are not necessarily
as fast as absolute addressing.

Because DSO modules cannot be linked against other DSO-based libraries (Id -Ifoo) on all platforms
(for instance a.out-based platforms usually don’t provide this functionality while ELF-based plat-
forms do) you cannot use the DSO mechanism for all types of modules. Or in other words, modules
compiled as DSO files are restricted to only use symbols from the Apache core, from the C library
(libc) and all other dynamic or static libraries used by the Apache core, or from static library archives
(libfoo.a) containing position independent code. The only way you can use other code is to either
make sure the Apache core itself already contains a reference to it, loading the code yourself via
dlopen() or enabling the SHARED_CHAIN rule while building Apache when your platform supports
linking DSO files against DSO libraries.

Under some platforms (many SVR4 systems) there is no way to force the linker to export all global
symbols for use in DSO’s when linking the Apache httpd executable program. But without the visi-
bility of the Apache core symbols no standard Apache module could be used as a DSO. The only
workaround here is to use the SHARED_ CORE feature because this way the global symbols are
forced to be exported. As a consequence the Apache src/Configure script automatically enforces
SHARED_CORE on these platforms when DSO features are used in the Configuration file or on the
configure command line.

3.15 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekmarj [http://stason.qrg/]

15 Feb 2014 81

http://stason.org/

3.16 Authors

3.16 Authors

® Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

82 15 Feb 2014

http://stason.org/

mod_perl Configuration 4 mod_perl Configuration

4 mod_perl Configuration

15 Feb 2014 83

4.1 Description

4.1 Description

This section documents the various configuration options available for Apache and mod_perl, as well as
the Perl startup files, and more esoteric possibilites such as configuring Apache with Perl.

4.2 Server Configuration

The next step after building and installing your new mod_perl enabled Apache server is to configure the
server. There are two separate parts to configure: Apache and mod_perl. Each has its own set of directives.

To configure your mod_perl enabled Apache server, the only file that you should need thtgmtit¢enf

By default,httpd.confis put into theconfdirectory under the server root directory. The default server root
is /usr/local/apachebn many UNIX platforms, but within reason it can be any directory you choose. If
you are new to Apache and mod_perl, you will probably find it helpful to keep to the directory layouts we
use in this Guide if you can.

Apache versions 1.3.4 and later are distributed with the configuration directives in a single file --
httpd.conf This Guide uses the same approach in its examples. Prior to version 1.3.4, the default Apache
installation used three configuration fileshttpd.conf srm.conf andaccess.confif you wish you can still

use all three files, by setting the AccessConfig and ResourceConfig directivgzdiconf You will also

see later on that we use other files, for exampplé.confandstartup.pl This is just for our convenience,

you could still do everything ihttpd.confif you wished.

4.3 Apache Configuration

Apache configuration can be confusing. To minimize the number of things that can go wrong, it can be a
good idea first to configure Apache itself without mod_perl. This will give you the confidence that it
works and maybe that you have some idea how to configure it.

There is a warning in thiettpd.confdistributed with Apache about simply editihgpd.confand running
the server, without understanding all the implications. This is another warning. Modifying the configura-
tion file and adding new directives can introduce security problems, and have performance implications.

The Apache distribution comes with an extensive configuration manual, and in addition each section of the
distributed configuration file includes helpful comments explaining how every directive should be config-
ured and what the defaults values are.

If you haven't moved Apache’s directories around, the installation program will have configured every-
thing for you. You can just start the server and test it. To start the server ugeathectl utility

which comes bundled with the Apache distribution. It resides in the same direchitydas, the Apache
server itself. Execute:

/usr/local/apache/bin/apachectl start

84 15 Feb 2014

mod_perl Configuration 4.3.1 Configuration Directives

Now you can test the server, for example by accefgsing http://lo¢alhost from a browser running on the same
host.

4.3.1 Configuration Directives

For a basic setup there are just a few things to configure. If you have moved any directories you have to
update them imttpd.conf There are many of them, here are just a couple of examples:

ServerRoot "/usr/local/apache"
DocumentRoot "/home/httpd/docs”

If you want to run it on a port other than port 80 editRbet directive:

Port 8080

You might want to change the user and group names the server will run under. Note that if started as the
root user (which is generally the case), the parent process will continue tonaot, dsit its children will
run as the user and group you have specified. For example:

User httpd
Group httpd

There are many other directives that you might need to configure as well. In addition to directives which
take a single value there are whole sections of the configuration (such a®ithetory> and
<Location> sections) which apply only to certain areas of your Web space. As mentioned earlier you
will find them all inhttpd.conf

4.3.2 .htaccess files

If there is a file with the naméataccessn any directory, Apache scans it for further configuration direc-
tives which it then applies only to that directory (and its subdirectories). The.htaneesss confusing
because it can contain any configuration directives, not just those related to access to resources. You will
not be surprised to find that a configuration directive can change the names of the files used in this way.

Note that if there is a
<Directory />
AllowOverride None
</Directory>

directive inhttpd.conf Apache will not try to look forhtaccesat all.

4.3.3 <Directory>, <Location> and <Files> Sections

I'll explain just the basics of theDirectory> , <Location> and<Files> sections. Remember that
there is more to know and the rest of the information is available in the Apache documentation. The infor-
mation I'll present here is just what is important for understanding the mod_perl configuration sections.

15 Feb 2014 85

http://localhost/

4.3.3 <Directory>, <Location> and <Files> Sections

Apache considers directories and files on your machine all to be resources. For each resource you can
determine a particular behaviour which will apply to every request for information from that particular
resource.

Obviously the directives irDirectory> sections apply to specific directories on your host machine,

and those irkFiles> sections apply only to specific files (actually groups of files with names which
have something in common). In addition to these sections, Apache has the concepbcéhtoon> |

which is also just a resourcelLocation> sections apply to specific URIs. Locations are based at the
document root, directories are based at the filesystem root. For example, if you have the default server
directory layout where the server root itusr/local/apache and the document root is
{usr/local/apache/htdocthen static files in the directovusr/local/apache/htdocs/pudre in the location

/pub.

It is up to you to decide which directories on your host machine are mapped to which locations. You
should be careful how you do it, because the security of your server may be at stake.

Locations do not necessarily have to refer to existing physical directories, but may refer to virtual
resources which the server creates for the duration of a single browser request. As you will see, this is
often the case for a mod_perl server.

When a browser asks for a resource from your server, Apache determines from its configuration whether
or not to serve the request, whether to pass the request to another server, what (if any) authorization is
required for access to the resource, and how to reply. For any given resource, the various sections in your
configuration may provide conflicting information. For example you may haui@ctory> section

which tells Apache that authorization is required for access to the resource but you mayFites>a

section which says that it is not. It is not always obvious which directive takes precedence in these cases.
This can be a trap for the unwary.

® <Directory directoryPath> ... </Directory>
Can appear in server and virtual host configurations.

<Directory> and </Directory> are used to enclose a group of directives which will apply
only to the named directory and sub-directories of that directory. Any directive which is allowed in a
directory context (see the Apache documentation) may be used.

The path given in theDirectory> directive is either the full path to a directory, or a wild-card
string. In a wild-card string? matches any single charactermatches any sequence of characters,
and[] matches character ranges. (This is similar to the shell’s file globs.) None of the wildcards will
match & character. For example:

<Directory /home/httpd/docs>

Options Indexes
</Directory>

If you want to use a regular expression to match then you should use the dyirotory-
Match regex> ...</DirectoryMatch>

86 15 Feb 2014

mod_perl Configuration 4.3.3 <Directory>, <Location> and <Files> Sections

If multiple (non-regular expression) directory sections match the directory (or its parents) containing
a document, then the directives are applied in the order of shortest match first, interspersed with the
directives from anyhtaccessiles. For example, with

<Directory />
AllowOverride None
</Directory>

<Directory /home/httpd/docs/*>
AllowOverride Filelnfo
</Directory>

for access to the documehbme/httpd/docs/index.htrfle steps are:

O Apply directive Al | owOverri de None (disabling .htaccesdiles).
O Apply directive Al | owOverri de Fil el nf o for directory /home/httpd/docs(which now
enables.htaccessn /home/httpd/docsand its sub-directories).
O Apply any Fi | el nf o directives in/home/httpd/docs/.htaccess
® <Files filenanme>..</Files>

Can appear in server and virtual host configurations,fgadcesdiles as well.

The <Files> directive provides for access control by filename. It is comparable toQilnec-

tory> and<Location> directives. It should be closed with tké-iles> directive. The direc-

tives given within this section will be applied to any object with a basename (last component of file-
name) matching the specified filename.

<Files> sections are processed in the order they appear in the configuration file, after the
<Directory> sections andhtaccesdiles are read, but befored.ocation> sections. Note that
<Files> can be nested insididirectory> sections to restrict the portion of the filesystem they
apply to.<Files> cannot be nested insigkocation> sections however.

The filename argument should include a filename, or a wild-card string, ®heegches any single
character, ani matches any sequence of characters. Extended regular expressions can also be used,
simply place a tilde characterbetween the directive and the regular expression. The regular expres-
sion should be in quotes. The dollar symbol refers to the end of the string. The pipe character indi-
cates alternatives. Special characters in extended regular expressions must escaped with a backslash.
For example:

<Files ~ "\.(gif|jpe?g|png)$">

would match most common Internet graphics formats. Alternatively you can usEildsMatch
regex> ...</FilesMatch> syntax.

® <l|ocation URL> ... </Location>

Can appear in server and virtual host configurations.

15 Feb 2014 87

4.3.4 How Directory, Location and Files Sections are Merged

The<Location> directive provides for access control by URL. It is similar totB&ectory>
directive, and starts a section which is terminated witkthecation> directive.

<Location> sections are processed in the order they appear in the configuration file, after the
<Directory> sections,htaccessiles and<Files> sections are read.

The<Location> section is the directive that is used most often with mod_perl.

URLs do nothave to refer to real directories or files within the filesystem athtication> oper-
ates completely outside the filesystem. Indeed it may sometimes be wise to ensdteotihat
tion> s do not match real paths to avoid confusion.

The URL may use wildcards. In a wild-card strifgmatches any single character, @andhatches
any sequences of charactdis, groups characters to match. For regular expression matches use the
<LocationMatch regex> ... </LocationMatch> syntax.

The<Location> functionality is especially useful when combined with 8&tHandler direc-
tive. For example to enable status requests, but allow them only from browsgasnaie.comyou
might use:

<Location /status>
SetHandler server-status
order deny,allow
deny from all
allow from .example.com
</Location>

4.3.4 How Directory, Location and Files Sections are Merged

When configuring the server, it's important to understand the order in which the rules of each section
apply to requests. The order of merging is:

1. <Di rect ory> (except regular expressions) andhtaccessare processed simultaneously, with
.htaccesoverriding <Di r ect ory>

2. <Di rect oryMat ch>, and<Di r ect or y> with regular expressions

3. <Fi | es>and<Fi | esMat ch> are processed simultaneously

4. <Locati on> and<Locat i oniMat ch> are processed simultaneously

Apart from<Directory> , each group is processed in the order that it appears in the configuration files.
<Directory> (group 1 above) is processed in the order shortest directory component to longest. If
multiple <Directory> sections apply to the same directory then they are processed in the configuration
file order.

Sections inside<VirtualHost> sections are applied as if you were running several independent
servers. The directives insideVirtualHost> sections do not interact with each other. They are
applied after first processing any sections outside the virtual host definition. This allows virtual host
configurations to override the main server configuration.

88 15 Feb 2014

mod_perl Configuration 4.3.5 Sub-Grouping of <Location>, <Directory> and <Files> Sections

Later sections override earlier ones.

4.3.5 Sub-Grouping of <Location>, <Directory> and <Files> Sections

Let's say that you want all files, except for a few of the files in a specific directory and below, to be
handled in the same way. For example if you want all the filésame/http/doc$o be served as plain
files, but any files with endinghtml and .txt to be processed by the content handler of your
Apache::MyFilter module.

<Directory /home/httpd/docs>
<FilesMatch "\.(html|txt)$">
SetHandler perl-script
PerlHandler Apache::MyFilter
</FilesMatch>
</Directory>

Thus it is possible to embed sections inside sections to create subgroups which have their own distinct
behavior. Alternatively you could use<&iles> section inside arhtaccesdile.

Note that you can't putFiles> or <FilesMatch> sections inside gLocation> section, but you
can put them inside<Directory> section.

4.3.6 Options Directive

Normally, if multiple Options directives apply to a directory, then the most specific one is taken
complete; the options are not merged.

However if all the options on th@ptions directive are preceded by+aor - symbol, the options are
merged. Any options preceded Byare added to the options currently in force, and any options preceded
by - are removed.

For example, without any and- symbols:

<Directory /home/httpd/docs>
Options Indexes FollowSymLinks

</Directory>

<Directory /home/httpd/docs/shtm|>
Options Includes

</Directory>

then only Includes will be set for the/lhome/httpd/docs/shtmdlirectory. However if the second
Options directive uses the and- symbols:

<Directory /home/httpd/docs>
Options Indexes FollowSymLinks

</Directory>

<Directory /home/httpd/docs/shtml|>
Options +Includes -Indexes

</Directory>

15 Feb 2014 89

4.4 mod_perl Configuration

then the optionfollowSymLinks andincludes are set for théhome/httpd/docs/shtrdirectory.

4.4 mod_perl Configuration

When you have tested that the Apache server works on your machine, it's time to configure mod_perl.
Some of the configuration directives are already familiar to you, but mod_perl introduces a few new ones.

It can be a good idea to keep all the mod_perl related configuration at the end of the configuration file,
after the native Apache configuration directives.

To ease maintenance and to simplify multiple server installations, the Apache/mod_perl configuration
system allows you several alternative ways to keep your configuration directives in separate places. The
Include directive inhttpd.confallow you to include the contents of other files, just as if the information
were all contained imnttpd.conf This is a feature of Apache itself. For example if you want all your
mod_perl configuration to be placed in a separate rfitel_perl.confyou can do that by adding to
httpd.confthis directive:

Include conf/mod_perl.conf

If you want to include this configuration conditionally, depending on whether your apache has been
compiled with mod_perl, you can use tRdodule directive:

<IfModule mod_perl.c>
Include conf/mod_perl.conf
</IfModule>

mod_perl adds two further directivesPerl> sections allow you to execute Perl code from within any
configuration file at server startup time, and as you will see later, a file containing any Perl program can be
executed (also at server startup time) simply by mentioning its namedrnRequire or PerIMod-

ule directive.

4.4.1 Alias Configurations

The ScriptAlias andAlias directives provide a mapping of a URI to a file system directory. The
directive:

Alias /foo /home/httpd/foo

will map all requests starting witlfoo onto the files starting witthome/httpd/foo/So when Apache gets
a request http://www.example.com/foo/test.pl the server will map this into thtedilelin the directory
/home/httpd/foo/

In additionScriptAlias assigns all the requests that match the URI/Ggg-bin) to be executed under
mod_cgi.

ScriptAlias /cgi-bin /home/httpd/cgi-bin

90 15 Feb 2014

http://www.example.com/foo/test.pl

mod_perl Configuration 4.4.1 Alias Configurations

is actually the same as:

Alias /cgi-bin /home/httpd/cgi-bin
<Location /cgi-bin>

SetHandler cgi-script

Options +ExecCGl
</Location>

where latter directive invokes mod_cgi. You shouldn’'t useSttréptAlias directive unless you want
the request to be processed under mod_cgi. Therefore when you configure mod_perl sectias use
instead.

Under mod_perl theAlias directive will be followed by two further directives. The first is the
SetHandler perl-script directive, which tells Apache to invoke mod_perl to run the script. The second
directive (for exampld®erlHandler) tells mod_perl which handler (Perl module) the script should be

run under, and hence for which phase of the request. Refer to the section Perl*Handlers for more informa-
tion about handlers for the various request phases.

When you have decided which methods to use to run your scripts and where you will keep them, you can
add the configuration directive(s) batpd.conf They will look like those below, but they will of course
reflect the locations of your scripts in your file-system and the decisions you have made about how to run
the scripts:

ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/
Alias Iperl/ /home/httpd/perl/

In the examples above all the requests issued for URIs startingcgiibin will be served from the direc-
tory /home/httpd/cgi-bin/and starting wittiperl from the directoryhome/httpd/perl/

4.4.1.1 Running CGl, PerlRun, and Registry Scripts Located in the Same Directory

Typical for plain cgi scripts:
ScriptAlias /cgi-bin/ /home/httpd/perl/

Typical for Apache::Registry scripts:
Alias Iperl/ /home/httpd/perl/

Typical for Apache::PerlRun scripts:
Alias [cgi-perl/ /home/httpd/perl/

In the examples above we have mapped the three different [dRig/{vww.example.com/periftest.pl
[http://www.example.com/cgi-bin/test.ahdhttp://www.example.com/cgi-perlfies).@ll to the same file
/home/httpd/perl/test.plThis means that we can have all our CGI scripts located at the same place in the
file-system, and call the script in any of three ways simply by changing one component of the URI
(cqi-bin|perl|cgi-per).

This technique makes it easy to migrate your scripts to mod_perl. If your script does not seem to be
working while running under mod_perl, then in most cases you can easily call the script in straight
mod_cgi mode or undekpache::PerlRun without making any script changes. Simply change the
URL you use to invoke it.

15 Feb 2014 91

http://www.example.com/perl/test.pl
http://www.example.com/cgi-bin/test.pl
http://www.example.com/cgi-perl/test.pl

4.4.2 <Location> Configuration

Although in the configuration above we have configured all t&esesto point to the same directory
within our file system, you can of course have them point to different directories if you prefer.

You should remember that it is undesirable to run scripts in plain mod_cgi mode from a mod_perl-enabled
server--the resource consumption is too high. It is better to run these on a plain Apache sdrver] See Stan-
[dalone mod_perl Enabled Apache Server.

4.4.2 <Location> Configuration

The<Location> section assigns a number of rules which the server should follow when the request’s
URI matches thé.ocation Just as it is the widely accepted convention to/cgiebin for your mod_cgi
scripts, it is conventional to ugperl as the base URI of the perl scripts which you are running under
mod_perl. Let's review the following very widely usedocation> section:

Alias /perl/ /home/httpd/perl/
PerIModule Apache::Registry
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
allow from all
PerlSendHeader On
</Location>

This configuration causes all requests for URIs starting Apeehl to be handled by the mod_perl Apache
module with the handler from thApache::Registry Perl module. Let’s review the directives inside
the<Location> section in the example:

<Location /perl>

Remember theAlias from the above section? We use the sdtias here; if you were to use a
<Location> that does not have the samias , the server would fail to locate the script in the file
system. You need thalias setting only if the code that should be executed is located in the file. So
Alias just provides the URI to filepath translation rule.

Sometimes there is no script to be executed. Instead there is some module whose method is being
executed, similar téperl-status where the code is stored in an Apache module. In such cases we don't
needAlias settings for thoseLocation> s.

SetHandler perl-script

This assigns the mod_perl Apache module to handle the content generation phase.

PerlHandler Apache::Registry

Here we tell Apache to use tApache::Registry Perl module for the actual content generation.

Options ExecCGl

92 15 Feb 2014

mod_perl Configuration 4.4.2 <Location> Configuration

The Options directive accepts various parameters (options), one of whigkesCGI . This tells the

server that the file is a program and should be executed, instead of just being displayed like a static file
(like HTML file). If you omit this option then the script will either be rendered as plain text or else it will
trigger aSave-Aglialog, depending on the client’s configuration.

allow from all

This directive is used to set access control based on domain. The above settings allow clients from any
domain to run the script.

PerlSendHeader On

PerlSendHeader On tells the server to send an HTTP headers to the browser on every script invoca-
tion. You will want to turn this off for nph (non-parsed-headers) scripts.

The PerlSendHeader On setting invokes the Apache&p_send_http _header() method after
parsing the headers generated by the script. It is only meant for emulation of mod_cgi behavior with
regard to headers.

To send the HTTP headers it's always better either to uskrthsgend_http_header method using
the Apache Perl API or to use thg->header method from th&€€Gl.pm module.

</Location>
Closes thecLocation> section definition.

Note that sometimes you will have to preload the module before using itsthdication> section. In
the case oApache::Registry the configuration will look like this:

PerlModule Apache::Registry
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGlI
allow from all
PerlSendHeader On
</Location>

PerlModule is equivalent to Perl’s natiugsse() function call.
No changes are required to tlegi-bin location (mod_cgi), since it has nothing to do with mod_perl.

Here is another very similar example, this time ushpgiche::PerlRun (For more information see
[Apache::PerlRyn):

<Location /cgi-perl>
SetHandler perl-script
PerlHandler Apache::PerlRun
Options ExecCGl
allow from all
PerlSendHeader On
</Location>

15 Feb 2014 93

4.4.3 Overriding <Location> Setting in "Sub-Location"

The only difference from thépache::Registry configuration is the argument of thierlHan-
dler directive, wheré\pache::Registry has been replaced wikpache::PerlRun

4.4.3 Overriding <Location> Setting in "Sub-Location"

So if you have:
<Location /foo>
SetHandler perl-script

PerlHandler My::Module
</Location>

If you want to remove a mod_perl handler setting from a location beneath a location where the handler
was set (i.elfoo/bar), all you have to do is to reset it, like this:

<Location /foo/bar>

SetHandler default-handler
</Location>

Now, all the requests starting witioo/barwould be served by Apache’s default handler.

4.4.4 PerlModule and PerlRequire Directives

As we saw earlier, a module should be loaded before it is Begliilodule andPerlRequire are

the two mod_perl directives which are used to load modules and code. They are almost equivalent to
Perl'suse() andrequire() functions respectively and called from the Apache configuration file. You
can pass one or more module names as argumepésiddodule

PerlIModule Apache::DBI CGI DBD::Mysq|

Generally the modules are preloaded from the startup script, which is usuallystatteg.pl This is a
file containing plain Perl code which is executed througtPémdRequire directive. For example:

PerlRequire /home/httpd/perl/lib/startup.pl
A PerlRequire file name can be absolute or relativeServerRoot or a path ir@INC

As with any file with Perl code that getse() 'd or require() ’'d, it must return drue value. To
ensure that this happens don'’t forget to agdat the end o$tartup.pl

Notice that unless mod_perl is compiled as DSO and ujfled&reshRestart | is set toOn, one
needs to fully stop and start Apache for any changes to take affect, if the files and modules have been
modified.

4.4.5 Perl*Handlers

As you probably know Apache traverses a loop for each HTTP request it receives.

94 15 Feb 2014

mod_perl Configuration 4.4.5 Perl*Handlers

After you have compiled and installed mod_perl, your Apache mod_perl configuration directives tell
Apache to invoke the module mod_perl as the handler for some request which it receives. Although it
could in fact handle all the phases of the request loop, usually it does not. You tell mod_perl which phases
it is to handle (and so which to leave to other modules, or to the default Apache routines) by putting
Perl*Handler directives in the configuration files.

Because you need the Perl interpreter to be present for your Perl script to do any processing at all, there is
a slight difference between the way that you configure Perl and C handlers to handle parts of the request
loop. Ordinarily a C module is written, compiled and configured to hook into a specific phase of the
request loop. For a Perl handler you compile mod_perl itself to hook into the appropriate phases, as if it
were to handle the phases itself. Then youRmri*Handler directives in your configuration file to

tell mod_perl that it is to pass the responsibility for handling that part of the request phase to your Perl
module.

mod_perl is an Apache module written in C. As most programmers will only need to handle the response
phase, in the default compilation most of terl*Handler s are disabled. When you configure the
Makefile.PLfile for its compilation, you must specify whether or not you will want to handle parts of the
request loop other than the usual content generation phase. If so you need to specify which parts. See the
"Callback Hooks" section for how to do this.

Apache specifies about eleven phases of the request loop, namely (and in order of processing):
Post-Read-Request, URI Translation, Header Parsing, Access Control, Authentication, Authorization,
MIME type checking, FixUp, Response (also known as the Content handling phase), Logging and finally
Cleanup. These are the stages of a request where the Apache API allows a module to step in and do some-
thing. There is a dedicatdterl*Handler for each of these stages plus a couple of others which don’t
correspond to parts of the request loop.

We call themPerl*Handler directives because the names of the many mod_perl handler directives for
the various phases of the request loop all follow the same format. ithBerl*Handler is a place-
holder to be replaced by something which identifies the phase to be handled. For &exthplgHan-

dler is a Perl Handler which (fairly obviously) handles the logging phase.

The slight exception iRerlHandler , which you can think of aBerlResponseHandler . It is the
content generation handler and so it is probably the one that you will use most frequently.

Note that it is mod_perl which recognizes these directives, and not Apache. They are mod_perl directives,
and an ordinary Apache does not recognize them. If you get error messages about these directives being
"perhaps mis-spelledit is a sure sign that the appropriate part of mod_perl (or the entire mod_perl
module!) is not present in your copy of Apache executable.

The full list of Perl*Handler s follows. They are in the order that they are processed by Apache and
mod_perl:

PerlChildInitHandler
PerlPostReadRequestHandler
PerlInitHandler
PerlTransHandler
PerlHeaderParserHandler
PerlAccessHandler

15 Feb 2014 95

4.4.6 The handler subroutine

PerlAuthenHandler
PerlAuthzHandler
PerlTypeHandler
PerlFixupHandler
PerlHandler
PerlLogHandler
PerlCleanupHandler
PerlChildExitHandler
PerlDispatchHandler
PerlRestartHandler

PerlIChildInitHandler andPerlChildExitHandler do not refer to parts of the request loop,
they are to allow your modules to initialize data structures and to clean up at the child process start-up and
shutdown respectively, for example by allocating and deallocating memory.

All <Location> , <Directory> and<Files> sections contain a physical path specification. Like
PerIChildInitHandler and PerlChildExitHandler , the directives PerlPostRead-
RequestHandler andPerlTransHandler cannot be used in these sections, nahiaccesdiles,
because it is not until the end of the Translation HandlerlTransHandler) phase that the path
translation is completed and a physical path is known.

PerlInitHandler changes its behaviour depending upon where it is used. In any case it is the first
handler to be invoked in serving a request. If found outside<dmgation> , <Directory> or
<Files> section (at the top level), it is an alias RerlPostReadRequestHandler . When inside

any such section it is an alias feerlHeaderParserHandler

Starting fromPerlHeaderParserHandler the requested URI has been mapped to a physical server
pathname, and thus it can be used to matchogation> , <Directory> or <Files> configuration
section, or to look in ahtaccesdile if such a file exists in the specified directory in the translated path.

PerlDispatchHandler andPerlRestartHandler do not correspond to parts of the Apache API,
but allow you to fine-tune the mod_perl API.

The Apache documentation will tell you all about these stages and what your modules can do. By default,
most of these hooks are disabled at compile time, see the"Callback Hooks" section for information on
enabling them.

4.4.6 The handler subroutine

By default the mod_perl API expects a subroutine cdlatler() to handle the request in the regis-
tered Perl*Handler module. Thus if your module implements this subroutine, you can register the
handler with mod_perl like this:

Perl*Handler Apache::Foo

ReplacePerl*Handler with the name of a specific handler from the list given above. mod_perl will
preload the specified module for you. Please note that this approach will not preload the module at startup.
To make sure it gets loaded you have three options: you can explicitly preload it witbritedule

directive:

96 15 Feb 2014

mod_perl Configuration 4.4.7 Stacked Handlers

PerlIModule Apache::Foo

You can preload it at the startup file:
use Apache::Foo ();

Or you can use a nice shortcut that Bezl*Handler syntax provides:
Perl*Handler +Apache::Foo

Note the leading character. This directive is equivalent to:

PerlIModule Apache::Foo
Perl*Handler Apache::Foo

If you decide to give the handler routine a name other tiaawller , for examplemy_handler , you
must preload the module and explicitly give the name of the handler subroutine:

PerlIModule Apache::Foo
Perl*Handler Apache::Foo::my_handler

As you have seen, this will preload the module at server startup.

If a module needs to know which handler is currently being run, it can find out withittent _callback
method. This method is most usefulRerIDispatchHandlersvhich wish to take action for certain phases
only.

if ($r->current_callback eq "PerlLogHandler") {

$r->warn("Logging request");

}

4.4.7 Stacked Handlers

With the mod_perl stacked handlers mechanism, during any stage of a request it is possible for more than
onePerl*Handler to be defined and run.

Perl*Handler directives (in your configuration files) can define any number of subroutines. For
example:

PerlTransHandler OneTrans TwoTrans RedTrans BlueTrans

With the methodApache->push_handlers() , callbacks (handlers) can be added to a stck
runtimeby mod_perl scripts.

Apache->push_handlers() takes the callback hook name as its first argument and a subroutine
name or reference as its second.

Here’s an example:

15 Feb 2014 97

4.4.7 Stacked Handlers

use Apache::Constants qw(:common);
sub my_logger {

#some code here

return OK;

}
Apache->push_handlers("PerlLogHandler", \&my_logger);

Here's another one;:

use Apache::Constants gw(:common);

$r->push_handlers("PerlLogHandler", sub {
print STDERR "__ANON___ called\n";
return OK;

i
After each request, this stack is erased.
All handlers will be called unless a handler returns a status otheD#@arDECLINED
Example uses:

CGl.pm maintains a global object for its plain function interface. Since the object is global, it does not go
out of scopeDESTROYSs never calledCGIl->new can call:

Apache->push_handlers("PerlCleanupHandler", \&CGl::_reset_globals);

This function will be called during the final stage of a request, refresb@igom’s globals before the
next request comes in.

Apache::DCELogin establishes a DCE login context which must exist for the lifetime of a request, so
the DCE::Login object is stored in a global variable. Without stacked handlers, users must set

PerlCleanupHandler Apache::DCELogin::purge

in the configuration files to destroy the context. This is not "user-friendly". Mamache::DCELo-
gin::handler can call:

Apache->push_handlers("PerlCleanupHandler", \&purge);

Persistent database connection modules suéipashe::DBI could push &erlCleanupHandler

handler that iterates ovésConnected , refreshing connections or just checking that connections have not
gone stale. Remember, by the time we gdee¢dCleanupHandler , the client has what it wants and

has gone away, so we can spend as much time as we want here without slowing down response time to the
client (although the process itself is unavailable for serving new requests before the operation is
completed).

PerlTransHandlers (e.g.Apache::MsqlProxy) may decide, based on the URI or some arbitrary
condition, whether or not to handle a request. Without stacked handlers, users must configure it them-
selves:

98 15 Feb 2014

mod_perl Configuration 4.4.7 Stacked Handlers

PerlTransHandler Apache::MsqlProxy::translate
PerlHandler Apache::MsqlProxy

PerlHandler is never actually invoked unleanslate() sees that the request is a proxy request
($r->proxyreq). If it is a proxy requestranslate() sets$r->handler("perl-script") :

and only then willPerlHandler handle the request. Now users do not have to speeiydandler
Apache::MsqlProxy , thetranslate() function can set it witpush_handlers()

Imagine that you want to include footers, headers, etc., piecing together a document, without using SSI.
The following example shows how to implement it. First we prepare the code as follows:

Test/Compose.pm
package Test::Compose;
use Apache::Constants gw(:common);

sub header {
my $r = shift;
$r->content_type("text/plain”);
$r->send_http_header;
$r->print("header text\n");
return OK;

}

sub body { shift->print("body text\n") ; return OK}
sub footer { shift->print("*footer text\n") ; return OK}
1

__END__

in httpd.conf or perl.conf
PerlIModule Test::Compose
<Location /foo>

SetHandler "perl-script”
PerlHandler Test::Compose::header Test::Compose::body Test::Compose::footer

</Location>

Parsing the output of another Perl[Handler? This is a little more tricky, but consider:

<Location /foo>

SetHandler "perl-script"”

PerlHandler OutputParser SomeApp
</Location>

<Location /bar>

SetHandler "perl-script"”

PerlHandler OutputParser AnotherApp
</Location>

Now, OutputParser goes first, but iuntie() ’'s *STDOUTand retie() 's it to its own package
like so:

package OutputParser;
sub handler {

my $r = shift;
untie *STDOUT;

15 Feb 2014 99

4.4.8 Perl Method Handlers

tie *STDOUT => 'OutputParser’, $r;
}
sub TIEHANDLE {

my ($class, $r) = @_;

bless { r => $r}, $class;

}

sub PRINT {
my $self = shift;
for (@) {

#do whatever you want to $_ for example:
$self->{r}->print($_ . "[insert stuff]");
}
}

1;
END__

To build in this feature, configure with:

% perl Makefile.PL PERL_STACKED HANDLERS=1]...]

If you want to test whether your running mod_perl Apache can stack handlers, the method
Apache->can_stack handlers will return TRUE if mod_perl was configured with
PERL_STACKED_HANDLERS=NdFALSE otherwise.

4.4.8 Perl Method Handlers

If a Perl*Handler is prototyped witl$$, this handler will be invoked as a method. For example:

package MyClass;
@ISA = gw(BaseClass);

sub handler ($$) {
my ($class, $r) = @_;

}
package BaseClass;

sub method ($$) {
my ($class, $r) = @_;

}
1
Configuration:

PerlHandler MyClass

100 15 Feb 2014

mod_perl Configuration 4.4.8 Perl Method Handlers

or

PerlHandler MyClass->handler

Since the handler is invoked as a method, it may inherit from other classes:

PerlHandler MyClass->method

In this case, thiMyClass class inherits this method froBaseClass . This means that any method of
MyClass or any of its parent classes can serve as a mod_perl handler, and that you can apply good OO
methodology within your mod_perl handlers.

For instance, you could have this base class:
package ServeContent;
use Apache::Constants qw(OK);

sub handler($$) {
my ($class, $r) = @_;

$r->send_http_header('text/plain’);
$r->print($class->get_content());

return OK;
}

sub get_content {
return 'Hello World’;

}
1,

And then use the same base class for different contents:
package HelloWorld;

use ServeContent;
@ISA = gw(ServeContent);

sub get_content {
return '"Hello, happy world!’;

}

package GoodbyeWorld;

use ServeContent;
@ISA = gw(ServeContent);

sub get_content {
return 'Goodbye, cruel world!’;

}

1

15 Feb 2014 101

4.4.9 PerlFreshRestart

Now you can keep the same handler subroutine for a group of modules which are similiar. The following
configuration will enable the handlers from the subclasses:
<Location /hello>
SetHandler perl-script
PerlHandler HelloWorld->handler
</Location>
<Location /bye>
SetHandler perl-script

PerlHandler GoodbyeWorld->handler
</Location>

To build in this feature, configure with:

% perl Makefile.PL PERL_METHOD_HANDLERS=1] ...]

4.4.9 PerlFreshRestart

To reload PerlRequire , PerlModule and other use() 'd modules, and to flush the
Apache::Registry cache on server restart, addttpd.conf

PerlFreshRestart On

Make sure you redd Evil things might happen when using PerlFreshRestart.

Starting from mod_perl version 1.2&rlFreshRestart is ignored when mod_perl is compiled as a
DSO. But it almost doesn’t matter, since mod_perl as a DSO will do a full tear-down (perl_destruct()). So
it's still a FreshRestartjust fresher than static (non-DSO) mod_perl :)

But note that even if you have

PerlFreshRestart Off

and mod_perl as a DSO you will still geFeeshRestart

4.4.10 PerlSetEnv and PerlPassEnv

PerlSetEnv key val
PerlPassEnv key

PerlPassenv passesPerlSetEnv sets and pass&NVironmentvariables to your scripts. You can
access them in your scripts througENV(e.g. SENV{"key"}). These commands are useful to pass
information to your handlers or scripts, or to any modules you use that require some additional configura-
tion.

For example, the Oracle RDBMS requires a numb&RACLE_*environment variables to be set so that
you can connect to it throuddBl. So you might want to put this in yolitpd.conf

102 15 Feb 2014

mod_perl Configuration 4.4.11 PerlSetVar and PerlAddVar

PerlSetEnv ORACLE_BASE /oracle
PerlSetEnv ORACLE_HOME /oracle

You can then usBBI to access your oracle server without having to set the environment variables in your
handlers.

PerlPassénv proposes another approach: you might want to set the corresponding environment vari-
ables in your shell, and not reproduce the information in ripd.conf For example, you might have this
in your .bash_profile

ORACLE_BASE-=/oracle
ORACLE_HOME=/oracle
export ORACLE_BASE ORACLE_HOME

However, Apache (or mod_perl) don’t pass on environment variables from the shell by default; you'll
have to specify these using either the stanBastEnv or mod_perl'sPerlPassénv directives.

PerlPassEnv ORACLE_BASE ORACLE_HOME

One thing to be aware of is that when you start Apache under a shell different than the one you are logged
in from, the environment variables could be totally different, so don’t be surprised if you get a different
value when using?assenv /PerlPassénv or none at all. Check the environment Apache is started
from. Often it's started from a special account Egache or nobody and can be anything else. Check the
value ofUser variable inhttpd.confto find out the right answer. Once you figure that out, make sure that
the shell Apache starts from has the desired environment variables right. And may be it's a better idea not
to rely on the shell variables, but instead set those explicitly G&tenv /PerlSetEnv

Regarding the setting éferlPassEnv PERLS5LIB in httpd.conf if you turn on taint checksPérl-
TaintCheck On), $ENV{PERL5LIB} will be ignored (unset). See the 'Switches -w, -T’ section.

While the Apache’sSetEnv /PassEnv and mod_perl'sPerISetEnv /PerlPassEnv apparently do

the same thing, the former doesn’t happen until the fixup phase, the latter happens as soon as possible, so
those variables are available before then, e.BenPAuthenHandler for SENV{ORACLE_HOME(or

another environment variable that you need in these early request processing stages).

4.4.11 PerlSetVar and PerlAddVar

PerlSetvar is very similar toPerlSetEnv ; however, variables set usimgriSetvVar are only
available through the mod_perl API, and is thus more suitable for configuration. For example, environ-
ment variables are available to all, and might show up on casual "print environment" scripts, which you
might not like.PerlSetvVar is well-suited for modules needing some configuration, but not wanting to
implement first-class configuration handlers just to get some information.

PerlSetVar foo bar

or

15 Feb 2014 103

4.4.11 PerlSetVar and PerlAddVar

<Perl>
push @{ $Location{"/"}->{PerlSetVar} }, [foo =>'bar’];
</Perl>

and in the code you read it with:

my $r = Apache->request;
print $r->dir_config('foo’);

The above prints:

bar

Note that you cannot do this:

push @{ $Location{"/"}->{PerlSetVar} }, [foo => \%bar |;

All values are treated as strings, so you will get a stringified reference to a hash as a value (something
which will look like "HASH(0x87a5108) "). This cannot be turned back into a reference and therefore
into the original hash upon retrieval.

However you can use thierlAddVar directive to push more values into the variable, emulating arrays.
For example:

PerlSetVar foo bar

PerlAddVar foo barl
PerlAddVar foo bar2

or the equivalent:
PerlAddVar foo bar

PerlAddVar foo barl
PerlAddVar foo bar2

To retrieve the values use the>dir_config->get() method:
my @foo = $r->dir_config->get('foo’);
or
my %foo = $r->dir_config->get('foo’);
Make sure that you use an even number of elements if you store the retrieved values in a hash, like this:

PerlAddVar foo keyl
PerlAddVar foo valuel
PerlAddVar foo key2
PerlAddVar foo value2

Then%foo will have a structure like this:

104 15 Feb 2014

mod_perl Configuration 4.4.12 PerlSetupEnv

%foo = (
keyl =>'valuel’,
key2 =>'value2’,

);

There are some things you should know about sub requests $erdir_config . For
$r->lookup_uri , everything works as expected, because all normal phases are run. You can then
retrieve variables set in the server scope of the configuraticrViftualHost> sections, irkLoca-

tion> sections, etc.

However, when using th#r->lookup_file method, you are effectively skipping the URI translation
phase. This means that the URI won't be known by Apache, only the file name to retrieve. As such,
<Location> sections won't be applied. This means that if you were using:

Alias /perl-subr/ /Thome/httpd/perl-subr/
<Location /perl-subr>

PerlSetVar foo bar

PerlSetVar foo2 bar2
</Location>

And issue a subrequest usiy->lookup_file and try to retrieve its directory configuration
(Apache::SubRequest class is just a subclassApache):

my $subr = $r->lookup_file(/home/httpd/perl-subr/script.pl’);
print $subr->dir_config('foo’);

You won't get the results you wanted.

As a side note: the issue we discussed here mearipehagubr/script.plwon’t even run under mod_perl
if configured in the normal Apache::Registry way (usingLacation> section), because th& oca-
tion> blocks won't be applied. You'd have to usg@irectory> or<Files> section configuration
to achieve the desired effect. As to ferlSetvar discussion, usingDirectory> or <Files>
section would solve the problem.

4.4.12 PerlSetupEnv

PerlSetupEnv On will allow you to access the environment variables $iENV{REQUEST_URI}

which are available under CGI. However, when programming handlers, there are always better ways to
access these variables through the Apache API. Therefore, it is recommended t@thrmexcept for

scripts which absolutely require it. $ee PerlSetupEny Off.

4.4.13 PerlWarn and PerlTaintCheck

For PerlWarn andPerlTaintCheck directives see the 'Switches -w/ -T’ section.

15 Feb 2014 105

4.5 The Startup File

4.4.14 MinSpareServers MaxSpareServers StartServers MaxClients
MaxRequestsPerChild

MinSpareServers , MaxSpareServers , StartServers andMaxClients are standard Apache
configuration directives that control the number of servers that will be launched at server startup and kept
alive during the server’s operation.

MaxRequestsPerChild lets you specify the maximum number of requests which each child will be
allowed to serve. When a process has selaxiRequestsPerChild requests the parent kills it and
replaces it with a new one. There may also be other reasons why a child is killed, so it does not mean that
each child will in fact serve this many requests, only that it will not be allowed to serve more than that
number.

These five directives are very important for achieving the best performance from your server. The section
" Performance Tuning by Tweaking Apache Configuration’ provides all the details.

4.5 The Startup File

At server startup, before child processes are spawned to receive incoming requests, there is more that can
be done than just preloading files. You might want to register code that will initialize a database connec-
tion for each child when it is forked, tie read-only dbm files, etc.

The startup.plfile is an ideal place to put the code that should be executed when the server starts. Once
you have prepared the code, load ihitpd.confbefore the rest of the mod_perl configuration directives
like this:

PerlRequire /home/httpd/perl/lib/startup.pl

I must stress that all the code that is run at server initialization time is run with root privileges if you are
executing it as the root user (which you have to do unless you choose to run the server on an unprivileged
port, above 1024). This means that anyone who has write access to a script or module that is loaded by
PerlModule or PerlRequire effectively has root access to the system. You might want to take a
look at the new and experimenérlOpmask directive andPERL_OPMASK_DEFAULdompile time

option to try to disable some of the more dangerous operations.

Since the startup file is a file written in plain Perl, one can validate its syntax with:

% perl -c /home/httpd/perl/lib/startup.pl

4.5.1 The Sample Startup File

Let's look at a real world startup file:
startup.pl

use strict;

Extend @INC if needed

106 15 Feb 2014

mod_perl Configuration 4.5.1 The Sample Startup File

use lib gw(/dir/foo /dir/bar);

Make sure we are in a sane environment.
$ENV{MOD_PERL} or die "not running under mod_perl!";

For things in the "/perl" URL
use Apache::Registry;

Load Perl modules of your choice here

This code is interpreted *once* when the server starts
use LWP::UserAgent ();

use Apache::DBI ();

use DBI ();

Tell me more about warnings
use Carp ();
$SIG{__WARN__} =\&Carp::cluck;

Load CGl.pm and call its compile() method to precompile
(but not to import) its autoloaded methods.

use CGI ();

CGl->compile(’:all’);

Initialize the database connections for each child
Apache::DBI->connect_on_init
("DBl:mysql:database=test;host=localhost",
"user","password",

{

PrintError => 1, # warn() on errors

RaiseError => 0, # don't die on error

AutoCommit => 1, # commit executes immediately

}

)i

1
Now we’ll review the code explaining why each line is used.

use strict;

This pragma is worth using in every script longer than half a dozen lines. It will save a lot of time and
debugging later on.

use lib qw(/dir/foo /dir/bar);

The only chance to permanently mod@INCbefore the server is started is with this command. Later the
running code can modif@INCjust for the moment itequire() 's some file, and the@INCs value
gets reset to what it was originally.

$ENV{MOD_PERL} or die "not running under mod_perl!";

A sanity check, if Apache/mod_perl wasn'’t properly built, the above code will abort the server startup.

15 Feb 2014 107

4.5.1 The Sample Startup File

use Apache::Registry;
use LWP::UserAgent ();
use Apache::DBI ();
use DBI ();

Preload the modules that get used by our Perl code serving the requests. Unless you need the symbols
(variables and subroutines) exported by the modules you preload to accomplish something within the
startup file, don’t import them, since it's just a waste of startup time. Instead use the engptytdigell
theimport() function not to import anything.

use Carp ();
$SIG{__WARN__} =\&Carp::cluck;

This is a useful snippet to enable extended warnings logged in the error_log file. In addition to basic warn-
ings, a trace of calls is added. This makes the tracking of the potential problem a much easier task, since
you know who called whom. For example, with normal warnings you might see:

Use of uninitialized value at
lust/lib/perl5/site_perl/5.005/Apache/DBIl.pm line 110.

but you have no idea where it was called from. When we&ase as shown above we might see:

Use of uninitialized value at
lustrl/lib/perl5/site_perl/5.005/Apache/DBIl.pm line 110.
Apache::DBI::connect(undef, 'mydb::localhost’, 'user’,
‘passwd’, 'HASH(0x87a5108)’) called at
lustrl/lib/perl5/site_perl/5.005/i386-linux/DBl.pm line 382
DBI::connect('DBI’, 'DBI:mysql:mydb::localhost’, 'user’,
‘passwd’, 'HASH(0x8375e4c)’) called at
lustrl/lib/perl5/site_perl/5.005/Apache/DBl.pm line 36
Apache::DBIl::__ANON__('Apache=SCALAR(0x87a50c0)’) called at
PerlChildInitHandler subroutine
‘Apache::DBI::__ANON__'line 0
eval {...} called at PerIChildInitHandler subroutine
‘Apache::DBI::__ANON__'line O

we clearly see that the warning was triggered by eval()'uatind\paehe::DBI::__ ANON__ which
called DBI::connect (with the arguments that we see as well), which in turn called the
Apache::DBI::connect method. Now we know where to look for our problem.

use CGI ();

CGl->compile(:all’);

Some modules create their subroutines at run time to improve their load time. This helps when the module
includes many subroutines, but only a few are actually {@@&tlpm falls into this category. Since with
mod_perl the module is loaded only once, it might be a good idea to precompile all or a part of its
methods.

CGl.pm’s compile() method performs this task. Notice that this is a proprietary function of this
module, other modules can implement this feature or not and use this or some other name for this func-
tionality. As with all modules we preload in the startup file, we don’t import symbols from them as they
will be lost when they go out of the file's scope.

108 15 Feb 2014

mod_perl Configuration 4.5.2 What Modules You Should Add to the Startup File and Why

Note that starting withCGl.pm version 2.46, the recommended method to precompile the code in
CGl.pm is:

use CGI gw(-compile :all);
But the old method is still available for backward compatibility.
1

As startup.plis run through Perl'sequire() , it has to return a true value so that Perl can make sure it
has been successfully loaded. Don't forget this (it's very easy to forget it).

See also the ’Apache::Status -- Embedded interpreter status infofmation’ section.

4.5.2 What Modules You Should Add to the Startup File and Why

Every module loaded at server startup will be shared among the server children, saving a lot of RAM on
your machine. Usually | put most of the code | develop into modules and preload them.

You can even preload your CGI script wibache::RegistryLoader (Seq Preload Perl modulep at
[server startyp) and you can get the children to preopen their database connectidpaactieh:DBI

4.5.3 The Confusion with use() in the Server Startup File

Some people wonder why you need to duplicateudey) clause in the startup file and in the script
itself. The confusion arises due to misunderstandingigke€®) function.use() normally performs two
operations, namelyequire() andimport() , called within aBEGIN block. See the section "use()"
for a detailed explanation of the use(), require() and import() functions.

In the startup file we don’t want to import any symbols since they will be lost when we leave the scope of
the startup file anyway, i.e. they won't be visible to any of the child processes which run our mod_perl

scripts. Instead we want to preload the module in the startup file and then import any symbols that we
actually need in each script individually.

Normally when we writaise MyModule; , use() will both load the module and import its symbols;
so for the startup file we writase MyModule (); and the empty parentheses will ensure that the
module is loaded but that no symbols are imported. Then in the actual mod_perl script weegyitein

the standard way, e.gse MyModule; . Since the module has already been preloaded, the only action
taken is to import the symbols. For example in the startup file you write:

use CGlI ();

since you probably don’'t need any symbols to be imported there. But in your code you would probably
write:

use CGI gw(:html);

15 Feb 2014 109

4.6 Apache Configuration in Perl

For example, if you havese() 'd Apache::Constants in the startup file, it does not mean you can
have the following handler:

package MyModule;

sub handler {
my $r = shift;
Cool stuff goes here
return OK;

}
1;
You would either need to add:

use Apache::Constants gw(OK);

Or use the fully qualified name:

return Apache::Constants::OK;

If you want to use the function interface without exporting the symbols, use fully qualified function
names, e.gCGl::;param . The same rule applies to variables, you can import variables and you can
access them by their full name. e$§ly::Module::bar . When you use the object oriented (method)
interface you don't need to export the method symbols.

Technically, you aren’t required to supply tiiee() statement in your (handler?) code if it was already
loaded during server startup (i.e. bipetlRequire startup.pl). When writing your code,

however, you should not assume the module code has been preloaded. In the future, you or someone else
will revisit this code and will not understand how it is possible to use a module’s methods without first
loading the module itself.

Read théexporter andperlmod manpages for more information abauport()

4.6 Apache Configuration in Perl

With <Perl> ..</Perl> sections, it is possible to configure your server entirely in Perl.

4.6.1 Usage

<Perl> sections can contaemy and as much Perl code as you wish. These sections are compiled into a
special package whose symbol table mod_perl can then walk and grind the names and values of Perl vari-
ables/structures through the Apache core configuration gears. Most of the configuration directives can be
represented as scalafis€alar) or lists @list). A @list inside these sections is simply converted

into a space delimited string for you. Here is an example:

httpd.conf

<Perl>
@PerlModule = gw(Mail::Send Devel::Peek);

#run the server as whoever starts it

110 15 Feb 2014

mod_perl Configuration 4.6.1 Usage

$User = getpwuid($>) || $>;
$Group = getgrgid($)) || $);

$ServerAdmin = $User;

</Perl>

Block sections such ad.ocation> ..</Location> are represented in%aLocation hash, e.g.:
<Perl>

$Location{"/~dougm/"} = {
AuthUserFile => "/tmp/htpasswd’,
AuthType => 'Basic’,
AuthName => 'test’,
Directorylndex => [qw(index.html index.htm)],
Limit => {
METHODS =>'GET POST’,
require => 'user dougm’,
h
h

</Perl>

If an Apache directive can take two or three arguments you may push strings (the lowest number of argu-
ments will be shifted off thélist) or use an array reference to handle any number greater than the
minimum for that directive:

push @Redirect, "/foo", "http://www.foo.com/";
push @Redirect, "/imdb", "http://www.imdb.com/";
push @Redirect, [qw(temp "/here" "http://www.there.com")];

Other section counterparts include/irtualHost , %Directory and%fFiles .

To pass all environment variables to the children with a single configuration directive, rather than listing
each one vi®assEnv or PerlPassEnv , a<Perl> section could read in a file and:

push @PerlPassEnv, [$key => $val];
or

Apache->httpd_conf("PerlPassEnv $key $val");

These are somewhat simple examples, but they should give you the basic idea. You can mix in any Perl
code you desire. Seg/httpd.conf.phndeg/perl_sections.bih the mod_perl distribution for more exam-
ples.

Assume that you have a cluster of machines with similar configurations and only small distinctions
between them: ideally you would want to maintain a single configuration file, but because the configura-
tions aren’texactlythe same (e.g. tHgerverName directive) it's not quite that simple.

15 Feb 2014 111

4.6.2 Enabling

<Perl> sections come to rescue. Now you have a single configuration file and the full power of Perl to
tweak the local configuration. For example to solve the problem @dhgeerName directive you might
have this<Perl> section:

<Perl>
$ServerName = ‘hostname’;
</Perl>

For example if you want to allow personal directories on all machines except the ones whose names start
with secure

<Perl>
$ServerName = ‘hostname’;
if ($ServerName !~ /*secure/) {
$UserDir = "public.html”;
}else {
$UserDir = "DISABLED";

}

</Perl>

Behind the scenes, mod_perl defines a package catladhe::ReadConfig . Here it keeps all the
variables that you define inside thBerl> sections. Therefore it's not necessarily to configure the server
within the<Perl> sections. Actually what you can do is to write the Perl code to configure the server just
like you'd do in the<Perl> sections, but instead place it into a separate file that should be called during
the configuration parsing with eith&@erlModule or PerlRequire directives, or from within the
startup file. All you have to do is to declare the packgache::ReadConfig within this file. Using

the last example:

apache_config.pl

package Apache::ReadConfig;

$ServerName = ‘hostname’;
if ($ServerName !~ /"secure/) {
$UserDir = "public.html”;
}else {
$UserDir = "DISABLED";

}
1
httpd.conf

PerlRequire /home/httpd/perl/lib/apache_config.pl

4.6.2 Enabling

To enable<Perl> sections you should build mod_perl with perl Make-
file.PL PERL_SECTIONS=1]...].

112 15 Feb 2014

mod_perl Configuration 4.6.3 Caveats

4.6.3 Caveats

Be careful when you declare package names insRerl> sections, for example this code has a
problem:

<Perl>
package My::Trans;
use Apache::Constants gw(:common);
sub handler{ OK }

$PerlTransHandler = "My::Trans";
</Perl>

When you put code inside<®Perl> section, by default it actually goes into thpache::ReadCon-

fig package, which is already declared for you. This means th&dat€&ransHandler we have
tried to define above is actually undefined. If you define a different package name witRierla
section you must make sure to close the scope of that package and retuskpactie=:ReadConfig
package when you want to define the configuration directives, like this:

<Perl>
package My::Trans;
use Apache::Constants qw(:common);
sub handler{ OK }

package Apache::ReadConfig;
$PerlTransHandler = "My::Trans";
</Perl>

4.6.4 Verifying

This section shows how to check and dump the configuration you have made with the 4iegplaf
sections irhttpd.conf

To check the<Perl> section syntax outside of httpd, we make it look like a Perl script:

<Perl>

Iperl

... code here ...
__END__
</Perl>

Now you may run:

perl -cx httpd.conf

In a running httpd you can see how you have configured<therl> sections through the URI
[perl-status, by choosirigerl Section Configuratiofrom the menu. In order to make this item show up in
the menu you should s&Apache::Server::SaveConfig to a true value. When you do that the
Apache::ReadConfigmamespace (in which the configuration data is stored) will not be flushed, making
configuration data available to Perl modules at request time.

15 Feb 2014 113

4.6.5 Strict <Perl> Sections

Example:

<Perl>
$Apache::Server::SaveConfig = 1;

$DocumentRoot = ...

</Perl>

At request time, the value ofDocumentRoot can be accessed with the fully qualified name
$Apache::ReadConfig::DocumentRoot

You can dump the configuration ePerl> sections like this:

<Perl>
use Apache::PerlSections();

Configuration Perl code here

print STDERR Apache::PerlSections->dump();
</Perl>

Alternatively you can store it in a file:
Apache::PerlSections->store("httpd_config.pl");

You can themequire() that file in some othetPerl> section.

4.6.5 Strict<Per | > Sections

If the Perl code doesn’t compile, the server won't start. If the generated Apache config is #Reilid,
sections have always just logged an error and carried on, since there might be globals in the section that
are not intended for the config.

The variable$Apache::Server::StrictPerlSections has been added in mod_perl version
1.22. If you set this variable to a true value, for example

$Apache::Server::StrictPerlSections = 1;

then mod_perl will not tolerate invalid Apache configuration syntax andcvalik (die) if this is the
case. At the time of writing the default valudis

4.6.6 Debugging

If you compile mod_perl witiPERL_TRACE=1and set the environment variaple MOD_PERL_TRACE
then you should see some useful diagnostics when mod_perl is procd3sityg sections.

114 15 Feb 2014

mod_perl Configuration 4.7 Validating the Configuration Syntax

4.6.7 Perl Section Tricks

e The Perl%EN\s cleared during startup, but the C environment is left intact and o you cgn use it to
set@PassEnv.

4.6.8 References

For more info see Writing Apache Modules with Perl and ,C Chapter 8:
|http://modperl.com:9000/book/chapters/ch8.html

4.7 Validating the Configuration Syntax

apachectl configtest tests the configuration file without starting the server. You can safely vali-
date the configuration file on your production server, if you run this test before you restart the server with
apachectl restart . Of course it is not 100% perfect, but it will reveal any syntax errors you might

have made while editing the file.

"apachectl configtest " is the same ashttpd -t ' and it doesn’t just parse the code in
startup.pl it actually executes ikPerl> configuration has always started Perl during the configuration
read, andPerl{Require,Module} do so as well.

Of course we assume that the code that gets called during this test cannot cause any harm to your running
production environment. The following hint shows how to prevent the code in the startup script and
<Perl> from being executed during the syntax check, if that's what you want.

If you want your startup code to get control over the(configtest) server launch, start the server
configuration test with:

httpd -t -Dsyntax_check

and, if for example you want to prevent your startup code from being executed, at the top of the code add:

return if Apache->define('syntax_check’);

4.8 Enabling Remote Server Configuration Reports

The nifty mod_info module displays the complete server configuration in your browser. In order to use it
you have compile it in or, if the server was compiled with DSO mode enabled, load it as an object. Then
just uncomment the ready-prepared section irhttpa.conffile:

<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from www.example.com
</Location>

15 Feb 2014 115

http://modperl.com:9000/book/chapters/ch8.html

4.9 Publishing Port Numbers other than 80

Now restart the server and issue the request:

http://www.example.com/server-info

4.9 Publishing Port Numbers other than 80

If you are using a two-server setup, with a mod_perl server listening on a high port, it is advised that you
do not publish the number of the high port number in URLs. Rather use a proxying rewrite rule in the
non-mod_perl server:

RewriteEngine On

RewriteLogLevel 0

RewriteRule ~perl/(.*) http://localhost:8080/perl/$1 [P]
ProxyPassReverse / http://localhost/

| was told one problem with publishing high port numbers is that IE 4.x has a bug when re-posting data to
a non-port-80 URL. It drops the port designator, and uses port 80 anyway.

Another reason is that firewalls probably will have the high port closed, therefore users behind the fire-
walls will be unable to reach your service, running on the blocked port.

4.10 Configuring Apache + mod_perl with mod_macro

mod_macro is an Apache module written by Fabien Coelho that lets you define and use macros in the
Apache configuration file.

mod_macro can be really useful when you have many virtual hosts, and where each virtual host has a
number of scripts/modules, most of them with a moderately complex configuration setup.

First download the latest version of mod_macro from http://www.cri.ensmp.fr/~coelho/mod [macro/ , and
configure your Apache server to use this module.

Here are some useful macros for mod_perl users:

set up a registry script
<Macro registry>

SetHandler "perl-script"
PerlHandler Apache::Registry
Options +ExecCGl

</Macro>

example

Alias /stuff fusr/www/scripts/stuff
<Location /stuff>

Use registry

</Location>

If your registry scripts are all located in the same directory, and your aliasing rules consistent, you can use
this macro:

116 15 Feb 2014

http://www.cri.ensmp.fr/~coelho/mod_macro/

mod_perl Configuration 4.10 Configuring Apache + mod_perl with mod_macro

set up a registry script for a specific location
<Macro registry $location $script>

Alias /$location /home/httpd/perl/scripts/$script
<Location /$location>

SetHandler "perl-script"

Perl[Handler Apache::Registry

Options +ExecCGl

</Location>

</Macro>

example
Use registry stuff stuff.pl

If you're using content handlers packaged as modules, you can use the following macro:

set up a mod_perl content handler module
<Macro modperl $module>

SetHandler "perl-script"

Options +ExecCGl

PerlHandler $module

</Macro>

#examples

<Location /perl-status>
PerlSetVar StatusPeek On
PerlSetVar StatusGraph On
PerlSetVar StatusDumper On
Use modperl Apache::Status
</Location>

The following macro sets up a Location for use WML::Embperl . Here we define all ".html" files
to be processed liymbperl .

<Macro embperl>

SetHandler "perl-script"

Options +ExecCGl

Perl[Handler HTML::Embperl

PerlSetEnv EMBPERL_FILESMATCH \.html$
</Macro>

examples
<Location /mrtg>
Use embperl
</Location>

Macros are also very useful for things that tend to be verbose, such as setting up Basic Authentication:

Sets up Basic Authentication
<Macro BasicAuth $realm $group>
Order deny,allow

Satisfy any

AuthType Basic

AuthName $realm

AuthGroupFile /usr/www/auth/groups
AuthUserFile /usr/www/auth/users
Require group $group

15 Feb 2014 117

4.11 General Pitfalls

Deny from all
</Macro>

example of use

<Location /stats>

Use BasicAuth WebStats Admin
</Location>

Finally, here is a complete example that uses macros to set up simple virtual hosts. It Bsea$ the

cAuth macro defined previously (yes, macros can be nested!).

<Macro vhost $ip $domain $docroot $admingroup>
<VirtualHost $ip>

ServerAdmin webmaster@$domain
DocumentRoot /usr/iwww/htdocs/$docroot
ServerName www.$domain

<Location /stats>

Use BasicAuth Stats-$domain $admingroup
</Location>

</VirtualHost>

</Macro>

define some virtual hosts
Use vhost 10.1.1.1 example.com example example-admin
Use vhost 10.1.1.2 example.net examplenet examplenet-admin

mod_macro is also useful in a non vhost setting. Some sites for example have lots of scripts which people

use to view various statistics, email settings and etc. It is much easier to read things like:

use /forwards email/showforwards
use /webstats web/showstats

The actual macros for the last example are left as an exercise to reader. These can be easily constructed

based on the examples presented in this section.

4.11 General Pitfalls

4.11.1 My CGl/Perl Code Gets Returned as Plain Text Instead of

Being Executed by the Webserver

Check your configuration files and make sure thaBkecCGlI is turned on in your configurations.

<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
allow from all
PerlSendHeader On
</Location>

118

15 Feb 2014

mod_perl Configuration 4.11.2 My Script Works under mod_cgi, but when Called via mod_perl | Get a 'Save-As’ Prompt

4.11.2 My Script Works under mod_cgi, but when Called via mod_perl
| Get a 'Save-As’ Prompt

Did you putPerlSendHeader Onin the configuration part of thelLocation foo></Location>

4.11.3 Is There a Way to Provide a Different startup.pl File for Each
Individual Virtual Host

No. Any virtual host will be able to see the routines frostaatup.plloaded for any other virtual host.
4.11.4 Is There a Way to Modify @INC on a Per-Virtual-Host or
Per-Location Basis.

You can usePerlSetEnv PERL5LIB ... or aPerlFixupHandler with thelib pragma (se
lib gqw(...)).

A better way is to uge Apache::PerlVINC

4.11.5 A Script From One Virtual Host Calls a Script with the Same
Path From the Other Virtual Host

This has been a bug before, last fixed in 1.15 01, i.e. if you are running 1.15, that could be the problem.
You should set this variable in a startup file (which you load RéHRequire in httpd.conf:

$Apache::Registry::NameWithVirtualHost = 1;

But, as we know sometimes a bug turns out to be a feature. If the same script is running for more than one
Virtual host on the same machine, this can be a waste, right? Sétii t startup script if you want to

turn it off and have this bug as a feature. (Only makes sense if you are sure that there wither no
scripts with the same path/name). It also saves you some memory as well.

$Apache::Registry::NameWithVirtualHost = 0;
4.11.6 the Server no Longer Retrieves the Directorylndex Files for a
Directory

The problem was reported by users who declared mod_perl configuration irflileetory> section
for all files matching *.pl. The problem went away after placing the directiveskil@s> section.

The mod_alias and mod_rewrite are both Trans handlers in the normal case. So in the setup where both are
used, if mod_alias runs first and matches it will return OK and mod_rewrite won’t see the request.

15 Feb 2014 119

4.11.6 the Server no Longer Retrieves the Directorylndex Files for a Directory

The opposite can happen as well, where mod_rewrite rules apply Aliabe directives are completely
ignored.

The behavior is not random, but depends on the Apache modules loading order. Apache modules are being
executed irreverseorder, i.e. module that wasldedfirst will be executed last.

The solution is not to mix mod_rewrite and mod_alias. mod_rewrite does everything mod_alias
does--except foScriptAlias which is not really relevant to mod_perl anyway. Don't rely on the
module ordering, but use explicitly disjoint URL namespace#\lias andRewrite . In other words

any URL regex that can potentially matciRawrite rule should not be used in &lias , and vice

versa. Given that mod_rewrite can easily do what mod_alias does, it's no problem.

Here is one of the examples whekkas is replaced withRedirectMatch . This is a snippet of
configuration at the light non-mod_perl Apache server:

RewriteEngine on

RewriteLogLevel 0

RewriteRule MN(perl.*)$ http://127.0.0.1:8045/$1 [P,L]
RewriteRule AN(mail.*)$ http://127.0.0.1:8045/$1 [P,L]
NoCache *

ProxyPassReverse / http://www.example.com/

RedirectMatch permanent ~/$ /pages/index
RedirectMatch permanent ~/foo$ /pages/bar

This configuration works fine because any URI that matches one of the redirects will never match one of
the rewrite rules.

In the above setup we proxy requests starting ¥piénl or /mail to the mod_perl server, forbid proxy
requests to the external sites, and make sure that the proxied requests will use the
[http://www.example.copas their URL on the way back to the client.

TheRedirectMatch settings work exactly like if you'd write:

Alias/ /pages/index
Alias /foo /pages/bar

But as we told before we don’t want to mix the two.

Here is another example where the redirect is done by a rewrite rule:

RewriteEngine on
RewriteLogLevel 0

RewriteMap lowercase int:tolower

RewriteRule MN(perl.*)$ http://127.0.0.1:8042/$1 [P,L]
RewriteRule NG /pages/welcome.htm [R=301,L]
RewriteRule NS ${lowercase:$1}

NoCache *

ProxyPassReverse / http://www.example.com/

120 15 Feb 2014

http://www.example.com/

mod_perl Configuration 4.12 Configuration Security Concerns

If we omit the rewrite rule that match®$, and instead use a redirect, it will never be called, because the
URL is still matched by the last rufé.*)$. This is a somewhat contrived example because that last
regex could be rewritten &¢.+)$ and all would be well.

4.11.7 Do Perl* Directives Affect Code Running under mod_cgi?
No, they don't.

So for example if you do:

PerlSetEnv foo bar

It'll be seen from mod_perl, but not mod_cgi or any other module.

4.12 Configuration Security Concerns
The more modules you have in your web server, the more complex the code.
The more complex the code in your web server, the more chances for bugs.

The more chances for bugs, the more chance that some of those bugs may involve security breaches.

4.12.1 Choosing User and Group

Because mod_perl runs within an httpd child process, it runs withstee ID andGroup ID specified in

the httpd.conffile. This User /Group should have the lowest possible privileges. It should only have
access to world readable files, even better only files that belongs to this user. Even so, careless scripts can
give away information. You would not want ydetc/passwdile to be readable over the net, for instance,

even if you use shadow passwords.

When a handler needs write permissions, make sure that only the user, the server is running under, has
write permissions to the files. Sometimes you need group write permissions, but be very careful, because a
buggy or malicious code run in the server may destroy files writable by the server.

4.12.2 Taint Checking

Make sure to run the server under:

PerlTaintCheck On

setting in thehttpd.conffile.|Taint checking doesn’t ensure that your code is completely safe from external
hacks, but it does forces you to improve your code to prevent many potential security problems.

15 Feb 2014 121

4.13 Apache Restarts Twice On Start

4.12.3 Exposing Information About the Server's Component

It is better not to expose the mod_perl server to the outside world, for it creates a potential security risk by
revealing which Apache modules used by the server and the OS the server is running on.

You can see what information is revealed by your server, by telneting to it and issuing some request. For
example:

% telnet localhost 8080
Trying 127.0.0.1
Connected to localhost
Escape character is "]
HEAD / HTTP1.0

HTTP/1.1 200 OK

Date: Sun, 16 Apr 2000 11:06:25 GMT

Server: Apache/1.3.12 (Unix) mod_perl/1.22 mod_ssl/2.6.2 OpenSSL/0.9.5
[more lines snipped]

So as you see that a lot of information is revealed dadla ServerTokens has been used.

We never were completely sure why the default ofSkeverTokens directive in Apache is-ull

rather thanMinimal . Seems like you would only make Rull if you are debugging. Probably the
reason for using th8erverTokens Full is for a show-off, so Netcratft (http://netcraft.qom) and other
similar survey services will count more Apache servers, which is good for all of us, but you really want to
reveal as little information as possible to the potential crackers.

Another approach is to modify httpd sources to reveal no unwanted information, so all responses will
return an empty or phorfyerver: field.

From the other point of view, security by obscurity is a lack of security. Any determined cracker will
eventually figure out what version of Apache run and what third party modules you have built in.

An even better approach is to completely hide the mod_perl server bghind a ffont-end of a proxy server, so
the server cannot be accessed directly.

4.13 Apache Restarts Twice On Start

When the server is restarted, the configuration and module initialization phases are called twice in total
before the children are forked. The second restart is done in order to ensure that future restarts will work
correctly, by making sure that all modules can survive a reSEBHUP. This is very important if you

restart a production server.

You can control what code will be executed on the start or restart by checking the value of
$Apache::Server::Starting and $Apache::Server::ReStarting respectively. The
former variable idgrue when the server is starting and the lattéris when it's restarting.

122 15 Feb 2014

http://netcraft.com/

mod_perl Configuration 4.14 Knowing the proxy_pass’ed Connection Type

For example:

<Perl>

print STDERR "Server is Starting\n" if $Apache::Server::Starting;
print STDERR "Server is ReStarting\n" if $Apache::Server::ReStarting;
</Perl>

The startup.pl file and similar loaded vi&erlModule or PerlRequire are compiled only once.
Because once the module is compiled it enters the sgéli#l hash. When Apache restarts--Perl checks
whether the module or script in question is already registef&dNIC and won't try to compile it again.

So the only code that you might need to protect from running on restart is the oneRethe sections.
But since one usually uses tk®erl> sections mainly for on the fly configuration creation, there
shouldn’t be a reason why it'd be undesirable to run the code more than once.

4.14 Knowing the proxy_pass’ed Connection Type

Let's say that you have a frontend server running mod_ssl, mod_rewrite and mod_proxy. You want to
make sure that your user is using a secure connection for some specific actions like login information
submission. You don’'t want to let the user login unless the request was submitted through a secure port.

Since you have to proxy_pass the request between front and backend servers, you cannot know where the
connection has come from. Neither is using the HTTP headers reliable.

A possible solution for this problem is to have the mod_perl server listen on two different ports (e.g. 8000
and 8001) and have the mod_rewrite proxy rule in the regular server redirect to port 8000 and the
mod_rewrite proxy rule in the SSL virtual host redirect to port 8001. In the mod_perl server just check the
PORTvariable to tell if the connection is secure.

4.15 Adding Custom Configuration Directives

This is covered in the Eagle Book in a great detail. This is just a simple example, showing how to add your
own Configuration directives.

Makefile.PL

package Apache::TestDirective;
use ExtUtils::MakeMaker;

use Apache::ExtUtils qw(command_table);
use Apache::src ();

my @directives = ({
name => 'Directive4’,
errmsg => 'Anything’,
args_how => 'RAW_ARGS’,
reg_override=> 'OR_ALL’,

i

15 Feb 2014 123

4.15 Adding Custom Configuration Directives

command_table(\@directives);

WriteMakefile(

NAME =>'Apache::TestDirective’,
VERSION_FROM => 'TestDirective.pm’,
INC => Apache::src->new->inc,

);

TestDirective.pm

package Apache::TestDirective;

use strict;
use Apache::ModuleConfig ();
use DynalLoader ();

if (SENV{MOD_PERL}) {
no strict;
$VERSION ="0.01";
@ISA = gw(DynalLoader);
__PACKAGE__->bhootstrap($VERSION); #command table, etc.
}

sub Directive4 {

warn "Directive4 @_\n";

}

1;
END__

In the mod_perl source tree, add thig/tiocs/startup.pl

use blib gw(/home/dougm/test/Apache/TestDirective);

and at the bottom dfconf/httpd.conf

PerlIModule Apache::TestDirective
Directive4 hi

Test it;

% make start_httpd
% make kill_httpd

You should see:

Directive4 Apache::TestDirective=HASH(0x83379d0)
Apache::CmdParms=SCALAR(0x862b80c) hi

And in the error log file:
% grep Directive4 t/logs/error_log

Directive4 Apache::TestDirective=HASH(0x83119dc)
Apache::CmdParms=SCALAR(0x8326878) hi

124 15 Feb 2014

mod_perl Configuration

If it didn’t work as expected try building mod_perl wRERL_TRACE=1then do:

setenv MOD_PERL_TRACE all

before starting the server. Now you should get some useful diagnostics.

4.16 Maintainers

4.16 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

4.17 Authors

e Stas Bekmarj [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014

125

http://stason.org/
http://stason.org/

5 CGI to mod_perl Porting. mod_perl Coding guidelines.

5 CGlI to mod_perl Porting. mod_perl Coding guide-
lines.

126 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.1 Description

5.1 Description

This chapter is relevant both to writing a new CGI script or perl handler from scratch and to migrating an
application from plain CGI to mod_perl.

It also addresses the situation where the CGI script being ported does the job, but is too dirty to be altered
easily to run as a mod_perl programpéche::PerlRun mode)

If you are at the porting stage, you can use this chapter as a reference for possible problems you might
encounter when running an existing CGl script in the new mode.

If your project schedule is tight, | would suggest converting to mod_perl in the following steps: Initially,
run all the scripts in theApache::PerlRun mode. Then as time allows, move them into
Apache::Registry mode. Later if you need Apache Perl API functionality you can always add it.

If you are about to write a new CGI script from scratch, it would be a good idea to learn about possible
mod_perl related pitfalls and to avoid them in the first place.

If you don’'t need mod_cgi compatibility, it's a good idea to start writing using the mod_perl API in first
place. This will make your application a little bit more efficient and it will be easier to use the full
mod_perl feature set, which extends the core Perl functionality with Apache specific functions and over-
ridden Perl core functions that were reimplemented to work better in mod_perl environment.

5.2 Before you start to code

It can be a good idea to tighten up some of your Perl programming practices, since mod_perl doesn't toler-
ate sloppy programming.

This chapter relies on a certain level of Perl knowledge. Please read through the Perl Reference chapter
and make sure you know the material covered there. This will allow me to concentrate on pure mod_perl
issues and make them more prominent to the experienced Perl programmer, which would otherwise be lost
in the sea of Perl background notes.

Additional resources:
® Perl Module Mechanics

This page describes the mechanics of creating, compiling, releasing, and maintaining Perl modules.
|http://world.std.com/~swmcd/steven/perl/module mechanics.html

The information is very relevant to a mod_perl developer.
® The Eagle Book

"Writing Apache Modules with Perl and C" is a "must have" book!

15 Feb 2014 127

http://world.std.com/~swmcd/steven/perl/module_mechanics.html

5.3 Exposing Apache::Registry secrets

See the details pt http://www.modperl.¢om .

® "Programming Perl" Book
"Perl Cookbook" Book
® "Object Oriented Perl" Book

5.3 Exposing Apache::Registry secrets

Let's start with some simple code and see what can go wrong with it, detect bugs and debug them, discuss
possible pitfalls and how to avoid them.

| will use a simple CGI script, that initializesbaounter to 0, and prints its value to the browser while
incrementing it.

counter.pl:

#!/usr/bin/perl -w
use strict;

print "Content-type: text/plain\r\in\r\n";
my $counter = 0; # Explicit initialization technically redundant

for (1..5) {
increment_counter();

}

sub increment_counter{
$counter++;
print "Counter is equal to $counter \r\n";

}
You would expect to see the output:

Counter is equal to 1!
Counter is equal to 2!
Counter is equal to 3!
Counter is equal to 4 !
Counter is equal to 5!

And that’'s what you see when you execute this script the first time. But let’s reload it a few times... See,
suddenly after a few reloads the counter doesn't start its count from 1 any more. We continue to reload and
see that it keeps on growing, but not steadily starting almost randomly at 10, 10, 10, 15, 20... Weird...

Counter is equal to 6 !
Counter is equal to 7 !
Counter is equal to 8 !
Counter is equal to 9 !
Counter is equal to 10 !

128 15 Feb 2014

http://www.modperl.com/

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.3.1 The First Mystery

We saw two anomalies in this very simple script: Unexpected increment of our counter over 5 and incon-
sistent growth over reloads. Let’s investigate this script.

5.3.1 The First Mystery

First let's peek into therror_log file. Since we have enabled the warnings what we see is:

Variable "$counter” will not stay shared
at /home/httpd/perl/conference/counter.pl line 13.

The Variable "$counter" will not stay sharediarning is generated when the script contains a named
nested subroutine (a named - as opposed to anonymous - subroutine defined inside another subroutine)
that refers to a lexically scoped variable defined outside this nested subroutine. This effect is explained in
my () Scoped Variable in Nested Subroutines.

Do you see a nested named subroutine in my script? | don’t! What's going on? Maybe it's a bug? But
wait, maybe the perl interpreter sees the script in a different way, maybe the code goes through some
changes before it actually gets executed? The easiest way to check what's actually happening is to run the
script with a debugger.

But since we must debug it when it’s being executed by the webserver, a hormal debugger won't help,
because the debugger has to be invoked from within the webserver. Luckily Doug MacEachern wrote the
Apache::.DB module and we will use this to debug my script. WAache::DB allows you to debug

the code interactively, we will do it non-interactively.

Modify the httpd.conf file in the following way:

PerlSetEnv PERLDB_OPTS "NonStop=1 Linelnfo=/tmp/db.out AutoTrace=1 frame=2"
PerlIModule Apache::DB
<Location /perl>
PerlFixupHandler Apache::DB
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
PerlSendHeader On
</Location>

Restart the server and issue a requesbtmter.plas before. On the surface nothing has changed--we still
see the correct output as before, but two things happened in the background:

Firstly, the file/tmp/db.outwas written, with a complete trace of the code that was executed.

Secondly, if you have loaded ti@arp module alreadyerror_log now contains the real code that was
actually executed. This is produced as a side effect of reportingatiable "$counter" will not stay
shared at..warning that we saw earlier. To load the Carp module, you can add:

use Carp;

15 Feb 2014 129

5.3.1 The First Mystery

in your startup.plfile or in the executed code.

Here is the code that was actually executed:

package Apache::ROOT::perl::conference::counter_2epl;
use Apache gw(exit);
sub handler {

BEGIN {
$Ww=1;
h
W =1,

use strict;
print "Content-type: text/plain\r\n\r\n";
my $counter = 0; # Explicit initialization technically redundant

for (1..5) {
increment_counter();

}

sub increment_counter{
$counter++;
print "Counter is equal to $counter \r\n";

}
}

The code in therror_log wasn’t indented. I've indented it for you to stress that the code was wrapped
inside the handler() subroutine.

What do we learn from this?

Well firstly that every CGI script is cached under a package whose name is formed from the
Apache::ROOT:: prefix and the relative part of the script's URLpe(l::confer-
ence::.counter_2epl) by replacing all occurrences of with :: and. with _2e. That's how
mod_perl knows what script should be fetched from the cache--each script is just a package with a single
subroutine namelkandler

If we were to addise diagnostics to the script we would also see a reference in the error text to an
inner (nested) subroutin@erement_counter is actually a nested subroutine.

With mod_perl, each subroutine in evekpache::Registry script is nested inside thHeandler
subroutine.

Its important to understand that th&ner subroutine effect happens only with code that
Apache::Registry wraps with a declaration of theandler subroutine. If you put all your code
into modules, which the main scripse() s, this effect doesn’t occur.

Do not use Perl4-style libraries. Subroutines in such libraries will only be available to the first script in any
given interpreter thread tequire() a library of any given name. This can lead to confusing sporadic
failures.

130 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.3.1 The First Mystery

The easiest and the fastest way to solve the nested subroutines problem is to switch every lexically scoped
variable foe which you get the warning for to a package variableh@héler subroutines are never

called re-entrantly and each resides in a package to itself. Most of the usual disadvantates of package
scoped variables are, therefore, not a concern. Note, however, that whereas explicit initialization is not
always necessary for lexical variables it is usually necessary for these package variables as they persist in
subsequent executions of the handler and unlike lexical variables, don’t get automatically destroyed at the
end of each handler.

counter.pl:

#!/usr/bin/perl -w
use strict;

print "Content-type: text/plain\r\n\rin";

In Perl <5.6 our() did not exist, so:
use vars qw($counter);
our $counter = 0; # Explicit initialization now necessary

for (1..5) {
increment_counter();

}
sub increment_counter{

$counter++;
print "Counter is equal to $counter \r\n";

}

If the variable contains a reference it may hold onto lots of unecessary memory (or worse) if the reference
is left to hang about until the next call to the same handler. For such variables you shéatdluseo
that the value is removed when thendler subroutine exits.

my $query = CGl->new;
becomes:

local our $query = CGl->new;

All this is very interesting but as a general rule of thumb, unless the script is very short, | tend to write all
the code in external libraries, and to have only a few lines in the main script. Generally the main script
simply calls the main function of my library. Usually | callirit() orrun() .| don't worry about

nested subroutine effects anymore (unless | create them myself :).

The section 'Remedies for Inner Subroutines’ discusses many other possible workarounds for this
problem.

You shouldn’t be intimidated by this issue at all, since Perl is your friend. Just keep the warningdmode
and Perl will gladly tell you whenever you have this effect, by saying:

Variable "$counter” will not stay shared at ...[snipped]

15 Feb 2014 131

5.3.2 The Second Mystery

Just don't forget to check yoarror_log file, before going into production!

By the way, the above example was pretty boring. In my first days of using mod_perl, | wrote a simple
user registration program. I'll give a very simple representation of this program.

use CGl;

$g = CGl->new;

my $name = $g->param(’name’);
print_response();

sub print_response{
print "Content-type: text/plain\r\n\r\n";
print "Thank you, $name!";

}

My boss and | checked the program at the development server and it worked OK. So we decided to put it
in production. Everything was OK, but my boss decided to keep on checking by submitting variations of
his profile. Imagine the surprise when after submitting his name (let's say "The Boss" :), he saw the
response "Thank you, Stas Bekman!".

What happened is that | tried the production system as well. | was new to mod_perl stuff, and was so
excited with the speed improvement that | didn’t notice the nested subroutine problem. It hit me. At first |
thought that maybe Apache had started to confuse connections, returning responses from other people’s
requests. | was wrong of course.

Why didn't we notice this when we were trying the software on our development server? Keep reading
and you will understand why.

5.3.2 The Second Mystery

Let's return to our original example and proceed with the second mystery we noticed. Why did we see
inconsistent results over numerous reloads?

That's very simple. Every time a server gets a request to process, it hands it over one of the children,
generally in a round robin fashion. So if you have 10 httpd children alive, the first 10 reloads might seem
to be correct because the effect we've just talked about starts to appear from the second re-invocation.
Subsequent reloads then return unexpected results.

Moreover, requests can appear at random and children don't always run the same scripts. At any given
moment one of the children could have served the same script more times than any other, and another may
never have run it. That's why we saw the strange behavior.

Now you see why we didn’t notice the problem with the user registration system in the example. First, we
didn’t look at theerror_log . (As a matter of fact we did, but there were so many warnings in there that
we couldn’t tell what were the important ones and what were not). Second, we had too many server chil-
dren running to notice the problem.

132 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.4 Sometimes it Works, Sometimes it Doesn’t

A workaround is to run the server as a single process. You achieve this by invoking the server-¥ith the
parameterf{ttpd -X). Since there are no other servers (children) running, you will see the problem on
the second reload.

But before that, let therror_log help you detect most of the possible errors--most of the warnings can
become errors, so you should make sure to check every warning that is detected by perl, and probably you
should write your code in such a way that no warnings appear eribrelog . If your error_log

file is filled up with hundreds of lines on every script invocation, you will have difficulty noticing and
locating real problems--and on a production server you'll soon run out of disk space if your site is popular.

Of course none of the warnings will be reported if the warning mechanism is not @mnBefer to the
section "Tracing Warnings Reports" to learn about warnings in general and to the "Warnings" section to
learn how to turn them on and off under mod_perl.

5.4 Sometimes it Works, Sometimes it Doesn’t

When you start running your scripts under mod_perl, you might find yourself in a situation where a script
seems to work, but sometimes it screws up. And the more it runs without a restart, the more it screws up.
Often the problem is easily detectable and solvable. You have to test your script under a server running in
single process modétfpd -X).

Generally the problem is the result of using global variables. Because global variables don’t change from
one script invocation to another unless you change them, you can find your scripts do strange things.

Let's look at three real world examples:

5.4.1 An Easy Break-in

The first example is amazing--Web Services. Imagine that you enter some site where you have an account,
perhaps a free email account. Having read your own mail you decide to take a look at someone else’s.

You type in the username you want to peek at and a dummy password and try to enter the account. On
some services this will work!!

You say, why in the world does this happen? The answer is si@igleal Variables. You have entered

the account of someone who happened to be served by the same server child as you. Because of sloppy
programming, a global variable was not reset at the beginning of the program and voila, you can easily
peek into someone else’s email! Here is an example of sloppy code:

use vars ($authenticated);
my $q = new CGl;
my $username = $g->param('username’);
my $passwd = $g->param(’passwd’);
authenticate($username,$passwd);

failed, break out
unless ($authenticated){

print "Wrong passwd";

exit;

}

15 Feb 2014 133

5.4.2 Thinking mod_cgi

user is OK, fetch user’s data
show_user($username);

sub authenticate{
my ($username,$passwd) = @_;
some checking
$authenticated = 1 if SOME_USER_PASSWD_CHECK_IS_OK;

}

Do you see the catch? With the code above, | can type in any valid username and any dummy password
and enter that user’s account, provided she has successfully entered her account before me using the same
child process! Sinc&authenticated is global--if it becomes 1 once, it'll stay 1 for the remainder of

the child’s life!!! The solution is trivial--res&authenticated to O at the beginning of the program.

A cleaner solution of course is not to rely on global variables, but rely on the return value from the func-
tion.

my $q = CGI->new;

my $username = $g->param(’username’);

my $passwd = $qg->param(‘passwd’);

my $authenticated = authenticate($username,$passwd);
failed, break out

unless ($authenticated){
print "Wrong passwd";
exit;

}

user is OK, fetch user’s data
show_user($username);

sub authenticate{
my ($username,$passwd) = @_;

some checking
return (SOME_USER_PASSWD_CHECK_IS_OK) ? 1:0;

}

Of course this example is trivial--but believe me it happens!

5.4.2 Thinking mod_caqi

Just another little one liner that can spoil your day, assuming you forgot to re$atitheed variable.
It works perfectly OK in plain mod_cgi:

$allowed = 1 if Susername eq 'admin’;

But using mod_perl, and if your system administrator with superuser access rights has previously used the
system, anybody who is lucky enough to be served later by the same child which served your administra-
tor will happen to gain the same rights.

The obvious fix is:

134 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.5 Script's name space

$allowed = $username eq 'admin’ ? 1 : O;

5.4.3 Regular Expression Memory

Another good example is usage of tbe regular expression modifier, which compiles a regular expres-

sion once, on its first execution, and never compiles it again. This problem can be difficult to detect, as
after restarting the server each request you make will be served by a different child process, and thus the
regex pattern for that child will be compiled afresh. Only when you make a request that happens to be
served by a child which has already cached the regex will you see the problem. Generally you miss that.
When you press reload, you see that it works (with a new, fresh child). Eventually it doesn’t, because you
get a child that has already cached the regex and won't recompile becauge ofrtbéifier.

An example of such a case would be:

my $pat = $g->param("keyword");
foreach(@list) {

print if /$pat/o;
}

To make sure you don’t miss these bugs always test your CGl in single process mode.

To solve this particulalo modifier problem refer to Compiled Regular Expressions.

5.5 Script’'s name space

Scripts undeApache::Registry do not run in packagmain , they run in a uniqgue name space based
on the requested URI. For example, if your URI/perl/test.pl the package will be called
Apache::ROOT::perl::test_2epl

5.6 @INC and mod_perl

The basic Pe@INCbehaviour is explained in section use(), require(), do(), %INC and @INC Explained.

When running under mod_perl, once the server igpNCis frozen and cannot be updated. The only
opportunity totemporarilymodify @INCis while the script or the module are loaded and compiled for the
first time. After that its value is reset to the original one. The only way to ch@hg€permanently is to
modify it at Apache startup.

Two ways to alte@INCat server startup:

® In the configuration file. For example add:

PerlSetEnv PERL5LIB /home/httpd/perl

or

15 Feb 2014 135

5.7 Reloading Modules and Required Files

PerlSetEnv PERLSLIB /home/httpd/perl:/home/httpd/mymodules
Note that this setting will be ignored if you have BexlTaintCheck mode turned on.

® In the startup file directly alter th@INC For example

startup.pl

use lib gw(/home/httpd/perl /home/httpd/mymodules);
1

and load the startup file from the configuration file by:

PerlRequire /path/to/startup.pl

5.7 Reloading Modules and Required Files

You might want to read the "use(), require(), do(), %INC and @INC Explained" before you proceed with
this section.

When you develop plain CGI scripts, you can just change the code, and rerun the CGI from your browser.
Since the script isn’t cached in memory, the next time you call it the server starts up a new perl process,
which recompiles it from scratch. The effects of any modifications you've applied are immediately
present.

The situation is different witpache::Registry , since the whole idea is to get maximum perfor-
mance from the server. By default, the server won't spend time checking whether any included library
modules have been changed. It assumes that they weren't, thus saving a few milliseconds to stat() the
source file (multiplied by however many modules/libraries you use() and/or require() in your script.)

The only check that is done is to see whether your main script has been changed. So if you have only
scripts which do not use() or require() other perl modules or packages, there is nothing to worry about. If,

however, you are developing a script that includes other modules, the files you use() or require() aren’t

checked for modification and you need to do something about that.

So how do we get our mod_perl-enabled server to recognize changes in library modules? Well, there are a
couple of techniques:

5.7.1 Restarting the server

The simplest approach is to restart the server each time you apply some change to your code. See Server
Restarting techniques.

After restarting the server about 100 times, you will tire of it and you will look for other solutions.

136 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.7.2 Using Apache::StatINC for the Development Process

5.7.2 Using Apache::StatINC for the Development Process

Help comes from thé&pache::StatINC module. When Perl pulls a file via require(), it stores the full
pathname as a value in the global h&@nhC with the file name as the keppache::StatINC looks
through%INCand immediately reloads any files that have been updated on disk.

To enable this module just add two linesttpd.conf

PerlIModule Apache::StatINC
PerlinitHandler Apache::StatINC

To be sure it really works, turn on debug mode on your development box by d&tisgtVar
StatINCDebug On to your config file. You end up with something like this:

PerlIModule Apache::StatINC

<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
PerlSendHeader On
PerlinitHandler Apache::StatINC
PerlSetVar StatINCDebug On

</Location>

Be aware that only the modules locateddifiNCare reloaded on change, and you can chag¢Conly
before the server has been started (in the startup file).

Nothing you do in your scripts and modules which are pulled in with require() after server startup will
have any effect o@INC

When you write:

use lib gw(foo/bar);

@INCis changed only for the time the code is being parsed and compiled. When that'€ildQas
reset to its original value.

To make sure that you have se®INC correctly, configure| /perl-status location, fetch
[http://www.example.com/perl-status?inc and look at the bottom of the page, where the cor@INE of
will be shown.

Notice the following trap:

While ". " is in @ING perl knows to require() files with pathnames given relative to the current (script)
directory. After the script has been parsed, the server doesn’t remember the path!

So you can end up with a broken entr@6iNClike this:

15 Feb 2014 137

http://www.example.com/perl-status?inc

5.7.3 Using Apache::Reload

$INC{bar.pl} eq "bar.pl"

If you want Apache::StatINC to reload your script--mod@NCat server startup, or use a full path in the
require() call.

5.7.3 Using Apache::Reload

Apache::Reload comes as a drop-in replacement Agrache::StatINC . It provides extra func-
tionality and better flexibility.

If you want Apache::Reload to check all the loaded modules on each request, you just add to
httpd.conf

PerlinitHandler Apache::Reload

If you want to reload only specific modules when these get changed, you have two ways to do that.

5.7.3.1 Register Modules Implicitly

The first way is to tur©Off theReloadAll variable, which i€n by default

PerlinitHandler Apache::Reload
PerlSetVar ReloadAll Off

and add:

use Apache::Reload;

to every module that you want to be reloaded on change.

5.7.3.2 Register Modules Explicitly

The second way is to explicitly specify modules to be reloadbttpd.conf

PerlinitHandler Apache::Reload
PerlSetVar ReloadModules "My::Foo My::Bar Foo::Bar::Test"

Note that these are split on whitespace, but the modulelist be in quotes, otherwise Apache tries to
parse the parameter list.

You can register groups of modules using the metacharagter (

PerlSetVar ReloadModules "Foo::* Bar::*"

In the above example all modules starting whibo:: and Bar:: will become registered. This features
allows you to assign the whole project modules tree in one pattern.

138 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

5.7.3.3 Special "Touch" File

You can also set a file that you can touch(1) that causes the reloads to be performed. If you set this, and
don’t touch(1) the file, the reloads don’'t happen (nho matter how have you registered the modules to be
reloaded).

PerlSetVar ReloadTouchFile /tmp/reload_modules
Now when you're happy with your changes, simply go to the command line and type:

% touch /tmp/reload_modules

This feature is very convenient in a production server environment, but compared to a full restart, the
benefits of preloaded modules memory sharing are lost, since each child will get it's own copy of the
reloaded modules.

5.7.3.4 Caveats

This module might have a problem with reloading single modules that contain multiple packages that all
use pseudo-hashes.

Also if you have modules loaded from directories which are n@ING Apache::Reload will fail to

find the files, due the fact th&@INCis reset to its original value even if it gets temporary modified in the
script. The solution is to exter@INCat the server startup to include directories you load the files from
which aren't in@INC

For example, if you have a script which loddigT est.pnfrom /home/stas/myproject

use lib gqw(/home/stas/myproject);
require MyTest;

Apache::Reload won't find this file, unless you alteé® INCin startup.pl(or httpd.conf:

startup.pl

use lib qw(/home/stas/myproject);
and restart the server. Now the problem is solved.
5.7.3.5 Availability
This module is available from CPAN.
5.7.4 Configuration Files: Writing, Dynamically Updating and
Reloading
Checking all the modules #INCon every request can add a large overhead to server response times, and

you certainly would not want th&pache::StatINC module to be enabled in your production site’s
configuration. But sometimes you want a configuration file reloaded when it is updated, without restarting

15 Feb 2014 139

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

the server.

This is an especially important feature if for example you have a person that is allowed to modify some of
the tool configuration, but for security reasons it's undesirable for him to telnet to the server to restart it.

5.7.4.1 Writing Configuration Files

Since we are talking about configuration files, | would like to show you some good and bad approaches to
configuration file writing.

If you have a configuration file of just a few variables, it doesn’t really matter how you do it. But generally
this is not the case. Configuration files tend to grow as a project grows. It's very relevant to projects that
generate HTML files, since they tend to demand many easily configurable parameters, like headers,
footers, colors and so on.

So let’s start with the approach that is most often taken by CGI scripts writers. All configuration variables
are defined in a separate file.

For example:

$cgi_dir = "/home/httpd/perl”;

$cgi_url = "/perl";

$docs_dir = "/home/httpd/docs";
$docs_url ="/";

$img_dir = "/home/httpd/docs/images";
$img_url = "/images";

... many more config params here ...
$color_hint ="#777777";
$color_warn = "#990066";
$color_normal = "#000000";

The use strict; pragma demands that all the variables be declared. When we want to use these vari-
ables in a mod_perl script we must declare them ugthvars in the script. (Under Perl v5.6dur()
has replacedse vars)

So we start the script with:

use strict;

use vars qw($cgi_dir $cgi_url $docs_dir $docs_url
... many more config params here

$color_hint $color_warn $color_normal

);

It is a nightmare to maintain such a script, especially if not all the features have been coded yet. You have
to keep adding and removing variable names. But that's not a big deal.

Since we want our code clean, we start the configuration filewsihstrict; as well, so we have to
list the variables witluse vars pragma here as well. A second list of variables to maintain.

140 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

If you have many scripts, you may get collisions between configuration files. One of the best solutions is
to declare packages, with uniqgue names of course. For example for our configuration file we might declare
the following package name:

package My::Config;

The moment you add a package declaration and think that you are done, you realize that the nightmare has
just begun. When you have declared the package, you cannot just require() the file and use the variables,
since they now belong to a different package. So you have either to modify all your scripts to use a fully
qualified notation likesMy::Config::cgi_url instead of justcgi_url or to import the needed
variables into any script that is going to use them.

Since you don’t want to do the extra typing to make the variables fully qualified, you'd go for importing
approach. But your configuration package has to export them first. That means that you have to list all the
variables again and now you have to keep at least three variable lists updated when you make some
changes in the naming of the configuration variables. And that's when you have only one script that uses
the configuration file, in the general case you have many of them. So now our example configuration file
looks like this:

package My::Config;
use strict;

BEGIN {
use Exporter ();

@My::HTML::ISA = qw(Exporter);

@My::HTML::EXPORT = qw();

@My::HTML::EXPORT_OK = gw($cgi_dir $cgi_url $docs_dir $docs_url
... many more config params here
$color_hint $color_warn $color_normal);

}

use vars qw($cgi_dir $cgi_url $docs_dir $docs_url
... many more config params here
$color_hint $color_warn $color_normal

);

$cgi_dir = "/home/httpd/perl”;

$cgi_url = "/perl”;

$docs_dir = "/home/httpd/docs";
$docs_url ="/";

$img_dir = "/home/httpd/docs/images”;
$img_url = "/images";

... many more config params here ...
$color_hint ="#777777",
$color_warn = "#990066";
$color_normal = "#000000";

And in the code:

15 Feb 2014 141

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

use strict;

use My::Config qw($cgi_dir $cgi_url $docs_dir $docs_url
... many more config params here
$color_hint $color_warn $color_normal

);
use vars gw($cgi_dir $cgi_url $docs_dir $docs_url

... many more config params here
$color_hint $color_warn $color_normal

);

This approach is especially bad in the context of mod_perl, since exported variables add a memory over-
head. The more variables exported the more memory you use. If we multiply this overhead by the number
of servers we are going to run, we get a pretty big number which could be used to run a few more servers
instead.

As a matter of fact things aren’t so bad. You can group your variables, and call the groups by special
names called tags, which can later be used as arguments to the import() or use() calls. You are probably
familiar with:

use CGI gw(:standard :html);

We can implement this quite easily, with the help of export_ok tags()Esqrarter . For example:

BEGIN {
use Exporter ();
use vars gw(@ISA @EXPORT @EXPORT_OK %EXPORT_TAGS);
@ISA = qw(Exporter);
@EXPORT =qw();
@EXPORT_OK = qw();

%BEXPORT_TAGS = (
vars => [qw($fname $lname)],
subs => [gw(reread_conf untaint_path)],

)i
Exporter::export_ok_tags('vars’);
Exporter::export_ok_tags('subs’);

}

You export subroutines exactly like variables, since what's actually being exported is a symbol. The defi-
nition of these subroutines is not shown here.

Notice that we didn’t use export_tags(), as it exports the variables automatically without the user asking
for them in first place, which is considered bad style. If a module automatically exports variables with
export_tags() you can stop this by not exporting at all:

use My::Config ();

In your code you can now write:

use My::Config qw(:subs :vars);

142 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

Groups of group tags:

The:all tag fromCGl.pm is a group tag of all other groups. It will require a little more effort to imple-
ment, but you can always save time by looking at the soluti@Ghpm’s code. It's just a matter of a
little code to expand all the groups recursively.

After going through the pain of maintaining a list of variables in a big project with a huge configuration
file (more than 100 variables) and many files actually using them, | came up with a much simpler solution:
keeping all the variables in a single hash, which is built from references to other anonymous scalars, arrays
and hashes.

Now my configuration file looks like this:

package My::Config;
use strict;

BEGIN {
use Exporter ();

@My::Config::ISA = qw(Exporter);

@My::Config::EXPORT = qw();

@My::Config::EXPORT_OK = qw(%:c);
}

use vars qw(%oc);

%c = (

dir =>{
cgi => "/home/httpd/perl”,
docs => "/home/httpd/docs",
img => "/home/httpd/docs/images",

I3

url =>{
cgi =>"/perl”,
docs =>"/",
img =>"/images",

I3

color => {
hint =>"#777777",
warn => "#990066",
normal => "#000000",

I3

)i

Good perl style suggests keeping a comma at the end of lists. That's because additional items tend to be
added to the end of the list. If you keep that last comma in place, you don't have to remember to add one
when you add a new item.

So now the script looks like this:

15 Feb 2014 143

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

use strict;

use My::Config qw(%c);

use vars gw(%c)

print "Content-type: text/plain\r\in\r\n";
print "My url docs root: $c{url}{docsin";

Do you see the difference? The whole mess has gone, there is only one variable to worry about.

There is one small downside to taking this approach: auto-vivification. For example, if we wrote
$c{url{doc} by mistake, perl would silently create this element for us with the ualdef When we

use strict; Perl will tell us about any misspelling of this kind for a simple scalar, but this check is

not performed for hash elements. This puts the onus of responsibility back on us since we must take
greater care. A possible solution to this is to use pseudo-hashes, but they are still considered experimental
so we won'’t cover them here.

The benefits of the hash approach are significant and we can make do even better. | would like to get rid of
theExporter stuff completely. | remove all the exporting code so my config file now looks like:

package My::Config;
use strict;
use vars qw(%oc);

%c = (

dir =>{
cgi => "/home/httpd/perl”,
docs => "/home/httpd/docs",
img => "/home/httpd/docs/images",

2

url =>{
cgi =>"/perl",
docs =>"/",
img =>"/images",

2

color => {
hint =>"#777777",
warn => "#990066",
normal => "#000000",

2

)i

And the code:

use strict;

use My::Config ();

print "Content-type: text/plain\r\in\r\n";

print "My url docs root: $My::Config::c{url{docs}\n";

Since we still want to save lots of typing, and since now we need to use a fully qualified notation like
$My::Config::c{url}{docs} , let's use the magical Perl aliasing feature. I'll modify the code to
be:

144 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

use strict;

use My::Config ();

use vars qw(%c);

*¢ = \%My::Config::c;

print "Content-type: text/plain\r\in\r\n";
print "My url docs root: $c{url}{docsin";

| have aliased thet'c glob with \%My::Config::c , a reference to a hash. From now on,
%My::Config::c and%care the same hash and you can read from or modify either of them.

Just one last little point. Sometimes you see a lot of redundancy in the configuration variables, for
example:

$cgi_dir = "/home/httpd/perl”;
$docs_dir = "/home/httpd/docs";
$img_dir ="/home/httpd/docs/images";

Now if you want to move the base pdthome/httpd" into a new place, it demands lots of typing. Of
course the solution is:

$bhase "/home/httpd";
$cgi_dir = "$base/perl”;
$docs_dir = "$base/docs";
$img_dir ="$docs_dirlimages";

You cannot do the same trick with a hash, since you cannot refer to its values before the definition is
finished. So this wouldn’t work:

%c =
(
base => "/home/httpd",
dir =>{
cgi => "$c{base}/perl",
docs => "$c{base}/docs",
img => "$c{base}{docs}/images",
|3
)i

But nothing stops us from adding additional variables, which are lexically scoped with my (). The follow-
ing code is correct.

my $base = "/home/httpd";
%c =
(
dir => {
cgi => "$base/perl",
docs => "$base/docs",
img => "$base/docs/images",
2
)i

You have just learned how to make configuration files easily maintainable, and how to save memory by
avoiding the export of variables into a script’'s namespace.

15 Feb 2014 145

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

5.7.4.2 Reloading Configuration Files

First, lets look at a simple case, when we just have to look after a simple configuration file like the one
below. Imagine a script that tells you who is the patch pumpkin of the current Perl release.

Sidenote:PumpkinA humorous term for the token (notional or real) that gives its possessor (the "pump-
king" or the "pumpkineer") exclusive access to something, e.g. applying patches to a master copy of some
source (for which the token is called the "patch pumpkin™).

use CGI ();
use strict;

my $fname = "Larry";
my $lname = "Wall";
my $q = CGI->new;

print $g->header(-type=>"text/html’);
print $g->p("$fname $lname holds the patch pumpkin” .
"for this Perl release.");

The script has a hardcoded value for the name. It's very simple: initialize the CGI object, print the proper
HTTP header and tell the world who is the current patch pumpkin.

When the patch pumpkin changes we don’'t want to modify the script. Therefore, we $imatine and
$lname variables into a configuration file.

$fname = "Gurusamy";
$lname = "Sarathy";
1

Please note that there is no package declaration in the above file, so the code will be evaluated in the
caller's package or in thmain:: package if none was declared. This means that the varifhkse

and $lname will override (or initialize if they weren't yet) the variables with the same names in the
caller's namespace. This works for global variables only--you cannot update variables defined lexically
(with my ()) using this technique.

You have started the server and everything is working properly. After a while you decide to modify the
configuration. How do you let your running server know that the configuration was modified without
restarting it? Remember we are in production and server restarting can be quite expensive for us. One of
the simplest solutions is to poll the file’s modification time by calling stat() before the script starts to do
real work. If we see that the file was updated, we force a reconfiguration of the variables located in this
file. We will call the function that reloads the configuration reread_conf() and have it accept a single argu-
ment, which is the relative path to the configuration file.

Apache::Registry calls a chdir() to the script’'s directory before it starts the script’'s execution. So if
your CGI script is invoked under tiAgache::Registry handler you can put the configuration file in

the same directory as the script. Alternatively you can put the file in a directory below that and use a path
relative to the script directory. You have to make sure that the file will be found, somehow. Be aware that
do() searches the libraries in the directorie@iNC

146 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

use vars qw(%MODIFIED);
sub reread_conf{
my $file = shift;
return unless defined $file;
return unless -e $file and -r _;
my $mod = -M _;
unless (exists $SMODIFIED{$file} and $MODIFIED{$file} == $mod) {
my $result;
unless ($result = do $file) {
warn "couldn’t parse $file: $@" if $@;
warn "couldn’t do $file: $!" unless defined $result;
warn "couldn’t run $file" unless $result;

}
$MODIFIED{$file} = $mod; # Update the MODIFICATION times

} # end of reread_conf

Notice that we use the= comparison operator when checking file’s maodification timestamp, because all
we want to know whether the file was changed or not.

When the require(), use() and do() operators successfully return, the file that was passed as an argument is
inserted into%INC (the key is the name of the file and the value the path to it). Specifically, when Perl
sees require() or use() in the code, it first t86tBIC to see whether the file is already there and thus
loaded. If the test returns true, Perl saves the overhead of code re-reading and re-compiling; however
calling do() will (re)load regardless.

You generally don’t notice with plain perl scripts, but in mod_perl it's used all the time; after the first
request served by a process all the files loaded by require() stay in memory. If the file is preloaded at
server startup, even the first request doesn’'t have the loading overhead.

We use do() to reload the code in this file and not require() because while do() behaves almost identically
to require(), it reloads the file unconditionally. If do() cannot read the file, it retunchesf and set$! to

report the error. If do() can read the file but cannot compile it, it returdef and sets an error message

in $@ If the file is successfully compiled, do() returns the value of the last expression evaluated.

The configuration file can be broken if someone has incorrectly modified it. We don't want the whole
service that uses that file to be broken, just because of that. We trap the possible failure to do() the file and
ignore the changes, by the resetting the modification time. If do() fails to load the file it might be a good
idea to send an email to the system administrator about the problem.

Notice however, that since do() upda¥B\NClike require() does, if you are usidgache::StatINC

it will attempt to reload this file before the reread_conf() call. So if the file wouldn’t compile, the request
will be aborted Apache::StatINC shouldn’t be used in production (because it slows things down by
stat()'ing all the files listed ifINQ so this shouldn’t be a problem.

Note that we assume that the entire purpose of this function is to reload the configuration if it was
changed. This is fail-safe, because if something goes wrong we just return without modifying the server
configuration. The script should not be used to initialize the variables on its first invocation. To do that,

you would need to replace each occurrence of return() and warn() with die(). If you do that, take a look at
the section|"Redirecting Errors to the Client instead of errgr_log".

15 Feb 2014 147

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

| used the above approach when | had a huge configuration file that was loaded only at server startup, and
another little configuration file that included only a few variables that could be updated by hand or through
the web interface. Those variables were initialized in the main configuration file. If the webmaster breaks
the syntax of this dynamic file while updating it by hand, it won't affect the main (write-protected) config-
uration file and so stop the proper execution of the programs. Soon we will see a simple web interface
which allows us to modify the configuration file without actually breaking it.

A sample script using the presented subroutine would be:

use vars qw(%MODIFIED $fname $lname);
use CGlI ();
use strict;

my $q = CGI->new;

print $g->header(-type=>"text/plain’);

my $config_file = "./config.pl";

reread_conf($config_file);

print $g->p("$fname $lname holds the patch pumpkin® .
"for this Perl release.");

sub reread_conf{
my $file = shift;
return unless defined $file;
return unless -e $file and -r _;
my $mod = -M _;
unless ($MODIFIED{$file} and $MODIFIED{$file} == $mod) {
my $result;
unless ($result = do $file) {
warn "couldn’t parse $file: $@" if $@;
warn "couldn’t do $file: $!" unless defined $result;
warn "couldn’t run $file" unless $result;

}
$MODIFIED{$file} = $mod; # Update the MODIFICATION times

} # end of reread_conf

Remember that you should be usiistat $file)[9] instead of-M $file if you are modifying
the $”T variable. In some of my scripts, | re$AT to the time of the script invocation witB T =
time()" . That way | can perforriM and the similar-@ , -C) file status tests relative to the script invo-
cation time, and not the time the process was started.

If your configuration file is more sophisticated and it declares a package and exports variables, the above
code will work just as well. Even if you think that you will have to import() variables again, when do()
recompiles the script the originally imported variables get updated with the values from the reloaded code.

5.7.4.3 Dynamically updating configuration files

The CGI script below allows a system administrator to dynamically update a configuration file through the
web interface. Combining this with the code we have just seen to reload the modified files, you get a
system which is dynamically reconfigurable without needing to restart the server. Configuration can be
performed from any machine having just a web interface (a simple browser connected to the Internet).

148 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

Let's say you have a configuration file like this:
package MainConfig;

use strict;
use vars qw(%c);

%c = (
name =>"Larry Wall",
release =>"5.000",
comments => "Adding more ways to do the same thing :)",

other =>"More config values",

hash =>{foo =>"ouch",
bar => "geez",

3
array =>[qw(abc)],
);

You want to make the variableame, release andcomments dynamically configurable. You want to

have a web interface with an input form that allows you to modify these variables. Once modified you
want to update the configuration file and propagate the changes to all the currently running processes.
Quite a simple task.

Let’'s look at the main stages of the implementation. Create a form with preset current values of the vari-
ables. Let the administrator modify it and submit the changes. Validate the submitted information
(numeric fields should carry numbers, literals--words, etc). Update the configuration file. Update the
modified value in the memory of the current process. Present the form as before but with updated fields if
any.

The only part that seems to be complicated to implement is a configuration file update, for a couple of
reasons. If updating the file breaks it, the whole service won't work. If the file is very big and includes
comments and complex data structures, parsing the file can be quite a challenge.

So let's simplify the task. If all we want is to update a few variables, why don't we create a tiny configura-
tion file with just those variables? It can be modified through the web interface and overwritten each time
there is something to be changed. This way we don't have to parse the file before updating it. If the main
configuration file is changed we don't care, we don’'t depend on it any more.

The dynamically updated variables are duplicated, they will be in the main file and in the dynamic file. We
do this to simplify maintenance. When a new release is installed the dynamic configuration file won't exist
at all. It will be created only after the first update. As we just saw, the only change in the main code is to
add a snippet to load this file if it exists and was changed.

This additional code must be executed after the main configuration file has been loaded. That way the
updated variables will override the default values in the main file.

15 Feb 2014 149

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

META: extend on the comments:
remember to run this code in taint mode

use strict;
use vars qw($q %c $dynamic_config_file %vars_to_change %validation_rules);

use CGlI ();

use lib gw(.);
use MainConfig ();
*c = \%MainConfig::c;

$dynamic_config_file = "./config.pl";

load the dynamic configuration file if it exists, and override the
default values from the main configuration file
do $dynamic_config_file if -e $dynamic_config_file and -r _;

fields that can be changed and their titles
%vars_to_change =

(

'name’ =>"Patch Pumpkin’s Name",

‘release’ => "Current Perl Release”,
‘comments’ => "Release Comments",

);

%validation_rules =
(
‘name’ =>sub {$_[0] =~ /"[\W\s\.]+$/; },
release’ =>sub {$_[0] =~ /N\d+\.\d_]+%/; },
‘comments’ => sub { 1; h

);

$q = CGl->new;
print $g->header(-type=>"text/html’),
$g->start_html();

my %updates = ();

We always rewrite the dynamic config file, so we want all the
vars to be passed, but to save time we will only do checking

of vars that were changed. The rest will be retrieved from
the 'prev_foo’ values.
foreach (keys %vars_to_change) {

copy var so we can modify it

my $new_val = $g->param($_) ||

strip a possible M char (DOS/WIN)
$new_val =~ s/\cM//g;

push to hash if was changed
$updates{$_} = $new_val
if defined $g->param("prev_".$)
and $new_val ne $g->param("prev_".$);

150 15 Feb 2014

CGl to mod_perl Porting. mod_perl Coding guidelines. 5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

Note that we cannot trust the previous values of the variables
since they were presented to the user as hidden form variables,
and the user can mangle those. We don't care: it cannot do any
damage, as we verify each variable by rules which we define.

Process if there is something to process. Will be not called if

it's invoked a first time to display the form or when the form

was submitted but the values weren't modified (we know that by
comparing with the previous values of the variables, which are
the hidden fields in the form)

process and update the values if valid
process_change_config(%updates) if %updates;

print the update form
conf_maodification_form();

update the config file but first validate that the values are correct ones
HHHHHHHH AT
sub process_change_config{

my %updates = @_;

we will list here all the malformatted vars
my %malformatted = ();

print $g->b("Trying to validate these values
");
foreach (keys %updates) {
print "<DT>$_ => <PRE>$updates{$_}</PRE>";

now we have to handle each var to be changed very carefully
since this file goes immediately into production!
$malformatted{$_} = delete $updates{$_}

unless $validation_rules{$_}->($updates{$_});

} # end of foreach (keys %updates)

print warnings if there are any invalid changes
print $g->hr,
$9->p($g->b(qg{Warning! These variables were changed
but found malformed, thus the original
values will be preserved.})
),
join(",
",
map { $g->b($vars_to_change{$_}) . " : $malformatted{$_}n"
} keys %malformatted)
if Y%omalformatted;

Now complete the vars that weren’t changed from the

$g->param(‘prev_var’) values

map { Supdates{$_} = $g->param(’prev_".$_) unless exists $updates{$_}
} keys %vars_to_change;

Now we have all the data that should be written into the dynamic
config file

escape single quotes """ while creating a file

15 Feb 2014 151

5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

my $content = join "\n",
map { $Supdates{$_} =~ s/(['\\)\$1/g;
'$c{.$_."} = ™. $updates{$_}.";\n"
} keys %updates;

now add '1;’ to make require() happy
$Content = "\nl;";

keep the dummy result in $res so it won't complain

eval {my $res = $content};
if ($@) {
print qg{Warning! Something went wrong with config file
generation!<P> The error was :
<PRE>$@</PRE>},
return;

}
print $g->hr;

overwrite the dynamic config file
use Symbol ();
my $fh = Symbol::gensym();
open $fh, ">$dynamic_config_file.bak"

or die "Can’t open $dynamic_config_file.bak for writing :$! \n";
flock $fh,2; # exclusive lock
seek $fh,0,0; # rewind to the start
truncate $fth, 0; # the file might shrink!

print $fh $content;

close $fh;

OK, now we make a real file
rename "$dynamic_config_file.bak",$dynamic_config_file
or die "Failed to rename: $!";

rerun it to update variables in the current process! Note that
it won't update the variables in other processes. Special
code that watches the timestamps on the config file will do this
work for each process. Since the next invocation will update the
configuration anyway, why do we need to load it here? The reason
is simple: we are going to fill the form’s input fields with
the updated data.
do $dynamic_config_file;

} # end sub process_change_config

HHAH T HHH TR
sub conf_maodification_form{

print $g->center($g->h3("Update Form"));
print $g->hr,
$qg->p(qa{This form allows you to dynamically update the current

configuration. You don\'t need to restart the server in
order for changes to take an effect}

);

set the previous settings in the form’s hidden fields, so we

152

15 Feb 2014

CGl to mod_perl Porting. mod_perl Coding guidelines. 5.7.4 Configuration Files: Writing, Dynamically Updating and Reloading

know whether we have to do some changes or not
map {$q->param("prev_3$_".$c{$_}) } keys %vars_to_change;

rows for the table, go into the form
my @configs = ();

prepare one textfield entries
push @configs,
map {
$g->td(
$9->b("$vars_to_change{$_}:"),
),
$g->td(
$g->textfield(-name =>$_,
-default => $c{$_},
-override =>1,
-size => 20,
-maxlength => 50,
)
),

} qw(name release);

prepare multiline textarea entries
push @configs,
map {
$g->td(
$g->b("$vars_to_change{$_}:"),
),
$g->td(
$g->textarea(-name =>$_,
-default => $c{$_},
-override =>1,
-rows =>10,

-columns => 50,
-wrap =>"HARD",
)

)

} gw(comments);

print $g->startform('POST’,$g->url),"\n",
$g->center($g->table(map {$g->Tr($_),"\n",} @configs),
$g->submit(”’,'Update!’),"\n",
),
map ({$g->hidden("prev_".$_, $g->param("prev_".$_))."\n" }
keys %vars_to_change), # hidden previous values
$g->br,"\n",
$g->endform,"\n",
$g->hr,"\n",
$g->end_html;

} # end sub conf_maodification_form

Once updated the script generates a file like:

15 Feb 2014 153

5.8 Name collisions with Modules and libs

$c{release} = '5.6";
$c{name} = 'Gurusamy Sarathy’;
$c{comments} = 'Perl rules the world!’;

1

5.7.5 Reloading handlers

If you want to reload a perlhandler on each invocation, the following trick will do it:

PerlHandler "sub { do 'MyTest.pm’; MyTest::handler(shift) }"

do() reloadsviyTest.pm on every request.

5.8 Name collisions with Modules and libs
This section requires an in-depth understanding of use(), require(), do(), %INC and @INC .

To make things clear before we go into details: each child process has EsIN@Mmash which is used to

store information about its compiled modules. The keys of the hash are the names of the modules and files
passed as arguments to require() and use(). The values are the full or relative paths to these modules and
files.

Suppose we havay-lib.pl andMyModule.pm both located athhome/httpd/perl/my/

® /home/httpd/perl/my/ is in @INCat server startup.

require "my-lib.pl";

use MyModule;

print $INC{"my-lib.pl"},"\n";

print $INC{"MyModule.pm"},"\n";

prints:

/home/httpd/perl/my/my-lib.pl
/home/httpd/perl/my/MyModule.pm

Addinguse lib

use lib qw(.);

require "my-lib.pl";

use MyModule;

print $INC{"my-lib.pl"},"\n";

print $INC{"MyModule.pm"},"\n";

prints:

154 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.8 Name collisions with Modules and libs

my-lib.pl
MyModule.pm

® /home/httpd/perl/my/ isn't in @INCat server startup.

require "my-lib.pl";

use MyModule;

print SINC{"my-lib.pl"},"\n";

print $INC{"MyModule.pm"},"\n";

wouldn’t work, since perl cannot find the modules.

Addinguse lib

use lib qw(.);

require "my-lib.pl";

use MyModule;

print $INC{"my-lib.pl"},"\n";

print $INC{"MyModule.pm"},"\n";

prints:

my-lib.pl
MyModule.pm

Let's look at three scripts with faults related to name space. For the following discussion we will consider
just one individual child process.

® Scenario 1

First, You can't have two identical module names running on the same server! Only the first one
found in a use() or require() statement will be compiled into the package, the request for the other
module will be skipped, since the server will think that it's already compiled. This is a direct result of
using%INGC which has keys equal to the names of the modules. Two identical names will refer to the
same key in the hash. (Refer to the secfion 'Looking inside the|server’ to find out how you can know
what is loaded and where.)

So if you have two differerffoo modules in two different directories and two scrigtaptl.pl
andscript2.pl , placed like this:

Jtool1l/Foo.pm
Jtool1/tooll.pl
Jtool2/Foo.pm
Jtool2/tool2.pl

Where some sample code could be:

Jtool1/tooll.pl

use Foo;

print "Content-type: text/plain\r\n\r\n";
print “I'm Script number One\n";
foo();

15 Feb 2014 155

5.8 Name collisions with Modules and libs

Jtool1l/Foo.pm

sub foo{
print "I'm Tool Number One!\n";

}
1;

Jtool2/tool2.pl

use Foo;

print "Content-type: text/plain\r\n\r\n";
print "I'm Script number Two\n";
foo();

Jtool2/Foo.pm

sub foo{
print "I'm Tool Number Two!\n";

}
1
Both scripts calluse Foo; . Only the first one called will know abo#po. When you call the

second script it will not know abo#oo at all--it's like you've forgotten to writeise Foo; . Run
the server in single server mode to detect this kind of bug immediately.

You will see the following in the error_log file:
Undefined subroutine
&Apache::ROOT::perl::tool2::tool2_2epl::foo called at
/home/httpd/perl/tool2/tool2.pl line 4.

® Scenario 2

If the files do not declare a package, the above is true for librariesgi-gb.pl") you require() as
well:

Suppose that you have a directory structure like this:
Jtool1/config.pl
Jtool1/tooll.pl

Jtool2/config.pl
Jtool2/tool2.pl

and both scripts contain:

use lib qw(.);
require "config.pl";

while ./tool1l/config.plcan be something like this:

$foo = 0;
1

156 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.8 Name collisions with Modules and libs

and./tool2/config.pi

$foo =1;
1

The second scenario is not different from the first, there is almost no difference between use() and
require() if you don’t have to import some symbols into a calling script. Only the first script served
will actually do the require(), for the same reason as the example &6tN€.already includes the

key "config.pl"

® Scenario 3

It is interesting that the following scenario will fail too!
Jtool/config.pl

Jtool/tooll.pl
Jtool/tool2.pl

wheretooll.pl andtool2.pl both require() theameconfig.pl
There are three solutions for this:
e Solution 1

The first two faulty scenarios can be solved by placing your library modules in a subdirectory struc-
ture so that they have different path prefixes. The file system layout will be something like:

Jtool1/Tool1/Foo.pm
Jtooll/tooll.pl

Jtool2/Tool2/Foo.pm
Jtool2/tool2.pl

And modify the scripts:

use Tooll::Foo;
use Tool2::Foo;

For require() (scenario number 2) use the following:
Jtool1/tool1-lib/config.pl
Jtool1/tooll.pl

Jtool2/tool2-lib/config.pl
Jtool2/tool2.pl

And each script contains respectively:

use lib qw(.);
require "tool1-lib/config.pl";

use lib qw(.);
require "tool2-lib/config.pl";

15 Feb 2014 157

5.8 Name collisions with Modules and libs

158

This solution isn’t good, since while it might work for you now, if you add another script that wants
to use the same modulearnfig.pl file, it would fail as we saw in the third scenario.

Let's see some better solutions.
Solution 2

Another option is to use a full path to the script, so it will be used as a k&G

require "/full/path/to/the/config.pl";

This solution solves the problem of the first two scenarios. | was surprised that it worked for the third
scenario as well!

With this solution you lose some portability. If you move the tool around in the file system you will
have to change the base directory or write some additional script that will automatically update the
hardcoded path after it was moved. Of course you will have to remember to invoke it.

Solution 3
Make sure you read all of this solution.

Declare a package name in the required files! It should be unique in relation to the rest of the package
names you usé€olNCwill then use the unique package name for the key. It's a good idea to use at
least two-level package names for your private modulesMy/Broject::Carp and notCarp,

since the latter will collide with an existing standard package. Even though a package may not exist
in the standard distribution now, a package may come along in a later distribution which collides with
a name you've chosen. Using a two part package name will help avoid this problem.

Even a better approach is to use three level naming, GkenpanyName::Project-
Name::Module , which is most unlikely to have conflicts with later Perl releases. Foresee problems
like this and save yourself future trouble.

What are the implications of package declaration?

Without package declarations, it is very convenient to use() or require() files because all the variables
and subroutines are part of thmain:: package. Any of them can be used as if they are part of the
main script. With package declarations things are more awkward. You have to use the
Package::function() method to call a subroutine froRackage and to access a global vari-
able$foo inside the same package you have to vi@Rackage::foo

Lexically defined variables, those declared with my () ingtdekage will be inaccessible from
outside the package.

You can leave your scripts unchanged if you import the names of the global variables and subroutines
into the namespace of packagain:: like this:

15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.8 Name collisions with Modules and libs

use Module gw(:mysubs sub_b $varl :myvars);

You can export both subroutines and global variables. Note however that this method has the disad-
vantage of consuming more memory for the current process.

Seeperldoc Exporter for information about exporting other variables and symbols.

This completely covers the third scenario. When you use different module names in package declara-
tions, as explained above, you cover the first two as well.

® A Hack

The following solution should be used only as a short term bandaid. You can force reloading of the
modules by either fiddling witBINCor replacing use() and require() calls with do().

If you delete the module entry from tB@NC hash, before calling require() or use() the module will
be loaded and compiled again. For example:

Jproject/runA.pl

BEGIN {
delete $INC{"MyConfig.pm"};

use lib gw(.);

use MyConfig;

print "Content-type: text/plain\n\n";
print "Script A\n";

print "Inside project: ", project_name();

Apply the same fix tounB.pl

Another alternative is to force module reload via do():

Jproject/runA.pl

use lib gw(.);

do "MyConfig.pm";

print "Content-type: text/plain\n\n";
print "Script B\n";

print "Inside project: ", project_name();

Apply the same fix tounB.pl

If you needed to import() something from the loaded module, call the import() method explicitly. For
example if you had:

use MyConfig qw(foo bar);

now the code will look as:

15 Feb 2014 159

5.9 More package name related issues

do "MyConfig.pm";
MyConfig->import(qw(foo bar));

Both presented solutions are ineffective, since the modules in question will be reloaded on each
request, slowing down the response times. Therefore use these only when a very quick fix is needed
and provide one of the more robust solutions discussed in the previous sections.

See also thperimodlib andperlmod manpages.

From the above discussion it should be clear that you cannot run development and production versions of
the tools using the same apache server! You have to run a separate server for each. They can be on the
same machine, but the servers will use different ports.

5.9 More package name related issues

If you have the following:

PerlHandler Apache::Work::Foo
PerlHandler Apache::Work::Foo::Bar

And you make a request that pulls ipache/Work/Foo/Bar.pm first, then the
Apache::Work::Foo package gets defined, so mod_perl does not try to pull in
Apache/Work/Foo.pm

5.10 END__and _DATA__ tokens

Apache::Registry scripts cannot contain END__or__ DATA__tokens.

Why? Becausépache::Registry scripts are being wrapped into a subroutine cdibttller | like
the script at URIperl/test.pl

print "Content-type: text/plain\r\in\r\n";
print "Hi";

When the script is being executed undpache::Registry handler, it actually becomes:

package Apache::ROOT::perl::test_2epl;
use Apache gw(exit);
sub handler {
print "Content-type: text/plain\r\n\r\n";
print "Hi";
}

So if you happen to put an END__tag, like:
print "Content-type: text/plain\r\n\rin";
print "Hi";

END
Some text that wouldn’t be normally executed

160 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.11 Output from system calls

it will be turned into:

package Apache::ROOT::perl::test_2epl;
use Apache gw(exit);
sub handler {
print "Content-type: text/plain\r\n\r\in";
print "Hi";
__END__
Some text that wouldn’t be normally executed

}
and you try to execute this script, you will receive the following error:
Missing right bracket at line 4, at end of line

Perl cuts everything after the END__ tag. The same applies to theDATA__ tag.

Also, remember that whatever applies Apache::Registry scripts, in most cases applies to
Apache::PerlRun scripts.

5.11 Output from system calls

The output ofsystem() , exec() , andopen(PIPE,"|program") calls will not be sent to the
browser unless your Perl was configured vgiilo

You can use backticks as a possible workaround:
print ‘command here;

But you're throwing performance out the window either way. It's best not to fork at all if you can avoid it.
See the ["Forking or Executing subprocesses from modl perl" section to learn about implications of
forking.

Also read aboyt Apache::SubProg¢ess for overridden system() and exec() implementations that work with
mod_perl.

5.12 Using format() and write()

The interface to filehandles which are linked to variables with Perl’s tie() function is not yet complete. The
format() and write() functions are missing. If you configure Perl wiith , write() and format() should
work just fine.

Otherwise you could use sprintf() to replace format@.## become$62.2f and####.## becomes
%4.2f .

Pad all strings with (" " x 80) before using, and set their length with: %.25s for a max 25 char string. Or
prefix the string with (" " x 80) for right-justifying.

15 Feb 2014 161

5.13 Terminating requests and processes, the exit() and child_terminate() functions

Another alternative is to use thext::Reform module.

5.13 Terminating requests and processes, the exit() and
child_terminate() functions

Perl'sexit() built-in function (all versions prior to 5.6) cannot be used in mod_perl scripts. Calling it
causes the mod_perl process to exit (which defeats the purpose of using mod_perl). The
Apache::exit() function should be used instead. Starting from Perl version 5.6 mod_perl will over-
ride exit() behind the scenes, us@@RE::GLOBAL:: , a newmagicalpackage.

You might start your scripts by overriding the exit() subroutine (if youApsehe::exit() directly,
you will have a problem testing the script from the shell, unless yousgufpache (); into your
code.) | use the following code:

use constant IS_MODPERL => $ENV{MOD_PERL};

use subs qw(exit);

Select the correct exit function

*exit = IS_MODPERL ? \&Apache::exit : sub { CORE::exit };

Now the correcexit() is always chosen, whether the script is running under mod_perl, ordinary CGl or
from the shell. Notice that since we are using the constant pragma, there is no runtime overhead to select
one of the code references, sin& MODPERLconstant is folded, that block is optimized away at
compile time outside of mod_perl.

Note that if you run the script undApache::Registry , The Apache functionexi t () overrides

the Perl core built-in function. While you see exit() listed in th@EXPORT_OHKst of the Apache
package Apache::Registry does something you don't see and imports this function for you. This
means that if your script is running under thgache::Registry handler you don’t have to worry
about exit(). The same appliesApache::PerlRun

If you useCORE::exit() in scripts running under mod_perl, the child will exit, but neither a proper
exit nor logging will happen on the wa@ORE::exit() cuts off the server’s legs.

Note thatApache::exit(Apache::Constants::DONE) will cause the server to exit gracefully,
completing the logging functions and protocol requirements etc. (Apache::Constants::DONE == -2,
Apache::Constants::OK == 0.)

If you need to shut down the child cleanly after the request was completed, use the
$r->child_terminate method. You can call it anywhere in the code, and not just at the "end". This
sets the value of thelaxRequestsPerChild configuration variable to 1 and clears t#ezpalive

flag. After the request is serviced, the current connection is broken, becaus&edghive flag, and

the parent tells the child to cleanly quit, becaMsxRequestsPerChild is smaller than the number

of requests served.

In anApache::Registry script you would do:

162 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.14 die() and mod_perl

Apache->request->child_terminate;

or in httpd.conf:

PerlFixupHandler "sub { shift->child_terminate }"

You would want to use the latter example only if you wanted the child to terminate every time the regis-
tered handler is called. Probably this is not what you want.

Even if you don't need to call child_terminate() at the end of the request if you want the process to quit
afterwards, here is an example of assigning the postprocessing handler. You might do this if you wanted to
execute your own code a moment before the process quits.

my $r = shift;
$r->post_connection(\&exit_child);
sub exit_child{
some logic here if needed
$r->child_terminate;

}

The above is the code that is used by Alpache::SizeLimit module which terminates processes
that grow bigger than a value you choose.

[Apache::GTopLimit (based olibgtop and GTop.pm) is a similar module. It does the same thing, plus
you can configure it to terminate processes when their shared memory shrinks below some specified size.

5.14 die() and mod_perl

When you write:

open FILE, "foo" or die "Cannot open foo file for reading: $!";

in a perl script and execute it--the script would die() if it is unable to open the file, by aborting the script
execution, printing the death reason and quitting the Perl interpreter.

You will hardly find a properly written Perl script that doesn’t have at least one die() statement in it, if it
has to cope with system calls and the like.

A CGI script running under mod_cgi exits on its completion. The Perl interperter exits as well. So it
doesn't really matter whether the interpreter quits because the script died by natural death (when the last
statement was executed) or was aborted by a die() statement.

In mod_perl we don’t want the interpreter to quit. We already know that when the script completes its
chores the interpeter won't quit. There is no reason why it should quit when the script has stopped because
of die(). As a result calling die() won't quit the process.

And this is how it works--when the die() gets triggered, it's mod_p#88K5{ DIE__} handler that
logs the error message and calls Apache::exit() instead of CORE::die(). Thus the script stops, but the
process doesn’t quit.

15 Feb 2014 163

5.15 Return Codes

Here is an example of such trapping code, although it isn’t the real code:

$SIG{__DIE__} =sub { print STDERR @_; Apache::exit(); }

5.15 Return Codes

Apache::Registry normally assumes a return codeQH (200). If you want to send another return
code, usér->status()

use Apache::Constants qw(NOT_FOUND);
$r->status(NOT_FOUND);

Of course if you do that, you don't have to ¢éaH>send_http _header() (assuming that you have
PerlSendHeader Off).

5.16 Testing the Code from the Shell

Your CGl scripts willnot yet run from the command line unless you G&4::Switch or CGl.pm and
have Perl 5.004 or later. They must not make any direct calls to Apache’s Perl APl methods.

5.17 1/0O is different

If you are using Perl 5.004 or later, most CGI scripts can run under mod_perl untouched.

If you're using 5.003, Perl’s built-iread() andprint() functions do not work as they do under CGI.
If you're usingCGl.pm, use$query->print instead of plain olprint()

5.18 STDIN, STDOUT and STDERR streams

In mod_perl botiSTDIN andSTDOUTare tied to the socket the request came from. Because the C level
STDOUT is not hooked up to the client, you can re-open the STDOUT filehandler using tie(). For
example if you want to dup an STDOUT filehandler and for the code to work with mod_perl and without
it, the following example will do:

use constant IS_MODPERL => $ENV{MOD_PERL};
if IS_MODPERL) {
tie *OUT, "Apache’;
}else {
open (OUT, ">-");
}

Note thatOUTwas picked just as an example -- there is nothing special about it. If you are looking to redi-
rect the STDOUT stream into a scalar, see the Redirecting STDOUT into a String section.

STDERR:S tied to the file defined by therrorLog directive.

164 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.19 Redirecting STDOUT into a Scalar

5.19 Redirecting STDOUT into a Scalar

Sometimes you have a situation where a black box functions prints the ougFiR@JUTand you want to
get this output into a scalar. This is just as valid under mod_perl, where you w&iiéJTto be tied
to the Apache object. So that's where tH@®::String package comes to help. You can re-tie() the
STDOUT (or any other filehandler to a string) by doing a simple select() d@f&iring object and
at the end to re-tie() the STDOUT back to its original stream:

my $str;

my $str_fh = 10::String->new($str);

my $old_fh = select($str_fh);

some function that prints to currently selected file handler.
print_stuff()

reset default th to previous value
select($old_fh) if defined $old_fh;

5.20 Apache::print() and CORE::print()

Under mod_perlCORE::print() will redirect its data toApache::print() since the STDOUT
filehandle is tied to theApache module. This allows us to run CGI scripts unmodified under
Apache::Registry by chaining the output of one content handler to the input of the other handler.

Apache::print() behaves mostly like the built-print() function. In addition it sets a timeout so that
if the client connection is broken the handler won’t wait forever trying to print data downstream to the
client.

There is also an optimization built infpache::print() . If any of the arguments to the method are
scalar references to strings, they are automatically dereferenced for you. This avoids needless copying of
large strings when passing them to subroutines. For example:

$long_string = "A" x 10000000;
$r->print(\$long_string);

If you still want to print the reference you can always call:
$r->print(\$foo);
or by forcing it into a scalar context:

print(scalar($foo));

5.21 Global Variables Persistence

Since the child process generally doesn’t exit before it has serviced several requests, global variables
persist inside the same process from request to request. This means that you must never rely on the value
of the global variable if it wasn't initialized at the beginning of the request processing. See "Variables
globally, lexically scoped and fully qualified" for more information.

15 Feb 2014 165

5.22 Generating correct HTTP Headers

You should avoid using global variables unless it's impossible without them, because it will make code
development harder and you will have to make certain that all the variables are initialized before they are
used. Use my () scoped variables wherever you can.

You should be especially careful with Perl Special Variables which cannot be lexically scoped. You have
to uselocal() instead.

Here is an example with Perl hash variables, which store the iteration state in the hash variable and that
state persists between requests unless explicitly reset. Consider the following registry script:

#file:hash_iteration.pl

our %hash;
%hash = map {$_=>11}"a’..’c’ unless %hash;

print "Content-type: text/plain\n\n";
for (my ($k, $v) = each %hash) {

print "$k $v\n";
last;

}

That script prints different values on the first 3 invocations and prints nothing on the 4th, and then repeats
the loop. (when you run with httpd -X). There are 3 hash key/value pairs in the global Véitiaske

In order to get the iteration state to its initial state at the beginning of each request, you need to reset the
iterator as explained in the manpage foraheh() operator. So adding:

keys %hash;

before usingthash solves the problem for the current example.

5.22 Generating correct HTTP Headers

A HTTP response header consists of at least two fields. HTTP response and MIME type header
Content-type

HTTP/1.0 200 OK
Content-Type: text/plain

After adding one more new line, you can start printing the content. A more complete response includes the
date timestamp and server type, for example:

HTTP/1.0 200 OK

Date: Tue, 28 Dec 1999 18:47:58 GMT

Server: Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
Content-Type: text/plain

To notify that the server was configured with KeepAlive Off, you need to tell the client that the connection
was closed, with:

166 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.22 Generating correct HTTP Headers

Connection: close

There can be other headers as well, like caching control and others specified by the HTTP protocol. You
can code the response header with a single print():

print qg{HTTP/1.1 200 OK
Date: Tue, 28 Dec 1999 18:49:41 GMT
Server: Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
Connection: close
Content-type: text/plain

3
or with a"here" style print:
print <<EOT,;
HTTP/1.1 200 OK
Date: Tue, 28 Dec 1999 18:49:41 GMT
Server: Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
Connection: close
Content-type: text/plain

EOT

Notice the double new line at the end. But you have to prepare a timestamp string
(Apache::Util::ht_time() does just this) and to know what server you are running under. You
needed to send only the response MIME typenfent-type) under mod_cgi, so why would you want

to do this manually under mod_perl?

Actually sometimes you do want to set some headers manually, but not every time. So mod_perl gives you
the default set of headers, just like in the example above. And if you want to override or add more headers
you can do that as well. Let's see how to do that.

When writing your own handlers and scripts with the Perl Apache API the proper way to send the HTTP
header is with the send_http_header() method. If you need to add or override methods you can use the
header_out() method:

$r->header_out("Server" => "Apache Next Generation 10.0");
$r->header_out("Date" => "Tue, 28 Dec 1999 18:49:41 GMT");

When you have prepared all the headers you send them with:
$r->send_http_header;

Some headers have special aliases:
$r->content_type(‘text/plain’);

is the same as:

15 Feb 2014 167

5.22 Generating correct HTTP Headers

$r->header_out("Content-type" => "text/plain");

A typical handler looks like this:

$r->content_type(text/plain’);
$r->send_http_header;
return OK if $r->header_only;

If the client issues an HTTREADrequest rather than the us@iET, to be compliant with the HTTP
protocol we should not send the document body, but only the HTTP header. When Apache receives a
HEADrequestheader_only(returnstrue. If we see that this has happened, we return from the handler
immediately with arDKstatus code.

Generally, you don't need the explicit content type setting, since Apache does this for you, by looking up
the MIME type of the request and by matching the extension of the URI in the MIME tables (from the
mime.typedile). So if the request URI idvelcome.htmlthe text/html content-type will be picked.
However for CGI scripts or URIs that cannot be mapped by a known extension, you should set the appro-
priate type by using content_type() method.

The situation is a little bit different witApache::Registry and similar handlers. If you take a basic
CGl script like this:

print "Content-type: text/plain\r\in\r\n";
print "Hello world";

it wouldn’t work, because the HTTP header will not be sent out. By default, mod_perl does not send any
headers itself. You may wish to change this by adding

PerlSendHeader On

in the Apache::Registry <Location> section of your configuration. Now, the response line and
common headers will be sent as they are by mod_cgi. Just as with m&ertgendHeader will not
send the MIME type and a terminating double newline. Your script must send that itself, e.g.:

print "Content-type: text/htmi\r\n\r\n";

According to HTTP specs, you should send "\cM\cJ", "\015\012" or "\OXOD\OX0A" string. The "\r\n" is the
way to do that on UNIX and MS-DOS/Windows machines. However, on a Mac "\n\n" eq "\012\015",
exactly the other way around.

Note, that in most UNIX CGI scripts, developers use a simpler "\n\n" and not "\r\n\r\n". There are occa-
sions where sending "\n" without "\r" can cause problems, make it a habit to always send "\r\n" every time.

If you use an OS which uses the EBCDIC as character set (e.g. BS2000-Posix), you should use this
method to send the Content-type header:

shift->send_http_header('text/html’);

168 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.22 Generating correct HTTP Headers

The PerlSendHeader On directive tells mod_perl to intercept anything that looks like a header line
(such asContent-Type: text/plain) and automatically turn it into a correctly formatted
HTTP/1.0 header, the same way it happens with CGI scripts running under mod_cgi. This allows you to
keep your CGl scripts unmodified.

You can us&ENV{PERL_SEND_HEADERI{o find out whethePerlSendHeader is Onor Off . You
use it in your module like this:

if(SENV{PERL_SEND_HEADERY}) {
print "Content-type: text/htmi\r\n\r\n";

}

else {
my $r = Apache->request;
$r->content_type('text/html’);
$r->send_http_header;

}

Note that you can always use the code in the else part of the above example, no matter whether the
PerlSendHeader directive is On or Off.

If you useCGl.pm’s header() function to generate HTTP headers, you do not need to activate this
directive becaus€Gl.pm detectanod_perland callssend_http_header() for you.

There is no free lunch--you get the mod_cgi behavior at the expense of the small but finite overhead of
parsing the text that is sent. Note that mod_perl makes the assumption that individual headers are not split
across print statements.

The Apache::print() routine has to gather up the headers that your script outputs, in order to pass
them to$r->send_http_header . This happens isrc/modules/perl/Apache.xs (print)
andApache/Apache.pm (send_cgi_header). There is a shortcut in there, namely the assumption

that each print statement contains one or more complete headers. If for example you generate a
Set-Cookie header by multiplerint() statements, like this:

print "Content-type: text/plain\n®;

print "Set-Cookie: iscookietext); ";

print "expires=Wednesday, 09-Nov-1999 00:00:00 GMT\; *;
print "path=\\; ";

print "domain=\.mmyserver.com\; ";

print "\r\n\r\n";

print "hello";

Your generate®et-Cookie header is split over a number of print() statements and gets lost. The above
example wouldn’t work! Try this instead:

my $cookie = "Set-Cookie: iscookietext\; ;

$cookie .= "expires=Wednesday, 09-Nov-1999 00:00:00 GMT\; ;
$cookie .= "path=\\; *;

$cookie .= "domain=\.mmyserver.com\; ;

print "Content-type: text/plain\n”,

print "$cookie\r\n\r\n";

print "hello";

15 Feb 2014 169

5.22 Generating correct HTTP Headers

Of course using a special purpose cookie generator moduleg\péahe::Cookie , CGl::Cookie
etc is an even cleaner solution.

Sometimes when you call a script you see an ugly "Content-Type: text/html" displayed at the top of the
page, and of course the rest of the HTML code won’t be rendered correctly by the browser. As you have
seen above, this generally happens when your code has already sent the header so you see the duplicate
header rendered into the browser’s page. This might happen when you &G@Glthen $g->header

method or mod_perlI'$r->send_http_header

If you have a complicated application where the header might be generated from many different places,
depending on the calling logic, you might want to write a special subroutine that sends a header, and keeps
track of whether the header has been already sent. Of course you can use a global variable to flag that the
header has already been sent:

use strict;
use vars qw{$header_printed};
$header_printed = 0;

print_header("text/plain™);
print "It worked\n";
print_header("text/plain™);

sub print_header {
my $type = shift || "text/html";
unless ($header_printed) {
$header_printed = 1;
my $r = Apache->request;
$r->content_type($type);
$r->send_http_header;
}
}

$header_printed is the variable that flags whether the header was sent or not and it gets initialized to
false (0) at the beginning of each code invocation. Note that the second invocation of print_header() within
the same code, will do nothing, sinBleeader_printed will become true after print_header() will be
executed for the first time.

A solution that is a little bit more memory friendly is to use a fully qualified variable instead:

use strict;
$main::header_printed = 0;

print_header("text/plain");
print "It worked\n";
print_header("text/plain");

sub print_header {
my $type = shift || "text/html";
unless ($main::header_printed) {
$main::header_printed = 1;
my $r = Apache->request;

170 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.22 Generating correct HTTP Headers

$r->content_type($type);
$r->send_http_header;

}
}

We just removed the global variable predeclaration, which allowed us &header_printed under
"use strict" and replace&header_printed with $main::header_printed ;

You may become tempted to use a more elegant Perl solution--the nested subroutine effect which seems to
be a natural approach to take here. Unfortunately it will not work. If the process was starting fresh for each
script or handler, like with plain mod_cgi scripts, it would work just fine:

use strict;

print_header("text/plain®);
print "It worked\n";
print_header("text/plain™);

{
my $header_printed = 0;
sub print_header {
my $type = shift || "text/html";
unless ($header_printed) {
$header_printed = 1;
my $r = Apache->request;
$r->content_type($type);
$r->send_http_header;

}
}
}

In this code$header_printed is declared as lexically scoped (with my ()) outside the subroutine
print_header() and modified inside of it. Curly braces define the block which limits the scope of the lexi-
cally variable.

This means that once print_header() sets it to 1, it will stay 1 as long as the code is running. So all subse-
guent calls to this subroutine will just return without doing a thing. This would serve our purpose, but
unfortunately it will work only for the first time the script is invoked within a process. When the script is
executed for the second or subsequent times and is served by the same process--the header will not be
printed anymore, since print_header() will remember that the valGbeafder printed is equal to

1--it won't be reinitialized, since the subroutine won’t be recompiled.

Why can’t we use a lexical without hitting the nested subroutine effect? Because when we've discussed
Apache::Registry secrets we have seen that the code is wrappledridler routine, effectively turning

any subroutines within the file a script resides in into nested subroutines. Hence we are forced to use a
global in this situation.

Let's make our smart method more elaborate with respect ®eati8endHeader directive, so that it
always does the right thing. It's especially important if you write an application that you are going to
distribute, hopefully under one of the Open Source or GPL licenses.

15 Feb 2014 171

5.23 NPH (Non Parsed Headers) scripts

You can continue to improve this subroutine even further to handle additional headers, such as cookies.

See also Correct Headers--A quick guide for mod_perl users

5.23 NPH (Non Parsed Headers) scripts

To run a Non Parsed Header CGI script under mod_perl, simply add to your code:
local $| = 1;

And if you normally sePerlSendHeader On , add this to your server’s configuration file:

<Files */nph-*>
PerlSendHeader Off
</Files>

5.24 BEGIN blocks

Perl executeBEGIN blocks as soon as possible, at the time of compiling the code. The same is true under
mod_perl. However, since mod_perl normally only compiles scripts and modules once, either in the parent
server or once per-chilEGIN blocks in that code will only be run once. As trerlmod manpage
explains, once BEGIN block has run, it is immediately undefined. In the mod_perl environment, this
means thaBEGIN blocks will not be run during the response to an incoming request unless that request
happens to be the one that causes the compilation of the code.

BEGIN blocks in modules and files pulled in vizquire() oruse() will be executed:
® Only once, if pulled in by the parent process.
® Once per-child process if not pulled in by the parent process.

® An additional time, once per child process if the module is pulled in off disk again via
Apache::StatINC

® An additional time, in the parent process on each resaeriFreshRestart isOn.
e Unpredictable if you fiddle witB6INCyourself.
BEGIN blocks inApache::Registry scripts will be executed, as above plus:
® Only once, if pulled in by the parent process via
Apache::RegistryLoader

® Once per-child process if not pulled in by the parent process.

172 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.25 END blocks

® An additional time, once per child process, each time the script file changes on disk.

® An additional time, in the parent process on each restart if pulled in by the parent process via
Apache::RegistryLoader andPerlFreshRestart isOn.

Make sure you regd Evil things might happen when using PerlFreshRestart.

5.25 END blocks

As theperimod manpage explains, &NDsubroutine is executed as late as possible, that is, when the
interpreter exits. In the mod_perl environment, the interpreter does not exit until the server shuts down.
However, mod_perl does make a special cas@pache::Registry scripts.

Normally, ENDblocks are executed by Perl during pesr]_run() function. This is called once each
time the Perl program is executed, i.e. under mod_cgi, once per invocation of the CGI script. However,
mod_perl only callperl_run() once, during server startup. ABNDblocks encountered during main
server startup, i.e. those pulled inPgriIRequire , PerlModule and the startup file, are suspended.

Except during the cleanup phase, arND blocks encountered during compilation of
Apache::Registry scripts (including those defined in the packagss) ’'d by the script), including
subsequent invocations when the script is cached in memory, are called after the script has completed.

All other END blocks encountered during othdterl*Handler call-backs, e.g.PerlChil-

dinitHandler , Will be suspended while the process is running and called dahiifd)_exit()
when the process is shutting down. Module authors might wish rusegister_cleanup() as
an alternative t&NDblocks if this behavior is not desirabf->register_cleanup() is called at

the CleanUp processing phase of each request and thus can be used to emulate pEBEkD{gridock
behavior.

The last paragraph is very important for handling the cgse of 'User Pressed the Stop Button'.

If you only want something to run once in the parent on shutdown or restart you cem>usgis-
ter_cleanup() in thestartup.pl

#PerlRequire startup.pl

warn "parent pid is $$\n";

Apache->server->register_cleanup
(sub { warn "server cleanup in $$\n"});

This is usually useful when some server wide cleanup should be performed when the server is stopped or
restarted.

5.26 CHECK And INIT Blocks

These blocks run when compilation is complete, but before the program GtédE€Kcan mean "check-
point" or "double-check" or even just "stopNIT stands for "initialization". The difference is subtle;
CHECKblocks are run just after the compilation edtl$T just before the runtime begins. (Hence he
command-line flag to perl rutBHECKblocks but notNIT blocks.)

15 Feb 2014 173

5.27 Command Line Switches (-w, -T, etc)

Perl only calls these blocks during perl_parse(), which mod_perl calls once at startup time. Therefore
CHECKandINIT blocks don’t work for the same reason these don’t:

% perl -e 'eval qq(CHECK { print "ok\n" })’
% perl -e 'eval qq(INIT { print "ok\n" })’

5.27 Command Line Switches (-w, -T, etc)

Normally when you run perl from the command line, you have the shell invoke i#lin/perl

(sometimes referred to as the shebang line). In scripts running under mod_cgi, you may use perl execution
switch arguments as described in frexlrun manpage, such as, -T or -d . Since scripts running

under mod_perl don't need the shebang line, all switches exeegte ignored by mod_perl. This feature

was added for a backward compatibility with CGI scripts.

Most command line switches have a special variable equivalent which allows them to be set/unset in code.
Consult thegperlvar manpage for more details.

5.27.1 Warnings

There are three ways to enable warnings:
® Globally to all Processes
Setting:
Perlwarn On
in httpd.conf will turn warningsOnin any script.

You can then fine tune your code, turning warni@js andOn by using thevarnings pragma in
your scripts (or by setting tf#'W variable, if you prefer to be compatible with older, pre-5.6, perls).

® | ocally to a script

#!/usr/bin/perl -w

will turn warningsOn for the scope of the script. You can turn th&ffi andOn in the script with
no warnings; anduse warnings; as noted above.

® |ocally to a block
This code turns warnings mo@m for the scope of the block.

{

use warnings;
some code

}

back to the previous mode here

174 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.27.2 Taint Mode

This turns itOff :

{
no warnings;
some code

}

back to the previous mode here

This turnsOff only the warnings from the listed categories : (warnings categories are explicited in
theperldiag manpage.)

{
no warnings gw(uninitialized unopened);
some code

}

back to the previous mode here

If you want to turn warning®n for the scope of the whole file, you can do this by adding:

use warnings;
at the beginning of the file.

While having warning mode turnédn is essential for a development server, you should turn it globally

Off in a production server, since, for example, if every served request generates only one warning, and
your server serves millions of requests per day, your log file will eat up all of your disk space and your
system will die.

5.27.2 Taint Mode

Perl's-T switch enable§aint mode. (META: Link to security chapter). If you aren’t forcing all your
scripts to run undeffaint mode you are looking for trouble from malicious users. (Segé¢hisec
manpage for more information. Also read thggragma’s manpage.)

If you have some scripts that won’t run under Taint mode, run only the ones that run under mod_perl with

Taint mode enabled and the rest on another server with Taint mode disabled -- this can be either a
mod_cgi in the front-end server or another back-end mod_perl server. You can use the mod_rewrite
module and redirect requests based on the file extensions. For example you.t=gi fose¢he taint-clean

scripts, anagi for the rest.

When you have this setup you can start working toward cleaning the rest of the scripts, to make them run
under the Taint mode. Just because you have a few dirty scripts doesn’'t mean that you should jeopardize
your whole service.

Since theT switch doesn’t have an equivalent perl variable, mod_perl providd2ettieaintCheck
directive to turn on taint checks. Iitpd.conf ~ , enable this mode with:

PerlTaintCheck On

15 Feb 2014 175

5.28 The strict pragma

Now any code compiled inside httpd will be taint checked.

If you use theT switch, Perl will warn you that you should use BerlTaintCheck configuration
directive and will otherwise ignore it.

5.27.3 Other switches

Finally, if you still need to set additional perl startup flags suckl aand-D, you can use an environment
variablePERL50PT Switches in this variable are treated as if they were on every Perl command line.

Only the-[DIMUdmw] switches are allowed.
When thePerlTaintCheck variable is turned on, the valueRPERL50PTwill be ignored.

[META: verify]

See alsp Apache::PerlRun.

5.28 The strict pragma

It's _absolutely mandatory (at least for development) to start all your scripts with:

use strict;
If needed, you can always turn off the 'strict’ pragma or a part of it inside the block, e.g:

{

no strict 'refs’;
... Some code

}

It's more important to have thadrict pragma enabled under mod_perl than anywhere else. While it's
not required by the language, its use cannot be too strongly recommended. It will save you a great deal of
time. And, of course, clean scripts will still run under mod_cgi (plain CGI)!

5.29 Passing ENV variables to CGl

To pass an environment variable frowtpd.conf add to it:

PerlSetEnv key val
PerlPassEnv key

e.g.:

PerlSetEnv PERLDB_OPTS "NonStop=1 Linelnfo=/tmp/db.out AutoTrace=1"

176 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.30 -M and other time() file tests under mod_perl

will set SENV{PERLDB_OPTS} and it will be accessible in every child.

%ENVis only set up for CGI emulation. If you are using the API, you should$useubpro-

cess_env , $r->notes or $r->pnotes for passing data around between hand&ENVis slow

because it must update the underlying C environment table. It also insecure since its use exposes the data
on systems which allow users to see the environmenipsith

In any case¥%EN\and the tables used by those methods are all cleared after the request is served.

The Perl%ENMs cleared during startup, but the C environment is left intact. With a combo of forking
‘env' and<Perl> sections you can do even do wildcards matching. For example, this passes all envi-
ronment variables that begin with the letter H:

<Perl>
local SENV{PATH} = "/usr/bin’;
local $_;

for (‘env’) {

next unless /N(H.*)=/;
push @PassEnv, $1;

}

</Perl>

See alsp PerlSetupBnv which can enable/disable environment variables settings.

5.30 -M and other time() file tests under mod_perl

Under mod_perl, files that have been created after the server’s (child) startup are reported as having a
negative age withM (-C -A) test. This is obvious if you remember that you will get the negative result if
the server was started before the file was created. It's normal behavior with perl.

If you want to haveM report the time relative to the current request, you should resgtTheariable
just as with any other perl script. Add:

local $/T = time;
at the beginning of the script.

Another even simpler solution would be to specify a fixup handler, which will be executed before each
script is run:
sub Apache::PerlBaseTime::handler {
$T = shift->request_time;
return Apache::Constants::DECLINED;
}

and then in théttpd.conf

15 Feb 2014 177

5.31 Apache and syslog

PerlFixupHandler Apache::PerlBaseTime

This technique is better performance-wise as it skips the time() system call, and uses the already available
time of the request has been started a$riarequest_time method.

5.31 Apache and syslog
When native syslog support is enabled, the stderr stream will be rediretded/tall !

It has nothing to do with mod_perl (plain Apache does the same). Doug wrote the Apache::LogSTDERR
module to work around this.

5.32 File tests operators

Remember that with mod_perl you might get negative times when you use file test operatbts-ilast
modification time,-A -- last access timeC -- last inode-change time, and otheM.returns the differ-

ence in time between the modification time of the file and the time the script was started. Becalise the
variable is not reset on each script invocation, and is equal to the time when the process was forked, you
might want to perform:

$T = time;
at the beginning of your scripts to simulate the regular perl script behaviour of file tests.

META: Above is near duplicate of "-M and other time() file tests under mod_perl" make a link instead

5.33 Filehandlers and locks leakages
META: duplication at debug.pod: =head3 Safe Resource Locking

When you write a script running under mod_cgi, you can get away with sloppy programming, like
opening a file and letting the interpreter close it for you when the script had finished its run:

open IN, "in.txt" or die "Cannot open in.txt for reading : $!\n";

For mod_perl, before the end of the script yaust close() any files you opened!

close IN;

If you forget toclose() , you might get file descriptor leakage and (if yitack()ed on this file
descriptor) also unlock problems.

Even if you do call close(), if for some reason the interpreter was stopped befolest(¢ call, the
leakage will still happen. See for example Handling the 'User pressed Stop buttpn’ case. After a long run
without restarting Apache your machine might run out of file descriptors, and worse, files might be left
locked and unusable.

178 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.34 Code has been changed, but it seems the script is running the old code

What can you do? Us®©::File (and the otheftO::* modules). This allows you to assign the file
handler to variable which can by () (lexically) scoped. When this variable goes out of scope the file

or other file system entity will be properly closed (and unlocked if it was locked). Lexically scoped vari-
ables will always go out of scope at the end of the script’s invocation even if it was aborted in the middle.
If the variable was defined inside some internal block, it will go out of scope at the end of the block. For
example:

{
my $fh = 10::File->new("filename") or die $!;
read from $fh
} # ...%fh is closed automatically at end of block, without leaks.

As | have just mentioned, you don’t have to create a special block for this purpose. A script in a file is
effectively written in a block with the same scope as the file, so you can simply write:

my $fh = 10::File->new("filename") or die $!;
read from $fh
...%fh is closed automatically at end of script, without leaks.
Using a{ BLOCK }) makes sure is that the file is closed the moment that the end of the block is reached.
An even faster and lighter technique is to 8gmbol.pm :

my $fh = Symbol::gensym();
open $fh, “filename" or die $!;

Use these approaches to ensure you have no leakages, but don’t be too lazyctose(jte statements.
Make it a habit.

Under perl 5.6.0 we can do this instead:

open my $fh, $filename or die $! ;

5.34 Code has been changed, but it seems the script is
running the old code

Files pulled in viause orrequire statements are not automatically reloaded when they change on disk.
See Reloading Modules and Required Files for more information.

5.35 The Script Is Too Dirty, But It Does The Job And |
Cannot Afford To Rewrite It.

You still can win from using mod_perl.

One approach is to replace tApache::Registry handler withApache::PerlRun and define a
new location. The script can reside in the same directory on the disk.

15 Feb 2014 179

5.36 Apache::PerlRun--a closer look

httpd.conf
Alias /cgi-perl/ /nome/httpd/cgi/

<Location /cgi-perl>
#AllowOverride None
SetHandler perl-script
PerlHandler Apache::PerlRun
Options ExecCGl
allow from all
PerlISendHeader On

</Location>

Sed Apache::PerlRun--a closer Ipok

Another "bad", but workable method is to $#axRequestsPerChild to 1, which will force each

child to exit after serving only one request. You will get the preloaded modules, etc., but the script will be
compiled for each request, then be thrown away. This isn't good for "high-traffic" sites, as the parent
server will need to fork a new child each time one is killed. You can fiddle MatkStartServers

and MinSpareServers , so that the parent pre-spawns more servers than actually required and the
killed one will immediately be replaced with a fresh one. Probably that's not what you want.

5.36 Apache::PerlRun--a closer look

Apache::PerlRun gives you the benefit of preloaded Perl and its modules. This module’s handler
emulates the CGI environment, allowing programmers to write scripts that run under CGI or mod_perl
without any change. UnlikApache::Registry , theApache::PerlRun handler does not cache the
script inside a subroutine. Scripts will be "compiled” on each request. After the script has run, its name
space is flushed of all variables and subroutines. Still, you don’t have the overhead of loading the Perl
interpreter and the compilation time of the standard modules. If your script is very light, but uses lots of
standard modules, you will see no difference betweekpache::PerlRun and
Apache::Registry I

Be aware though, that if you use packages that use internal variables that have circular references, they
will be not flushed!!!Apache::PerlRun only flushes your script's name space, which does not include

any other required packages’ name spaces. If there's a referenceyto()a scoped variable that's
keeping it from being destroyed after leaving the eval scopé\gathe::PerlRun), that cleanup

might not be taken care of until the server is shutdownpanid destruct() is run, which always
happens after running command line scripts. Consider this example:

package Foo;
sub new { bless {} }
sub DESTROY {
warn "Foo->DESTROY\n";

}

eval <<’EOF’;
package my_script;
my $self = Foo->new;
#$self->{circle} = $self;

180 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.37 Sharing variables between processes

EOF

print $@ if $@;
print "Done with script\n”;

When executed as a plain script you'll see:

Foo->DESTROY
Done with script

Then, uncomment the line whebself makes a circular reference, and you'll see:

Done with script
Foo->DESTROY

If you run this example with the circular reference enabled under mod_perl you won't see
Foo->DESTROY until server shutdown, or until your module properly takes care of things. Note that the
warn() call logs its messages to #reor_log file, so you should expect the output there and not together
with STDOUT.

5.37 Sharing variables between processes

META: to be completed

® Global variables initialized at server startup, through the Perl startup file, can be shared between
processes, until modified by some of the processes. e.g. when you write:

$My::debug = 1;

all processes will read the same value. If one of the processes changes that@aluwitbstill be
equal tol for any other process, but not for the one which actually made the change. When a process
modifies a shared variable, it becomes the process’ private copy.

® |PC::Shareable can be used to share variables between children.
® |ibmm

o other methods?

5.38 Preventing Apache::Constants Stringification

In mod_perl, you are going to use a certain humber of constants in your code, mainly exported from
Apache::Constants . However, in some cases, Perl will not understand that the constant you're trying
to call is really a constant, but interprets it as a string. This is the case with the hash rotatiich
automatically stringifies the key.

For example:

15 Feb 2014 181

5.39 Transitioning from Apache::Registry to Apache handlers

$r->custom_response(FORBIDDEN => "File size exceeds quota.");

This will not set a custom response FfORBIDDEN but for the stringdFORBIDDEN", which clearly
isn’t what is expected. You'll get an error like this:

[Tue Apr 23 19:46:14 2002] null: Argument "FORBIDDEN" isn’'t numeric
in subroutine entry at ...

Therefore, you can avoid this by not using the hash notation for things that don’t require it.

$r->custom_response(FORBIDDEN, "File size exceeds quota.");

There are other workarounds, which you should avoid using unless you really have to use hash notation:
my %hash = (

FORBIDDEN() =>"this is forbidden’,
+AUTH_REQUIRED => "You aren'’t authorized to enter!",

);

Another important note is that you should be using the correct constants defined here, and not direct HTTP
codes. For example:

sub handler {
return 200;

}
Is not correct. The correct use is:
use Apache::Constants qw(OK);

sub handler {
return OK;

}
Also remember thaDK = HTTP_OK .

5.39 Transitioning from Apache::Registry to Apache
handlers

Even if you are a CGI script die-hard at some point you might want to move a few or all your scripts to
Apache Perl handlers. Actually this is an easy task, since we saw alreadjpalcae::Registry
makes our scripts appear to Apache to be Perl handlers.

When you no longer need backward mod_cgi compatibility you can benefit from the Perl libraries
working only under mod_perl. We will see why in a moment.

Let's see an example. We will start with a mod_cgi compatible CGI script running under
Apache::Registry , transpose it into a Perl content handler and then convert it to use
Apache::Request andApache::Cookie

182 15 Feb 2014

CGl to mod_perl Porting. mod_perl Coding guidelines. 5.39.1 Starting with mod_cgi Compatible Script

5.39.1 Starting with mod_cgi Compatible Script

This is the original script's code we are going to work with:

cookie_script.pl

use strict;

use CGl;

use CGl::Cookie;

use vars qw($q $switch $status $sessionlD);

init();
print_header();
print_status();

<-- subroutines -->

the init code
HHHHHHHHHHHH
sub init{

$g = new CGl;

$switch = $g->param("switch") ? 1 : 0;

try to retrieve the session ID
fetch existing cookies
my %cookies = CGl::Cookie->fetch;
$sessionID = exists $cookies{’sessionID’}
? $cookies{'sessionID’}->value : ”;

0 = not running, 1 = running
$status = $sessionlD ? 1 : 0;

switch status if asked to
$status = ($status+1) % 2 if $switch;

if ($status){
preserve sessionID if exists or create a new one
$sessionID ||= generate_sessionID() if $status;
}else {
delete the sessionID
$sessionID = ;

}
} # end of sub init

HH BT R
sub print_header{
prepare a cookie
my $c = CGl::Cookie->new
(-name’ =>’sessionID’,
-value’ => $sessionID,
-expires’ =>'+1h’);

print $g->header
(-type =>'text/html’,

15 Feb 2014 183

5.39.1 Starting with mod_cgi Compatible Script

-cookie => $c);

} # end of sub print_header

print the current Session status and a form to toggle the status
HHHHHH R R
sub print_status{

print qoq{<HTML><HEAD><TITLE>Cookie</TITLE></HEAD><BODY>};

print status
print "Status: ",
$status
? "Session is running with ID: $sessionID"
:"No session is running";

change status form
my $button_label = $status ? "Stop" : "Start";
print qa{<HR>
<FORM>
<INPUT TYPE=SUBMIT NAME=switch VALUE=" $button_label ">
</FORM>

3
print qo{</BODY></HTML>};
} # end of sub print_status

A dummy ID generator
Replace with a real session ID generator
T
sub generate_sessionID {
return scalar localtime;
} # end of sub generate_sessionID

The code is very simple. It creates a session if you've prességténg button or deletes it if you've
pressed th&top’ button. The session is stored and retrieved using the cookies technique.

Note that we have split the obviously simple and short code into three logical units, by putting the code

into three subroutines. init() to initialize global variables and parse incoming data, print_header() to print

the HTTP headers including the cookie header, and finally print_status() to generate the output. Later we
will see that this logical separation will allow us an easy conversion to Perl content handler code.

We have used global variables for a few variables since we didn’'t want to pass them from function to
function. In a big project you should be very restrictive about what variables should be allowed to be
global, if any at all. In any case, the init() subroutine makes sure all these variables are re-initialized for
each code reinvocation.

Note that we have used a very simple generate_sessionlD() function that returns a date string (i.e.
Wed Apr 12 15:02:23 2000) as a session ID. You want to replace this one with code which generates a
unique session every time it was called. And it should be secure, i.e. users will not be able to forge one and
do nasty things.

184 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.39.2 Converting into Perl Content Handler

5.39.2 Converting into Perl Content Handler

Now let's convert this script into a content handler. There are two parts to this task; the first one is to
configure Apache to run the new code as a Perl handler, the second one is to modify the code itself.

First we add the following snippet Itpd.conf

PerIModule Test::Cookie
<Location /test/cookie>
SetHandler perl-script
PerlHandler Test::Cookie
</Location>

After we restart the server, when there is a request whose URI startsestittookie Apache will execute
the Test::Cookie::handler() subroutine as a content handler. We made sure to preload the
Test::Cookie module at server start-up, with tRerIModule directive.

Now we are going to modify the script itself. We copy the content to th€dibkie.pmand place it into
one of the directories listed @INC For example ifhome/httpd/peris a part of@INCand since we want
to call this packag&est::Cookie , we can pu€ookie.pminto the/home/httpd/perl/Testlirectory.

So this is the new code. Notice that all the subroutines were left unmodified from the original script, so to
make the differences clear we do not repeat them here.

Test/Cookie.pm

package Test::Cookie;
use Apache::Constants qw(:common);

use strict;

use CGl;

use CGl::Cookie;

use vars qw($qg $switch $status $sessionlD);

sub handler{
my $r = shift;
Apache->request($r);
init();
print_header();
print_status();

return OK;
}

<-- subroutines -->
all subroutines as before

1

As you see there are two lines added to the beginning of the code:

15 Feb 2014 185

5.39.2 Converting into Perl Content Handler

package Test::Cookie;
use Apache::Constants qw(:common);

The first one declares the package name and the second one imports some symbols commonly used in Perl
handlers to return status codes.

use strict;

use CGl;

use CGl::Cookie;

use vars qw($q $switch $status $sessionlD);

This code is left unchanged just as before.

sub handler{
my $r = shift;
Apache->request($r);
init();
print_header();
print_status();

return OK;
}

Each content handler (and any other handler) should begin with a subroutine called handler(). This subrou-
tine is called when a request's URI starts withst/cookieas per our configuration. Of course you can
choose a different name, for example execute(), but then you must explicitly use it in the configuration
directives in the following way:
PerIModule Test::Cookie
<Location /test/cookie>
SetHandler perl-script

PerlHandler Test::Cookie::execute
</Location>

But we will use the default name, handler().

The handler() subroutine is just like any other subroutine, but generally it has the following structure:

sub handler{
my $r = shift;

the code
status (OK, DECLINED or else)
return OK;
}
First we get the request object by shifting it fr@nand assigning it to tHgr variable.

Second we write the code that does the processing of the request.

186 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.39.3 Converting to use Apache Perl Modules

Third we return the status of the execution. There are many possible statuses, the most commonly used are
OKandDECLINED which tell the server whether they have completed the request phase that the handler
was assigned to do or not. If not, another handler must complete the procgpatite::Constants

imports these two and other some commonly used status codes.

So in our example all we had to do was to wrap the three calls:
init();
print_header();
print_status();

inside:
sub handler{
my $r = shift;
Apache->request($r);

return OK;
}

There is one line we didn’t discuss:
Apache->request($r);

Since we useCGl.pm, it relies on the fact thatér was set in theApache module.
Apache::Registry did that behind the scenes. Since we don’tApache::Registry here, we
have to do that ourselves.

The one last thing we should do is to dddat the end of the module, just like with any Perl module, so
PerlModule will not fail when it tries to load est::Cookie

So to summarize, we took the original script’'s code and added the following eight lines:

package Test::Cookie;
use Apache::Constants qw(:common);

sub handler{
my $r = shift;
Apache->request($r);
return OK;

}

1

and now we have a fully fledged Perl Content Handler.

5.39.3 Converting to use Apache Perl Modules

So now we have a complete PerlHandler, let's convert it to use Apache Perl modules. This breaks the
backward compatibility, but gives us better performance, mainly because the internals of many of these
Perl modules are implemented in C, therefore we should get a significant improvement in speed. The
section f[TMTOWTDI: Convenience and Performgnce" compares the three approaches.

15 Feb 2014 187

5.39.3 Converting to use Apache Perl Modules

What we are going to do is to replaC&l.pm and CGl::Cookie with Apache::Request and
Apache::Cookie respectively. The two modules are written in C with the XS interface to Perl, which
makes code much faster if it utilizes any of these modules Agdathe::Request uses an API similar

to the oneCGl uses, the same goes fypache::Cookie andCGl::Cookie . This allows an easy
porting process. Basically we just replace:

use CGl;
$g = new CGil;

with:

use Apache::Request ();
my $q = Apache::Request->new($r);

and

use CGl::Cookie ();
my $cookie = CGl::Cookie->new(...)

with

use Apache::Cookie ();
my $cookie = Apache::Cookie->new($r, ...);

This is the new code fdrest::Cookie2

Test/Cookie2.pm

package Test::Cookie2;
use Apache::Constants gw(:common);

use strict;

use Apache::Request;

use Apache::Cookie ();

use vars qw($r $q $switch $status $sessionID);

sub handler{
$r = shift;
init();
print_header();
print_status();

return OK;
}

<-- subroutines -->
the init code
HHHHHHHHHHH

sub init{

$q = Apache::Request->new($r);
$switch = $g->param("switch”) ? 1 : 0;

188 15 Feb 2014

CGl to mod_perl Porting. mod_perl Coding guidelines.

fetch existing cookies
my %cookies = Apache::Cookie->fetch;
try to retrieve the session ID
$sessionID = exists $cookies{’sessionID’}
? $cookies{'sessionID’}->value : ”;

0 = not running, 1 = running
$status = $sessionID ? 1 : 0;

switch status if asked to
$status = ($status+1) % 2 if $switch;

if ($status){
preserve sessionlD if exists or create a new one
$sessionID ||= generate_sessionID() if $status;
}else {
delete the sessionID
$sessionID = 7;

}

} # end of sub init

HHAR T HHHHH

sub print_header{
prepare a cookie

my $c = Apache::Cookie->new

($r,
-name =>’sessionlID’,
-value => $sessionlD,
-expires =>'+1h");

Add a Set-Cookie header to the outgoing headers table
$c->bake;

$r->send_http_header(text/html’);
} # end of sub print_header
print the current Session status and a form to toggle the status
BHEHHHHHHHH T
sub print_status{

print qq{<HTML><HEAD><TITLE>Cookie</TITLE></HEAD><BODY>};

print status
print "Status: ",
$status

? "Session is running with ID: $sessionID"

1 "No session is running";

change status form

15 Feb 2014

5.39.3 Converting to use Apache Perl Modules

189

5.39.3 Converting to use Apache Perl Modules

my $button_label = $status ? "Stop" : "Start";
print qo{<HR>
<FORM>
<INPUT TYPE=SUBMIT NAME=switch VALUE=" $button_label ">
</FORM>

%
print qo{</BODY></HTML>};
} # end of sub print_status
replace with a real session ID generator
HHHHHHH AR

sub generate_sessionID {
return scalar localtime;

}

1

The only other changes are in the print_header() function, where instead of passing the cookie code to the
CGlI’s header() to return a proper HTTP header:

print $g->header
(-type =>text/html’,
-cookie => $c);
we do it in two stages.
$c->bake;

Adds aSet-Cookie header to the outgoing headers table, and:

$r->send_http_header('text/html’);
sends out the header itself. We have also eliminated:

Apache->request($r);
since we don't rely o€GIl.pm any more and in this case we don't need it.
The rest of the code is unchanged.

Of course we add the following snippethtibpd.conf

PerlModule Test::Cookie2
<Location /test/cookie2>
SetHandler perl-script
PerlHandler Test::Cookie2
</Location>

So now the magic URI that will trigger the above code execution will be the one startirtgstitookie2
. We save the code in the filaome/httpd/perl/Test/Cookie2.pgince we have called this package
Test::Cookie2

190 15 Feb 2014

CGlI to mod_perl Porting. mod_perl Coding guidelines. 5.40 Maintainers

5.39.4 Conclusion

If your took care to write the original plain CGlI script’s code in a clean and modular way, you can see that
the transition is a very simple one and doesn’t take a lot of effort. AlImost no code was modified.

5.40 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar) [http://stason.qrg/]

5.41 Authors

e Stas Bekmar [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 191

http://stason.org/
http://stason.org/

6 How to use mod_perl's Method Handlers

6 How to use mod_perl’'s Method Handlers

192 15 Feb 2014

How to use mod_perl’'s Method Handlers 6.1 Description

6.1 Description
Described here are a few examples and hints on how to use method handlers with mod_perl.

This document assumes familiarity with at least pegltoot manpage and "normal” usage of the
Perl*Handlers

It isn’t strictly mod_ perl related, more like "what | use objects for in my mod_perl environment".

6.2 Synopsis

If a Perl*Handler is prototyped with$$’, this handler will be invoked as method, being passed a class
name or blessed object as its first argument and the blespeest _re@s the second argument, e.g.

package My;
@ISA = gw(BaseClass);

sub handler ($$) {
my ($class, $r) = @_;

}
package BaseClass;

sub method ($$) {
my ($class, $r) = @_;

}

END

Configuration:

PerlHandler My

or

PerlHandler My->handler

Since the handler is invoked as a method, it may inherit from other classes:
PerlHandler My->method

In this case, theMy class inherits this method frorBaseClass

To build in this feature, configure with:

% perl Makefile.PL PERL_METHOD_HANDLERS=1 [PERL_FOO_HOOK=1,etc]

15 Feb 2014 193

6.3 Why?

6.3 Why?

The short version: For pretty much the same reasons we’re using OO perl everywhere else. :-) See the
perltootmanpage.

The slightly longer version would include some about code reusage and more clean interface between
modules.

6.4 Simple example

Let’s start with a simple example.

In httpd.conf:
<Location /obj-handler>
SetHandler perl-script

PerlHandler $My::Obj->method
</Location>

In startup.pl or another PerIRequire’d file:
package This::Class;
$My::Obj = bless {};
sub method ($$) {
my ($obj, $r) = @_;
$r->send_http_header("text/plain”);
print "$obj isa ", ref($obj);
0;
}
which displays:

This::Class=HASH(0x8411edc) isa This::Class

6.5 A little more advanced
That wasn't really useful, so let’s try something little more advanced.

I've a little module which creates a graphical 'datebar’ for a client. It's reading a lot of small gifs with
numbers and weekdays, and keeping them in memory in GD.pm’s native format, ready to be copied
together and served as gifs.

Now | wanted to use it at another site too, but with a different look. Obviously something to do with a
object. Hence | changed the module to a object, and can now do a

194 15 Feb 2014

How to use mod_perl’'s Method Handlers 6.6 Traps

$Client1::Datebar = new Datebar(

-imagepath => '/home/clientl/datebar/’,

-size =>[131,18],

-elements =>'wday mday mon year hour min’,
)i
$Client2::Datebar = new Datebar

-imagepath => '/home/client2/datebar/’,

-size =>[90,14],

-elements =>'wday hour min’,

);

And then use$Clientl::Datebar and $Client2::Datebar as PerlHandlers in my Apache
configuration. Remember to pass them in literal quotes (”’) and not "™ which will be interpolated!

I've a webinterface system to our content-database. I've created objects to handle the administration of
articles, banners, images and other content. It's then very easy (a few lines of code) to enable certain
modules for each client, depending on their needs.

Another area where | use objects with great success in my modperl configurations is database abstraction.
All our clients using the webinterface to handle f.x. articles will use a simple module to handle everything
related to the database. Each client have

$Client::Article = new WebAjour::Article(-host => 'www.client.com’);
in a module what will be run at server startup.

| can then use some simple methods from the $Client::Article object in my embperl documents, like:

[- $c = $Client::Article->GetCursor(-layout=>"Frontpage’) -]
[$ while($c->Fetch) $]

<h2>[+ $c->f(’header’) +]</h2>

[+ $c->f(textfield’) +]
[$ endwhile $)

Very very useful!

6.6 Traps

mod_perl expects object handlers to be in the form of a string, which it will thaw for you. That means that
something like

$r->push_handlers(PerlHandler => "$self->perl_handler_method’);
This doesn’t work as you might expect, since Perl isn’'t able to see $self once it goes to PerlHandler.

The best solution to this is to use an anonymous subroutine and pass it $r yourself, like this:

15 Feb 2014 195

6.7 Author

$r->push_handlers(PerlHandler =>
sub {
my $r = shift;
$self->perl_handler_method($r);

}
);

6.7 Author

This document is written by Ask Bjoern Hansen <ask@netcetera.dk> or <ask@apache.org>. Corrections
and suggestions are most welcome. In particular would more examples be appreciated, most of my own
code is way too integrated with our system, which isn’t suitable for public release.

Some codesnippets is from Doug MacEachern.

6.8 See Also

TheApache theperltootmanpages (also available at
|http://www.perl.com/CPAN/doc/EMTEYEWTK/perltoot.html D

6.9 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e modperl docs list

6.10 Authors
® Ask Bjoern Hansen, <ask (at) netcetera.dk> or <ask (at) apache.org>.

Only the major authors are listed above. For contributors see the Changes file.

196 15 Feb 2014

http://www.perl.com/CPAN/doc/FMTEYEWTK/perltoot.html

mod_perl and Relational Databases 7 mod_perl and Relational Databases

7 mod_perl and Relational Databases

15 Feb 2014 197

7.1 Description

7.1 Description

Creating dynamic websites with mod_perl often involves using relational databasehe::DBI |,
which provides a database connections persistence which boosts the mod_perl performance, is explained
in this chapter.

7.2 Why Relational (SQL) Databases

Nowadays millions of people surf the Internet. There are millions of Terabytes of data lying around. To
manipulate the data new smart techniques and technologies were invented. One of the major inventions
was the relational database, which allows us to search and modify huge stores of data very quickly. We
useSQL (Structured Query Language) to access and manipulate the contents of these databases.

7.3 Apache::DBI - Initiate a persistent database connection

When people started to use the web, they found that they needed to write web interfaces to their databases.
CGil is the most widely used technology for building such interfaces. The main limitation of a CGlI script
driving a database is that its database connection is not persistent - on every request the CGI script has to
re-connect to the database, and when the request is completed the connection is closed.

Apache::DBI was written to remove this limitation. When you use it, you have a database connection
which persists for the process’ entire life. So when your mod_perl script needs to use a database,
Apache::DBI provides a valid connection immediately and your script starts work right away without
having to initiate a database connection first.

This is possible only with CGI running under a mod_perl enabled server, since in this model the child
process does not quit when the request has been served.

It's almost as straightforward as is it sounds; there are just a few things to know about and we will cover
them in this section.

7.3.1 Introduction

The DBI module can make use of thpache::DBI module. When it loads, the DBI module tests if the
environment variablSENV{MOD_PERL}is set, and if theApache::DBI module has already been
loaded. If so, the DBI module will forward every connect() request toApche::DBI module.
Apache::DBI uses the ping() method to look for a database handle from a previous connect() request,
and tests if this handle is still valid. If these two conditions are fulfilled it just returns the database handle.

If there is no appropriate database handle or if the ping() methodAipiishe::DBI establishes a new
connection and stores the handle for later re-use. When the script is run again by a child that is still
connectedApache::DBI just checks the cache of open connections by matchidgp#iaisernameand
passwordparameters against it. A matching connection is returned if available or a new one is initiated
and then returned.

198 15 Feb 2014

mod_perl and Relational Databases 7.3.2 When should this module be used and when shouldn't it be used?

There is no need to delete the disconnect() statements from your code. They won't do anything because
theApache::DBI module overloads the disconnect() method with an empty one.

7.3.2 When should this module be used and when shouldn’t it be
used?

You will want to use this module if you are opening several database connections to the server.
Apache::DBI will make them persistent per child, so if you have ten children and each opens two
different connections (with different connect() arguments) you will have in total twenty opened and persis-
tent connections. After the initial connect() you will save the connection time for every connect() request
from yourDBI module. This can be a huge benefit for a server with a high volume of database traffic.

You mustnot use this module if you are opening a special connection for each of your users (meaning that
the login arguments are different for each user). Each connection will stay persistent and after a certain
period the number of open connections will reach the allowed limit (configured by the database server)
and new database connection opening requests will be refused, rendering your service unusable for some
of your users.

If you want to usé\pache::DBI but you have both situations on one machine, at the time of writing the
only solution is to run two Apache/mod_perl servers, one whichAgashe::DBI and one which does
not.

7.3.3 Configuration

After installing this module, the configuration is simple - add the following directitagpd.conf

PerIModule Apache::DBI

Note that it is important to load this module before any offperche*DBI module and before theBI
module itself!

You can skip preloadin®BI, sinceApache::DBI does that. But there is no harm in leaving it in, as
long as it is loaded afté&pache::DBI

7.3.4 Preopening DBI connections

If you want to make sure that a connection will already be opened when your script is first executed after a
server restart, then you should usedbenect_on_init() method in the startup file to preload every
connection you are going to use. For example:

15 Feb 2014 199

7.3.5 Debugging Apache::DBI

Apache::DBI->connect_on_init
("DBl:mysqgl:myDB:myserver",
"username”,
"passwd",

{

PrintError => 1, # warn() on errors

RaiseError => 0, # don't die on error

AutoCommit => 1, # commit executes immediately

}
);

As noted above, use this method only if you want all of apache to be able to connect to the database server
as one user (or as a very few users), i.e. if your user(s) can effectively share the connectarudeo
this method if you want for example one unique connection per user.

Be warned though, that if you calbnnect_on_init() and your database is down, Apache children
will be delayed at server startup, trying to connect. They won't begin serving requests until either they are
connected, or the connection attempt fails. Depending on your DBD driver, this can take several minutes!

7.3.5 Debugging Apache::DBI

If you are not sure if this module is working as advertised, you should enable Debug mode in the startup
script by:

$Apache::DBI::DEBUG = 1;

Starting withApacheDBI-0.84 , setting$Apache::DBI::DEBUG = 1 will produce only minimal
output. For a full trace you should $&tpache::DBI::DEBUG = 2

After setting the DEBUG level you will see entries inénor_log both whemApache::DBI initial-

izes a connection and when it returns one from its cache. Use the following command to view the log in
real time (yourerror_log might be located at a different path, it is set in the Apache configuration
files):

tail -f /Jusr/local/apache/logs/error_log
| usealias (intcsh) so | do not have to remember the path:

alias err "tail -f /usr/local/apache/logs/error_log"

7.3.6 Database Locking Risks

Be very careful when locking the database®OCK TABLE ...) or singular rows if you use
Apache::DBI or similar persistent connections. MySQL threads keep tables locked until the thread ends
(connection is closed) or the tables are unlocked. If your session die()’'s while tables are locked, they will
stay neatly locked as your connection won'’t be closed either.

See the sectign Handling the "User pressed Stop butto’ case for more information on prevention.

200 15 Feb 2014

mod_perl and Relational Databases 7.3.7 Troubleshooting

7.3.7 Troubleshooting
7.3.7.1 The Morning Bug

The SQL server keeps a connection to the client open for a limited period of time. In the early days of
Apache::DBI developers were bitten by so callgdrning bug when every morning the first users to
use the site received\io Data Returned message, but after that everything worked fine.

The error was caused Bpache::DBI returning a handle of the invalid connection (the server closed it
because of a timeout), and the script was dying on that errorpifg method was introduced to
solve this problem, but it didn't worked properly #pache::DBI version 0.82 was released. In that
version and afterwards ping() was called insidectiad block, which resolved the problem.

It's possible that somBBD:: drivers don’'t have the ping() method implemented. Apache::DBI
manpage explains how to write one.

Another solution was found - to increase the timeout parameter when starting the database server.
Currently we startupySQLserver with a scriptafe_mysqgl , so we have modified it to use this option:

nohup $ledir/mysqld [snipped other options] -O wait_timeout=172800

172800 seconds is equal to 48 hours. This change solves the problem, but the ping() method works prop-
erly inDBD::mysqgl as well.

7.3.7.2 Opening Connections With Different Parameters

WhenApache::DBI receives a connection request, before it decides to use an existing cached connec-
tion it insists that the new connection be opened in exactly the same way as the cached connection. If you
have one script that sefsitoCommit and one that does ndpache::DBI will make two different
connections. So if for example you have limited Apache to 40 servers at most, instead of having a
maximum of 40 open connections you may end up with 80.

So these two connect() calls will create two different connections:

my $dbh = DBI->connect
("DBI:mysql:test:localhost", ", ”,
{
PrintError => 1, # warn() on errors
RaiseError => 0, # don’t die on error
AutoCommit => 1, # commit executes immediately

}

) or die "Cannot connect to database: $DBI::errstr";

my $dbh = DBI->connect
("DBI:mysql:test:localhost", ", ”,
{
PrintError => 1, # warn() on errors
RaiseError => 0, # don’t die on error
AutoCommit => 0, # don’t commit executes immediately

}

) or die "Cannot connect to database: $DBI::errstr";

15 Feb 2014 201

7.3.7 Troubleshooting

Notice that the only difference is in the valuef@toCommit .

However, you are free to modify the handle immediately after you get it from the cache. So always initiate
connections using the same parameters andweCommit (or whatever) afterwards. Let's rewrite the
second connect call to do the right thing (not to create a new connection):

my $dbh = DBI->connect
("DBIl:mysql:test:localhost", ", ,

{

PrintError => 1, # warn() on errors
RaiseError => 0, # don’t die on error
AutoCommit => 1, # commit executes immediately

}

) or die "Cannot connect to database: $DBI::errstr";
$dbh->{AutoCommit} = 0; # don’t commit if not asked to

When you aren’t sure whether you're doing the right thing, turn debug mode on.

However, when thé&dbh attribute is altered after connect() it affects all other handlers retrieving this
database handle. Therefore it's best to restore the modified attributes to their original value at the end of
database handle usage. AsApfache::DBI version 0.88 the caller has to do it manually. The simplest
way to handle this is to localize the attributes when modifying them:

my $dbh = DBI->connect(...) ...

local $dbh->{LongReadLen} = 40;
}

Here theLongReadLen attribute overrides the value set in the connect() call or its default value only
within the enclosing block.

The problem with this approach is that prior to Perl version 5.8.0 this causes memory leaks. So the only
clean alternative for older Perl versions is to manually restordbiinis values:

my @attrs = qw(LongReadLen PrintError);
my %orig = ();

my $dbh = DBI->connect(...) ...

store the values away

$orig{$_} = $dbh->{$_} for @attrs;
do local modifications
$dbh->{LongReadLen} = 40;
$dbh->{PrintError} =1,

do something with the filehandle
#...

now restore the values
$dbh->{$_} = $orig{$_} for @attrs;

Another thing to remember is that with some database servers it's possible to access more than one
database using the same database connection. MySQL is one of those servers. It allows you to use a fully
gualified table specification notation. So if there is a datafmswith a tabletestand databaskear with

its own tablegest you can always use:

202 15 Feb 2014

mod_perl and Relational Databases 7.3.7 Troubleshooting

SELECT from foo.test ...

or:

SELECT from bar.test ...

So no matter what database you have used in the database name string in the connect() call (e.g.:
DBIl:mysql:foo:localhost) you can still access both tables by using a fully qualified syntax.

Alternatively you can switch databases WISE foo and USE bar , but this approach seems less
convenient, and therefore error-prone.

7.3.7.3 Cannot find the DBI handler

You must uséBI::connect() as in normal DBI usage to get your $dbh database handler. Using the
Apache::DBI does not eliminate the need to write prop&l code. As the\pache::DBI man page
states, you should program as if you are not usipgche::DBI at all. Apache::DBI will override

the DBI methods where necessary and return your cached connectiodiséoynect() call will be

just ignored.

7.3.7.4 Apache:DBI does not work
Make sure you have it installed.

Make sure you configured mod_perl with either:

PERL_CHILD_INIT=1 PERL_STACKED_HANDLERS=1

or
EVERYTHING=1

Use the example script eg/startup.pl (in the mod_perl distribution). Remove the comment from the line.
use Apache::DebugDBI;

and adapt the connect string. Do not change anything in your scripts for ugeuaatine::DBI

7.3.7.5 Skipping connection cache during server startup

Does your error_log look like this?

10169 Apache::DBI PerlChildInitHandler

10169 Apache::DBI skipping connection cache during server startup
Database handle destroyed without explicit disconnect at
lusrl/lib/perl5/site_perl/5.005/Apache/DBIl.pm line 29.

If so you are trying to open a database connection in the parent httpd process. If you do, children will each
get a copy of this handle, causing clashes when the handle is used by two processes at the same time. Each
child must have its own, unique, connection handle.

15 Feb 2014 203

7.4 mysql_use_result vs. mysqgl_store_result.

To avoid this problemApache::DBI checks whether it is called during server startup. If so the module
skips the connection cache and returns immediately without a database handle.

You must use th&pache::DBI->connect_on_init() method in the startup file.

7.3.7.6 Debugging code which deploys DBI

To log a trace oDBI statement execution, you must set B8l TRACE environment variable. The
PerlSetEnv DBI_TRACE directive must appear before you logpache::DBI andDBI.

For example if you usBpache::DBI , modify yourhttpd.conf with:

PerlSetEnv DBI_TRACE "3=/tmp/dbitrace.log"
PerlModule Apache::DBI

Replace3 with the TRACE level you want. The traces from each request will be appended to
/tmp/dbitrace.log . Note that the logs might interleave if requests are processed concurrently.

Within your code you can control trace generation with the trace() method:

DBI->trace($trace_level)
DBI->trace($trace_level, $trace_filename)

DBI trace information can be enabled for all handles using this DBI class method. To enable trace infor-
mation for a specific handle use the sim$ar>trace method.

Using the handle trace option wittbdbh or $sth is handy for limiting the trace info to the specific bit
of code that you are interested in.

Trace Levels:

0 - trace disabled.

1 - trace DBI method calls returning with results.

2 - trace method entry with parameters and exit with results.

3 - as above, adding some high-level information from the driver and also adding some internal
information from the DBI.

4 - as above, adding more detailed information from the driver and also including DBI mutex
information when using threaded perl.

® 5 and above - as above but with more and more obscure information.

7.4 mysql use result vs. mysql store result.

Since many mod_perl developers use mysql as their preferred SQL engine, these notes explain the differ-
ence betweemysql_use_result() andmysql_store_result() . The two influence the speed
and size of the processes.

204 15 Feb 2014

mod_perl and Relational Databases 7.5 Transactions Not Committed with MySQL InnoDB Tables

TheDBD::mysql (version 2.0217) documentation includes the following snippet:

mysqgl_use_result attribute: This forces the driver to use
mysql_use_result rather than mysql_store_result. The former is
faster and less memory consuming, but tends to block other
processes. (That's why mysql_store_result is the default.)

Think about it in client/server terms. When you ask the server to spoon-feed you the data as you use it, the
server process must buffer the data, tie up that thread, and possibly keep any database locks open for a
long time. So if you read a row of data and ponder it for a while, the tables you have locked are still
locked, and the server is busy talking to you every so often. Timgtsigl_use_result()

If you just suck down the whole dataset to the client, then the server is free to go about its business serving
other requests. This results in parallelism since the server and client are doing work at the same time,
rather than blocking on each other doing frequent I/O. Thmaysgl_store_result()

As the mysqgl manual suggests: you should notrugegl _use_result() if you are doing a lot of
processing for each row on the client side. This can tie up the server and prevent other threads from updat-
ing the tables.

7.5 Transactions Not Committed with MySQL InnoDB
Tables

Sometimes, when using MySQL'’s InnoDB table type, you may notice that changes you committed in one
process don’'t seem to be visible to other processes. You may not be aware that InnoDB tables use a
default approach to transactions that is actually more cautious than PostgreSQL or Oracle’s default. It's
called "repeatable read", and the gist of it is that you don’t see updates made in other processes since your
last commit. There is an explanation of this here: http://dev.mysqgl.com/doc/mysqgl/en/InnoDB |Consis-
ltent read example.html

This is actually not directly related to mod_perl, but you wouldn’t notice this issue when using CGI
because reconecting to the database on each request resets things just as doing a commit does. It is the
persistent connections used with mod_perl that make this issue visible.

If you suspect this is causing you problems, the simplest way to deal with it is to change the isolation level
to "read committed" -- which is more like what PostgreSQL and Oracle do by default -- with the "set
transaction" command, described hefre: http://dev.mysqgl.com/doc/mysql/en/InnoDB _transactipn_isola-

7.6 Optimize: Run Two SQL Engine Servers

Sometimes you end up running many databases on the same machine. These might have very varying
database needs (such as one db with sessions, very frequently updated but tiny amounts of data, and
another with large sets of data that's hardly ever updated) you might be able to gain a lot by running two
differently configured databases on one server. One would benefit from lots of caching, the other would
probably reduce the efficiency of the cache but would gain from fast disk access. Different usage profiles
require vastly different performance needs.

15 Feb 2014 205

http://dev.mysql.com/doc/mysql/en/InnoDB_Consistent_read_example.html
http://dev.mysql.com/doc/mysql/en/InnoDB_Consistent_read_example.html
http://dev.mysql.com/doc/mysql/en/InnoDB_transaction_isolation.html
http://dev.mysql.com/doc/mysql/en/InnoDB_transaction_isolation.html

7.7 Some useful code snippets to be used with relational Databases

This is basically a similar idea to having two Apache servers, each optimized for its specific requirements.

7.7 Some useful code snippets to be used with relational
Databases

In this section you will find scripts, modules and code snippets to help you get started using relational
Databases with mod_perl scripts. Note that | work wittsql (|http://www.mysqgl.com), so the code you

find here will work out of box with mysq|l. If you use some other SQL engine, it might work for you or it
might need some changes. YMMV.

7.7.1 Turning SQL query writing into a short and simple task

Having to write many queries in my CGl scripts, persuaded me to write a stand alone module that saves
me a lot of time in coding and debugging my code. It also makes my scripts much smaller and easier to
read. | will present the module here, with examples following:

Notice theDESTROYblock at the end of the module, which makes various cleanups and allows this
module to be used under mod_perl amad_cgi as well. Note that you will not get the benefit of persis-
tent database handles with mod_cgi.

7.7.2 The My::DB module

Thecode/My-DB.pm
package My::DB;

use strict;
use 5.004;

use DBI;

use vars gqw(%:c);
use constant DEBUG => 0;

%c =
(
db => {
DB_NAME =>’foo’,
SERVER =>"localhost’,
USER =>'put_username_here’,
USER_PASSWD =>'put_passwd_here’,

b
);

use Carp qw(croak verbose);
#local $SIG{___WARN__} = \&Carp::cluck;

untaint the path by explicit setting
local $SENV{PATH} = '/bin:/usr/bin’;

206 15 Feb 2014

http://www.mysql.com/

mod_perl and Relational Databases

HHHHHHH

sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
my $self ={};

connect to the DB, Apache::DBI takes care of caching the connections
save into a dbh - Database handle object
$self->{dbh} = DBI->connect("DBl:mysql:$c{db}{DB_NAME}::$c{dbl{SERVER}",

$c{db{USER},
$c{db{USER_PASSWD},
{
PrintError => 1, # warn() on errors
RaiseError => 0, # don’t die on error
AutoCommit => 1, # commit executes immediately

}

or die "Cannot connect to database: $DBI::errstr";

we want to die on errors if in debug mode
$self->{dbh}->{RaiseError} = 1 if DEBUG;

init the sth - Statement handle object
$self->{sth} = ;

bless ($self, $class);
$self;

} # end of sub new

BHHH
BREHHRHHR R R R AR AR A

Wit it
Hitt SQL Functions H#Hit#
HitH Hit#

B
BHHH R R R R

print debug messages

sub d{
we want to print the trace in debug mode
print " ".join("", @)."\n"if DEBUG;

}#endofsubd

HHHHHHHHH R AR AR R R AR R R R
return a count of matched rows, by conditions

#

$count = sql_count_matched($table_name,\@conditions,\@restrictions);

#

conditions must be an array so we can pass more than one column with

the same name.

#
@conditions = (column => ['comp_sign’,'value],
foo =>[>"/15],

15 Feb 2014

7.7.2 The My::DB module

207

7.7.2 The My::DB module

foo =>[<’,30],
);

H* B

The sub knows automatically to detect and quote strings
#
Restrictions are the list of restrictions like (‘order by email’)
#
HHHEHEHHEH
sub sqgl_count_matched{

my $self = shift;

my $table = shift || ”;

my $r_conds = shift || [];

my $r_restr = shift || [];

we want to print the trace in debug mode
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

build the query
my $do_sql = "SELECT COUNT(*) FROM $table ";
my @where = ();
for(my $i=0;$i<@{$r_conds};$i=$i+2) {
push @where, join " ",
$$r_conds[$i],
$$r_conds[$i+1][0],
sql_quote(sql_escape($$r_conds[$i+1][1]));

Add the where clause if we have one
$do_sql .= "WHERE ". join " AND ", @where if @where;

restrictions (DONT put commas!)
$do_sql .="". join" ", @{$r_restr} if @{$r_restr};

d("SQL: $do_sql") if DEBUG;

do query
$self->{sth} = $self->{dbh}->prepare($do_sql);
$self->{sth}->execute();
my ($count) = $self->{sth}->fetchrow_array;

d("Result: $count”) if DEBUG;
$self->{sth}->finish;
return $count;

} # end of sub sqgl_count_matched

B R R R R R R R R R R R H A R R R AR
return a count of matched distinct rows, by conditions

#

$count = sql_count_matched_distinct($table_name,\@conditions,\@restrictions);

#

conditions must be an array so we can path more than one column with

the same name.

#

@conditions = (column => ['comp_sign’,'value’],
foo =>[>"15],

foo =>[<’,30],

208 15 Feb 2014

mod_perl and Relational Databases

)i
#
The sub knows automatically to detect and quote strings
#
Restrictions are the list of restrictions like (‘'order by email’)
#
This a slow implementation - because it cannot use select(*), but
brings all the records in first and then counts them. In the next
version of mysql there will be an operator "select (distinct *)’
which will make things much faster, so we will just change the
internals of this sub, without changing the code itself.
#
HHHHHHHH TR AR TR R R
sub sql_count_matched_distinct{
my $self = shift;
my $table = shift || ”;
my $r_conds = shift || [];
my $r_restr = shift || [J;

we want to print the trace in debug mode
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

build the query
my $do_sql = "SELECT DISTINCT * FROM $table ";
my @where = ();
for(my $i=0;$i<@{$r_conds};$i=$i+2) {
push @where, join " ",
$$r_conds[$i],
$$r_conds[$i+1][0],
sql_quote(sql_escape($$r_conds[$i+1][1]));
}
Add the where clause if we have one
$do_sql .= "WHERE ". join " AND ", @where if @where;

restrictions (DONT put commas!)
$do_sqgl .="". join " ", @{$r_restr} if @{$r_restr},

d("SQL: $do_sql") if DEBUG;
do query

$self->{sth} = $self->{dbh}->prepare($do_sql);
$self->{sth}->execute();

my $count = @{$self->{dbh}->selectall_arrayref($do_sql)};
my ($count) = $self->{sth}->fetchrow_array;

d("Result: $count") if DEBUG;
$self->{sth}->finish;

return $count;

} # end of sub sqgl_count_matched_distinct

BHHH R R R

return a single (first) matched value or undef, by conditions and

15 Feb 2014

7.7.2 The My::DB module

209

7.7.2 The My::DB module

restrictions

#

sql_get_matched_value($table_name,$column,\@conditions,\@restrictions);
#

column is a name of the column

#

conditions must be an array so we can path more than one column with

the same name.

@conditions = (column => ['comp_sign’,'value],

foo =>[>"15],

foo =>[<’,30],

)i

The sub knows automatically to detect and quote strings
#

restrictions is a list of restrictions like (‘order by email’)

#

HHHHHHHH AR R
sub sqgl_get_matched_value{

my $self = shift;

my $table = shift || ”;

my $column = shift || ”;

my $r_conds = shift || [];

my $r_restr = shift || [];

we want to print in the trace debug mode
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

build the query
my $do_sql = "SELECT $column FROM $table ";

my @where = ();
for(my $i=0;Si<@{$r_conds};$i=$i+2) {
push @where, join " ",
$$r_conds[$i],
$$r_conds[$i+1][0],
sql_quote(sql_escape($$r_conds[$i+1][1]));

Add the where clause if we have one
$do_sql .=" WHERE ". join " AND ", @where if @where;

restrictions (DONT put commas!)
$do_sql .="". join " ", @{$r_restr} if @{$r_restr};

d("SQL: $do_sql") if DEBUG;

do query
return $self->{dbh}->selectrow_array($do_sql);

} # end of sub sqgl_get_matched_value

HHEHHHE T R T

return a single row of first matched rows, by conditions and

restrictions. The row is being inserted into @results_row array

(valuel,value2,...) or empty () if none matched

#

sqgl_get_matched_row(\@results_row,$table_name,\@columns,\@conditions,\@restrictions);

210 15 Feb 2014

mod_perl and Relational Databases

#

columns is a list of columns to be returned (username, fname,...)

#

conditions must be an array so we can path more than one column with
the same name.

@conditions = (column => ['comp_sign’,'value’],

foo =>[>"15],
foo =>[<’,30],
)i

The sub knows automatically to detect and quote strings
#
restrictions is a list of restrictions like (‘order by email’)
#
HHHHHHHH SR R R
sub sql_get_matched_row{

my $self = shift;

my $r_row = shift || {};

my $table = shift || ”;

my $r_cols = shift || [I;

my $r_conds = shift || [J;

my $r_restr = shift || [];

we want to print in the trace debug mode
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

build the query
my $do_sql ="SELECT *;
$do_sql .= join ",", @{$r_cols} if @{$r_cols};
$do_sgl .= " FROM S$table ;

my @where = ();
for(my $i=0;Si<@{$r_conds};$i=$i+2) {
push @where, join " ",
$$r_conds[$i],
$$r_conds[$i+1][0],
sql_quote(sql_escape($$r_conds[$i+1][1]));

Add the where clause if we have one
$do_sql .=" WHERE ". join " AND ", @where if @where;

restrictions (DONT put commas!)
$do_sql .="". join " ", @{$r_restr} if @{$r_restr};

d("SQL: $do_sql") if DEBUG;

do query
@{$r_row} = $self->{dbh}->selectrow_array($do_sql);

} # end of sub sgl_get_matched_row

BHHH R R R R R R

return a ref to hash of single matched row, by conditions

and restrictions. return undef if nothing matched.

(columnl => valuel, column2 => value2) or empty () if non matched

#

sql_get_hash_ref($table_name,\@columns,\@conditions,\@restrictions);
#

15 Feb 2014

7.7.2 The My::DB module

211

7.7.2 The My::DB module

columns is a list of columns to be returned (username, fname,...)

#

conditions must be an array so we can path more than one column with
the same name.

@conditions = (column => ['comp_sign’,'value],

foo =>[>"/15],

foo =>[<’,30],

);

The sub knows automatically to detect and quote strings
#

restrictions is a list of restrictions like (‘order by email’)

#

HHHHHHHH TR AR TR
sub sql_get_hash_ref{

my $self = shift;

my $table = shift || ”;

my $r_cols = shift || [];

my $r_conds = shift || [];

my $r_restr = shift || [];

we want to print in the trace debug mode
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

build the query
my $do_sql = "SELECT ";
$do_sql .= join ", @{$r_cols} if @{$r_cols};
$do_sgl .= " FROM S$table ;

my @where = ();
for(my $i=0;$i<@{$r_conds};$i=3$i+2) {
push @where, join " ",
$$r_conds[$i],
$$r_conds[$i+1][0],
sql_quote(sql_escape($$r_conds[$i+1][1]));

Add the where clause if we have one
$do_sql .=" WHERE ". join " AND ", @where if @where;

restrictions (DONT put commas!)
$do_sql .="". join " ", @{$r_restr} if @{$r_restr};

d("SQL: $do_sql") if DEBUG;

do query
$self->{sth} = $self->{dbh}->prepare($do_sql);
$self->{sth}->execute();

return $self->{sth}->fetchrow_hashref;

}# end of sub sqgl_get_hash_ref

R R
returns a reference to an array, matched by conditions and

restrictions, which contains one reference to array per row. If

there are no rows to return, returns a reference to an empty array:

212 15 Feb 2014

mod_perl and Relational Databases

#(
[arrayl],

[arrayN],

#1];

#

$ref = sql_get_matched_rows_ary_ref($table_name,\@columns,\@conditions,\@restrictions);
#

columns is a list of columns to be returned (username, fname,...)

#

conditions must be an array so we can path more than one column with

the same name. @conditions are being cancatenated with AND

@conditions = (column => ['comp_sign’,'value],

foo =>[>'15],

foo =>[<’,30],

)i

results in

WHERE foo > 15 AND foo < 30
#

to make an OR logic use (then ANDed)
@conditions = (column => ['comp_sign’,['valuel’,'value2],

foo =>[='[15,24]],

bar =>[=[16,21]],

)i

results in

WHERE (foo = 15 OR foo = 24) AND (bar = 16 OR bar = 21)
#

The sub knows automatically to detect and quote strings

#

restrictions is a list of restrictions like (‘order by email’)

#

HHHHHHHH SR R
sub sqgl_get_matched_rows_ary_ref{
my $self = shift;
my $table = shift || ;
my $r_cols = shift || [I;
my $r_conds = shift || [];
my $r_restr = shift || [J;

we want to print in the trace debug mode
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

build the query
my $do_sql = "SELECT ";
$do_sql .= join ",", @{$r_cols} if @{$r_cols};
$do_sgl .= " FROM $table ";

my @where = ();
for(my $i=0;$i<@{$r_conds};$i=$i+2) {

if (ref $$r_conds[$i+1][1] eq '"ARRAY") {
multi condition for the same field/comparator to be ORed
push @where, map {"($_)"} join" OR ",
map { join " ",
$r_conds->[$i],
$r_conds->[$i+1][0],
sql_quote(sql_escape($));
} @{$r_conds->[$i+1][1]};
}else {

15 Feb 2014

7.7.2 The My::DB module

213

7.7.2 The My::DB module

single condition for the same field/comparator
push @where, join " ",

$r_conds->[$i],

$r_conds->[$i+1][0],

sqgl_quote(sql_escape($r_conds->[$i+1][1]));
}
} # end of for(my $i=0;$i<@{$r_conds};$i=$i+2

Add the where clause if we have one
$do_sql .=" WHERE ". join " AND ", @where if @where;

restrictions (DONT put commas!)
$do_sql .="". join " ", @{$r_restr} if @{$r_restr};

d("SQL: $do_sql") if DEBUG;

do query
return $self->{dbh}->selectall_arrayref($do_sql);

} # end of sub sqgl_get_matched_rows_ary_ref

BHHH

insert a single row into a DB
#
sql_insert_row($table_name,\%data,$delayed);
#
data is hash of type (columnl1 => valuel ,column2 => value2 ,)
#
$delayed: 1 => do delayed insert, 0 or none passed => immediate
#
* The sub knows automatically to detect and quote strings
#
#* The insert id delayed, so the user will not wait untill the insert
will be completed, if many select queries are running
#
HHHHHHHHHH R R
sub sql_insert_row{
my $self = shift;
my $table = shift || ”;
my $r_data = shift || {};
my $delayed = (shift) ? 'DELAYED’ : ”;

we want to print in the trace debug mode
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

build the query
my $do_sql = "INSERT $delayed INTO $table ";

$do_sqgl .="(".join("," keys %{$r_data}).")";

$do_sqgl .=" VALUES (%

$do_sql .=join",", sgl_quote(sql_escape(values %{$r_data}));
$do_sql .=")";

d("SQL: $do_sql") if DEBUG;

do query
$self->{sth} = $self->{dbh}->prepare($do_sq|);

214

15 Feb 2014

mod_perl and Relational Databases

$self->{sth}->execute();

} # end of sub sql_insert_row

B R R R R R R R R H R
update rows in a DB by condition
#
sql_update_rows($table_name,\%data,\@conditions,$delayed);
#
data is hash of type (columnl => valuel ,column2 => value2 ,)
#
conditions must be an array so we can path more than one column with
the same name.
@conditions = (column => ['comp_sign’,'value],
foo =>[>"15],
foo =>[<’,30],
)i

$delayed: 1 => do delayed insert, 0 or none passed => immediate

* The sub knows automatically to detect and quote strings

HOH oH H H H H H R

HHHHHHHH TR
sub sql_update_rows{
my $self = shift;
my $table = shift || ;
my $r_data = shift || {};
my $r_conds = shift || [];
my $delayed = (shift) ? 'LOW_PRIORITY" : 7;

we want to print in the trace debug mode
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

build the query
my $do_sql = "UPDATE $delayed $table SET ";
$do_sqgl .=join"",
map { "$_=".join ",sql_quote(sql_escape($$r_data{$_})) } keys %{$r_data};

my @where = ();
for(my $i=0;Si<@{$r_conds};$i=$i+2) {
push @where, join " ",
$$r_conds[$i],
$$r_conds[$i+1][0],
sql_quote(sql_escape($$r_conds[$i+1][1]));
}

Add the where clause if we have one
$do_sql .= " WHERE ". join " AND ", @where if @where;

d("SQL: $do_sql") if DEBUG;

do query
$self->{sth} = $self->{dbh}->prepare($do_sql);

$self->{sth}->execute();

my ($count) = $self->{sth}->fetchrow_array;

15 Feb 2014

7.7.2 The My::DB module

215

7.7.2 The My::DB module

#
d("Result: $count") if DEBUG;

} # end of sub sqgl_update_rows

BHHH

delete rows from DB by condition

#

sql_delete_rows($table_name,\@conditions);

#

conditions must be an array so we can path more than one column with
the same name.

@conditions = (column => ['comp_sign’,'value’],

foo =>[>"15],

foo =>[<’,30],

)i

* The sub knows automatically to detect and quote strings

HHHH BB R

HHHHHHHH AR R R
sub sql_delete_rows{

my $self = shift;

my $table = shift || ”;

my $r_conds = shift || [];

we want to print in the trace debug mode
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

build the query
my $do_sql = "DELETE FROM $table ";

my @where = ();
for(my $i=0;$i<@{$r_conds};$i=3$i+2) {
push @where, join " ",
$$r_conds[$i],
$$r_conds[$i+1][0],
sql_quote(sql_escape($$r_conds[$i+1][1]));
}
Must be very careful with deletes, imagine somehow @where is
not getting set, "DELETE FROM NAME" deletes the contents of the table
warn("Attempt to delete a whole table $table from DB\n!!!"),return unless @where;

Add the where clause if we have one
$do_sql .=" WHERE ". join " AND ", @where;

d("SQL: $do_sql") if DEBUG;
do query
$self->{sth} = $self->{dbh}->prepare($do_sql);

$self->{sth}->execute();

}# end of sub sql_delete_rows

BHHH R R R

executes the passed query and returns a reference to an array which

216

15 Feb 2014

mod_perl and Relational Databases

contains one reference per row. If there are no rows to return,
returns a reference to an empty array.
#
$r_array = sql_execute_and_get_r_array($query);
#
#
HHHHHHHH TR
sub sql_execute_and_get_r_array{
my $self = shift;
my $do_sql = shift || ”;

we want to print in the trace debug mode
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

d("SQL: $do_sql") if DEBUG;
$self->{dbh}->selectall_arrayref($do_sql);

} # end of sub sqgl_execute_and_get_r_array

B R R R R R R R R R A R R R R
lock the passed tables in the requested mode (READ|WRITE) and set
internal flag to handle possible user abortions, so the tables will
be unlocked thru the END{} block
#
sql_lock_tables('tablel’,’lockmode’,..,'tableN’,’'lockmode’
lockmode = (READ | WRITE)
#
_side_effect_ $self->{lock} ='On’;
#
HHHHHHHH SR R
sub sql_lock_tables{
my $self = shift;
my %modes = @_;

return unless %modes;

my $do_sql ='LOCK TABLES ’;

$do_sql .= join ",", map {"$_ $modes{$_}"} keys %modes;

we want to print the trace in debug mode
d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

d("SQL: $do_sql") if DEBUG;

$self->{sth} = $self->{dbh}->prepare($do_sql);
$self->{sth}->execute();

Enough to set only one lock, unlock will remove them all
$self->{lock} = 'On’;

} # end of sub sql_lock_tables

HHE T R R T A R R R R R T
unlock all tables, unset internal flag to handle possible user
abortions, so the tables will be unlocked thru the END{} block

15 Feb 2014

7.7.2 The My::DB module

217

7.7.2 The My::DB module

#
sql_unlock_tables()
#
_side_effect_: delete $self->{lock}
#
HHHHHHHH AR R
sub sql_unlock_tables{
my $self = shift;

we want to print the trace in debug mode
d("[".(caller(2))[3]." - “.(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

$self->{dbh}->do("UNLOCK TABLES");

Enough to set only one lock, unlock will remove them all
delete $self->{lock};

}# end of sub sqgl_unlock_tables

#
#
return current date formatted for a DATE field type
#YYYYMMDD
#
Note: since this function actually doesn’t need an object it's being
called without parameter as well as procedural call
HHHHHHHH R
sub sql_date{
my $self = shift;

my ($mday,$mon,$year) = (localtime)[3..5];
return sprintf "%0.4d%0.2d%0.2d",1900+$year,++$mon,$mday;

}# end of sub sql_date

#
#
return current date formatted for a DATE field type
#YYYYMMDDHHMMSS
#
Note: since this function actually doesn’t need an object it's being
called without parameter as well as procedural call
HHHEHE
sub sql_datetime{

my $self = shift;

my ($sec,$min,$hour,$mday,$mon,$year) = localtime();
return sprintf "%0.4d%0.2d%0.2d%0.2d%0.2d%0.2d",1900+$year,++$mon,$mday, $hour,$min,$sec;

} # end of sub sql_datetime

Quote the list of parameters. Parameters consisting entirely of
digits (i.e. integers) are unquoted.

print sql_quote("one",2,"three"); => 'one’, 2, 'three’
B

sub sqgl_quote{ map{ /A (\d+|NULL)$/?$_:"V$ \"}@_}

Escape the list of parameters (all unsafe chars like ", are escaped)

218

15 Feb 2014

mod_perl and Relational Databases 7.7.3 My::DB Module’s Usage Examples

We make a copy of @_ since we might try to change the passed values,
producing an error when modification of a read-only value is attempted
HHHEHEHE

sub sql_escape{ my @a = @_; map { s/(\'\\)/\$1/g;$_} @a }

DESTROY makes all kinds of cleanups if the fuctions were interuppted
before their completion and haven't had a chance to make a clean up.
HHHHHHHH AR
sub DESTROY{

my $self = shift;

$self->sgl_unlock_tables() if $self->{lock};
$self->{sth}->finish if $self->{sth};
$self->{dbh}->disconnect if $self->{dbh};

} # end of sub DESTROY

Don't remove
1

module

(Note that you will not find this on CPAN. at least not yet :)

7.7.3 My::.DB Module’s Usage Examples

To useMy::DB in your script, you first have to creatd/g::DB object:

use vars qw($db_obj);
my $db_obj = new My::DB or croak "Can't initialize My::DB object: $!\n";

Now you can use any ®fly::DB ’s methods. Assume that we have a table caimcker where we store
the names of the users and what they are doing at each and every moment (think about an online commu-
nity program).

| will start with a very simple query--1 want to know where the users are and produce statstics.
is the name of the table.

fetch the statistics of where users are

my $r_ary = $db_obj->sql_get_matched_rows_ary_ref
("tracker",

[qw(where_user_are)],

);

my %stats = ();

my $total = 0;

foreach my $r_row (@$r_ary){
$stats{$r_row->[0]}++;
$total++;

}

15 Feb 2014 219

7.7.3 My::DB Module’s Usage Examples

Now let’'s count how many users we have (in talgers):
my $count = $db_obj->sql_count_matched("users");

Check whether a user exists:

my $username = 'stas’;

my $exists = $db_obj->sgl_count_matched
("users”,

[username => ["=",$username]]

);

Check whether a user is online, and get the time since she went aitinoe (is a column in the
tracker table, it tells us when a user went online):

my @row = ();
$db_obj->sgl_get_matched_row
(\@row,

"tracker",
[UNIX_TIMESTAMP(since)],
[username => ["=",$username]]

);

if (@row) {
my $idle = int((time() - $row[0]) / 60);
return "Current status: Is Online and idle for $idle minutes.";

}

A complex query. | join two tables, and | want a reference to an array which will store a slice of the
matched querylqMIT $offset,$hits) sorted byusername . Each row in the array is to include
the fields from theusers table, but only those listed @verbose_cols . Then we print it out.

my $r_ary = $db_obj->sql_get_matched_rows_ary_ref
(
"tracker STRAIGHT_JOIN users",
[map {"users.$_"} @verbose_cols],
1P
["'WHERE tracker.username=users.username",
"ORDER BY users.username",
"LIMIT $offset,$hits"],

);

foreach my $r_row (@%r_ary){
print ...

}

Another complex query. The user checks checkboxes to be queried by, selects from lists and types in
match strings, we process input and build@where array. Then we want to get the number of matches
and the matched rows as well.

my @search_keys = gw(choicel choice2);
my @where = ();

Process the checkboxes - we turn them into a regular expression
foreach (@search_keys) {

next unless defined $g->param($_) and $g->param($_);

220 15 Feb 2014

mod_perl and Relational Databases 7.7.3 My::DB Module’s Usage Examples

my $regexp = "[".jOin("",$q->param($_))."]";
push @where, ($_ => ['REGEXP’,$regexp]);
}

Add the items selected by the user from our lists
selected => exact match
push @where,(country => ['=',$qg->param('country’)]) if $g->param(’country’);

Add the parameters typed by the user
foreach (qw(city state)) {

push @where,($_ => ['LIKE’,$g->param($_)]) if $g->param($_);
}

Count all that matched the query
my $total_matched_users = $db_obj->sqgl_count_matched
(
"users",
\@where,

);

Now process the orderby
my $orderby = $g->param(‘orderby’) || 'username’;

Do the query and fetch the data
my $r_ary = $db_obj->sql_get_matched_rows_ary_ref
(
"users",
\@display_columns,
\@where,
['ORDER BY $orderby",
"LIMIT $offset,$hits"],
);

sqgl_get_matched_rows_ary_ref knows to handle bot@Red andANDed params. This example
shows how to us®Ron parameters:

This snippet is an implementation of a watchdog. Our users want to know when their colleagues go online.
They register the usernames of the people they want to know about. We have to make two queries: one to
get a list of usernames, the second to find out whether any of these users is online. In the second query we
use theDRkeyword.

check who we are looking for
$r_ary = $db_obj->sql_get_matched_rows_ary ref
("watchdog",
[gw(watched)],
[username => ['=",$username)],
1,
)i

put them into an array
my @watched = map {$_->[0]} @{$r_ary};

my %matched = ();

Does the user have some registered usernames?
if (@watched) {

15 Feb 2014 221

7.8 Maintainers

Try to fetch all the users who match the usernames exactly.
Put it into an array and compare it with a hash!
$r_ary = $db_obj->sql_get_matched_rows_ary_ref
("tracker",
[gw(username)],
[username => ['=' \@watched],
]
)i

map {$matched{$_->[0]} = 1} @{$r_ary};
}

Now %matched includes the usernames of the users who are being
watched by $username and currently are online.

7.8 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

7.9 Authors

e Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

222 15 Feb 2014

http://stason.org/
http://stason.org/

mod_perl and dbm files 8 mod_perl and dbm files

8 mod_perl and dbm files

15 Feb 2014 223

8.1 Description

8.1 Description

Small databases can be implemented pretty efficiently using dbm files, but there are still some precautions
that must be taken to use them properly under mod_perl.

8.2 Where and Why to use dbm files

Some of the earliest databases implemented on Unix were dbm files, and many are still in use today. As of
this writing the Berkeley DB is the most powerful dbm implementagion (http://www.sleepycgat.com).

If you need a light database, with an easy API, using simple key-value pairs to store and manipulate a rela-
tively small number of records, this is a solution that should be amongst the first you consider.

With dbm, it is rare to read the whole database into memory. Combine this feature with the use of smart
storage techniques, and dbm files can be manipulated much faster than flat files. Flat file databases can be
very slow on insert, update and delete operations, when the number of records starts to grow into the thou-
sands. Sort algorithms on flat files can be very time-consuming.

The maximum practical size of a dbm database depends on many factors--your data, your hardware and
the desired response times of course included--but as a rough guide consider 5,000 to 10,000 records to be
reasonable.

We will talk mostly about the Berkley DB version 1.x, as it provides the best functionality while having a
good speed and almost no limitations. Other implementations might be faster in some cases, but they are
either limited in the length of the maximum value or the total number of records.

There is a number of Perl interfaces to the major dbm implementations, to list dBewile |,
NDBM_File , ODBM_File , GDBM_File , andSDBM_File . The original Perl module for Berkeley DB

was DB_File, which was written to interface to Berkeley DB version 1.85. The newer Perl module for
Berkeley DB isBerkeleyDB , which was written to interface to version 2.0 and subsequent releases.
Because Berkeley DB version 2.X has a compatibility API for version 1.85, you can (and should!) build
DB_File using version 2.X of Berkeley DB, althoubtB_File will still only support the 1.85 function-

ality.

Several different indexing algorithms (known also as access methods) can be used with dbm implementa-
tions:

e TheHASHaccess method gives fl) complexity of search and update, fast insert and delete, but
a slow sort (which you have to implement yourself). (Used by almost all dom implementations)

e The BTREEaccess method allows arbitrary key/value pairs to be stored in a sorted, balanced binary
tree. This allows us to get a sorted sequence of data péifE)in but at the expense of much slower
insert, update, delete operations than is the caséH&i8H (Available mostly in Berkeley DB)

e The RECNQaccess method is more complicated, and enables both fixed-length and variable-length
flat text files to be manipulated using the same key/value pair interfaceHa#sSiHandBTREE In
this case the key will consist of a record (line) number. (Available mostly in Berkeley DB)

224 15 Feb 2014

http://www.sleepycat.com/

mod_perl and dbm files 8.2 Where and Why to use dbm files

® The QUEUEaccess method stores fixed-length records with logical record numbers as keys. It is
designed for fast inserts at the tail and has a special cursor consume operation that deletes and returns
a record from the head of the queue. QEUEaccess method uses record level locking. (Available
only in Berkeley DB version 3.x)

Most often you will want to use tHe#ASHmethod, but there are many considerations and your choice may
be dictated by your application.

In recent years dbm databases have been extended to allow you to store more complex values, including
data structures. THdLDBMnodule can store and restore the whole symbol table of your script, including
arrays and hashes.

It is important to note that you cannot simply switch a dbm file from one storage algorithm to another. The
only way to change the algorithm is to copy all the records one by one into a new dbm file, which was
initialized according to a desired access method. You can use a script like this:

#!/usr/bin/perl -w

#

This script takes as its parameters a list of Berkeley DB
file(s) which are stored with the DB_BTREE algorithm. It
will back them up using the .bak extension and create

instead dbms with the same records but stored using the
DB_HASH algorithm

#

Usage: btree2hash.pl filename(s)

use strict;
use DB_File;
use Fcentl;

Do checks
die "Usage: btree2hash.pl filename(s))\n" unless @ARGV;

foreach my $filename (@ARGV) {

die "Can't find $filename: $\n"
unless -e $filename and -r $filename;

First backup the file
rename "$filename”, "$filename.btree”
or die "can’t rename $filename $filename.btree:$"\n";

tie both dbs (db_hash is a fresh one!)
tie my %btree , 'DB_File’,"$filename.btree", O_RDWR|O_CREAT,
0660, $DB_BTREE or die "Can't tie $filename.btree: $!";
tie my %hash , 'DB_File’,"$filename" , O_RDWR|O_CREAT,
0660, $DB_HASH or die "Can't tie $filename: $!";

copy DB
%hash = %btree;

15 Feb 2014 225

8.3 mod_perl and dbm

untie
untie %btree ;
untie %hash ;

}

Note that some dbm implementations come with other conversion utilities as well.

8.3 mod_perl and dbm
Where does mod_perl fit into the picture?

If you need to access a dbm file in your mod_perl code in the read only mode the operation would be
much faster if you keep the dbm file open (tied) all the time and therefore ready to be used. This will work
with dynamic (read/write) databases accesses as well, but you need to use locking and data flushing to
avoid data corruption.

Although mod_perl and dbm can give huge performance gains compared to the use of flat file databases
you should be very careful. In addition to the need for locking, you need to consider the consequences of
die() and unexpected process death.

If your locking mechanism cannot handle dropped locks, a stale lock can deactivate your whole site. You
can enter a deadlock situation if two processes simultaneously try to acquire locks on two separate
databases. Each has locked only one of the databases, and cannot continue without locking the second. Yet
this will never be freed because it is locked by the other process. If your processes all ask for their DB files
in the same order, this situation cannot occur.

If you modify the DB you should be make very sure that you flush the data and synchronize it, especially
when the process serving your handler unexpectedly dies. In general your application should be tested
very thoroughly before you put it into production to handle important data.

8.4 Locking dbm Handlers and Write Lock Starvation
Hazards

One has to deploy dbm file locking if there is chance that some process will want to write to it. Note that
once you need to do locking you do it even when all you want is to read from the file. Since if you don't,
it's possible that someone writes to the file at this very moment and you may read partly updated data.

Therefore we should distinguish betwd®BAD andWRITElocks. Before doing an operation on the dbm
file, we first issue either READor aWRITElock request, according to our needs.

If we are making &EAD lock request, it is granted as soon asWHRITElock on the file is removed if
any or if it is alreadyREADIlocked. The lock status beconmi®EADoON success.

If we make aWRITElock request, it is granted as soon as the file becomes unlocked. The lock status
becomedVRITEoOnN success.

226 15 Feb 2014

mod_perl and dbm files 8.5 Flawed Locking Methods Which Must Not Be Used

The treatment of thé&/RITElock request is most important.

If the DB isREAD Ilocked, a process that makeSVRITErequest will poll until there are no reading or
writing processes left. Lots of processes can successfully read the file, since they do not block each other.
This means that a process that wants to write to the file may never get a chance to squeeze in, since it
needs to obtain an exclusive lock.

The following diagram represents a possible scenario where everybody can read but no one can write
(pX’s represent different processes running for different times and all acquiring the read lock on the dbm
file):

[p1 [-p1-]
[-p2-] [-p2-]
e -t | S S

The result is a starving process, which will timeout the request, and it will fail to update the DB. Ken
Williams solved the above problem with Aige::DB_Lock module, which is discussed in one of the
following sections.

There are several locking wrappers foB_File in CPAN right now. Each one implements locking
differently and has different goals in mind. It is therefore worth knowing the difference, so that you can
pick the right one for your application.

8.5 Flawed Locking Methods Which Must Not Be Used

Caution The suggested locking methods in the Camel bookEdFile man page (before version
1.72, fixed in 1.73) are flawed. If you use them in an environment where more than one process can
modify the dbm file, it can get corrupted!!! The following is an explanation of why this happens.

You may not use a tied file’s filehandle for locking, since you get the filehandle after the file has been
already tied. It's too late to lock. The problem is that the database file is laftked is opened. When

the database is opened, the first 4k (in Berkley dbm library) is read and then cached in memory. Therefore,
a process can open the database file, cache the first 4k, and then block while another process writes to the
file. If the second process modifies the first 4k of the file, when the original process gets the lock is how
has an inconsistent view of the database. If it writes using this view it may easily corrupt the database on
disk.

This problem can be difficult to trace because it does not cause corruption every time a process has to wait
for a lock. One can do quite a bit of writing to a database file without actually changing the first 4k. But
once you suspect this problem you can easily reproduce it by making your program modify the records in
the first 4k of the DB.

You better resort to using the standard modules for locking instead of inventing your own.

If your dbm file is used only in the read-only mode generally there is no need for locking at all. If you
access the dbm file in read/write mode, the safest method is to tie() the dbm file after acquiring an external
lock and untie() before the lock is released. So to access the file in shared mode (FLOCK_SH) one should

15 Feb 2014 227

8.5 Flawed Locking Methods Which Must Not Be Used

following this pseudo-code:

flock FLOCK_SH <===== start critical section
tie()

read...

untie()

flock FLOCK_UN <===== end critical section

Similar for the exclusive (EX), write access:

flock FLOCK_EX <===== start critical section
tie()

write...

sync()

untie()

flock FLOCK_UN <===== end critical section

However you might want to save a few tie()/untie() calls if the same request accesses the dbm file more
than once. You should be careful though. Based on the caching effect explained above, a process can
perform an atomic downgrade of an exclusive lock to a shared one without re-tie()ing the file:

flock FLOCK_EX <===== start critical section
tie()

write...

sync()

<===== end critical section

flock FLOCK_SH <===== start critical section
read...

untie()

flock FLOCK_UN <===== end critical section

because it has the updated data in its cache. By atomic, we mean it's ensured that the lock status gets
changed, without any other process getting an exclusive access in between.

If you can ensure that one process safely upgrades a shared lock with an exclusive lock, one can save on
tie()/untie(). But this operation might lead to a dead-lock if two processes try to upgrade a shared lock with
exclusive at the same time. Remember that in order to acquire an exclusive lock, all other processes need
to release *all* locks. If your OS locking implementation resolves this deadlock by denying one of the
upgrade requests, make sure your program handles that appropriately. The process that were denied has to
untie() the dbm file and then ask for an exclusive lock.

A dbm file has always to be untie()’ed before the locking is released (unless you do an atomic downgrade
from exclusive to shared as we have just explained). Remember that if at any given moment a process
wants to lock and access the dbm file it has to re-tie() this file, if it was tied already. If this is not done, the
integrity of the dbm file is not ensured.

To conclude, the safest method of reading from dbm file is to lock the file before tie()-ing it, untie() it
before releasing the lock, and in the case of write to call sync() before untie()-ing it.

228 15 Feb 2014

mod_perl and dbm files 8.6 Locking Wrappers Overview

8.6 Locking Wrappers Overview

Here are some of the correctly working dbm locking wrappers on (three of them are available from
CPAN):

e Tie:DB_Lock --DB_File wrapper which creates copies of the dbm file for read access, so that
you have kind of a multiversioning concurrent read system. However, updates are still serial. After
each update the read-only copies of the dbm file are recreated. Use this wrapper in situations where
reads may be very lengthy and therefore write starvation problem may occur. On the other hand if
you have big dbm files, it may create a big load on the system if the updates are quite frequent. More
information.

e Tie::DB_FileLock -- DB_File wrapper that has the ability to lock and unlock the database
while it is being used. Avoids the tie-before-flock problem by simply re-tie-ing the database when
you get or drop a lock. Because of the flexibility in dropping and re-acquiring the lock in the middle
of a session, this can be used in a system that will work with long updates and/or reads. Refer to the
Tie::DB_FileLock manpage for more information.

e DB File::Lock -- extremely lightweighDB_File wrapper that simply flocks an external lock-
file before tie-ing the database and drops the lock after untie. Allows one to use the same lockfile for
multiple databases to avoid deadlock problems, if desired. Use this for databases where updates and
reads are quick and simple flock locking semantics are enough. R&fBr Fale::Lock manpage
for more information.

e DB File::Lock2 -- does the same thing B8 _File::Lock , but has a slightly different imple-
mentation. | wrote it before David Harris released i File::Lock and | didn’t want to Kill
mine, so I'll keep it here for a while :).

® On some Operating Systems (FreeBSD is one example) it is possible to lock on tie:

tie my %t, 'DB_File’, $TOK_FILE, O_RDWR | O_EXLOCK, 0664;

and only release the lock by un-tie()-ing the file. Check if@Gh&XLOCKlag is available on your
operating system before you try to use this method!

8.7 Tie::DB_Lock

Tie::DB_Lock ties hashes to databases using shared and exclusive locks. This module, by Ken
Williams, solves the problems raised in the previous section.

The main difference from what | have described above isTieaDB_Lock copies a dbm file on read.
Reading processes do not have to keep the file locked while they read it, and writing processes can still
access the file while others are reading. This works best when you have lots of long-duration reading, and
a few short bursts of writing.

15 Feb 2014 229

8.8 DB_File::Lock2

The drawback of this module is the heavy 10 performed when every reader makes a fresh copy of the DB.
With big dbm files this can be quite a disadvantage and can slow the server down considerably.

An alternative would be to have one copy of the dbm image shared by all the reading processes. This can
cut the number of files that are copied, and puts the responsibility of copying the read-only file on the
writer, not the reader. It would need some care to make sure it does not disturb readers when putting a new
read-only copy into place.

8.8 DB _File::Lock2

Here iscode/DB_File-Lock2.pm

package DB_File::Lock2;
require 5.004;

use strict;

BEGIN {
RCS/SVN compliant: must be all one line, for MakeMaker
$DB_File::Lock2::VERSION = do { my @r = (q$Revision: 420028 $ =~ N\d+/g); sprintf "%d."."%02d" x $#r, @r };

}

use DB_File ();

use Fentl gw(:flock O_RDWR O_CREAT);
use Carp qw(croak carp verbose);

use Symbol ();

@DB_File::Lock2::ISA = qw(DB_File);
%DB_File::Lock2::lockfhs = ();

use constant DEBUG => 0;

file creation permissions mode
use constant PERM_MODE => 0660;

file locking modes
%DB_File::Lock2::locks =

read =>LOCK_SH,
write => LOCK_EX,
)

SYNOPSIS:
tie my %mydb, 'DB_File::Lock2’, $filepath,
[read' || 'write’, 'HASH' || 'BTREE]
while (my ($k,$v) = each %mydb) {
print "$k => $v\n";
#}
untie %mydb;
HHHHH
sub TIEHASH {

my $class = shift;

my $file = shift;

my $lock_mode = Ic shift || 'read’;

my $db_type = shift || 'HASH’;

die "Dunno about lock mode: [$lock_mode].\n
Valid modes are 'read’ or 'write’.\n"
unless $lock_mode eq 'read’ or $lock_mode eq 'write’;

Critical section starts here if in write mode!

create an external lock
my $lockfth = Symbol::gensym();

230 15 Feb 2014

mod_perl and dbm files 8.8 DB_File::Lock2

open $lockfh, ">$file.lock" or die "Cannot open $file.lock for writing: $!\n";
unless (flock $lockfh, $DB_File::Lock2::locks{$lock_mode}) {
croak “cannot flock: $lock_mode => $DB_File::Lock2::locks{$lock_mode}: $!\n";

}

my $self = $class->SUPER:: TIEHASH
($file,
O_RDWR|O_CREAT,
PERM_MODE,
($db_type eq 'BTREE’ ? $DB_File::DB_BTREE : $DB_File::DB_HASH)
)
remove the package name in case re-blessing occurs
(my $id = "$self") =~ s/A [=]+=/1;

cache the lock th
$DB_File::Lock2::lockfhs{$id} = $lockfh;

return $self;

} # end of sub new

DESTROY is automatically called when a tied variable
goes out of scope, on explicit untie() or when the program is
interrupted, e.g. with a die() call.
#
It unties the db by forwarding it to the parent class,
unlocks the file and removes it from the cache of locks.
U
sub DESTROY{
my $self = shift;

$self->SUPER::DESTROY(@_);
now it safe to unlock the file, (close() unlocks as well). Since
the object has gone we remove its lock filehandler entry
from the cache.

(my $id = "$self") =~ s/MN"=]+=//; # see 'sub TIEHASH’

close delete $DB_File::Lock2::lockfhs{$id};
Critical section ends here if in write mode!

print "Destroying ".__PACKAGE__."\n" if DEBUG,;

}

HHHH
END {
print "Calling the END from ".__PACKAGE__."\n" if DEBUG;

}

1
which does the locking by using an external lockfile.

This allows you to gain the lock before the file is tied. Note that it's not yet on CPAN and so is linked
from here in its entirety. Note also that this code still needs some testibg,camefulif you use it on a
production machine.

You use it like this:

use DB_File::Lock2 ();

15 Feb 2014 231

8.8 DB_File::Lock2

A simple tie, READ lock and untie

use DB_File::Lock2 ();

my $dbfile = "/tmp/test";

tie my %mydb, 'DB_File::Lock2’, $dbfile, 'read’;
print $mydb{foo} if exists $mydb{foo};

untie %omydb;

You can even skip thentie() call. When$mydb goes out of scope everything will be done automati-
cally. However it is better to use the explicit call, to make sure the critical sections between lock and
unlock are as short as possible. This is especially important when requesting an exclusive (write) lock.

The following example shows how it might be convenient to skip the exyptité() . In this example,
we don’t need to save the intermediate result, we just return and the cleanup is done automatically.

use DB_File::Lock2 ();

my $dbfile = "/tmpl/test";

print user_exists("stas") ? "Yes" : "No";

sub user_exists{
my $username = shift || ;
warn("No username passed\n”), return 0 unless $username;
tie my %mydb, 'DB_File::Lock2’, $dbfile, read’;

if we match the username return 1, else 0
return $mydb{$username} ? 1 : 0O;

} # end of sub user_exists

Now let's write all the upper case characters and their respective ASCII values to a dbm file. Then read the
file and print the contents of the DB, unsorted.

use DB_File::Lock2 ();
my $dbfile = "/tmp/test";

write
tie my %mydb, 'DB_File::Lock2’, $dbfile,'write’;
for (0..26) {

$mydb{chr 65+$ }=9$_;
}

untie %omydb;

now, read them and printout (unsorted)
notice that 'read’ is a default lock mode
tie %omydb, 'DB_File::Lock2’, $dbfile;
while (my ($k,$v) = each %mydb) {
print "$k => $v\n";
}
untie %omydb;

If your CGI script is interrupted, tlBESTROYblock will take care of unlocking the dbm file and flush
any changes. So your DB will be safe against possible corruption because of unclean program termination.

232 15 Feb 2014

mod_perl and dbm files 8.9 Maintainers

8.9 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

8.10 Authors

e Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 233

http://stason.org/
http://stason.org/

9 Protecting Your Site

9 Protecting Your Site

234 15 Feb 2014

Protecting Your Site 9.1 Description

9.1 Description

Securing your site should be your first priority, because of the consequences a break-in might have. We
discuss the various authentication and authorization techniques available, a very interesting use of
mod_perl.

9.2 The Importance of Your site’s Security

Let's face it, your site or service can easily become a target for Internet "terrorists”. It can be because of
something you said, the success of your site, or for no obvious reason whatever. If your site security is
compromised, all your data can be deleted or important information can be stolen. You may risk legal
action or the sack if this happens.

Your site can be paralyzed through a _simplenial of servicdDoS) attack.

Whatever you do, as long as you are connected to the network your site will be vulnerable. Cut the
connections, turn off your machine and put it into a safe. Now it is protected--but useless.

So what can you do?
Let’s first get acquainted with some security related terminology:
® Authentication

When you want to make sure that a user is who he claims to be, you generally ask her for a username
and a password. Once you have both, you can check them against your database of userhame/pass-
word pair$. If they match, the user has passedititieentication stage. From now on if you keep the

open all you need to do is to remember the username.

® Authorization

You might want to allow usefioo to have access to some resource, but restrict her from accessing
another resource, which in turn is accessible only forheserThe process of checking access rights

is calledAuthorization . For Authorization all you need is an authenticated username or some other
attribute which you can authorize against. For example, you can authorize against IP number, allow-
ing only your local users to use some service. But be warned that IP numbers or session_ids can be
spoofed (forged), and that is why you should noAdthorization without Authentication.

Actually you've been familiar with both these concepts for a while.
When you telnet to your account on some machine you go through a login pfadgbentication).

When you try to read some file from your file systems, the kernel checks the permissions on this file
(Authorization). You may hear abouccess controlwhich is another name for the same thing.

15 Feb 2014 235

9.3 lllustrated Security Scenarios

9.3 lllustrated Security Scenarios

| am going to present some real world security requirements and their implementations.

9.3.1 Non authenticated access for internal IPs, Authenticated for
external IPs

An Extranet is very similar to amntranet, but at least partly accessible from outside your organization. If

you run an Extranet you might want to let your internal users have unrestricted access to your web server.
If these same users call from outside your organization you might want to make sure that they are in fact
your employees.

These requirements are achieved very simply by putting the IP patterns of the organization in a Perl
Access Handler in aftaccess file. This sets the REMOTE_USER environment variable to the orga-
nization’s generic username. Scripts can testREMOTE_USERNvironment variable to determine
whether to allow unrestricted access or else to require authentication.

Once a user passes the authentication stage, either bypassing it because of his IP address or after entering a
correct login/password pair, tREMOTE_USEfRariable is set. Then we can talk about authorization.

Let’'s see the implementation of the authentication stage. First we nintighiflyconf
PerlModule My::Auth

<Location /private>
PerlAccessHandler My::Auth::access_handler
PerlSetVar Intranet "10.10.10.1 => userA, 10.10.10.2 => userB"
PerlAuthenHandler My::Auth::authen_handler
AuthName realm
AuthType Basic
Require valid-user
Order deny, allow
Deny from all
</Location>

Now the code of My/Auth.pm:
sub access_handler {
my $r = shift;
unless ($r->some_auth_required) {

$r->log_reason("No authentication has been configured");
return FORBIDDEN,;

}

get list of IP addresses
my %ips = split As*(?:=>|,)\s*/, $r->dir_config("Intranet");

if (my $user = $ips{$r->connection->remote_ip}) {

update connection record

236 15 Feb 2014

Protecting Your Site 9.3.1 Non authenticated access for internal IPs, Authenticated for external IPs

$r->connection->user($user);

do not ask for a password
$r->set_handlers(PerlAuthenHandler => N&OK]);

}
return OK;

}
sub authen_handler {
my $r = shift;
get user’s authentication credentials
my ($res, $sent_pw) = $r->get_basic_auth_pw;
return $res if $res = OK;

my $user = $r->connection->user;

authenticate through DBI
my $reason = authen_dbi($r, $user, $sent_pw);

if (Jreason) {
$r->note_basic_auth_failure;
$r->log_reason($reason, $r->uri);

return AUTH_REQUIRED;

}
return OK;

}

sub authen_dbi{
my ($r, $user, $sent_pw) = @_;

validate username/passwd
return O if *PASSED*) # replace with real code!!!
return "Failed for X reason";

}

don't forget 1;
1

You can implement your owauthen_dbi() routine, or you can repla@then_handler() with
an existing authentication handler suclApache::AuthenDBI

If one of the IP addresses is matchactess handler() setsREMOTE_USE® be eitheuserA or
userB .

If neither IP address is matchdeerlAuthenHandler will not be set to OK, and the Authentication
stage will ask the user for a login and password.

15 Feb 2014 237

9.4 Authentication code snippets

9.4 Authentication code snippets

9.4.1 Forcing re-authentication

To force an authenticated user to reauthenticate just send the following header to the browser:

WWW-Authenticate: Basic realm="My Realm"
HTTP/1.0 401 Unauthorized

This will pop-up (in Netscape at least) a window saydughorization Failed. Retry? with OK and a

Cancel buttons. When that window pops up you know that the password has been discarded. If the user
hits theCancel button the username will also be discarded. If she hit©&dutton, the authentication
window will be brought up again with the previous username already in place.

In the Perl APl you would use the note_basic_auth_failure() method to force reauthentication.

This may not work! The browser’s behaviour is in no way guaranteed.

9.4.2 OK, AUTH_REQUIRED and FORBIDDEN in Authentication
handlers

When your authentication handler returns OK, it means that user has correctly authenticated and now
$r->connection->user will have the wusername set for subsequent requests. For
Apache::Registry and friends, where the environment variable settings weren't erased, an equivalent
$ENV{REMOTE_USERYyariable will be available.

The password is available only through the Perl APl with the help of the get_basic_auth_pw() method.

If there is a failure, unless it's the first time, 8TH_REQUIREDRIag will tell the browser to pop up an
authentication window, to try again. For example:

my ($status, $sent_pw) = $r->get_basic_auth_pw;
unless($r->connection->user and $sent_pw) {
$r->note_basic_auth_failure;
$r->log_reason("Both a username and password must be provided");
return AUTH_REQUIRED;

}

Let's say that you have a mod_perl authentication handler, where the user’s credentials are checked
against a database. It returns eitté&tor AUTH_REQUIREDOnNe of the possible authentication failure

case might happen when the username/password are correct, but the user's account has been suspended
temporarily.

If this is the case you would like to make the user aware of this, by displaying a page, instead of having the
browser pop up the authentication dialog again. You will also refuse authentication, of course.

238 15 Feb 2014

Protecting Your Site 9.5 Apache::Auth* modules

The solution is to returRORBIDDEN but before that you should set a custom error page for this specific
handler, with help o$r->custom_response . It looks something like this:

use Apache::Constants qw(:common);
$r->custom_response(SERVER_ERROR, "/errors/suspended_account.html");

return FORBIDDEN if $suspended;

9.5 Apache::Auth* modules

® PerlAuthenHandler’s

Apache::AuthAny Authenticate with any username/password
Apache::AuthenCache Cache authentication credentials
Apache::AuthCookie Authen + Authz via cookies
Apache::AuthenDBI Authenticate via Perl’'s DBI
Apache::AuthExpire Expire Basic auth credentials
Apache::AuthenGSS Generic Security Service (RFC 2078)
Apache::AuthenIMAP Authentication via an IMAP server
Apache::AuthenPasswdSrv External authentication server
Apache::AuthenPasswd Authenticate against /etc/passwd
Apache::AuthLDAP LDAP authentication module
Apache::AuthPerLDAP LDAP authentication module (PerLDAP)
Apache::AuthenNIS NIS authentication

Apache::AuthNISPlus NIS Plus authentication/authorization
Apache::AuthenRaduis Authentication via a Radius server

Apache::AuthenSmb Authenticate against NT server
Apache::AuthenURL Authenticate via another URL
Apache::DBILogin Authenticate to backend database
Apache::DCELogin Obtain a DCE login context
Apache::PHLogin Authenticate via a PH database

Apache::TicketAccess Ticket based access/authentication

® PerlAuthzHandler's

Apache::AuthCookie Authen + Authz via cookies
Apache::AuthzAge Authorize based on age
Apache::AuthzDCE DFS/DCE ACL based access control
Apache::AuthzDBI Group authorization via Perl’s DBI
Apache::AuthzGender Authorize based on gender
Apache::AuthzNIS NIS authorization
Apache::AuthzPasswd Authorize against /etc/passwd
Apache::AuthzSSL Authorize based on client cert
Apache::RoleAuthz Role-based authorization

® PerlAccessHandler’s

Apache::AccessLimitNum Limit user access by number of requests
Apache::BlockAgent Block access from certain agents
Apache::DayLimit Limit access based on day of week
Apache::IPThrottle Limit bandwith consumption by IP
Apache::RobotLimit Limit access of robots

Apache::SpeedLimit Control client request rate

15 Feb 2014 239

9.6 Maintainers

9.6 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

9.7 Authors

e Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

240 15 Feb 2014

http://stason.org/
http://stason.org/

Code Snippets 10 Code Snippets

10 Code Snippets

15 Feb 2014 241

10.1 Description

10.1 Description

A collection of mod_perl code snippets which you can either adapt to your own use or integrate directly
into your own code.

10.2 File Upload with Apache::Request

TheApache::Request module gives you an easy way to get form content, including uploaded files. In
order to add file upload functionality to your form, you need to add two things.

First, you'll need to add a form field which is typke. This will put abrowse button on the form that
will allow the user to choose a file to upload.

Second, you'll neet to make sure to add, tofthen tag the following:

enctype="multipart/form-data"
You won'’t be able to upload a file unless you have added this forthe tag.

In your code, you'll need to take a few extra steps to actually retrieve that file that has been uploaded.
Using the followingform() method will allow you to have a standard function that handles all of your
forms, and does the right thing in the event that there was a file uploaded. You can put this function in
yourmod_perl handler, or in whatever module you want.

sub form {
use Apache::Request;
my $r = Apache->request();
my $apr = Apache::Request->new($r);
my @keys = $apr->param;

my %form;
foreach my $key(@keys) {

my @value = $apr->param($key);
next unless scalar @value;

if (@value >1){
$form{$key} = \@value;
}else {
$form{$key} = $value[0];
}
}

my $upload = $apr->upload;
if ($upload) {

$form{UPLOAD} = $upload;
}

return \%form;

242 15 Feb 2014

Code Snippets 10.3 Redirecting Errors to the Client Instead of error_log

In your code, you can get the contents of the form by calling this function:

my $form = Your::Class::form(); # Wherever you put this function

The value returned from this function is compatible wiliGl.pom and other modules such as
CGl::Lite Which is to say, the function returns a hashref. The keys of the hash are the names in your
form. The values in the hash are the values entered in those fields, with the exception that a multiple select
list with multiple things selected will return a listref of the selected values.

If your form contained a file upload element, ti&arm{UPLOAD} will contain a file upload object,
which you can make calls back into.

For example:

my $form = Your::Class::form(); # Wherever you put this function
if (my $file = $form->{UPLOAD}) {
my $filename = $file->filename; # If you need the name

And, if you want to save the file at $filelocation ...
open F, ">$filelocation";
my $filehandle = $file->fh;
while (my $d = <$filehandle>) {
print F $d;
}

close F;

}

That should give you the general idea of how this works. This lets you have a generic form handler that
does "normal” forms as well as file upload forms, in mod_perl, without having to megs@®ilitpm , and
without having to do custom things when you have a file upload.

You will need to see the documentation #Agrache::Upload for more information about how to deal
with the file upload object once you have it. Note thatApache::Upload docs are embeded in the
Apache::Request documentation, so you'll need to look there for that information.

10.3 Redirecting Errors to the Client Instead of error_log

Many error conditions result in axception(or signal -- same thing) which igaisedin order to tell the
operating system that a condition has arisen which needs more urgent attention than can be given by other
means. One of the most familiar ways of raising a signal is t6tH#C on your terminal’s keyboard.

The signal interrupts the processor. In the casettfC theINT signal is generated and the interrupt is
usuallytrappedby a defaulsignal handlersupplied by OS, which causes the operating system to stop the
process currently attached to the terminal.

Under mod_perl, a Perl runtime error causes an exception. By default this exception is trapped by default
mod_perl handler. The handler logs information about the error (such as the date and time that the error
occurred) toerror_log. If you want to redirect this information to the client instead aértor_log you

have to take the responsibility yourself, by writing your own exception handler to implement this
behaviour. See the section "Exception Handling for mod_perl" for more information.

15 Feb 2014 243

10.3 Redirecting Errors to the Client Instead of error_log

The code examples below can be useful with your own exception handlers as well as with the default
handlers.

META: Integrate the 2 sections

The CGl::Carp package implements handlers for signals. To trap (almost) all Perl run-time errors and send
the output to the client instead of to Apachersr_log add this line to your script:

use CGl::Carp qw(fatalsToBrowser);
Refer to theCGl::Carp man page for more detailed information.

You can trap individual exceptions: for example you can write custdiE_ and__ WARN_signal
handlers. The speci@SIG hash contains references to signal handlers. The signal handler is just a
subroutine, in the example below it is called "mydie". To install the handler we assign a reference to our
handler to the appropriate element of th&SIG hash. This causes the signal handler to call
mydie(error_message) whenever the() sub is called as a result of something which happened when
our script was executing.

Do not forget thdocal keyword! If you do, then after the signal handler has been loaded it will be
called whenevedie() is called byany script executed by the same process. Probably that's not what
you want. If it is, you can put the assignment statement in any module, as long as it will be executed at the
right time.

Here is an example of a handler which | wrote because | wanted users to know that there was an error,
without displaying the error message, but instead email it to me. If the error is caused by user (e.g. upload-
ing image whose size is bigger than the limit | had set) | want to tell them about it. | wrote this handler for
the mod_perl environment, but it works correctly when called from the shell. The code shown below is a
stripped-down version with additional comments.

The following code must be added to the script:

Using the local() keyword restricts the scope of the directive to
the block in which it is found, so this line must be added at the

right place in the right script. It will not affect other blocks

unless the local() keyword is removed. Usually you will want the
directive to affect the entire script, so you just place it near

the beginning of the file, where the innermost enclosing block is
the file itself.

local $SIG{__DIE__} =\&mydie;

The line above assumes that the subroutine "mydie" is in the same script.
Alternatively you can create a separate module for the error handler.

If you put the signal handler in a separate module, e.g. Error.pm,

you must explicitly give the package name to set the handler in your

script, using a line like this instead of the one above:

local $SIG{__DIE__} =\&Error::mydie;

again within the script!

Do not forget the C<local()>, unless you want this signal handler to

be invoked every time any scripts dies (including events where this
treatment may be undesirable).

244 15 Feb 2014

Code Snippets 10.3 Redirecting Errors to the Client Instead of error_log

my $max_image_size = 100*1024; # 100k
my $admin_email = 'foo@example.com’;

and the handler itself
Here is the handler itself:
The handler is called with a text message in a scalar argument
sub mydie{
my $why = shift;

chomp $why;
my $orig_why = $why; # an ASCII copy for email report

handle the shell execution case (so we will not get all the HTML)
print("Error: $why\n"), exit unless $SENV{MOD_PERL};

my $should_email = 0;
my $message = ";

$why =~ s/[<&>]/"&#".ord($&).";"Ige; # entity escape

Now we need to trap various kinds of errors that come from CGIl.pm
We don’t want these errors to be emailed to us, since

they aren’t programmatical errors

if ($orig_why =~ /Client attempted to POST (\d+) bytes/o) {

$message = qq{
You cannot POST messages bigger than
@{[1024*$max_image_size]} bytes.

You have tried to post $1 bytes

If you are trying to upload an image, make sure its
size is no bigger than @{[1024*$max_image_size]}
bytes.<P>
Thank you!
h

} elsif ($orig_why =~ /Malformed multipart POST/0) {

$message = qq{
Have you tried to upload an image in the wrong way?<pP>
To successfully upload an image you must use a browser that supports
image upload and use the 'Browse’ button to select that image.
DO NOT type the path to the image into the upload field.<P>
Thank you!

3
} elsif ($orig_why =~ /closed socket during multipart read/o) {

$message = qq{
Have you pressed a 'STOP’ button?

Please try again!<P>
Thank you!

k

}else {

15 Feb 2014 245

10.3 Redirecting Errors to the Client Instead of error_log

$message = qqf
You need take no action since
the error report has already been
sent to the webmaster.
<P>

Thank you for your patience!

I3

$should_email = 1,

}

print qg{Content-type: text/html

<HTML><BODY BGCOLOR="white">
0Oops, Something went wrong.<P>
$message

</BODY></HTML>};

send email report if appropriate
if ($should_email){

import sendmail subs
use Malil ();
prepare the email error report:
my $subject ="Error Report";
my $body = qq|
An error has happened:

$orig_why
l;
send error reports to admin
send_mail($admin_email,$admin_email,$subject,$body);

print STDERR "[".scalar localtime()."] [SIGDIE] Sending Error Email\n";
}

print to error_log so we will know there was an error
print STDERR "[".scalar localtime()."] [SIGDIE] $orig_why \n";

exit 1;
} # end of sub mydie

You may have noticed that | trap the CGl.pm’s die() calls here, | don’'t see any reason why my users
should see ugly error messages, but that’s the way CGIl.pm written. The workaround is to trap them your-
self.

Please note that as of version 2.49, CGl.pm provides the cgi_error() method to print the errors and won’t
die() unless you want it to.

246 15 Feb 2014

Code Snippets 10.4 Reusing Data from POST request

10.4 Reusing Data from POST request

What happens if you need to access the POSTed data more than once, say to reuse it in subsequent
handlers of the same request? POSTed data comes directly from the socket, and at the low level data can
only be read from a socket once. So you have to store it to make it available for reuse.

There is an experimental option fbfakefile.PL calledPERL_STASH_POST_DATAf you turn it
on, you can get at it again witr->subprocess_env("POST_DATA") . This is notenabledby
default because it adds a processing overhead for each POST request.

But what do we do with large multipart file uploads? Bec&S&Tdata is not all read in one clump, it's
a problem that’'s not easy to solve in a general way. A transparent way to do this is to switch the request
method from POST to GET, and store the POST data in the query string. This handler does exactly this:

Apache/POST2GET.pm

package Apache::POST2GET;
use Apache::Constants qw(M_GET OK DECLINED);

sub handler {
my $r = shift;
return DECLINED unless $r->method eq "POST";
$r->args(scalar $r->content);
$r->method(GET);
$r->method_number(M_GET);
$r->headers_in->unset(’Content-length’);
return OK;

}
1;
END__

In httpd.confadd:

PerlinitHandler Apache::POST2GET

or even this:

<Limit POST>
PerlinitHandler Apache::POST2GET
</Limit>

To save a few more cycles, so the handler will be called only for POST requests.

Effectively, this trick turns the POST request into a GET request internally. Now @®@@dmpm,
Apache::Request or whatever module parses the client data, it can do so more than once since
$r->args doesn’t go away (unless you make it go away by resetting it).

If you are usingApache::Request , it solves this problem for you with its instance() class method,
which allows Apache::Request to be a singleton. This means that whenever you call
Apache::Request ->instance() within a single request you always get the ggaehe::Request

object back.

15 Feb 2014 247

10.5 Redirecting POST Requests

10.5 Redirecting POST Requests

Under mod_cgi it's not easy to redirect POST requests to some other location. With mod_perl you can
easily redirect POST requests. All you have to do is read in the content, set the m&Edddopulate
args() with the content to be forwarded and finally do the redirect:

use Apache::Constants gw(M_GET);

my $r = shift;

my $content = $r->content;

$r->method("GET");

$r->method_number(M_GET);

$r->headers_in->unset("Content-length");

$r->args($content);

$r->internal_redirect_handler("/new/url");

Of course that last line can be any other kind of redirect.

10.6 Redirecting While Maintaining Environment Variables
Let's say you have a module that sets some environment variables.

If you redirect, that's most likely telling the web browser to fetch the new page. This makes it a totally
new request, so no environment variables are preserved.

However, if you're using internal_redirect(), you can make the environment variables seen in the
sub-process via subprocess_env(). The only nuance is thatEN&Kkeys will be prefixed witlREDI-
RECT.

10.7 Terminating a Child Process on Request Completion

If you want to terminate the child process serving the current request, upon completion of processing
anywhere in the code call:

$r->child_terminate;

Apache won't actually terminate the child until everything it needs to do is done and the connection is
closed.

10.8 Setting Content-type and Content-encoding headers in
non-OK responses

You cannot seContent-typeandContent-encodingpeaders in non-OK responses, since Apache overrides
these inhttp_protocol.cap_send_error_response()

248 15 Feb 2014

Code Snippets 10.9 More on Relative Paths

r->content_type = "text/html; charset=iso-8859-1";

10.9 More on Relative Paths

Many people use relative paths fequire , use, etc., and when they open files in their scripts they
make assumptions about the current directory. This will fail if you dirdir() to the correct directory
first (as could easily happen if you have another script which calls the first script by its full path).

For example:

/home/httpd/perl/test.pl:

#!/usr/bin/perl
open IN, "./foo.txt";

This snippet would work if we call the script like this:

% chdir /Thome/httpd/perl
% ./test.pl

sincefoo.txt is located in the current directory. But when the current directory/tsmbe/httpd/perl
if we call the script like this:

% /home/httpd/perl/test.pl
then the script will fail to findoo.txt . Think aboutrontab s!

Notice that you cannot use tRendBin.pm package, something that you'd do in the regular Perl scripts,
because it relies on tiBEGIN block it won’t work under mod_perl. It's loaded and executed only for the
first script executed inside the process, all the others will use the cached value, which would be probably
incorrect if they reside in different directories. Perl 5.9.1 provides a new furiioiBin::again

which will do the right thing. Also the CPAN modutendBin::Real provides a working alternative
working under mod_ perl.

10.10 Watching the error_log File Without Telneting to the
Server

| wrote this script a long time ago, when | had to debug my CGI scripts but didn't have access to the
error_log file. | asked the admin to install this script and have used it happily since then.

If your scripts are running on these 'Get-free-site’ servers, and you cannot debug your script because you
can't telnet to the server or can't seednr_log , you can ask your sysadmin to install this script.

Note, that it was written for plain Apache, and isn't prepared to handle the complex multiline error and
warning messages generated by mod_perl. It also uses a system() call to do the main work with the tail()
utility, probably a more efficient perl implementation is due (take a lodHlextTail module). You

are welcome to fix it and contribute it back to mod_perl community. Thank you!

15 Feb 2014 249

10.10 Watching the error_log File Without Telneting to the Server

Here is the code:
lusr/bin/perl -Tw
use strict;

my $default = 10;
my $error_log = "/usr/local/apache/logs/error_log";
use CGl;

untaint SENV{PATH}
$ENV{PATH} = '/bin:/usr/bin’;
delete @ENV{IFS’, 'CDPATH’, 'TENV’, 'BASH_ENV};

my $q = new CGl;

my $counts = (defined $g->param(’count’) and $g->param(’count’))
? $g->param(’count’) : $default;

print $g->header,
$qg->start_html(-bgcolor => "white",
-title => "Error logs"),

$qg->start_form,

$g->center(
$g->b('How many lines to fetch? '),
$g->textfield(count’,10,3,3),
$g->submit(”, 'Fetch’),
$g->reset,
)

$g->end_form,

$g->hr;

untaint $counts
$counts = ($counts =~ /(\d+)/) ? $1: 0;

print($g->b("$error_log doesn't exist!!!")),exit unless -e $error_log;

open LOG, "tail -$counts $error_log|"
or die "Can't tail $error_log :$\n";

my @logs = <LOG>;

close LOG;
format and colorize each line nicely

foreach (@logs) {
s{
\[(*?)\\s* # date
\[(.*?)\|\s* # type of error
\[(.*?)\]\s* # client part
(% # the message
}
{
"[$1]
 [".
colorize($2,$2).
"]
 [$3] <PRE>".
colorize($2,$4).
"</PRE>"
Jex;

250 15 Feb 2014

Code Snippets 10.11 Accessing Variables from the Caller's Package

print "
$_
";
}

HHHAHH R
sub colorize{
my ($type,$context) = @_;

my %colors =

(

error =>"'red’,
crit =>black’,
notice => 'green’,
warn =>brown’,

);

return exists $colors{$type}
? qg{$context}
: $context;

10.11 Accessing Variables from the Caller's Package
Sometimes you want to access variables from the caller's package. One way is to do something like this:

{

no strict 'vars’;
my $caller = caller;
print gq[$caller --- ${"${caller}::var"}];

10.12 Handling Cookies

Unless you use some well known module lR&I::Cookie or Apache::Cookie , you need to
handle cookies yourself.

Cookies come in thesENV{HTTP_COOKIE} variable. You can print the raw cookie string as
$ENV{HTTP_COOKIE}

Here is a fairly well-known bit of code to take cookie values and put them into a hash:

sub get_cookies {
cookies are separated by a semicolon and a space, this will
split them and return a hash of cookies
local(@rawCookies) = split (/; /,.$ENV{HTTP_COOKIE'});
local(%cookies);

foreach(@rawCookies){

(Skey, $val) = split (/=/,$_);
$cookies{$key} = $val;

15 Feb 2014 251

10.13 Sending Multiple Cookies with the Perl API

}

return %cookies;

}
Or a slimmer version:
sub get_cookies {

map { split/=/, $_, 2 } split /; /, SENV{HTTP_COOKIE"} ;
}

10.13 Sending Multiple Cookies with the Perl API

Given that you have prepared your cookie@inookies , the following code will submit all the cookies:

for (@cookies){
$r->headers_out->add('Set-Cookie’ =>$_);

}

10.14 Sending Cookies in REDIRECT Response

You should use err_headers_out() and not headers_out() when you want to send cooki&EDI-the
RECTresponse.

use Apache::Constants qw(REDIRECT OK);

my $r = shift;

prepare the cookie in $cookie
$r->err_headers_out->add('Set-Cookie’ => $cookie);
$r->headers_out->set(Location => $location);
$r->status(REDIRECT);

$r->send_http_header;

return OK;

10.15 Apache::Cookie example: Login Pages by Setting
Cookies and Refreshing

On occassion you will need to set a cookie and then redirect the user to another page. This is probably
most common when you want a Location to be password protected, and if the user is unauthenticated,
display to them a login page, otherwise display another page, but both at the same URL.

10.15.1 Logic

The logic goes something like this:

® Check for login cookie

252 15 Feb 2014

Code Snippets 10.15.2 Example Situation

e |f found, display the page

e If not found, display a login page

® Get username/password from a POST

e Authenticate username/password

e |f the authentication failed, re-display the login page

e |f the authentication passed, set a cookie and redirect to the same page, and display

10.15.2 Example Situation

Let's say that we are writing a handler for the locafaealerswhich is a protected area to be accessed
only by people who can pass a username / password authentication check.

We will use Apache::Cookie here as it runs pretty fast under mod_perl, ®@l::Cookie = has
pretty much the same syntax, so you can use that if you prefer.

For the purposes of this example, we’ll assume that we already have any passed paranféigasams
hash, theauthenticate() routine returngrue or false, display_login()shows the username and pass-
word prompt, andlisplay_main_page(isplays the protected content.

10.15.2.1 Code

if($params{user} and $params{pass}) {
if('fauthenticate(%params)) {

Authentication failed, send them back to the login pA§8TE: It's a good idea to useo_cache() to
make sure that the client browser doesn’t cache the login page.

$r->content_type(‘text/html’);
$r->no_cache(1);
$r->send_http_header;
display_login();

}else {

The user is authenticated, create the cookie Aiche::Cookie

my $c = Apache::Cookie->new($r,
-name => 'secret’,
-value => 'foo’
-expires =>'+3d’,
-path =>'/dealers’

);

NOTE: when setting the ’expires’ tag you must set it vaitiner a leading+ or -, as if either of these is
missing, it will be put literally into the cookie header.

15 Feb 2014 253

10.16 Passing and Preserving Custom Data Structures Between Handlers

Now send them on their way via the authenticated page
$r->content_type(text/html’);
$c->bake;
$r->header_out("Refresh"=>"0;url=/dealers");
$r->no_cache(l);

$r->send_http_header;
$r->print("Authenticated... heading to main page!);

The above code will set the headers to refresh (this is the same syntax as for the HTML meta tag) after O
seconds. The page that is flashed on the screen will have the tex$irsibrént

}

elsif($cookies{secret}) {

If they already have a secret cookie, display the main (protected) page. Don'’t forget to check the validity
of cookie data!

display_main_page();
}
10.16 Passing and Preserving Custom Data Structures
Between Handlers

Let's say that you wrote a few handlers to process a request, and they all need to share some custom Perl
data structure. The pnotes() method comes to your rescue.

a handler that gets executed first

my %my_data = (foo => 'mod_perl’, bar => 'rules’);

$r->pnotes('my_data’ =>\%my_data);

The handler prepares the data in h#shy_data and calls pnotes() method to store the data internally for
other handlers to re-use. All the subsequently called handlers can retrieve the stored data in this way:

my $info = $r->pnotes('my_data’);
print $info->{foo};

prints:
mod_perl

The stored information will be destroyed at the end of the request.

10.17 Passing Notes Between mod_perl and other (non-Perl)
Apache Modules

254 15 Feb 2014

Code Snippets 10.18 Passing Environment Variables Between Handlers

The notes() method can be used to make various Apache modules talk to each other. In the following
shippet the PHP module talks to the mod_perl code (PHP code):

if (isset($user) && substr($user,0,1) =="+") {

apache_note("user", substr($user,1));

virtual("/internal/getquota");

$quota = apache_note("quota");

$usage_pp = apache_note("usage_pp");

$percent_pp = apache_note("percent_pp");

if ($quota)

$message .= " | Using $percent_pp% of $quota_pp limit";

}

The PHP code sets tliserand the username pair using the notes mechanism. Then issuing a sub-request
to a perl handler:

use Apache::Constants qw(REDIRECT OK);

my $r = shift;

my $notes = $r->main->notes();

my ($quota,usage_pp,percent_pp) = getquota($notes->{user}||”);
$r->notes('quota’, $quota);

$r->notes(usage_pp’,$usage_pp);
$r->notes(’percent_pp’,$percent_pp);

return OK;

which retrieves the username from the notes (Usirgmain->notes), uses some getquota() function
to get the quota related data and then sets the acquired data in the notes for the PHP code. Now the PHP
code reads the data from the notes and proceeds with $tteggsage if $quota is set.

So any Apache modules can communicate with each other over the Apache notes() mechanism.

You can use notes along with the sub-request methods lookup_uri() and lookup_filename() too. To make it
work, you need to set a note in the sub-request. For example if you want to call a php sub-request from
within mod_perl and pass it a note, you can do it in the following way:

my $subr = $r->lookup_uri('wizard.php3’);

$subr->notes(answer’ => 42);

$subr->run;

As of the time of this writing you cannot access the parent request tables from a PHP handler, therefore
you must set this note for the sub-request. Whereas if the sub-request is running in the mod_perl domain,
you can always keep the notes in the parent request notes table and access them via the method main():

$r->main->notes('answer’);

10.18 Passing Environment Variables Between Handlers

This is a simple example of passing environment variables between handlers:

15 Feb 2014 255

10.19 Verifying Whether A Request Was Received Over An SSL Connection

Having a configuration:

PerlAccessHandler My::Access
PerlLogHandler My::Log

and instartup.pl
sub My::Access::handler {
my $r = shift;
$r->subprocess_env(TICKET => $$);

$r->notes(TICKET => 3);
}

sub My::Log::handler {
my $r = shift;
my $env = $r->subprocess_env(TICKET');
my $note = $r->notes(TICKET');
warn "env=%env, note=$note\n";

}
Adding %{TICKET}e and%{TICKET}n to theLogFormat for access_log works fine too.

10.19 Verifying Whether A Request Was Received Over An
SSL Connection

Just like$ENV{MODPERLJ}is checked to see whether the code is run under mod$g&W/{HTTPS} is
set by ssl modules and therefore can be used to check whether a request is running over SSL connection.
For example:

print "SSL" if SENV{HTTPS};

If PerlSetupEnv Off setting is in effectBENV{HTTPS} won’t be available, and then:
print "SSL" if $r->subprocess_env(’https’);

should be used instead.

Note that it's also possible to check the scheme:
print "SSL" if Apache::URI->parse($r)->scheme =~ m/*https/;

but it's not one hundred percent certain unless you control the server and you know that you run a secure
server on the port 443.

10.20 CGl::params in the mod_perl-ish Way

You can retrieve the request parameters in a simildGb:params way using this technique:

256 15 Feb 2014

Code Snippets 10.21 Subclassing Apache::Request

my $r = shift; # or $r = Apache->request
my %params = $r->method eq 'POST’ ? $r->content : $r->args;

assuming that all your variables are single key-value pairs.

Also take a look aApache::Request which has the same APl &Gl.pm for extracting and setting
request parameters.

10.21 Subclassing Apache::Request

To subclass a package you simply modify @ISA, for example:
package My:: TestAPR;

use strict;
use vars qw/@ISA/;
@ISA = gw/Apache::Request/;

sub new {
my ($proto, $apr) = @_;
my $class = ref($proto) || $proto;
bless { _r => $apr }, $class;

}
sub param {
my ($self, $key) = @_;
my $apr = $self->{_r};
Here we are calling the Apache::Request object’s param method
$apr->param($key);
}
sub sum {
my ($self, $key) = @_;
my $apr = $self->{_r};
my @values = $apr->param($key);
my $sum = 0;
for (@values) {
$sum +=$_;
}
$sum;
}
1;
END__

10.22 Sending Email from mod_perl

There is nothing special about sending email from mod_perl, it's just that we do it a lot. There are a few
important issues. The most widely used approach is stargegdmail process and piping the headers

and the body to it. The problem is tregndmail is a very heavy process and it makes mod_perl
processes less efficient.

15 Feb 2014 257

10.22 Sending Email from mod_perl

If you don’t want your process to wait until delivery is complete, you carseelimail not to deliver

the email straight away, but either do it in the background or just queue the job until the next queue run.
This can significantly reduce the delay for the mod_perl process which would otherwise have to wait for
the sendmail process to complete. This can be specified for all deliveriesgrdmail.cfor on each
invocation on the sendmail command line:

® -odb (deliver in the background)
e -odg (queue-only) or
® -odd (queue, and also defer the DNS/NIS lookups).

The trend is to move away from sendmail(1) and switch to using lighter mail delivery programs like
gmail(1) or postfix(1). You should check the manpage of your favorite mailer application for equivalent
configuration presented for sendmail(1).

The most efficient approach is to talk directly to the SMTP server. LubldtySMTP modules makes

this very easy. The only problem is whidet::SMTP fails to deliver the mail, because the destination

peer server is temporarily down. But from the other $ide:SMTP allows you to send email much

faster, since you don’t have to invoke a dedicated process. Here is an example of a subroutine that sends
email.

use Net::SMTP ();
use Carp gw(carp verbose);

#
Sends email by using the SMTP Server
#
The SMTP server as defined in Net::Config
Alternatively you can hardcode it here, look for $smtp_server below
#
sub send_mail{
my ($from, $to, $subject, $body) = @_;

carp "From missing" unless defined $from ; # Prefer to exit early if errors
carp "To missing" unless defined $to ;

my $mail_message = <<__ END_OF _MAIL__;
To: $to
From: $from
Subject: $subject

$body

__END_OF_MAIL__
Set this parameter if you don’t have a valid Net/Config.pm
entry for SMTP host and uncomment it in the Net::SMTP->new
call

my $smtp_server = 'localhost’;

init the server
my $smtp = Net::SMTP->new(

258 15 Feb 2014

Code Snippets 10.23 A Simple Handler To Print The Environment Variables

$smtp_server,
Timeout => 60,
Debug =>0,

)i

$smtp->mail($from) or carp ("Failed to specify a sender [$from]\n");
$smtp->to($to) or carp ("Failed to specify a recipient [$to]\n");
$smtp->data([$mail_message]) or carp ("Failed to send a message\n");

$smtp->quit or carp ("Failed to quit\n");

}# end of sub send_mail

10.23 A Simple Handler To Print The Environment Vari-
ables

The code:

package MyEnv;

use Apache;

use Apache::Constants;

sub handler{
my $r = shift;
print $r->send_http_header("text/plain™);
print map {"$_ => $ENV{$_Nn"} keys %ENV;
return OK;

}
1
The configuration:
PerlModule MyEnv
<Location /env>
SetHandler perl-script

PerlHandler MyEnv
</Location>

The invocation:

http://localhost/env

10.24 mod_rewrite in Perl

We can easily implement everything mod_rewrite does in Perl. We do this with help of PerlTransHandler,
which is invoked at the beginning of request processing. For example consider that we need to perform a
redirect based on query string and URI, the following handler does that.

package Apache::MyRedirect;

use Apache::Constants gw(OK REDIRECT);

use constant DEFAULT_URI => "http://www.example.org’;

sub handler {

15 Feb 2014 259

10.25 URI Rewrite in PerlTransHandler

my $r = shift;

my %args = $r->args;

my $path = $r->uri;

my $uri = (($args{’'uri’}) ? $args{’'uri’} : DEFAULT_URI) . $path;
$r->header_out(Location => $uri);

$r->status(REDIRECT);

$r->send_http_header;

return OK;
}

Set it up inhttpd.confas:
PerlTransHandler Apache::MyRedirect

The code consists of three parts: request data retrieval, deciding what to do based on this data and finally
setting the headers and the status and issuing redirect.

So if a client submits a request of this kind:

http://www.example.com/news/?uri=http://www2.example.com/

$uri will holdhttp://www?2.example.com/neysid that's where the request will be redirected.

10.25 URI Rewrite in PerlTransHandler

Suppose that before a content handler is invoked you want to make this translation:

[articles/10/index.html => /articles/index.html?id=10

This TransHandlerwill do that for you:

My/Trans.pm
package My::Trans;
use Apache::Constants qw(:common);
sub handler {
my $r = shift;
my $uri = $r->uri;
my ($id) = ($uri =~ m|Varticles/(.*?)/|);
$r->uri("/articles/index.html");
$r->args("id=$id");
return DECLINED;

}
1
and inhttpd.conf

PerlModule My::Trans
PerlTransHandler My::Trans

260 15 Feb 2014

http://www2.example.com/news/

Code Snippets 10.26 Setting PerlHandler Based on MIME Type

The handler code retrieves the request object and the URI. Then it retrieickadimg the regular expres-
sion. Finally it sets the new value of the URI and the arguments string. The handlerD&GtisIEDso
the default Apache transhandler will take care of URI to filename remapping.

Notice the technique to set the arguments. By the time the Apache-request object has been created, argu-
ments are handled in a separate slot, so you cannot just push them into the original URI. Therefore the
args() method should be used.

10.26 Setting PerlHandler Based on MIME Type

It's very easy to implement a dispatching module based on the MIME type of request. So a different
content handler will be called for a different MIME type. This is an example of such a dispatcher:

package My::MimeTypeDispatch;
use Apache::Constants qw(DECLINED);

my %mime_types = (

‘text/html’ =>\&HTML::Template::handler,
‘text/plain’ => \&My:: Text::handler,

)i

sub handler {
my $r = shift;
if (my $h = $mime_types{$r->content_type}) {
$r->push_handlers(PerlHandler => $h);
$r->handler('perl-script’);

}
return DECLINED;

}
1;
END__

And in httpd.confwe add:

PerlFixupHandler My::MimeTypeDispatch

After declaring the package name and importing constants, we set a translation table of MIME types and
corresponding handlers to be called. Then comes the handler, where the request object is retrieved and if
its MIME type is found in our translation table we set the handler that should handle this request. Other-
wise we do nothing. At the end we ret@ECLINEDso some other fixup handler could take over.

10.27 SSI and Embperl -- Doing Both

This handler lets you use both SSI and Embperl in the same request:

Use it in a<FilesMatch> Section or similar:

PerlIModule Apache::EmbperlFilter Apache::SSI
<FilesMatch "\.epl">

PerlSetVar Filter On

PerlHandler Apache::EmbperlFilter Apache::SSI

15 Feb 2014 261

10.28 Getting the Front-end Server's Name in the Back-end Server

</FilesMatch>
package Apache::EmbperlFilter;

use Apache::Util gw(parsedate);
use HTML::Embperl;

use Apache::SSlI ();

use Apache::Constants;

use strict;
use vars qw($VERSION);

$VERSION ='0.03’;
my ($r, Yoparam, $input, $output);

sub handler {
$r = shift;
my ($fh, $status) = $r->filter_input();
unless ($status == OK) {
return $status

local $/ = undef;
$input = scalar(<$fh>);
Y%param = ();
$param{input} = \$input;
$param{req_rec} = $r;
$param{output} = \$output;
$param{mtime} = mtime();
$param{inputfile} = $r->filename();
HTML::Embperl::ScanEnvironement(\%param);
HTML::Embperl::Execute(\%param);
print $output;
return OK;

}

sub mtime {

my $mtime = undef;
if (my $last_modified = $r->headers_out->{’Last-Modified’}) {
$mtime = parsedate $last_modified;

}
$mtime;

}

1;
END__

10.28 Getting the Front-end Server's Name in the Back-end
Server

Assume that you have more than one front-end server, and you want to dynamically figure out the
front-end server name in the back-end server. mod_proxy and mod_rewrite provide the solution.

262 15 Feb 2014

Code Snippets 10.29 Authentication Snippets

Compile apache with both mod_proxy and mod_rewrite, then use a directive something like this:
RewriteEngine On
RewriteLog /somewhere/rewrite.log
RewriteLogLevel 3

RewriteRule ~foo/bar(.*)$ \
http://example.com:8080/foo/bar/$1?IP=%{REMOTE_HOST} [QSA,P]

This will have all the urls starting witltsome/urlproxied off to the other server at the same url. It will
append th&kEMOTE_HOSHeader as a query string argument. (QSA = Query String Append, P = Proxy).
There is probably a way to remap it as an X-Header of some sort, but if query string is good enough for
you, then this should work really nicely.

10.29 Authentication Snippets

Getting the authenticated usernan$:>connection->user() , or $SENV{REMOTE_USERJif
you're in a CGIl emulation.

Example:
my $r = shift;

my ($res, $sent_pwd) = $r->get_basic_auth_pw;
return $res if $res; #decline if not Basic

my $user = $r->connection->user;

10.30 Emulating the Authentication Mechanism

You can provide your own mechanism to authenticate users, instead of the standard one. If you want to
make Apache think that the user was authenticated by the standard mechanism, set the username with:

$r->connection->user('username’);

Now you can use this information for example during the logging, so that you can have your "username"
passed as if it was transmitted to Apache through HTTP authentication.

10.31 An example of using Apache::Session::DBI with
cookies

META: should be annotated at some point. (an example was posted to the mod_perl list)
use strict;
use DBI;
use Apache::Session::DBI;
use CGil;

#1.]

15 Feb 2014 263

10.32 Detecting a Client Abort

Initiate a session ID
my $session = ();
my $opts = { autocommit => 0,
lifetime =>3600}; # 3600 is one hour

Read in the cookie if this is an old session

my $r = Apache->request;

my $no_cookie = ";

my $cookie = $r->header_in('Cookie’);

{
eliminate logging from Apache::Session::DBI’s use of ‘warn’
local $"W = 0;

if (defined($cookie) && $cookie ne) {
$cookie =~ s/SESSION_ID=(\w*)/$1/;
$session = Apache::Session::DBI->open($cookie, $opts);
$no_cookie =Y’ unless defined($session);

Could have been obsolete - get a new one
$session = Apache::Session::DBI->new($opts) unless defined($session);

}

Might be a new session, so let’s give them a cookie back
if (! defined($cookie) || $no_cookie) {
local $"W = 0;

my $session_cookie = "SESSION_ID=$session->{'_ID'}";
$r->header_out("Set-Cookie" => $session_cookie);

}

10.32 Detecting a Client Abort

META: should be annotated at some point. (an example was posted to the mod_perl list)

IsClientConnected? Might already be disconnected for busy
site, if a user hits stop/reload
my $conn = $r->connection;
my $is_connected = $conn->aborted ? 0 : 1;
if ($is_connected) {
my $fileno = $conn->fileno;
if (defined $fileno) {
my $s = 10::Select->new($fileno);
$is_connected = $s->can_read(0) ? 0: 1;
}
}

More comments in this thredd: http://marc.theaims-
[group.com/?I=apache-modperl&m=100057943909683&w=2

264 15 Feb 2014

http://marc.theaimsgroup.com/?l=apache-modperl&m=100057943909683&w=2
http://marc.theaimsgroup.com/?l=apache-modperl&m=100057943909683&w=2

Code Snippets 10.33 Using DESTROY to Finalize Output

10.33 Using DESTROY to Finalize Output

Well, as always with Perl -- TMTOWTDI (There’s More Than One Way To Do It), one of the readers is
usingDESTROYo finalize output, and as a cheap means of buffering.

package buffer;
use Apache;

sub new {
my $class = shift;
my $self = bless {
' => shift,
‘message’ =>""
}, $class;
$self->{apr} = Apache::Request->new($self->{r},
POST_MAX=>(32*1024));
$self->content_type(‘text/plain’);
$self->{r}->no_cache(1);

}

sub message {

my $self = shift;

$self->{message} .= join("\n", @_);
}

sub DESTROY {
my $self = shift;
$self->{apr}->send_http_header;
$self->{apr}->print($self->{message});
}
1
Now you can have perl scripts like:

use buffer;
my $b = new buffer(shift);

$b->message(p("Hello World"));
end

and save a bunch of duplicate code across otherwise inconvenient gaggles of small scripts.

But suppose you also want to redirect the client under some circumstances, and send the HTTP status code
302. You might try this:

sub redir {
my $self = shift;
$self->{redirect} = shift;
exit;

}

15 Feb 2014 265

10.33 Using DESTROY to Finalize Output

and re-cod®ESTROs:

sub DESTROY {
my $self = shift;
if ($self->{redirect}) {
$self->{apr}->status{REDIRECT};
$self->{apr}->header_out("Location", $self->{redirect});
$self->{apr}->send_http_header;
$self->{apr}->print($self->{redirect});
}else {
$self->{apr}->send_http_header;
$self->{apr}->print($self->{message});
}
}

But you'll find that while the browser redirects itself, mod_perl logs the result code as 200. It turns out
that status() only touches the Apache response, and the log message is determined by the Apache return
code.

Aha! So we’ll change the exit() in redir() to exit(REDIRECT). This fixes the log code, but causes a bogus
"[error] 302" line in theerror_log. That comes fromApache::Registry

my $errsv =",

if($@) {
$errsv = $@;
$@ ="; #XXX fix me, if we don't do this Apache::exit() breaks
$@{$uri} = $errsv;

}

if($errsv) {
$r->log_error($errsv);
return SERVER_ERROR unless $Debug && $Debug & 2;
return Apache::Debug::dump($r, SERVER_ERROR);

}

So you see that any time the return code cab@e return true, we’ll get an error line. Not wanting this,
what can we do?

We can hope that a future version of mod_perl will allow us to set the HTTP result code independent from
the handler return code (perhaps a log_status() method? or at least an
Apache::LOG_HANDLER_RESULTconfig variable?).

In the meantime, thereApache::RedirectLogFix , distributed with mod_perl.

Add to yourhttpd.conf
PerlLogHandler Apache::RedirectLogFix

and take a look at the source code below. Note that it requires us to return the HTTP status code 200.
package Apache::RedirectLogFix;

use Apache::Constants qw(OK DECLINED REDIRECT);

266 15 Feb 2014

Code Snippets 10.34 Passing Arguments to a SSI script

sub handler {
my $r = shift;
return DECLINED unless $r->handler && ($r->handler eq "perl-script");
if(my $loc = $r->header_out("Location")) {
if($r->status == 200 and substr($loc, 0, 1) ne "/") {

$r->status(REDIRECT);
return OK

}

}
return DECLINED;
}

1

Now, if we wanted to do the same sort of thing for an error 500 handler, we could write &wther
LogHandler (call it ServerErrorLogFix). But we’ll leave that as an exercise for the reader, and
hope that it won't be needed in the next mod_perl release. After all, it's a little awkward to need a
LogHandler to clean up after ourselves....

10.34 Passing Arguments to a SSI script

Consider the following\pache::Include shippet:

<!--#perl sub="Apache::Include" arg="/perl/ssi.pl" -->

Now if you want to pass arguments, you cannot do that Apidche::Include . The solution is to
define a subroutine that's pulled in at the startup:

sub My::ssi {
my ($r, $one, $two, $three) = @_;

}
In the html file:

<I--#perl sub="My::ssi" arg="one" arg="two" arg="three" -->

10.35 Setting Environment Variables For Scripts Called
From CGl.

Perl usesh() for itssystem() andopen() calls. So if you want to set a temporary variable when
you call a script from your CGI you do something like this:

open UTIL, "USER=stas ; script.pl | " or die "...: $!\n";

or

15 Feb 2014 267

10.36 Mysql Backup and Restore Scripts

system "USER=stas ; script.pl";

This is useful, for example, if you need to invoke a script that uses CGl.pm from within a mod_perl script.
We are tricking the Perl script into thinking it's a simple CGl, which is not running under mod_perl.

open(PUBLISH, "GATEWAY_INTERFACE=CGI/1.1 ; script.cgi
\"paraml=valuel¶m2=value2\" |") or die "...: $\n";

Make sure that the parameters you pass are shell safe -- all "unsafe" characters like single-quote and
back-tick should be properly escaped.

Unfortunately mod_perl uses fork() to run the script, so you have probably thrown out the window most of
the performance gained from using mod_perl. To avoid the fork, change script.cgi to a module containing
a subroutine which you can then call directly from your mod_perl script.

10.36 Mysgl Backup and Restore Scripts

This is somewhat off-topic, but since many of us use mysqgl or some other RDBMS in their work with
mod_perl driven sites, it's good to know how to backup and restore the databases in case of database
corruption.

First we should tell mysql to log all the clauses that modify the databases (we don'’t care about SELECT
gueries for database backups). Modify siaée_mysql script by adding the-log-updateoptions to the

mysql server startup parameters and restart the server. From now on all the non-select queries will be
logged to thevar/lib/mysqgl/www.bar.cortogfile. Your hostname will show up insteadveivw.bar.com

Now create alumpdirectory undefvar/lib/mysqll That's where the backups will be stored (you can name
the directory as you wish of course).

Prepare the backup script and store it in a file,/aggflocal/sbin/mysql/mysql.backup.pl

This is the original codeode/mysql-3.22.29 backup.pl
#!/usr/bin/perl -w

this script should be run from the crontab every night or in shorter
intervals. This scripts does a few things.

1. dump all the tables into a separate dump files (these dump files
are ready for DB restore)

2. backups the last update log file and create a new log file

use strict;

my $data_dir = "/var/lib/mysql";

my $update_log = "$data_dir/www.bar.com";

my $dump_dir = "$data_dir/dump";

my $gzip_exec = "/bin/gzip";

my @db_names = qw(bugs mysql bonsai);

my $mysql_admin_exec = "/usr/bin/mysgladmin ";

convert unix time to date + time
my ($sec,$min,$hour,$mday,$mon,$year) = localtime(time);

268 15 Feb 2014

Code Snippets 10.36 Mysql Backup and Restore Scripts

my $time = sprintf("%0.2d:%0.2d:%0.2d",$hour,$min,$sec);
my $date = sprintf("%0.2d.%0.2d.9%60.4d",++$mon,$mday,$year+1900);
my $timestamp = "$date.$time";

dump all the DBs we want to backup

foreach my $db_name (@db_names) {
my $dump_file = "$dump_dir/$timestamp.$db_name.dump";
my $dump_command = "/usr/bin/mysgldump -c -e -l -q --flush-logs $db_name > $dump_file";
system $dump_command;

}

move update log to backup for later restore if needed
rename $update_log, "$dump_dir/$timestamp.log" if -e $update_log;

restart the update log to log to a new file!
‘/usr/bin/mysgladmin refresh’;

compress all the created files
system "$gzip_exec $dump_dir/$timestamp.*";

This is the code modified to work with mysql-3.22.3fbde/mysql-3.22.30+_backup.pl

#!/usr/bin/perl -w

this script should be run from the crontab every night or in shorter
intervals. This scripts does a few things.

1. dump all the tables into a separate dump files (these dump files
are ready for DB restore)

2. backups the last update log file and create a new log file

#This script originates from the perl.apache.org site, but | have adapted it to work
#properly with the newer versions of MySQL, where the log files are named differently
#WVW 14/02/2000 w@ba.be

use strict;

my $data_dir = "/var/lib/mysql";

my $update_log = "$data_dir/central2.001";

my $dump_dir = "$data_dir/backup";

my $gzip_exec = "/bin/gzip";

my @db_names = qw(mysql besup);

my $mysqgl_admin_exec = "/usr/bin/mysgladmin *;
my $hostname = "central2";

my $password = "babedb";

convert unix time to date + time

my ($sec,$min,$hour,$mday,$mon,$year) = localtime(time);

my $time = sprintf("%0.2d:%0.2d:%0.2d",$hour,$min,$sec);

my $date = sprintf("%0.2d.%0.2d.%0.4d",++$mon,$mday,$year+1900);
my $timestamp = "$date.$time";

dump all the DBs we want to backup

foreach my $db_name (@db_names) {
my $dump_file = "$dump_dir/$timestamp.$db_name.dump";
my $dump_command = "/usr/bin/mysgldump -c -e -l -q --flush-logs -p$password $db_name > $dump_file";
system $dump_command;

}

mkdir "$dump_dir/$timestamp.log", 0;
‘mv $data_dir/$hostname.[0-9]* $dump_dir/$timestamp.log’;

move update log to backup for later restore if needed

15 Feb 2014 269

10.36 Mysql Backup and Restore Scripts

#rename $update_log, "$dump_dir/$timestamp.log" if -e $update_log;

restart the update log to log to a new file!
‘lusr/bin/mysgladmin refresh -p$password’;

compress all the created files

system "$gzip_exec $dump_dir/$timestamp.log/*";
system "$gzip_exec $dump_dir/$timestamp.*.dump*";

You might need to change the executable paths according to your system. List the names of the databases
you want to backup using tlid_names array.

Here is another version usifige::Backup
#!/usr/bin/perl
written by Miroslav Madzarevic, mire@modperldev.com
use strict;

umask 0177;

use File::Backup qw|backup|;

backup(
from’ ="
'to’ => "/opt/backup/mysql/backup",
‘torootname’ => "example_backup_",
'keep’ =>4,
‘tar’ => "[usr/bin/mysqldump",
‘compress’ =>"/usr/bin/bzip2",
‘tarflags’ => "example -uroot -proot_pass -a >",

‘compressflags’ =>"",
‘tarsuffix’ =>".sql’,

);

Now make the script executable and arrange the crontab entry to run the backup script nightly. Note that
the disk space used by the backups will grow without bound and you should remove the old backups. Here
is a sample crontab entry to run the script at 4am every day:

0 4 * * * Jusr/local/sbin/mysqgl/mysqgl.backup.pl > /dev/null 2>&1

So now at any moment we have the dump of the databases from the last execution of the backup script and
the log file of all the clauses that have updated the databases since then. If the database gets corrupted we
have all the information to restore it to the state it was in at our last backup. We restore it with the follow-
ing script, which | put infusr/local/sbin/mysql/mysql.restore.pl

This is the original codeode/mysql-3.22.29_restore.pl
#!/usr/bin/perl -w

this scripts restores the DBs

Usage: mysql.restore.pl update.log.gz dump.db1.gz [... dump.dbn.gz]

all files dump* are compressed as we expect them to be created by
mysql.backup utility

270 15 Feb 2014

Code Snippets

example:
% mysql.restore.pl myhostname.log.gz 12.10.1998.16:37:12.*.dump.gz

.dump.gz extension.
use strict;
use FindBin qw($Bin);

my $data_dir = "/var/lib/mysql";

my $dump_dir ="$data_dir/dump";

my $gzip_exec = "/bin/gzip";

my $mysql_exec = "usr/bin/mysqgl -f *;

my $mysql_backup_exec = "$Bin/mysqgl.backup.pl";
my $mysql_admin_exec = "/usr/bin/mysgladmin ";

my $update_log_file =";
my @dump_files = ();

split input files into an update log and the dump files
foreach (@ARGV) {
push(@dump_files, $_),next unless N\.log\.gz/;
$update_log_file=3$_;
}

die "Usage: mysql.restore.pl update.log.gz dump.dbl.9z [... dump.dbn.gz]\n"

unless defined @dump_files and @dump_files > 0;

load the dump files
foreach (@dump_files) {

check the file exists
warn("Can't locate $_"),next unless -e $_;

extract the db name from the dump file
my $db_name = $1 if Ad\d\.\d\d.\d\d.\d\d:\d\d:\d\d\.(\w+)\.dump\.gz/;

warn("Can’t extract DB name from the file name,
probably an error in the file format"),
next unless defined $db_name and $db_name;

we want to drop the table since restore will rebuild it!

force to drop the db without confirmation
my $drop_command = "$mysql_admin_exec -f drop $db_name";
system $drop_command;

$drop_command = "$mysql_admin_exec create $db_name";
system $drop_command;

build the command and execute it
my $restore_command = "$gzip_exec -cd $_ | $mysql_exec $db_name";
system $restore_command;

}

now load the update_log file (update the db with the changes since
the last dump
warn("Can't locate $update_log_file"),next unless -e $update_log_file;

15 Feb 2014

10.36

Mysqgl Backup and Restore Scripts

271

10.36 Mysql Backup and Restore Scripts

my $restore_command =
"$gzip_exec -cd $update_log_file |[$mysql_exec";
system $restore_command;

rerun the mysql.backup.pl since we have reloaded the dump files
and update log , and we must rebuild backups!
system $mysql_backup_exec;

This is the code modified to work with mysql-3.22.3fbde/mysql-3.22.30+_restore.pl
#!/usr/bin/perl -w
this scripts restores the DBs

Usage: mysql.restore.pl update.log.gz dump.db1.gz [... dump.dbn.gz]
all files dump* are compressed as we expect them to be created by
mysql.backup utility

example:
% mysql.restore.pl myhostname.log.gz 12.10.1998.16:37:12.*.dump.gz

.dump.gz extension.
use strict;
use FindBin qw($Bin);

my $data_dir = "/var/lib/mysqgl";

my $dump_dir = "$data_dir/backup”;

my $gzip_exec = "/bin/gzip";

my $mysql_exec = "/usr/bin/mysgl -f -pbabedb";

my $mysql_backup_exec = "$Bin/mysql_backup.pl";

my $mysql_admin_exec = "/usr/bin/mysqgladmin -pbabedb";

my $update_log_dir =";
my @dump_files = ();

split input files into an update log and the dump files
foreach (@ARGV) {
push(@dump_files, $_),next unless N.log/;
$update_log_dir=$_;
}

die "Usage: mysgl.restore.pl update.log.dir dump.dbl.gz [... dump.dbn.gz]\n"
unless defined @dump_files and @dump_files > 0;

load the dump files
foreach (@dump_files) {

check the file exists
warn("Can’t locate $_"),next unless -e $_;

extract the db name from the dump file
my $db_name = $1 if Ad\d\.\d\d.\d\d\d\d.\d\d:\d\d:\d\d\.(\w+)\.dump\.gz/;

warn("Can't extract DB name from the file name,

272 15 Feb 2014

Code Snippets 10.37 Maintainers

probably an error in the file format"),
next unless defined $db_name and $db_name;

we want to drop the table since restore will rebuild it!

force to drop the db without confirmation

my $drop_command = "$mysql_admin_exec -f drop $db_name";
system $drop_command;

$drop_command = "$mysql_admin_exec create $db_name";
system $drop_command;

build the command and execute it
my $restore_command = "$gzip_exec -cd $_ | $mysql_exec $db_name";
system $restore_command;

}

now load the update_log file (update the db with the changes since
the last dump
warn("Can't locate $update_log_dir"),next unless -d $update_log_dir;

my $restore_command =
"$gzip_exec -cd $update_log_dir/* |[$mysql_exec";
system $restore_command;
rerun the mysql.backup.pl since we have reloaded the dump files

and update log , and we must rebuild backups!
system $mysql_backup_exec;

These are kinda dirty scripts, but they work... if you come up with cleaner scripts, please contribute them...
thanks

Update: there is now a "mysqlhotcopy" utility distributed with MySQL that can make an atomic snapshot
of a database. (by Tim Bunce) So you may consider using it instead.

10.37 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

10.38 Authors

e Stas Bekmar) [http://stason.qrg/]

e Alan Bailward, <alan (at) ufies.org>

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 273

http://stason.org/
http://stason.org/

11 Apache::* modules

11 Apache::* modules

274 15 Feb 2014

Apache::* modules 11.1 Description

11.1 Description

Overview of some of the most popular modules for mod_perl, both to use directly from your code and as
mod_perl handlers.

Over the time, mod_perl has collected an impressive amount of modules which are distributed in the stan-
dard Perl way, over CPAN. Found in tApache:: namespace, these implement various functionalities

you might need when creating a mod_perl-based website. For mod_perl, we can actually make a distinc-
tion between two types of modules:

® Apache handlers, which handle request phases or whole requests and are standalone
(Apache::GTopLimit for example).

e Convenience modules, which are like standard Perl modules, implementing some useful aspect of
web programming, usually using mod_perl API for a greater performance or functionality unavail-
able in plain Perl. (A good example of thisAipache::Session .) These modules exist under the
Apache:: namespace because they can only be used under mod_perl.

For a complete list of modules, see the Apache/Perl Modules .

11.2 Apache::Session - Maintain session state across HTTP
requests

This module provides the Apache/mod_perl user with a mechanism for storing persistent user data in a
global hash, which is independent of the underlying storage mechanism. Currently you can choose from
these storage mechanisigache::Session::DBI , Apache::Session::Win32 ,

Apache::Session::File , Apache::Session::IPC . Read the man page of the mechanism you
want to use for a complete reference.

Apache::Session provides persistence to a data structure. The data structure has an ID number, and
you can retrieve it by using the ID number. In the case of Apache, you would store the ID number in a
cookie or the URL to associate it with one browser, but the method of dealing with the ID is completely up
to you. The flow of things is generally:

Tie a session to Apache::Session.
Get the ID number.

Store the ID number in a cookie.
End of Request 1.

(time passes)
Get the cookie.
Restore your hash using the ID number in the cookie.

Use whatever data you put in the hash.
End of Request 2.

15 Feb 2014 275

11.2 Apache::Session - Maintain session state across HTTP requests

Using Apache::Session is easy: simply tie a hash to the session object, stick any data structure into
the hash, and the data you put in automatically persists until the next invocation. Here is an example which
uses cookies to track the user’s session.

pull in the required packages
use Apache::Session::DBI;
use Apache;

use strict;

read in the cookie if this is an old session
my $r = Apache->request;

my $cookie = $r->header_in('Cookie);
$cookie =~ s/ISESSION_ID=(\w*)/$1/;

create a session object based on the cookie we got from the
browser, or a new session if we got no cookie
my %session;
tie %session, 'Apache::Session::DBI’, $cookie,
{DataSource => 'dbi:mysql:sessions’,
UserName => $db_user,
Password => $db_pass

I3

might be a new session, so lets give them their cookie back
my $session_cookie = "SESSION_ID=$session{_session_id};";
$r->header_out("Set-Cookie" => $session_cookie);

After setting this up, you can stick anything you want ¥session (except file handles and code refer-
ences and usingsession_iJj and it will still be there when the user invokes the next page.

It is possible to write an Apache authentication handler usperhe::Session . You can put your
authentication token into the session. When a user invokes a page, you open their session, check to see if
they have a valid token, and authenticate or forbid based on that.

By way of comparison note that IIS’s sessions are only valid on the same web server as the one that issued
the sessionApache::Session ’'s session objects can be shared amongst a farm of many machines
running different operating systems, including even Win32. IIS stores session information in RAM.
Apache::Session stores sessions in databases, file systems, or RAM. IIS’s sessions are only good for
storing scalars or arrayApache::Session 's sessions allow you to store arbitrarily complex objects.

IIS sets up the session and automatically tracks it for you. ¥Aptche::Session , you setup and

track the session yourself. IS is proprietaryApache::Session is open-source.
Apache::Session::DBI can issue 400+ session requests per second on light Celeron 300A running
Linux. 11S?

An alternative to Apache::Session is Apache::ASP , which has session tracking abilities.

HTML::Embperl hooks intoApache::Session for you.

276 15 Feb 2014

Apache::* modules 11.3 Apache::DBI - Initiate a persistent database connection

11.3 Apache::DBI - Initiate a persistent database connection

See mod_perl and relational Databases

11.4 Apache::Watchdog::RunAway - Hanging Processes
Monitor and Terminator

This module monitors hanging Apache/mod_perl processes. You define the time in seconds after which
the process is to be countednasgingor run away

When the process is considered tdbagingit will be killed and the event logged in a log file.

Generally you should use trmmprapmon program that is bundled with this module’s distribution
package, but you can write your own code using the module as well. Sampheomonmanpage for
more information about it.

Note that it requires th&pache::Scoreboard module to work.

Refer to theApache::Watchdog::RunAway manpage for the configuration details.

11.5 Apache::VMonitor -- Visual System and Apache Server
Monitor

Apache::VMonitor is the next generation pf mod_stgtus. It provides all the information mod_status
provides and much more.

This module emulates the reporting functions of the top(), mount(), df() and ifconfig() utilities. There is a
special mode for mod_perl processes. It has visual alert capabilities and a configutailatic refresh
mode. It provides a Web interface, which can be used to show or hide all the sections dynamically.

The are two main modes:
® Multi processes mode -- All system processes and information is shown.
® Single process mode -- In-depth information about a single process is shown.

The main advantage of this module is that it reduces the need to telnet to the machine in order to monitor
it. Indeed it provides information about mod_perl processes that cannot be acquired from telneting to the
machine.

11.5.0.1 Configuration

Configuration in httpd.conf

<Location /sys-monitor>
SetHandler perl-script
PerlHandler Apache::VMonitor

15 Feb 2014 277

11.6 Apache::GTopLimit - Limit Apache httpd processes

</Location>

startup file or <Perl> section:

use Apache::VMonitor();
$Apache::VMonitor::Config{BLINKING} = 0; # Blinking is evil
$Apache::VMonitor::Config{REFRESH} = 0;
$Apache::VMonitor::Config{VERBOSE} = 0;
$Apache::VMonitor::Config{SYSTEM} =1,
$Apache::VMonitor::Config{APACHE} =1,
$Apache::VMonitor::Config{PROCS} =1,
$Apache::VMonitor::Config{MOUNT} =1,
$Apache::VMonitor::Config{FS_USAGE} = 1,
$Apache::VMonitor::Config{NETLOAD} = 1,

@Apache::VMonitor::NETDEVS = qw(lo eth0);
$Apache::VMonitor::PROC_REGEX = join "\|", gw(httpd mysql squid);

More information is available in the module’s extensive manpage.

It requiresApache::Scoreboard andGTop to work.GTop in turn requires thébgtop library but
is not available for all platforms. See the docs in the source at
[ftp://ftp.gnome.org/pub/GNOME/stable/sources/dtop/ to check whether your platform/flavor is supported.

11.6 Apache::GTopLimit - Limit Apache httpd processes

This module allows you to kill off Apache processes if they grow too large or if they share too little of
their memory. You can choose to set up the process size limiter to check the process size on every request:

The module is thoroughly explained in the secfion: Preventing Your Processes from Growing

11.7 Apache::Request (libapreq) - Generic Apache Request
Library

This package contains modules for manipulating client request data via the Apache API with Perl and C.
Functionality includes:

® parsing of application/x-www-form-urlencoded data
e parsing of multipart/form-data
e parsing of HTTP Cookies

The Perl modules are simply a thin xs layer on top of libapreq, making them a lighter and faster alternative
to CGl.pm and CGl::Cookie. See tApache::Request andApache::Cookie = documentation for
more details and eg/perl/ for examples.

Apache::Request and libapreq are tied tightly to the Apache API, to which there is no access in a
process running under mod_cgi.

278 15 Feb 2014

ftp://ftp.gnome.org/pub/GNOME/stable/sources/gtop/

Apache::* modules 11.8 Apache::RequestNotes - Allow Easy, Consistent Access to Cookie and Form Data Across Each Request Phase

(Apache::Request)

11.8 Apache::RequestNotes - Allow Easy, Consistent Access
to Cookie and Form Data Across Each Request Phase

Apache::RequestNotes provides a simple interface allowing all phases of the request cycle access
to cookie or form input parameters in a consistent manner. Behind the scenes, it uses libapreq
Apache::Request) functions to parse request data and puts references to thenas ()

Once the request is past the Perlinit phase, all other phases can have access to form input and cookie data
without parsing it themselves. This relieves some strain, especially when the GET or POST data is
required by numerous handlers along the way.

See theApache::RequestNotes manpage for more information.

11.9 Apache::PerlRun - Run unaltered CGI scripts under
mod_perl

Seq Apache::PerlRun - a closer lpok.

11.10 Apache::RegistryNG -- Apache::Registry New Gener-
ation

Apache::RegistryNG is the same a8pache::Registry , aside from using filenames instead of
URIs for namespaces. This feature ensures that if the same CGI script is requested from different URIs
(e.g. different hostnames) it'll be compiled and cached only once, thus saving memory.

Apache::RegistryNG uses an Object Oriented interface.

PerIModule Apache::RegistryNG
<Location /perl>

SetHandler perl-script

PerlHandler Apache::RegistryNG->handler
</Location>

Apache::RegistryNG inherits fromApache::PerlRun , but the handler() is overridden. Aside

from the handler(), the rest ofApache::PerlRun contains all the functionality of
Apache::Registry broken down into several subclass-able methods. These methods are used by
Apache::RegistryNG to implement the exact same functionality Afache::Registry , using

theApache::PerlRun methods.

There is no compelling reason to u§eache::RegistryNG overApache::Registry , unless you
want to do add or change the functionality of the exisRegistry.pmor if you want to use filenames
instead of URIs for namespaces. For examplpache::RegistryBB (Bare-Bones) is another
subclass that skips the stat() call performedpgche::Registry on each request.

15 Feb 2014 279

11.11 Apache::RegistryBB -- Apache::Registry Bare Bones

11.11 Apache::ReqistryBB -- Apache::Reqistry Bare Bones

It works just likeApache::Registry , but does not test the x bit (-x file test for executable mode), only
compiles the file once (no stat() call is made per request), skifi3Rfie EXECCGkhecks and does not
chdir() into the script parent directory. It uses the Object Oriented interface.

Configuration:

PerlIModule Apache::RegistryBB
<Location /perl>

SetHandler perl-script

PerlHandler Apache::RegistryBB->handler
</Location>

11.12 Apache::OutputChain -- Chain Stacked Perl Handlers

Apache::OutputChain was written as a way of exploring the possibilities of stacked handlers in mod_perl.
It ties STDOUT to an object which catches the output and makes it easy to build a chain of modules that
work on output data stream.

Examples of modules that are build on this ideaAache::SSIChain , Apache::GzipChain and
Apache::EmbperiChain -- the first processes the SSI's in the stream, the second compresses the
output on the fly, the last adds Embperl processing.

The syntax goes like this:

<Files *.html>

SetHandler perl-script

PerlHandler Apache::OutputChain Apache::SSIChain Apache::PassHtml
</Files>

The modules are listed in the reverse order of their execution -- heApdicbe::PassHtml module
simply picks a file’s content and sends it to STDOUT, then it's processékpaghe::SSIChain
which sends its output to STDOUT again. Then it's processedpache::OutputChain , Which
finally sends the result to the browser.

An alternative to this approach Agpache::Filter , which has a more naturdrward configuration
order and is easier to interface with other modules.

It works with Apache::Registry as well, for example:

Alias /foo /home/httpd/perl/foo
<Location /foo>

SetHandler "perl-script"

Options +ExecCGl

PerlHandler Apache::OutputChain Apache::GzipChain Apache::Registry
</Location>

280 15 Feb 2014

Apache::* modules 11.13 Apache::Filter - Alter the output of previous handlers

It's really a regulaApache::Registry setup, except for the added modules in the PerlHandler line.

(Apache::GzipChain allows to compress the output on the fly.)

11.13 Apache::Filter - Alter the output of previous handlers

Apache::Filter , like Apache::OutputChain , allows you to chain stacked handlers. It's not very
different fromApache::OutputChain , except for the way you configure the filters. A normal config-
uration withApache::Filter would be the following:

PerlIModule Apache::Filter Apache::RegistryFilter Apache::SSI Apache::Gzip
Alias /perl /nome/httpd/perl
<Location /perl>

SetHandler "perl-script"”

Options +ExecCGl

PerlSetVar Filter On

PerlHandler Apache::RegistryFilter Apache::SSI Apache::Gzip
</Location>

This accomplishes some things many CGI programmers want: you can output SSI code from your
Apache::Registry scripts, have it parsed bwypache::SSI , and then compressed with
Apache::Gzip (see Apache::Gzip below).

Thanks toApache::Filter , You can also write your own filter modules, which allow you to read in
the output from the previous handler in the chain and modify it. You would do something like this in your
handler subroutine:

$r = $r->filter_register(); # Required
my $fh = $r->filter_input(); # Optional (you might not need the input FH)
while (<$fh>) {
s/ something / something else /;
print;
}

Another interesting thing to do withpache::Filter would be to use it for XML output from your
scripts(these modules are hypothetical, this is handled much better by AxKit, Matt Seargeant’s XML
application server for mod_perl (3ee _http://www.axkitforg/).

<Location /perl/xml-output>

SetHandler perl-script

Options +ExecCGil

PerlSetVar Filter On

PerlHandler Apache::RegistryFilter Apache::XSLT
</Location>

As you can see, you can get a lot of freedom by using stacked handlers, allowing you to separate various
parts of your programs and leave those tasks up to other modules, which may already be available from
CPAN (this is much better than the CGI time when your script would havedweedgthingitself, because

you couldn’t do much with its output).

15 Feb 2014 281

http://www.axkit.org/

11.14 Apache::GzipChain - compress HTML (or anything) in the OutputChain

11.14 Apache::GzipChain - compress HTML (or anything)
in the OutputChain

Have you ever served a huge HTML file (e.g. a file bloated with JavaScript code) and wondered how
could you send it compressed, thus dramatically cutting down the download times? After all Java applets
can be compressed into a jar and benefit from faster download times. Why can’'t we do the same with plain
ASCII (HTML, JS etc.)? ASCII text can often be compressed by a factor of 10.

Apache::GzipChain comes to help you with this task. If a client (browser) undersigaigs encod-
ing, this module compresses the output and sends it downstream. The client decompresses the data upon
receipt and renders the HTML as if it were fetching plain HTML.

For example to compress all html files on the fly, do this:
<Files *.html>
SetHandler perl-script

PerlHandler Apache::OutputChain Apache::GzipChain Apache::PassFile
</Files>

Remember that it will work only if the browser claims to accept compressed input, by setting the
Accept-Encoding header Apache::GzipChain keeps a list of user-agents, thus it also looks at
theUser-Agent header to check for browsers known to accept compressed output.

For example if you want to return compressed files which will in addition pass through the Embperl
module, you would write:

<Location /test>

SetHandler perl-script

PerlHandler Apache::OutputChain Apache::GzipChain Apache::EmbperlChain Apache::PassFile
</Location>

Hint: Watch theaccess_lodile to see how many bytes were actually sent, and compare that with the bytes
sent using a regular configuration.

(See als®\pache::GzipChain).

Notice that the rightmost PerlHandler must be a content producer. Here we ar@psagihg::Pass-
File but you can use any module which creates output.

11.15 Apache::Gzip - Auto-compress web files with Gzip
Similar toApache::GzipChain but works withApache::Filter

This configuration:

282 15 Feb 2014

Apache::* modules 11.16 Apache::PerlVINC - Allows Module Versioning in Location blocks and Virtual Hosts

PerlModule Apache::Filter
<Files ~ "*\.htm|">
SetHandler perl-script
PerlSetVar Filter On
PerlHandler Apache::Gzip
</Files>

will send all the*.html files compressed if the client accepts the compressed input.

And this one:

PerlIModule Apache::Filter
Alias /home/http/perl /perl
<Location /perl>
SetHandler perl-script
PerlSetVar Filter On
PerlHandler Apache::RegistryFilter Apache::Gzip
</Location>

will compress the output of theApache::Registry scripts. Yes, you should use
Apache::RegistryFilter instead ofApache::Registry for it to work.

You can use as many filters as you want:

PerlIModule Apache::Filter
<Files ~ "*\.blah">

SetHandler perl-script

PerlSetVar Filter On

PerlHandler Filterl Filter2 Apache::Gzip
</Files>

You can test that it works by either looking at the size of the responseaiociss.lo@r by telnet:

panic% telnet localhost 8000
Trying 127.0.0.1

Connected to 127.0.0.1
Escape character is "]
GET /perl/test.pl HTTP 1.1
Accept-Encoding: gzip
User-Agent: Mozilla

And you will get the data compressed if configured correctly.

11.16 Apache::PerlVINC - Allows Module Versioning in
Location blocks and Virtual Hosts

With this module you can have differe@tINCfor different virtual hosts, locations and equivalent config-
uration blocks.

15 Feb 2014 283

11.16 Apache::PerlVINC - Allows Module Versioning in Location blocks and Virtual Hosts

Suppose two versions gpache::Status are being hacked on the same server. In this configuration:
PerIModule Apache::PerlVINC

<Location /status-dev/perl>
SetHandler perl-script
PerlHandler Apache::Status

PerlINC /home/httpd/dev/lib

PerlFixupHandler Apache::PerlVINC

PerlVersion Apache/Status.pm
</Location>

<Location /status/perl>
SetHandler perl-script
PerlHandler Apache::Status

PerlINC /home/httpd/prod/lib

PerlFixupHandler Apache::PerlVINC

PerlVersion Apache/Status.pm
</Location>

The Apache::PerlVINC is loaded and then two different locations are specified for the same handler
Apache::Status , whose development version residegiome/httpd/dev/liland production version in
/home/httpd/prod/lib

In case thdstatus/perlrequest is issued (the latter configuration section), the fixup handler will internally
do:

delete $SINC{Apache/Status.pm};
unshift @INC, /home/httpd/prod/lib;
require "Apache/Status.pm";

which will load the production version of the module and it'll be used to process the request. If on the
other hand if the request to thstatus-dev/perocation will be issued, as configured in the former config-
uration section, a similar thing will happen, but a different péwbnge/httpd/dev/lijpwill be prepended to
@INC

delete $INC{Apache/Status.pm};
unshift @INC, /home/httpd/dev/lib;
require "Apache/Status.pm";

It's important to be aware that a chang@dNCis effective only inside thgLocation> or a similar
configuration directiveApache::Per[VINC subclasses theerlRequire directive, marking the file
to be reloaded by the fixup handler, using the valuPefINC for @INC That's local to the fixup
handler, so you won't actually s@INCchanged in your script.

In addition the modules with different versions can be unloaded at the end of request, uBied- the
CleanupHandler handler:

284 15 Feb 2014

Apache::* modules 11.17 Apache::LogSTDERR

<Location /status/perl>
SetHandler perl-script
PerlHandler Apache::Status

PerlINC /home/httpd/prod/lib

PerlFixupHandler Apache::PerlVINC

PerlCleanupHandler Apache::PerlVINC

PerlVersion Apache/Status.pm
</Location>

Also notice thatPerlVersion effect things differently depending on where it was placed. If it was
placed inside &Location> or a similar block section, the files will only be reloaded on requests to that
location. If it was placed in a server section, all requests to the server or virtual hosts will have these files
reloaded.

As you can guess, this module slows the response time down because it reloads some modules on a
per-request basis. Hence, this module should only be used in a development environment, not a production
one.

11.17 Apache::LogSTDERR

When Apache’s builtin syslog support is used, the stderr stream is redirefded/tmll . This means

that Perl warnings, any messages froie®() , croak() , etc., will also end up in the black hole. The
HookStderrdirective will hook the stderr stream to a file of your choice, the default is shown in this
example:

PerIModule Apache::LogSTDERR
HookStderr logs/stderr_log

[META: se€q http://mathforum.org/epigone/modperl/vixguimwhen]

11.18 Apache::RedirectLogFix

Because of the way mod_perl handles redirects, the status code is not properly logged. The
Apache::RedirectLogFix module works around that bug until mod_perl can deal with this. All you
have to do is to enable it in thé&pd.conffile.

PerlLogHandler Apache::RedirectLogFix

For example, you will have to use it when doing:
$r->status(304);

and do some manual header sending, like this:

$r->status(304);
$r->send_http_header();

15 Feb 2014 285

http://mathforum.org/epigone/modperl/vixquimwhen

11.19 Apache::SubProcess

11.19 Apache::SubProcess

The output ofsystem() , exec() , andopen(PIPE,"|program") calls will not be sent to the
browser unless your Perl was configured vgiilo

One workaround is to use backticks:

print ‘command here;

But a cleaner solution is provided by tApache::SubProcess module. It overrides the exec() and
system() calls with calls that work correctly under mod_perl.

Let's see a few examples:

use Apache::SubProcess qw(system);
my $r = shift;
$r->send_http_header('text/plain’);

system "/bin/echo hi there";

overrides built-in system() function and sends the output to the browser.

use Apache::SubProcess qw(exec);
my $r = shift;
$r->send_http_header('text/plain’);

exec "/usr/bin/cal";

print "NOT REACHED\n";

overrides built-in exec() function and sends the output to the browser. As you can see the print statement
after the exec() call will be never executed.

use Apache::SubProcess ();
my $r = shift;
$r->send_http_header(text/plain’);

my $efh = $r->spawn_child(\&env);
$r->send_fd($efh);

sub env {
my $r = shift;
$r->subprocess_env(HELLO => 'world’);
$r->filename("/bin/env");
$r->call_exec;

}

env() is a function that sets an environment variable that can be seen by the main and sub-processes, then
it executegbin/envprogram via call_exec(). The main code spawn a process, and tells it to execute the
env() function. This call returns an output filehandler from the spawned child process. Finally it takes the
output generated by the child process and sends it to the browser via send_fd(), that expects the filehandler
as an argument.

286 15 Feb 2014

Apache::* modules 11.19 Apache::SubProcess

use Apache::SubProcess ();
my $r = shift;
$r->send_http_header('text/plain’);

my $fh = $r->spawn_child(\&banner);
$r->send_fd($fh);

sub banner {
my $r = shift;
lusr/games/banner on many Unices
$r->filename("/usr/bin/banner");
$r->args("-w40+Hello%20World");
$r->call_exec;

}

This example is very similar to the previous, but shows how can you pass arguments to the external
process. It passes the string to print as a banner to via a subprocess.

use Apache::SubProcess ();
my $r = shift;
$r->send_http_header('text/plain’);

use vars qw($String);

$String = "hello world";

my ($out, $in, $err) = $r->spawn_child(\&echo);
print $out $String;

$r->send_fd($in);

sub echo {
my $r = shift;
$r->subprocess_env(CONTENT_LENGTH => length $String);
$r->filename("/tmp/pecho");
$r->call_exec;

}

The last example shows how you can have a full access to STDIN, STDOUT and STDERR streams of the
spawned sub process, SO you can pipe data to a program and send its output to the browser. The echo()
function is similar to the earlier example’s env() function. Khep/pechds as follows:

lusr/bin/perl
read STDIN, $buf, SENV{CONTENT_LENGTH]};
print "STDIN: ‘$buf’ (SENV{CONTENT_LENGTH})\n";

So in the last example a string is defined as a global variable, so it's length could be calculated in the
echo() function. The subprocess reads from STDIN, to which the main process writes thehsltiing (
world). It reads only a number of bytes specified@®NTENT_LENGTplassed to the external program

via environment variable. Finally the external program prints the data that it read to STDOUT, the main
program intercepts it and sends to the client’s socket (browser in most cases).

15 Feb 2014 287

11.20 Module::Use - Log and Load used Perl modules

11.20 Module::Use - Log and Load used Perl modules

Module::Use records the modules used over the course of the Perl interpreter’s lifetime. If the logging
module is able, the old logs are read and frequently used modules are automatically loaded.

For example if configured as:
<Perl>
use Module::Use (Counting, Logger => "Debug");
</Perl>

PerlChildExitHandler Module::Use

it will only record the used modules when the child exists, logging everything (debug level).

11.21 Apache:.ConfigFile - Parse an Apache style httpd.conf
config file

This module parsehttpd.conf or any compatible config file, and provides methods for accessing the
values from the parsed file.

See the module manpage for more information.

11.22 Apache::Admin::Config - Object oriented access to
Apache style config files

Apache::Admin::Config provides an object oriented interface for reading and writing Apache-like
configuration files without affecting comments, indentation, or truncated lines. You can easily extract
informations from the apache configuration, or manage htaccess files.

Seq http://rs.rhapsodyk.net/devel/apache-admin-cpnfig/ for more information.

11.23 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar) [http://stason.qrg/]

11.24 Authors

e Stas Bekmarj [http://stason.qrg/]

288 15 Feb 2014

http://rs.rhapsodyk.net/devel/apache-admin-config/
http://stason.org/
http://stason.org/

Apache::* modules 11.24 Authors

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 289

12 Choosing the Right Strategy

12 Choosing the Right Strategy

290 15 Feb 2014

Choosing the Right Strategy 12.1 Description

12.1 Description

This document discusses various mod_perl setup strategies used to get the best performance and scalabil-
ity of the services.

12.2 Do itlike | do it!?

There is no such thing as thight strategy in the web server business, although there are many wrong
ones. Never believe a person who sdi it this way, this is the best!As the old saying goe$Trust

but verify" There are too many technologies out there to choose from, and it would take an enormous
investment of time and money to try to validate each one before deciding which is the best choice for your
situation.

With this in mind, | will present some ways of using standalone mod_perl, and some combinations of
mod_perl and other technologies. I'll describe how these things work together, offer my opinions on the
pros and cons of each, the relative degree of difficulty in installing and maintaining them, and some hints
on approaches that should be used and things to avoid.

To be clear, | will not address all technologies and tools, but limit this discussion to those complementing
mod_perl.

Please let me stress it agaiio: not blindly copy someone’s setup and hope for a good result. Choose what
is best for your situation -- it might takemeeffort to find out what that is.

In this chapter we will discuss

® Deployment of mod_perl in Overview, with the pros and cons.
® Alternative architectures for running one and two servers.
® Proxy servers (Squid, and Apache’s mod_proxy).

12.3 mod_perl Deployment Overview

There are several different ways to build, configure and deploy your mod_perl enabled server. Some of
them are:

1. Having one binary and one configuration file (one big binary for mod_perl).

2. Having two binaries and two configuration files (one big binary for mod_perl and one small binary
for static objects like images.)

3. Having one DSO-style binary and two configuration files, with mod_perl available as a loadable
object.

4. Any of the above plus a reverse proxy server in http accelerator mode.

15 Feb 2014 291

12.4 Alternative architectures for running one and two servers

If you are a newbie, | would recommend that you start with the first option and work on getting your feet

wet with Apache and mod_perl. Later, you can decide whether to move to the second one which allows
better tuning at the expense of more complicated administration, or to the third option -- the more

state-of-the-art-yet-suspiciously-new DSO system, or to the fourth option which gives you even more
power.

1. The first option will kill your production site if you serve a lot of static data from large (4 to 15MB)
webserver processes. On the other hand, while testing you will have no other server interaction to
mask or add to your errors.

2. This option allows you to tune the two servers individually, for maximum performance.

However, you need to choose between running the two servers on multiple ports, multiple IPs, etc.,
and you have the burden of administering more than one server. You have to deal with proxying or
fancy site design to keep the two servers in synchronization.

3. With DSO, modules can be added and removed without recompiling the server, and their code is even
shared among multiple servers.

You can compile just once and yet have more than one binary, by using different configuration files
to load different sets of modules. The different Apache servers loaded in this way can run simultane-
ously to give a setup such as described in the second option above.

On the down side, you are playing at the bleeding edge.

You are dealing with a new solution that has weak documentation and is still subject to change. It is
still somewhat platform specific. Your mileage may vary.

The DSO modulenjod_so) adds size and complexity to your binaries.
Refer to the section "Pros and Cons of Building mod_perl as DSO for more information.
Build details: Build mod_perl as DSO inside Apache source tree via APACI
4. The fourth option (proxy in http accelerator mode), once correctly configured and tuned, improves

the performance of any of the above three options by caching and buffering page results.

12.4 Alternative architectures for running one and two
servers

The next part of this chapter discusses the pros and the cons of each of these presented configurations.
[Real World Scenarios Implementation describes the implementation techniques of these schemes.

We will look at the following installations:

292 15 Feb 2014

Choosing the Right Strategy 12.4.1 Standalone mod_perl Enabled Apache Server

Standalone mod_perl Enabled Apache Server

One Plain Apache and One mod_perl-enabled Apache Servers
One light non-Apache and One mod_perl enabled Apache Servers
Adding a Proxy Server in http Accelerator Mode

12.4.1 Standalone mod_perl Enabled Apache Server

The first approach is to implement a straightforward mod_perl server. Just take your plain Apache server
and add mod_perl, like you add any other Apache module. You continue to run it at the port it was using
before. You probably want to try this before you proceed to more sophisticated and complex techniques.

The advantages:

Simplicity. You just follow the installation instructions, configure it, restart the server and you are
done.

No network changes. You do not have to worry about using additional ports as we will see later.

Speed. You get a very fast server and you see an enormous speedup from the first moment you start
to use it.

The disadvantages:

The process size of a mod_perl-enabled Apache server is huge (maybe 4MB at startup and growing to
10MB and more, depending on how you use it) compared to typical plain Apache. Of course if
memory sharing is in place, RAM requirements will be smaller.

You probably have a few tens of child processes. The additional memory requirements add up in
direct relation to the number of child processes. Your memory demands are growing by an order of
magnitude, but this is the price you pay for the additional performance boost of mod_perl. With
memory prices so cheap nowadays, the additional cost is low -- especially when you consider the
dramatic performance boost mod_perl gives to your services with every 100MB of RAM you add.

While you will be happy to have these monster processes serving your scripts with monster speed,
you should be very worried about having them serve static objects such as images and html files.
Each static request served by a mod_perl-enabled server means another large process running,
competing for system resources such as memory and CPU cycles. The real overhead depends on the
static object request rate. Remember that if your mod_perl code produces HTML code which
includes images, each one will turn into another static object request. Having another plain webserver
to serve the static objects solves this unpleasant obstacle. Having a proxy server as a front end,
caching the static objects and freeing the mod_perl processes from this burden is another solution.
We will discuss both below.

Another drawback of this approach is that when serving output to a client with a slow connection, the
huge mod_perl-enabled server process (with all of its system resources) will be tied up until the
response is completely written to the client. While it might take a few milliseconds for your script to
complete the request, there is a chance it will be still busy for some number of seconds or even
minutes if the request is from a slow connection client. As in the previous drawback, a proxy solution

15 Feb 2014 293

12.4.2 One Plain Apache and One mod_perl-enabled Apache Servers

can solve this problem. More on proxies later.

Proxying dynamic content is not going to help much if all the clients are on a fast local net (for
example, if you are administering an Intranet.) On the contrary, it can decrease performance. Still,
remember that some of your Intranet users might work from home through slow modem links.

If you are new to mod_perl, this is probably the best way to get yourself started.

And of course, if your site is serving only mod_perl scripts (close to zero static objects, like images), this
might be the perfect choice for you!

For implementation notes, see the "One Plain and One mod_perl enabled Apachg¢ Servers" section in the
implementations chapter.

12.4.2 One Plain Apache and One mod_perl-enabled Apache Servers

As | have mentioned before, when running scripts under mod_perl you will notice that the httpd processes
consume a huge amount of virtual memory -- from 5MB to 15MB and even more. That is the price you
pay for the enormous speed improvements under mod_perl. (Again -- shared memory keeps the real
memory that is being used much smaller :)

Using these large processes to serve static objects like images and html documents is overkill. A better
approach is to run two servers: a very light, plain Apache server to serve static objects and a heavier
mod_perl-enabled Apache server to serve requests for dynamic (generated) objects (aka CGI).

From here on, | will refer to these two serverditiisd _docs (vanilla Apache) antittpd_perl (mod_perl
enabled Apache).

The advantages:

® The heavy mod_perl processes serve only dynamic requests, which allows the deployment of fewer
of these large servers.

e MaxClients , MaxRequestsPerChild and related parameters can now be optimally tuned for
bothhttpd_docs andhttpd_perl servers, something we could not do before. This allows us to
fine tune the memory usage and get better server performance.

Now we can run many lightweighittpd docs servers and just a few heamtpd_ perl
servers.

An important note: When a user browses static pages and the base URLLioctt®n window points

to the static server, for exampiep://www.example.com/index.html |-- all relative URLs (e.qg.

) are being served by the light plain Apache server. But this is
not the case with dynamically generated pages. For example when the base URlogatioe window

points to the dynamic server -- (gbdtp://www.example.com:8080/perl/index.pl) all rela-

tive URLs in the dynamically generated HTML will be served by the heavy mod_perl processes. You
must use fully qualified URLs and not relative ones!

|http://www.example.com/icons/arrow.qgif |is a full URL, while/icons/arrow.gif is a

294 15 Feb 2014

http://www.example.com/index.html
http://www.example.com:8080/perl/index.pl
http://www.example.com/icons/arrow.gif

Choosing the Right Strategy 12.4.3 One light non-Apache and One mod_perl enabled Apache Servers

relative one. UsingkBASE HREF='"http://www.example.com/"> | in the generated HTML is
another way to handle this problem. Also, tiigod_perl server could rewrite the requests back to
httpd_docs (much slower) and you still need the attention of the heavy servers. This is not an issue if
you hide the internal port implementations, so the client sees only one server running &. [(Bee
Publishing Port Numbers other than 80)

The disadvantages:
® An administration overhead.
O The need for two configuration files.
O The need for two sets of controlling scripts (startup/shutdown) and watchdogs.

O If you are processing log files, now you probably will have to merge the two separate log files
into one before processing them.

e Just as in the one server approach, we still have the problem of a mod_perl process spending its
precious time serving slow clients, when the processing portion of the request was completed a long
time ago. Deploying a proxy solves this, and will be covered in the next section.

As with the single server approach, this is not a major disadvantage if you are on a fast network (i.e.
Intranet). It is likely that you do not want a buffering server in this case.

Before you go on with this solution you really want to look af the Adding a Proxy Server in http A¢celera-

section.

For implementation notes see the "One Plain and One mod perl enabled Apache Servers" section in
implementations chapter.

12.4.3 One light non-Apache and One mod_perl enabled Apache
Servers

If the only requirement from the light server is for it to serve static objects, then you can get away with
non-Apache servers having an even smaller memory footfitttgd has been reported to be about 5
times faster then Apache (especially under a heavy load), since it is very simple and uses almost no
memory (260K) and does not spawn child processes.

The Advantages:
e All the advantages of the 2 servers scenario.

e More memory saving. Apache is about 4 times bigger tidod , if you spawn 30 children you use
about 30M of memory, whilthttpd uses only 260K - 100 times less! You could use the 30M you've
saved to run a few more mod_perl servers.

15 Feb 2014 295

http://www.example.com/

12.5 Adding a Proxy Server in http Accelerator Mode

The memory savings are significantly smaller if your OS supports memory sharing with Dynamically
Shared Objects (DSO) and you have configured Apache to use it. If you do allow memory sharing, 30
light Apache servers ought to use only about 3 to 4MB, because most of it will be shared. There is no
memory sharing if Apache modules are statically compiled into the httpd executable.

® Reported to be about 5 times faster then plain Apache serving static objects.
The Disadvantages:

® |acks some of Apache’s features, like access control, error redirection, customizable log file formats,
and so on.

Another interesting choice is a kKHTTPd webserver for Linux. KHTTPd is different from other webservers

in that it runs from within the Linux-kernel as a module (device-driver). KHTTPd handles only static (file
based) web-pages, and passes all requests for non-static information to a regular userspace-webserver such
as Apache. For more information $ee http://www.fenrus.demjon.nl/.

Also check out the Boa websener: http://www.boalorg/

12.5 Adding a Proxy Server in http Accelerator Mode

At the beginning there were two servers: one plain Apache server, whiatekydigyht and configured to
serve static objects, the other mod_perl enablery (heavyand configured to serve mod_perl scripts and
handlers. As you remember we named thtpd_docs andhttpd_perl respectively.

In the dual-server setup presented earlier the two servers coexist at the same IP address by listening to
different ports: httpd_docs listens to port 80 (e.d. http://www.example.com/images/tgst.gif) and
httpd_perl listens to port 8080 (e.g. http://www.example.com:8080/perl/test.pl). Note that we did not
write [http://www.example.com:80 for the first example, since port 80 is the default port for the http
service. Later on, we will be changing the configuration ofnittyed_docs server to make it listen to

port 81.

This section will attempt to convince you that you realfnt to deploy a proxy server in the http acceler-
ator mode. This is a special mode that in addition to providing the normal caching mechanism, accelerates
your CGI and mod_perl scripts.

The advantages of using the proxy server in conjunction with mod_perl are:

e Certainly the benefits of the usual use of the proxy server which allows serving of static objects from
the proxy’s cache. You get less I/O activity reading static objects from the disk (proxy serves the
most "popular" objects from RAM -- of course you benefit more if you allow the proxy server to
consume more RAM). Since you do not wait for the 1/0 to be completed, you are able to serve static
objects much faster.

® And the extra functionality provided by the http-acceleration mode, which makes the proxy server act
as a sort of output buffer for the dynamic content. The mod_perl server sends the entire response to
the proxy and is then free to deal with other requests. The proxy server is responsible for sending the
response to the browser. So if the transfer is over a slow link, the mod_perl server is not waiting

296 15 Feb 2014

http://www.fenrus.demon.nl/
http://www.boa.org/
http://www.example.com/images/test.gif
http://www.example.com:8080/perl/test.pl
http://www.example.com:80/

Choosing the Right Strategy 12.5 Adding a Proxy Server in http Accelerator Mode

around for the data to move.

Using numbers is always more convincing than just words. So we are going to show a simple
example from the real world.

First let's explain the abbreviation used in the networking world. If someone claims to have a 56 kbps

connection -- it means that the connection is of 56 kilo-bits per second (~56000 bits/sec). It's not 56

kilo-bytes per second, but 7 kilo-bytes per second, because 1 byte equals to 8 bits. So don't let the
merchants fool you--your modem gives you 7 kilo-bytes per second connection at most and not 56
kilo-bytes per second as one might think.

Another convention used in computer literature is that if you see 10Kb it usually means 10 kilo-bits
and 10KB is 10 kilo-bytes. So if you see upper dagegenerally refers to bytes, and lower chge

bits (andK of course means kilo and equals to 1024 or to 1000 depending on the field it's used in).
Remember that the latter convention is not followed everywhere, so use this knowledge with care.
This document is following this convention.

So here is the real world example. Let's look at the typical scenario with a user connected to your site
with 56Kbps modem. It means that the speed of the user’s link is 56/8 = 7KBytes per sec. Let's assume an
average generated HTML page to be of 42KB and an average mod_perl script that generates this
response in 0.5 second. How many responses this script could produce during the time it took for the
output to be delivered to user? A simple calculation reveals pretty scary numbers:

42KB / (0.5s * 7KB/s) = 12

12 other dynamic requests could be served at the same time, if we could put mod_perl to do only
what it's best at: generating responses.

This very simple example shows us that we need only one twelfth the number of children running,
which means that we will need only one twelfth of the memory (not quite true because some parts of
the code are shared).

But you know that nowadays scripts often return pages which are blown up with JavaScript code and
similar, which can make them 100kb size and the download time will be of the order of... (This calcu-
lation is left to you as an exercise :)

Moreover many users like to open many browser windows and do many things at once (download
files and browse graphicallyeavysites). So in the speed of 7KB/sec we have assumed before, may
in reality be 5-10 times slower.

® This technique allows us to hide the details of the server's implementation. Users will never see ports
in the URLs (more on that topic later). You can have a few boxes serving the requests, and only one
serving as a front end, which spreads the jobs between the servers in a way that you can control. You
can actually shut down a server, without the user even noticing, because the front end server will
dispatch the jobs to other servers. (This is cdllead Balancingand it's a pretty big issue which will
take a book on its own to cover and therefore will not be discussed here. There is a plenty of informa-
tion available at the Internet though. For more information see 'High-Availability Linux Project’)

15 Feb 2014 297

12.5 Adding a Proxy Server in http Accelerator Mode

® [or security reasons, using any httpd accelerator (or a proxy in httpd accelerator mode) is essential
because you do not let your internal server get directly attacked by arbitrary packets from whomever.
The httpd accelerator and internal server communicate in expected HTTP requests. This allows for
only your public "bastion" accelerating www server to get hosed in a successful attack, while leaving
your internal data safe.

This is true if your server runs on your localhost (127.0.0.1) which makes it impossible to connect to
you back end machine from the outside. But you don’t need to connect from the outside anymore. You
will see why when you proceed to this techniques’ implementation notes.

The disadvantages are:

® Of course there are drawbacks. Luckily, these are not functionality drawbacks, but they are more
administration hassle. You have another daemon to worry about, and while proxies are generally
stable, you have to make sure to prepare proper startup and shutdown scripts, which are run at boot
and reboot as appropriate. This is something that you do once and never come back to this issue
again. Also, you might want to set up the crontab to run a watchdog script that will make sure that the
proxying server is running and restart it if it detects a problem, reporting the problem to the adminis-
trator on the way.

® Proxy servers can be configured to be light or heavy. The administrator must decide what gives the
highest performance for his application. A proxy serverdiaidis light in the sense of having only
one process serving all requests. But it can consume a lot of memory when it loads objects into
memory for faster service.

® |f you use the default logging mechanism for all requests on the front- and back-end servers the
requests that will be forwarded to the back-end server will be logged twice, which makes it tricky to
merge the two logfiles, should you want to.

One solution is to tell the heavy Apache not to bother logging requests that seem to come from the
light Apache’s machine. You might do this by installing a cusRariLogHandler or just piping

to access_logvia grep -v (match all but this pattern) for the requests coming from the light
Apache server. In this scenario, thecess_logwritten by the light Apache is the file you should

work with. But you need to look for any direct accesses to the heavy server in case the proxy server is
sometimes bypassed, which can be eliminated if the server is listening only to the localhost
(127.0.0.2).

If you still decide to log proxied requests at the back-end server they will be useless since instead of
real remote IP of the user, you will get always the same IP of the front-end server. Later in this
Chapter on page XXX (mod_proxy_add_forward) we present a solution for this problem.

Have | succeeded in convincing you that you want a proxy server?

Of course if you are on a very fast local area network (LAN) (which means that all your users are
connected from this LAN and not from the outside), then the big benefit of the proxy buffering the output
and feeding a slow client is gone. You are probably better off sticking with a straight mod_perl server in
this case.

298 15 Feb 2014

Choosing the Right Strategy 12.6 Implementations of Proxy Servers

12.6 Implementations of Proxy Servers

As of this writing, two proxy implementations are known to be widely used with mod_pesdqtie
proxy server andhod_proxy which is a part of the Apache server. Let's compare them.

12.6.1 The Squid Server

The Advantages:

Caching of static objects. These are served much faster, assuming that your cache size is big enough
to keep the most frequently requested objects in the cache.

Buffering of dynamic content, by taking the burden of returning the content generated by mod_perl
servers to slow clients, thus freeing mod_perl servers from waiting for the slow clients to download
the data. Freed servers immediately switch to serve other requests, thus your number of required
servers goes down dramatically.

Non-linear URL space / server setup. You can use Squid to play some tricks with the URL space
and/or domain based virtual server support.

The Disadvantages:

Proxying dynamic content is not going to help much if all the clients are on a fast local net. Also, by
default squid only buffers in 16KB chunks so it would not allow mod_perl to complete immediately
if the output is larger READ_AHEAD_GAWhich is 16KB by default, can be enlarged in defines.h if
your OS allows that).

Speed. Squid is not very fast today when compared with the plain file based web servers available.
Only if you are using a lot of dynamic features such as mod_perl or similar is there a reason to use
Squid, and then only if the application and the server are designed with caching in mind.

Memory usage. Squid uses quite a bit of memory. In fact, it caches a good part of its content in
memory, to be able to serve it directly from RAM, a technique which is a lot quicker than serving

from disk. However, as you already have your mod_perl server caching its code in RAM, you might
not want another RAM-hogging beast taking up your precious memory (see the Squid FAQ for refer-
ence| http://www.squid-cache.org/Doc/FAQ/FAQ-8.ntml).

HTTP protocol level. Squid is pretty muchHITP/1.0 server, which seriously limits the deploy-
ment ofHTTP/1.1 features, such d&eep-Alive requests.

HTTP headers, dates and freshness. The squid server might give out stale pages, confusing down-
stream/client caches. (You update some documents on the site, but squid will still serve the old ones.)

Stability. Compared to plain web servers, Squid is not the most stable.

15 Feb 2014 299

http://www.squid-cache.org/Doc/FAQ/FAQ-8.html

12.6.2 Apache’s mod_proxy

The pros and cons presented above lead to the idea that you might want to use squid for its dynamic
content buffering features, but only if your server serves mostly dynamic requests. So in this situation,
when performance is the goal, it is better to have a plain Apache server serving static objects, and squid
proxying the mod_perl enabled server only.

For implementation details, see the sectjons Running One Webserver and Squid in httpd Accelerator Mode
and Running Two Webservers and Squid in httpd Accelerator[Mode in the implementations chapter.

12.6.2 Apache’s mod_proxy

| do not think the difference in speed between Apacimgid_proxy andsquid is relevant for most sites,
since the real value of what they do is buffering for slow client connections. However, squid runs as a
single process and probably consumes fewer system resources.

The trade-off is that mod_rewrite is easy to use if you want to spread parts of the site across different back
end servers, while mod_proxy knows how to fix up redirects containing the back-end server’s idea of the
location. With squid you can run a redirector process to proxy to more than one back end, but there is a
problem in fixing redirects in a way that keeps the client’s view of both server names and port numbers in
all cases.

The difficult case is where you have DNS aliases that map to the same IP address and you want the redi-
rect to port 80 and the server is on a different port and you want to keep the specific name the browser has
already sent, so that it does not change in the clieatation window.

The Advantages:

e No additional server is needed. We keep the one plain plus one mod_perl enabled Apache servers. All
you need is to enabtaod_proxy in thehttpd_docs server and add a few linesttipd.conf
file.

e TheProxyPass andProxyPassReverse directives allow you to hide the internal redirects, so if
|http://example.com/modperl/ | is actuallyjhttp://localhost:81/modperl/ [, it will
be absolutely transparent to the ugtmoxyPass redirects the request to the mod_perl server, and
when it gets the respongeroxyPassReverse rewrites the URL back to the original one, e.g:

ProxyPass /modperl/ http://localhost:81/modperl/
ProxyPassReverse /modperl/ http://localhost:81/modperl/

e |t does mod_perl output buffering like squid does. Seg the Using mod| proxy notes for more details.

® |t even does caching. You have to produce cor@mmtent-Length , Last-Modified and
Expires http headers for it to work. If some of your dynamic content does not change frequently,
you can dramatically increase performance by caching it with mod_proxy.

e ProxyPass happens before the authentication phase, so you do not have to worry about authenticat-
ing twice.

300 15 Feb 2014

http://example.com/modperl/
http://localhost:81/modperl/

Choosing the Right Strategy 12.7 When One Machine is not Enough for RDBMS Database and mod_perl

® Apache is able to accelerate secure HTTP requests completely, while also doing accelerated HTTP.
With Squid you have to use an external redirection program for that.

® The latest (Apache 1.3.6 and later) Apache proxy accelerated module is reported to be very stable.

For implementation see the "Using mod_pjoxy" section in the implementation chapter.

12.6.3 Closing Lingering Connections with Lingerd

Because of some technical complications in TCP/IP, at the end of each client connection, it is not enough
for Apache to close the socket and forget about it; instead, it needs to spend about onegecioigcbn
the client. (More details can be found at http://httpd.apache.org/docs/misc/fin_wait| 2.html)

Lingerd is a daemon (service) designed to take over the job of properly closing network connections from
an http server like Apache and immediately freeing it to handle a new connection.

lingerd can only do an effective job if HTTReep-Alive s are turned off; sinckeep-Alive s are
useful for images, the recommended setup is to hagerd serving mod_perl enabled Apache and
plain Apache for images and other static objects.

With alingerd setup, you don’t have the proxy, so the buffering chain we have presented before for the
proxy setup is much shorter here:

FIGURE:

| Apache Kernel [TCP/IP ‘o’
| [mod_perl]=>[sendbuf] |======> /|\
| | /\

Hence in this setup it becomes more important to have a big enough kernel send buffer.

With lingerd, a big enough kernel send buffer, and keep-alives off, the job of spoonfeeding the data to a
slow client is done by the OS kernel in the background. As a rbaglird makes it possible to serve

the same load using considerably fewer Apache processes. This translates into a reduced load on the
server. It can be used as an alternative to the proxy setups we have seen so far.

For more information abolingerd see| http://www.iagora.com/about/software/lingerd/

12.7 When One Machine is not Enough for RDBMS
Database and mod_perl

Imagine a scenario where you start your business as a small service providing web-site. After a while your
business becomes very popular and at some point you understand that it has outgrown the capacity of your
machine. Therefore you decide to upgrade your current machine with lots of memory, the cutting edge
super expensive CPU and an ultra-fast hard disk. As a result the load goes back to normal but not for a
long, as the demand for your services keeps on growing and just a little time after you've upgraded your
machine, once again it cannot cope the load. Should you buy an even stronger and very expensive machine

15 Feb 2014 301

http://httpd.apache.org/docs/misc/fin_wait_2.html
http://www.iagora.com/about/software/lingerd/

12.7.1 Servers’ Requirements

or start looking for another solution? Let’s explore the possible solution for this problem.
A typical web service consists of two main software components, the database server and the web server.

A typical user-server interaction consists of accepting the query parameters entered into an HTML form
and submitted to the web server by a user, converting these parameters into a database query, sending it to
the database server, accepting the results of the executed query, formatting them into a nice HTML page,
and sending it to a user’s Internet browser or another application that created the request (e.g. WAP).

This figure depicts the above description:

1 2
[] =—===> [] =—===> []
[Client] [Apache Server] [Database Server]
[] <Z::: [:]3<:::: []

This schema is known as a 3-tier architecture in the computing world.

A 3-tier architecture means splitting up several processes of your computing solution between different
machines.

® Tierl

The client, who will see the data on its screen and can give instructions to modify or process the data.
In our case, an Internet browser.

® Tier2

The application server, which does the actual processing of the data and sends it back to the client. In
our case, a mod_perl enabled Apache server.

® Tier3
The database server, which stores and retrieves all the data for the application server.

We are interested only in the second and the third tiers; we don’t specify user machine requirements, since
mod_perl is all about server side programming. The only thing the client should be able to do is to render
the generated HTML from the response, which any simple browser will do. Of course I'm not talking
about the case where you return some heavy Java applets, but that movie is screened in another theater.

12.7.1 Servers’ Requirements

Let’s first understand what kind of software the web and database servers are, what they need to run fast
and what implications they have on the rest of the system software.

The three important machine components are the hard disk, the amount of RAM and the CPU type.

302 15 Feb 2014

Choosing the Right Strategy 12.7.2 The Problem

Typically the mod_perl server is mostly RAM hungry, while the SQL database server mostly needs a very
fast hard-disk. Of course if your mod_perl process reads a lot from the disk (which is a quite infrequent
phenomenon) you will need a fast disk too. And if your database server has to do a lot of sorting of big
tables and do lots of big table joins, you will need a lot of RAM too.

If we would specify average "virtual" requirements for each machine, that's what we’d get:

An "ideal" mod_perl machine:

*HD: low-end (no real IO, mostly logging)
* RAM: the more the better
* CPU: medium to high (according to needs)

An "ideal" database server machine:

*HD: high-end

* RAM: large amounts (big joins, sorting of many records)
small amounts (otherwise)

* CPU: medium to high (according to needs)

12.7.2 The Problem

With the database and the httpd on the same machine, you have conflicting interests.

During peak loads, Apache will spawn more processes and use RAM that the database server might have
been using, or that the kernel was using on its behalf in the form of cache. You will starve your database
of resources at the time when it needs those resources the most.

Disk I/O contention is the biggest time issue. Adding another disk wouldn’t cut I/O times because the
database is the only one who does I/O - since mod_perl processes have all their code loaded in memory.
(’'m talking about code that does pure perl and SQL processing) so it's clear that the DB is I/O and CPU
bounded (RAM only if there are big joins to make) and mod_perl CPU and mostly RAM bounded.

The problem exists, but it doesn’t mean that you cannot run the application and the web servers on the
same machine. There is a very high degree of parallelism in modern PC architecture. The I/O hardware is
helpful here. The machine can do many things while a SCSI subsystem is processing a command, or the
network hardware is writing a buffer over the wire.

If a process is not runnable (that is, it is blocked waiting for I/O or similar), it is not using significant CPU
time. The only CPU time that will be required to maintain a blocked process is the time it takes for the
operating system’s scheduler to look at the process, decide that it is still not runnable, and move on to the
next process in the list. This is hardly any time at all. If there are two processes and one of them is blocked
on I/O and the other is CPU bound, the blocked process is getting 0% CPU time, the runnable process is
getting 99.9% CPU time, and the kernel scheduler is using the remainder.

15 Feb 2014 303

12.7.3 The Solution

12.7.3 The Solution

Adding another machine, which allows a set-up where both the database and the web servers run on their
own dedicated machines.

12.7.3.1 Pros

Hardware Requirements
That allows you to scale two requirements independently.

If your httpd processes are heavily weighted with respect to RAM consumption, you can easily add
another machine to accommodate more httpd processes, without changing your database machine.

If your database is CPU intensive, but your httpd doesn’t need much CPU time, you can get low end
machines for the httpd and a high end machine with a very fast CPU for the database server.

® Scalability
Since your web server is not depending on the database server location any more, you can add more
web servers hitting the same database server, using the existing infrastructure.

e Database Security
Once you have multiple web server boxes the backend database becomes a single point of failure so
it's a good idea to shield it from direct Internet access, something you couldn’t do when you had both
servers on the same machine.

12.7.3.2 Cons
® Network latency

304

A database request from a webserver to a database server running on the same machine uses UNIX
sockets, compared to the TCP/IP sockets used when the client submits the query from another
machine. UNIX sockets are very fast since all the communications happens within the same box,
eliminating network delays. TCP/IP sockets communication totally depends on the quality and the
speed of the network the two machines are connected with.

Basically, you can have almost the same client-server speed if you install a very fast and dedicated
network between the two machines. It might impose a cost of additional NICs but it's probably
insignificant compared to the speed up you gain.

But even the normal network that you have would probably fit as well, because the networks delays

are probably much smaller than the time it takes to execute the query. In contrast to the previous

paragraph, you really want to test the added overhead, since the network can be quite slow especially
at the peak hours.

15 Feb 2014

Choosing the Right Strategy 12.8 Running More than One mod_perl Server on the Same Machine.

How do you know what overhead is a significant one? All you have to measure is the average time
spent in the web server and the database server. If any of the two numbers is at least 20 times bigger than
the added overhead of the network you are all set.

To give you some numbers -- if your query takes about 20 milliseconds to process and only 1
millisecond to deliver the results, it's good. If the delivery takes about half of the time the processing
takes you should start considering switching to a faster and/or dedicated network.

The consequences of a slow network can be quite bad. If the network is slow mod_perl processes
remain open waiting for data from the database server and eat even more RAM as new child processes pop
up to handle new requests. So the overall machine performance can be worse than it was originally
when you had just a single machine for both servers.

12.7.4 Three Machines Model

Since we are talking about using a dedicated machine for each server, you might consider adding a third
machine to do the proxy work; this will make your setup even more flexible since it will enable you to
proxy-pass all request to not just one mod_perl running box, but to many of them. It will enable you to do
load balancing if and when you need it.

Generally the proxy machine can be very light when it serves just a little traffic and mainly proxy-passes
to the mod_perl processes. Of course you can use this machine to serve the static content and then the
hardware requirement will depend on the number of objects you will have to serve and the rate at which
they are requested.

12.8 Running More than One mod_perl Server on the Same
Machine.

Let's assume that you have two different sets of code which have little or nothing in common--different
Perl modules, no code sharing. Typical numbers can be four megabytes of unshared and four megabytes of
shared memory for each code set, plus three megabytes of shared basic mod_perl stuff. Which makes each
process 17MB in size when the two code sets are loaded. (3MB (server core shared) + 4MB (shared 1st
code set) + 4MB (unshared 1st code set) + 4MB (shared 2nd code set) + 4MB (unshared 2nd code set).
Under this scenario:

Shared_RAM_per_Child: 11MB

Max_Process_Size : 17MB
Total_RAM 1 251MB

We assume that four megabytes is the size of each code sets unshared memory. This is a pretty typical size
of unshared memory, especially when connecting to databases, as the database connections cannot be
shared. Databases like Oracle can take even more RAM per connection on top of this.

Let's assume that we have 251 megabytes of RAM dedicated to the webserver.

15 Feb 2014 305

12.8 Running More than One mod_perl Server on the Same Machine.

According to the equation developed in the sectjon: "Choosing MaxClients":

Total_RAM - Shared_RAM_per_Child
MaxClients =
Max_Process_Size - Shared_RAM_per_Child

MaxClients = (251 - 11)/(17-11) = 40
We see that we can run 40 processes, using the given memory and the two code sets in the same server.

Now consider this practical decision. Since we have recognized that the code sets are very distinct in

nature and there is no significant memory sharing in place, the wise thing to do is to split the two code sets

between two mod_perl servers (a single mod_perl server actually is a set of the parent process and a
number of the child processes). So instead of running everything on one server, now we move the second
code set onto another mod_perl server. At this point we are talking about a single machine.

Let's look at the figures again. After the split we will have 20 servers of eleven megabytes (4MB unshared
+ 7mb shared) and another 20 more of the same kind.

How much memory do we need now? From the above equation we derive:

Total_RAM = MaxcClients * (Max_Process_Size - Shared_RAM_per_Child)
+ Shared_RAM_per_Child

And using the numbers (the total of 40 servers):
Total_RAM = 2 * (20%(11-7)+7) = 174

A total of 174MB of memory required. But, hey, we have 251MB of memory. We've got 77MB of
memory freed up. If we recalculate again tlaxClients we will see that we can run almost 60
servers:

MaxClients = (251 - 7*2)/(11-7) = 59

So we can run about 19 more servers using the same memory size. Almost 30 servers for each code set
instead of 20 originally. We have enlarged the servers pool by half without changing the machine’s hard-
ware.

Moreover this new setup allows us to fine tune the two code sets, since in reality the smaller in size code
base might have a higher hit rate, so we can benefit even more.

Let's assume that based on the usage statistics we know that the first code set is called in 70% of requests
and the other 30% are used by the second set. Now we assume that the first code set requires only 5MB of
RAM (3MB shared plus 2MB unshared) over the basic mod_perl server size, and the second set needs
11MBytes (7MB shared and 4MB unshared).

Lets compare this new requirement with our original 50:50 setup (here we have assigned the same number
of clients for each code set).

306 15 Feb 2014

Choosing the Right Strategy 12.9 SSL functionality and a mod_perl Server

So now the first mod_perl server running the first code set will have all its processes using 8MB (3MB
(server shared) + 3MB (code shared) + 2MB (code unshared), and the second 14MB (3+7+4). Given that
we have a 70:30 hits relation and that we have 251MB of available memory, we have to solve these two
equations:

XIY = 7/3
X*(8-6) + 6 + Y*(14-10) + 10 = 251

where X is the total number of the processes the first code set can use and Y the second. The first equation
reflect the 70:30 hits relation, and the second uses the equation for the total memory requirements for the
given number of servers and the shared and unshared memory sizes.

When we solve these equations, we find that X equals 63 and Y equals 27. So we have a total of 90 servers
-- two and a half times the number of servers running compared to the original setup using the same
memory size.

The hits rate optimized solution and the fact that the code sets can be different in their memory require-
ments, allowed us to run 30 more servers in total and gave us 33 more servers (63 versus 30) for the most
wanted code base, relative to the simple 50:50 split as in the first example.

Of course if you identify more than two distinct sets of code based on your hit rate statistics, more compli-
cated solutions may be required. You could make even more splits and run three or more mod_perl
servers.

Remember that having too many running processes doesn’t necessarily mean better performance because
all of them will contend for CPU time slices. The more processes that are running the less CPU time each
gets and the slower overall performance will be. Therefore after hitting a certain load you might want to
start spreading servers over different machines.

In addition to the obvious memory saving you gain the power to troubleshoot problems that occur more
easily when you have different components running on different servers. It's quite possible that a small
change in the server configuration to fix or improve something for one code set, might completely break
the second code set. For example if you upgrade the first code set and it requires an update of some
modules that both code bases rely on. But there is a chance that the second code set won't work with a
new version of a module it was relying on.

12.9 SSL functionality and a mod_perl Server

If you need SSL functionality, you can get it by adding the mod_ssl| or equivalent Apache_ssl to the light
front-end server (httpd_docs) or the heavy back-end mod_perl server (httpd_perl). (The configuration and
installation instructions are located here.)

The question is: Is it a good idea to add mod_ssl into the back-end mod_perl enabled server? Given that
your internal network is secured, or if both the front and back end servers are running on the same
machine and you can ensure a safe communication between the processes, there is no need for an
encrypted traffic between them.

15 Feb 2014 307

12.10 Maintainers

If this is the situation you don’t have to put mod_ssl into the already too heavy mod_perl server. You will
have the external traffic encrypted by the front-end server, which will proxy-pass the unencrypted request
and response data internally.

Another important point is if you put the mod_ssl on the back-end, you have to tunnel back your images to
it (i.,e. have the back-end serve the images) defeating the whole purpose of having the front-end
lightweight server.

You cannot serve a secure page which includes non-secured information. If you fetch an html page over
SSL and have arIMG> tag that fetches the image from the non-secure server, the image is shown
broken. This is true for any other non-secured objects as well. Of course if the generated response doesn’t
include any embedded objects, like images -- this is not a problem.

Choosing the front-end machine to have an SSL functionality also simplifies configuration of mod_perl by
eliminating VirtualHost duplication for SSL. mod_perl configuration files can be plenty difficult without
the mod_ssl overhead.

Also assuming that you have front-end machines under-worked anyway, especially if you run a
high-volume web service deploying a cluster of machines to serve requests, you save some CPU as it's
known that SSL connections are about 100 times more CPU intensive than non-SSL connections.

Of course caching session keys so you don’t have to set up a new symmetric key for every single connec-
tion, improves the situation. If you use the shared memory session caching mechanism that mod_ssl
supports, then the overhead is actually rather small except for the initial connection.

But then on the other hand, why even bother to run a full scale mod_ssl in front? You might as well just
choose a small tunnel/port forwarding application like Stunnel or one of the many other mentioned at
|http://www.openssl.org/related/apps.qtml .

Of course if you do heavy SSL processing ideally you should really be offloading it to a dedicated cryp-
tography server. But this advice can be misleading based on the current status of the crypto hardware. If
you use hardware you get extra speed now, but you're locked into a proprietary solution; in 6 months/one
year software will have caught up with whatever hardware you're using and because software is easier to
adapt you’'ll have more freedom to change what software you're using and more control of things. So the
choice is in your hand.

12.10 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar) [http://stason.qrg/]

308 15 Feb 2014

http://www.openssl.org/related/apps.html
http://stason.org/

Choosing the Right Strategy 12.11 Authors

12.11 Authors

® Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 309

http://stason.org/

13 Real World Scenarios

13 Real World Scenarios

310 15 Feb 2014

Real World Scenarios 13.1 Description

13.1 Description

This chapter provides a step-by-step installation guide for the various setups disciissed in Chposing the
Right Strategy.

13.2 Assumptions

I will assume for this section that you are familiar with plain (not mod_perl enabled) Apache, its compila-
tion and configuration. In all configuration and code examples | willacs#hostor www.example.coras

a hostname. For the testing on a local machawalhostwould be just fine. If you are using the real name

of your machine make sure to replasew.example.comwith the name of your machine.

13.3 Standalone mod_perl Enabled Apache Server

13.3.1 Installation in 10 lines

The Installation is very simple. This example shows installation on the Linux operating system.

% cd /ustr/src

% lwp-download http://www.apache.org/dist/apache_x.x.x.tar.gz

% lwp-download http://apache.org/dist/perl/mod_perl-x.xx.tar.gz

% tar xzvf apache_x.x.x.tar.gz

% tar xzvf mod_perl-x.xx.tar.gz

% cd mod_perl-x.xx

% perl Makefile.PL APACHE_SRC-=../apache_x.x.x/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

% make && make test && make install

% cd ../apache_x.x.x

% make install

That's all!

Notes: Replace x.xx and x.x.x with the real version numbers of mod_perl and Apache respectively. The
flag tells Gnutar to uncompress the archive as well as extract the files. You might need superuser
permissions to do the make install steps.

13.3.2 Installation in 10 paragraphs

If you have thdwp-download utility installed, you can use it to download the sources of both pack-
ages:

% Iwp-download http://www.apache.org/dist/apache_x.x.x.tar.gz
% Iwp-download http://apache.org/dist/perl/mod_perl-x.xx.tar.gz

Iwp-download is a part of the LWP module (from thbwww package), and you will need to have it
installed in order for mod_perlmake test step to pass.

15 Feb 2014 311

13.3.2 Installation in 10 paragraphs

Extract both sources. Usually | open all the sourceéasdrisrc/ but your mileage may vary. So move the
sources andhdir to the directory that you want to put the sources in. If you have a nont&NU

utility it will be unable to decompress so you will have to unpack in two steps: first uncompress the pack-
ages with:

gzip -d apache_x.x.x.tar.gz
gzip -d mod_perl-x.xx.tar.gz

then un-tar them with:

tar xvf apache_x.x.x.tar
tar xvf mod_perl-x.xx.tar

You can probably use gunzip instead of gzip -d if you prefer.

% cd /usr/src
% tar xzvf apache_x.x.x.tar.gz
% tar xzvf mod_perl-x.xx.tar.gz

chdir to the mod_perl source directory:

% cd mod_perl-X.xx

Now build the Makefile. For your first installation and most basic work the parameters in the example
below are the only ones you will nee®PACHE_SRG@glIs the Makefile.PL where to find the Apactre
directory. If you have followed my suggestion and have extracted both sources under the directory
{usr/srg then issue the command:

% perl Makefile.PL APACHE_SRC-=../apache_x.x.x/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

There are many additional optional parameters. You can find some of them later in this section and in the
Server Configuration section.

While runningperl Makefile.PL ... the process will check for prerequisites and tell you if some-
thing is missing. If you are missing some of the perl packages or other software, you will have to install
them before you proceed.

Next make the project. The commandake builds the mod_perl extension and also callke in the
Apache source directory to builitpd . Then we run theest suite, and finallyinstall the mod_perl
modules in their proper places.

% make && make test && make install

Note that ifmake fails, neithermake test nor make install will be executed. Ifmake test
fails, make install will be not executed.
Now change to the Apache source directory andhrake install . This will install Apache’s headers,

default configuration files, build the Apache directory tree andigptd in it.

312 15 Feb 2014

Real World Scenarios 13.3.3 Configuration

% cd ../apache_x.x.x
% make install

When you execute the above command, the Apache installation process will tell you how to start a freshly
built webserver (you need to know the patrapéchectl , more about that later) and where to find the
configuration files. Write down both, since you will need this information very soon. On my machine the
two important paths are:

lusr/local/apache/bin/apachectl
lusr/local/apache/conf/httpd.conf

Now the build and installation processes are complete.

13.3.3 Configuration

First, a simple configuration. Configure Apache as you usually woul®¢et, User , Group , Error-
Log, other file paths etc).

Start the server and make sure it works, then shut it downaJdehectl utility can be used to start
and stop the server:

% lusr/local/apache/bin/apachectl start
% lusr/local/apache/bin/apachectl stop

Now we will configure Apache to run perl CGI scripts underApache::Registry handler.

You can put configuration directives in a separate file andhtigltl.confto include it, but for now we will
simply add them to the main configuration file. We will add the mod_perl configuration directives to the
end ofhttpd.conf In fact you can place them anywhere in the file, but they are easier to find at the end.

For the moment we will assume that you will put all the scripts which you want to be executed by the
mod_perl enabled server under the directbome/httpd/perlWe will alias this directory to the URperl

Add the following configuration directives tdtpd.conf
Alias /perl/ /home/httpd/perl/

PerlIModule Apache::Registry
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
PerlSendHeader On
allow from all
</Location>

Now create a four-line test script/fimome/httpd/peri/

15 Feb 2014 313

13.3.3 Configuration

#!/usr/bin/perl -w

use strict;

print "Content-type: text/htmi\r\n\r\n";
print "It worked!'"\n";

Note that the server is probably running as a user with a restricted set of privileges, perhaps as user
nobody orwww Look for theUser directive inhttpd.confto find the userid of the server.

Make sure that you have read and execute permissiotestq
% chmod u+rx /home/httpd/perl/test.pl
Test that the script works from the command line, by executing it:
% /home/httpd/perl/test.pl
You should see:
Content-type: text/html
It worked!!!

Assuming that the server’s useridnsbody , make the script owned by this user. We already made it
executable and readable by user.

% chown nobody /home/httpd/perl/test.pl
Now it is time to test that mod_perl enabled Apache can execute the script.

Start the server gpachectl start). Check inlogs/error_logto see that the server has indeed
started--verify the correct date and time of the log entry.

To get Apache to execute the script we simply fetch its URI. Assuming thathttpdrconfhas been
configured with the directivBort 80 , start your favorite browser and fetch the following URI:

http://www.example.com/perl/test.pl

If you have the loop-back device (127.0.0.1) configured, you can use the URI:
http://localhost/perl/test.pl

In either case, you should see:

It worked!!!

If your server is listening on a port other than 80, for example 8000, then fetch the URI:

http://www.example.com:8000/perl/test.pl

314 15 Feb 2014

Real World Scenarios 13.4 One Plain and One mod_perl enabled Apache Servers

or whatever is appropriate.

If something went wrong, go through the installation process again, and make sure you didn’'t make a
mistake. If that doesn’t help, read tiMSTALL pod documentperipod INSTALL) in the mod_perl
distribution directory.

Now that your mod_perl server is working, copy some of your Perl CGI scripts into the directory
/home/httpd/perlbr below it.

If your programming techniques are good, chances are that your scripts will work with no modifications at
all. With the mod_perl enabled server you will see them working very much faster.

If your programming techniques are sloppy, some of your scripts will not work and they may exhibit
strange behaviour. Depending on the degree of sloppiness they may need anything from minor tweaking to
a major rewrite to make them work properly. (5ee Sometimes My Script Works, Sometimes It [Does Not)

The above setup is very basic, but as with Perl, you can start to benefit from mod_perl from the very first
moment you try it. As you become more familiar with mod_perl you will want to start writing Apache
handlers and make more use of its power.

13.4 One Plain and One mod_perl enabled Apache Servers

Since we are going to run two Apache servers we will need two complete (and different) sets of configura-
tion, log and other files. In this scenario we’ll use a dedicated root directory for each server, which is a
personal choice. You can choose to have both servers living under the same roof, but it might lead to a
mess, since it requires a slightly more complicated configuration. This decision might be nice since you
will be able to share some directories likelude (which contains Apache headers), but in fact this can
become a problem later, when you decide to upgrade one server but not the other. You will have to solve
this problem then, so why not to avoid it in first place.

From now on we will refer to these two servers hagpd_docs (plain Apache) andhttpd_perl
(Apache/mod_perl). We will usestr/localas ourroot directory.

First let’'s prepare the sources. We will assume that all the sources go iitsrtbedirectory. Since you

will probably want to tune each copy of Apache separately, it is better to use two separate copies of the
Apache source for this configuration. For example you might want only the httpd_docs server to be built
with the mod_rewrite module.

Having two independent source trees will prove helpful unless you use dynamically shared DBjécts (
which is covered later in this chapter.

Make two subdirectories:

% mkdir /usr/src/httpd_docs
% mkdir /usr/src/httpd_perl

15 Feb 2014 315

13.4.1 Configuration and Compilation of the Sources.

Next put a set of the Apache sources into/tise/src/httpd_docslirectory (replace the directofgmpwith
the path to the downloaded file axat.x with the version of Apache that you have downloaded):

% cd /usr/src/httpd_docs
% gzip -dc /tmp/apache_x.x.x.tar.gz | tar xvf -

or if you have GNU tar:

% tar xvzf /tmp/apache_x.x.x.tar.gz

Just to check we have extracted in the right way:

% Is -I
drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 apache_x.x.x/

Now prepare the httpd_perl server sources:

% cd /usr/src/httpd_perl
% gzip -dc /tmp/apache_x.x.x.tar.gz | tar xvf -
% gzip -dc /tmp/modperl-x.xx.tar.gz | tar xvf -

% Is -l

drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 apache_x.x.x/
drwxr-xr-x 8 stas stas 2048 Apr 29 17:38 modperl-x.xx/

We are going to use a default Apache directory layout, and place each server directories under its dedi-
cated directory. The two directories are as you have already guessed:

lusr/local/httpd_perl/
/usr/local/httpd_docs/

The next step is to configure and compile the sources: Below are the procedures to compile both servers,
using the directory layout | have just suggested.

13.4.1 Configuration and Compilation of the Sources.

As usual we use&.x.xinstead of real version numbers so this document will never become obsolete. But
the most important thing -- it's not misleading. It's quite possible that since the moment this document
was written a new version has come out and you will be not aware of this fact if you will not check for it.

13.4.1.1 Building the httpd_docs Server

® Sources Configuration:

% cd /usr/src/httpd_docs/apache_x.x.x

% make clean

% ./configure --prefix=/usr/local/httpd_docs \
--enable-module=rewrite --enable-module=proxy

We need thenod_rewriteandmod_proxymodules as we will see later, so we tedbnfigureto build
them in.

316 15 Feb 2014

Real World Scenarios 13.4.1 Configuration and Compilation of the Sources.

You might want to add-layout to see the resulting directories’ layout without actually running
the configuration process.

® Source Compilation and Installation

% make
% make install

Renaméhttpd to http_docs

% mv /ust/local/httpd_docs/bin/httpd \
lusr/local/httpd_docs/bin/httpd_docs

Now modify theapachectl utility to point to the renamed httpd via your favorite text editor or by
using perl:

% perl -pi -e 's|bin/httpd|bin/httpd_docs|’ \
Jusr/local/httpd_docs/bin/apachectl

Another approach would be to use thRrget option while configuring the source, which makes the last
two commands unnecessatry.

% ./configure --prefix=/usr/local/httpd_docs \
--target=httpd_docs \
--enable-module=rewrite --enable-module=proxy
% make && make install

Since we told ./configure that we want the executable to be callédtpd docs (via
--target=httpd_docs) -- it performs all the naming adjustment for us.

The only thing that you might find unusual, is tlagachectlwill be now calledhttpd_docsctland the
configuration filehttpd.confnow will be callechttpd_docs.conf

We will leave the decision making about the preferred configuration and installation way to the reader. In
the rest of the guide we will continue using the regular names resulted from using the standard configura-
tion and the manual executable name adjustment as described at the beginning of this section .

13.4.1.2 Building the httpd_perl Server

Now we proceed with the sources configuration and installation ditthd perlserver. First make sure
the sources are clean:

% cd /usr/src/httpd_perl/apache_x.x.x
% make clean

% cd /usr/src/httpd_perl/mod_perl-x.xx
% make clean

It is important tomake cleansince some of the versions are not binary compatible (e.g apache 1.3.3 vs
1.3.4) so any "third-party” C modules need to be re-compiled against the latest header files.

15 Feb 2014 317

13.4.1 Configuration and Compilation of the Sources.

% cd /usr/src/httpd_perl/mod_perl-x.xx

% /usr/bin/perl Makefile.PL \
APACHE_SRC-=../apache_x.x.x/src \
DO_HTTPD=1 USE_APACI=1 EVERYTHING=1\
APACHE_PREFIX=/usr/local/httpd_perl \
APACI_ARGS="--prefix=/usr/local/httpd_perl’

If you need to pass any other configuration options to ApadoeiBgure , add them after theprefix
option. e.qg:

APACI_ARGS="--prefix=/usr/local/httpd_perl \
--enable-module=status’

Notice thatall APACI_ARGS (above) must be passed as one long line if you work tkitkh !
However with(ba)?sh it works correctly the way it is shown above, breaking the long lines with ’
As of tcsh version 6.08.0, when it passesARACI_ARGSarguments ta@onfigure it does not alter
the newlines, but it strips the backslashes, thus breaking the configuration process.

Notice that just like in httpd_docs configuration you can-tseget=httpd_perl instead of speci-
fying each directory separately. Note that this option has to be the very last argumEAiCGh ARGS
otherwise 'make test’ tries to ruinttpd_perl’ , Which falils.

[META: It's very important to use the same compiler you build the perl with. See the section 'What
Compiler Should Be Used to Build mod_perl’ for more information.

[META: --- Hmm, what's the option that overrides the compiler when building Apache from mod_perl.
Check also whether mod_perl supplies the right compiler (the one used for building itself) -- if it does
there is no need for the above note.]

Now, build, test and install thetpd_perl

% make && make test && make install

Upon installation Apache puts a stripped versiohttdd at/usr/local/httpd_perl/bin/httpdThe original
version which includes debugging symbols (if you need to run a debugger on this executable) is located at
{usr/src/httpd_perl/apache_x.x.x/src/httpd

You may have noticed that we did not rovake install in the Apache source directory. When
USE_APACIis enabledAPACHE_PREFIXwill specify the--prefix option for Apache’sonfig-

ure utility, which gives the installation path for Apache. When this option is used, mod_ipaits

install will also make install for Apache, installing the httpd binary, the support tools, and the
configuration, log and document trees. If this option is not used you will have to explicitly run make
install in the Apache source directory.

If make test fails, look into/usr/src/httpd_perl/mod_perl-x.xx/t/logsd read the error_log file. Also
see make test fails.

318 15 Feb 2014

Real World Scenarios 13.4.2 Configuration of the servers

While doing perl Makefile.PL ... mod_perl might complain by warning you about a missing
library libgdbm . This is a crucial warning. See Missing or Misconfigured libgdbm.so for more info.

Now renamehttpd to httpd_perl

% mv /usr/local/httpd_perl/bin/httpd \
lusr/local/httpd_perl/bin/httpd_perl

Update theapachectlutility to drive the renamed httpd:

% perl -p -i -e 's|bin/httpd|bin/httpd_perl|’ \
lusr/local/httpd_perl/bin/apachectl

13.4.2 Configuration of the servers

Now when we have completed the building process, the last stage before running the servers is to config-
ure them.

13.4.2.1 Basic httpd_docs Server Configuration

Configuring of thehttpd_docs server is a very easy task. Starting from version 1.3.4 of Apache, there

is only one file to edit. Opefusr/local/httpd_docs/conf/httpd.coimf your favorite text editor and config-

ure it as you usually would, except make sure that you configure the log file directory

(/usr/local/httpd_docs/logand so on) and the other paths according to the layout you have decided to use.

Start the server with:

Jusr/local/httpd_docs/bin/apachectl start

13.4.2.2 Basic httpd_perl Server Configuration

Edit the/usr/local/httpd_perl/conf/httpd.confs with thehttpd _docs server configuration, make sure
that ErrorLog and other file location directives are set to point to the right places, according to the
chosen directory layout.

The first thing to do is to setRort directive - it should be different from that used by the plain Apache
server Port 80) since we cannot bind two servers to the same port number on the same machine. Here
we will use8080. Some developers use p8itt, but you can bind to ports below 1024 only if the server

has root permissions. If you are running on a multiuser machine, there is a chance that someone already
uses that port, or will start using it in the future, which could cause problems. If you are the only user on
your machine, basically you can pick any unused port number. Many organizations use firewalls which
may block some of the ports, so port number choice can be a controversial topic. From my experience the
most popular port numbers ag0, 81, 8000 and8080 . Personally, | prefer the pa8080. Of course

with the two server scenario you can hide the nonstandard port number from firewalls and users, by using
either mod_proxy'$roxyPass directive or a proxy server like Squid.

15 Feb 2014 319

13.4.2 Configuration of the servers

For more details see Publishing Port Numbers other thgn 80, Running One Webserver and Squid in httpd
[Accelerator Modd, Running Two Webservers and Squid in httpd Acceleratof Mode and Using mgd_proxy.

Now we proceed to the mod_perl specific directives. It will be a good idea to add them all at the end of
httpd.conf , since you are going to fiddle with them a lot in the early stages.

First, you need to specify the location where all mod_perl scripts will be located.

Add the following configuration directive:

mod_perl scripts will be called from
Alias /perl/ Jusr/local/httpd_perl/perl/

From now on, all requests for URIs starting wigierl will be executed under mod_perl and will be
mapped to the files ifusr/local/httpd_perl/perl/

Now we configure théperl location.
PerIModule Apache::Registry

<Location /perl>
#AllowOverride None
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
allow from all
PerlSendHeader On

</Location>

This configuration causes any script that is called with a path prefixedpsitito be executed under the
Apache::Registry module and as a CGI (hence teecCGl --if you omit this option the script will

be printed to the user's browser as plain text or will possibly triggefawe-As window). The
Apache::Registry module lets you run your (carefully written) Perl CGI scripts virtually unchanged
under mod_perl. ThePerIModule directive is the equivalent of Perl’s require(). We load the
Apache::Registry module before we use it by giving tRerlHandler Apache::Registry

directive.

Perl[SendHeader On tells the server to send an HTTP header to the browser on every script invoca-
tion. You will want to turn this off for nph (non-parsed-headers) scripts.

This is only a very basic configuration. The Server Configuration section covers the rest of the details.

Now start the server with:

lusr/local/httpd_perl/bin/apachectl start

320 15 Feb 2014

Real World Scenarios 13.5 Running Two webservers and Squid in httpd Accelerator Mode

13.5 Running Two webservers and Squid in httpd Accelera-
tor Mode

While | have detailed the mod_perl server installation, you are on your own with installing the Squid
server (Sep Getting Helged for more details). I run Linux, so | downloaded the RPM package, installed it,
configured théetc/squid/squid.confired off the server and all was set.

Basically once you have Squid installed, you just need to modify the detauitt.conf as | will
explain below, then you are ready to run it.

The configuration that I'm going to present works with Squid server version 2.3.STABLEZ2. It's possible
that some directives will change in future versions.

First, let's take a look at what we have already running and what we want from squid.

Previously we have had thdtpd_docs andhttpd_perl servers listening on ports 80 and 8080.

Now we want squid to listen on port 80, to forward requests for static objects (plain HTML pages, images
and so on) to the port which the httpd_docs server listens to, and dynamic requests to httpd_perl’'s port.
And of course collecting the generated responses, which will be delivered to the client by Squid. As
mentioned before this mode is knownhttpd-acceleratomode in proxy dialect.

Therefore we have to reconfigure the httpd_docs server to listen to port 81 instead, since port 80 will be
taken by Squid. Remember that in our scenario both copies of Apache will reside on the same machine as
Squid.

A proxy server makes all the magic behind it transparent to users. Both Apache servers return the data to
Squid (unless it was already cached by Squid). The client never sees the other ports and never knows that
there might be more than one server running. Do not confuse this scenanwoditrewrite , where a

server redirects the request somewhere according to the rewrite rules and forgets all about it. (i.e. works as
a one way dispatcher, which dispatches the jobs but is not responsible for.)

Squid can be used as a straightforward proxy server. ISPs and other companies generally use it to cut
down the incoming traffic by caching the most popular requests. However we want to rintpidin
accelerator mode . Two directives lttpd_accel_host andhttpd_accel_port) enable this

mode. We will see more details shortly.

If you are currently using Squid in the regular proxy mode, you can extend its functionality by running
both modes concurrently. To accomplish this, you can extend the existing Squid configuratiotipaith
accelerator modeés related directives or you can just create one from scratch.

Let's go through the changes we should make to the default configuration file. Since the file with default
settings fetc/squid/squid.coipfs huge (about 60KB) and we will not alter 95% of its default settings, my
suggestion is to write a new one including only the modified directives.

We want to enable the redirect feature, to be able to serve requests by more than one server (in our case we
have two: the httpd_docs and httpd_perl servers). So we spiitly accel _host as virtual. This
assumes that your server has multiple interfaces - Squid will bind to all of them.

15 Feb 2014 321

13.5 Running Two webservers and Squid in httpd Accelerator Mode

httpd_accel_host virtual

Then we define the default port the requests will be sent to, unless redirected. We assume that most
requests will be for static documents (also it's easier to define redirect rules for the mod_perl server
because of the URI that starts wgtérl or similar). We have our httpd_docs listening on port 81:

httpd_accel_port 81

And as described before, squid listens to port 80.

http_port 80

We do not usécp (icp is used for cache sharing between neighboring machines, which is more relevant
in the proxy mode).

icp_port 0

hierarchy_stoplist defines a list of words which, if found in a URL, causes the object to be
handled directly by the cache. Since we told Squid in the previous directive that we aren’t going to share
the cache between neighboring machines this directive is irrelevant. In case that you do use this feature,
make sure to set this directive to something like:

hierarchy_stoplist /cgi-bin /perl
where thdcgi-bin and/perl are aliases for the locations which handle the dynamic requests.

Now we tell Squid not to cache dynamically generated pages.

acl QUERY urlpath_regex /cgi-bin /perl
no_cache deny QUERY

Please note that the last two directives are controversial ones. If you want your scripts to be more compli-
ant with the HTTP standards, according to the HTTP specification the headers of your scripts should carry
the Caching DirectivesLast-Modified andExpires

What are they for? If you set the headers correctly, there is no need to tell the Squid actElEraimr

try to cache anything. Squid will not bother your mod_perl servers a second time if a request is (a)
cacheable and (b) still in the cache. Many mod_perl applications will produce identical results on identical
requests if not much time has elapsed between the requests. So your Squid might have a hit ratio of 50%,
which means that the mod_perl servers will have only half as much work to do as they did before you
installed Squid (or mod_proxy).

Even if you insert a user-ID and date in your page, caching can save resources when you set the expiration
time to 1 second. A user might double click where a single click would do, thus sending two requests in
parallel. Squid could serve the second request.

But this is only possible if you set the headers correctly. Refer to the chapter Correct Headers - A quick
guide for mod_perl users to learn more about generating the proper caching headers under mod_perl. In
case where only the scripts undeerl/caching-unfriendlyare notcaching friendlyfix the above setting to

be:

322 15 Feb 2014

Real World Scenarios 13.5 Running Two webservers and Squid in httpd Accelerator Mode

acl QUERY urlpath_regex /cgi-bin /perl/caching-unfriendly
no_cache deny QUERY

But if you are lazy, or just have too many things to deal with, you can leave the above directives the way
we described. Just keep in mind that one day you will want to reread this section and the headers genera-
tion tutorial to squeeze even more power from your servers without investing money in more memory and
better hardware.

While testing you might want to enable the debugging options and watch the log files in the directory
Ivar/log/squid/ But make sure to turn debugging off in your production server. Below we show it
commented out, which makes it disabled, since it's disabled by default. Debug option 28 enables the
debugging of the access control routes, for other debug codes see the documentation embedded in the
default configuration file that comes with squid.

debug_options 28

We need to provide a way for Squid to dispatch requests to the correct servers. Static object requests
should be redirected to httpd_docs unless they are already cached, while requests for dynamic documents
should go to the httpd_perl server. The configuration below tells Squid to fire off 10 redirect daemons at
the specified path of the redirect daemon and (as suggested by Squid’s documentation) disables rewriting
of anyHost: headers in redirected requests. The redirection daemon script is listed below.

redirect_program /ustr/lib/squid/redirect.pl
redirect_children 10
redirect_rewrites_host_header off

The maximum allowed request size is in kilobytes, which is mainly useful dabig@ndPOSTrequests.

A user who attempts to send a request with a body larger than this limit receives an "Invalid Request"
error message. If you set this parameter to a zero, there will be no limit imposed. If you aRQSiig

upload files, then set this to the largest file’s size plus a few extra KB.

request_body_max_size 1000 KB

Then we have access permissions, which we will not explain. You might want to read the documentation,
SO as to avoid any security problems.

acl all src 0.0.0.0/0.0.0.0

acl manager proto cache_object

acl localhost src 127.0.0.1/255.255.255.255
acl myserver src 127.0.0.1/255.255.255.255
acl SSL_ports port 443 563

acl Safe_ports port 80 81 8080 81 443 563
acl CONNECT method CONNECT

http_access allow manager localhost
http_access allow manager myserver
http_access deny manager

http_access deny !Safe_ports
http_access deny CONNECT !SSL_ports
http_access allow all

15 Feb 2014 323

13.5 Running Two webservers and Squid in httpd Accelerator Mode

Since Squid should be run as a non-root user, you need these if you are invoking the Squid as root. The
usersquidis created when the Squid server is installed.

cache_effective_user squid
cache_effective_group squid

Now configure a memory size to be used for caching. The Squid documentation warns that the actual size
of Squid can grow to be three times larger than the value you set.

cache_mem 20 MB

We want to keep pools of allocated (but unused) memory available for future use if we have the memory
available of course. Otherwise turn it off.

memory_pools on

Now tighten the runtime permissions of the cache manager CGI smigtemgr.cgi , which comes
bundled with squid) on your production server.

cachemgr_passwd disable shutdown

If you are not using this script to manage the Squid server from remote, you should disable it:

cachemgr_passwd disable all

Now the redirection daemon script (you should put it at the location you have specifiedréalithe
rect_program parameter in the config file above, and make it executable by the webserver of course):

#!/usr/local/bin/perl -p
BEGIN{ $|=1}
s|www.example.com(?::81)?/perl/jwww.example.com:8080/perl/|o ;

Here is what the regular expression from above does; it matches all the URIs that include either the string
www.example.com/pertlr the stringvww.example.com:81/perdind replaces either of these strings with
www.example.com:8080/peilo matter whether the regular expression worked or no$_theariable is
automagically printed.

We can write the above code as the following code as well:

#!/usr/local/bin/perl
$|=1;
while (<>) {

redirect to mod_perl server (httpd_perl)

print($_), next
if s|www.example.com(:81)?/perl/|www.example.com:8080/perl/|o;
send it unchanged to plain apache server (http_docs)

print;
}

324 15 Feb 2014

Real World Scenarios 13.5 Running Two webservers and Squid in httpd Accelerator Mode

The above redirector can be more complex of course, but you know Perl, right?
A few notes regarding the redirector script:

You must disable buffering|=1; does the job. If you do not disable bufferigd,DOUTwiIll be flushed

only when its buffer becomes full--and its default size is about 4096 characters. So if you have an average
URL of 70 chars, only after about 59 (4096/70) requests will the buffer be flushed, and the requests will
finally reach the server. Your users will not wait that long, unless you have hundreds requests per second
and then the buffer will be flushed very frequently because it'll get full very fast.

If you think that this is a very ineffective way to redirect, you should consider the following explanation.
The redirector runs as a daemon, it fires up N redirect daemons, so there is no problem with Perl inter-
preter loading. Exactly as with mod_perl, the perl interpreter is loaded all the time in memory and the code
has already been compiled, so the redirect is very fast (not much slower than if the redirector was written
in C). Squid keeps an open pipe to each redirect daemon, thus there is no overhead of the system calls.

Now it is time to restart the server, at linux | do it with:

/etc/rc.d/init.d/squid restart
Now the Squid server setup is complete.

Almost... When you try the new setup, you will be surprised and upset to discover port 81 showing up in
the URLs of the static objects (like htmls). Hey, we did not want the user to see the port 81 and use it
instead of 80, since then it will bypass the squid server and the hard work we went through was just a
waste of time!

The solution is to make both squid and httpd_docs listen to the same port. This can be accomplished by
binding each one to a specific interface (so they are listening to diffe@rkety. Modify
httpd_docs/conf/httpd.canf

Port 80
BindAddress 127.0.0.1
Listen 127.0.0.1:80

Now the httpd_docs server is listening only to requests coming from the local server. You cannot access it
directly from the outside. Squid becomes a gateway that all the packets go through on the way to the
httpd_docs server.

Modify squid.conf

http_port 80
tcp_outgoing_address 127.0.0.1
httpd_accel_host 127.0.0.1
httpd_accel_port 80

Now restart the Squid and httpd_docs servers (it doesn’t matter which one you start first), and voila--the
port number has gone.

15 Feb 2014 325

13.5 Running Two webservers and Squid in httpd Accelerator Mode

You must also have in the filetc/hostghe following entry (chances are that it's already there):

127.0.0.1 localhost.localdomain localhost

Now if your scripts are generating HTML including fully qualified self references, using 8080 or the other
port, you should fix them to generate links to point to port 80 (which means not using the port at all in the
URI). If you do not do this, users will bypass Squid and will make direct requests to the mod_perl server’s
port. As we will see later just like with httpd_docs, the httpd_perl server can be configured to listen only to
requests coming from the localhost (with Squid forwarding these requests from the outside) and therefore
users will not be able to bypass Squid.

To save you some keystrokes, here is the whole modifjei.conf

http_port 80
tcp_outgoing_address 127.0.0.1
httpd_accel_host 127.0.0.1
httpd_accel_port 80

icp_port 0

acl QUERY urlpath_regex /cgi-bin /perl
no_cache deny QUERY

debug_options 28

redirect_program /ust/lib/squid/redirect.pl
redirect_children 10
redirect_rewrites_host_header off

request_body_max_size 1000 KB

acl all src 0.0.0.0/0.0.0.0

acl manager proto cache_object

acl localhost src 127.0.0.1/255.255.255.255
acl myserver src 127.0.0.1/255.255.255.255
acl SSL_ports port 443 563

acl Safe_ports port 80 81 8080 81 443 563
acl CONNECT method CONNECT

http_access allow manager localhost
http_access allow manager myserver
http_access deny manager

http_access deny !Safe_ports
http_access deny CONNECT !SSL_ports
http_access allow all

cache_effective_user squid
cache_effective_group squid

cache_mem 20 MB

memory_pools on

326 15 Feb 2014

Real World Scenarios 13.6 Running One Webserver and Squid in httpd Accelerator Mode

cachemgr_passwd disable shutdown

Note that all directives should start at the beginning of the line, so if you cut and paste from the text make
sure you remove the leading whitespace from each line.

13.6 Running One Webserver and Squid in httpd Accelera-
tor Mode

When | was first told about Squid, | thought: "Hey, now | can drofhtipel_docs server and have just
Squid and thdattpd_perl servers". Since all my static objects will be cached by squid, | do not need
the lighthttpd_docs server.

But | was a wrong. Why? Because | still have the overhead of loading the objects into Squid the first time.
If a site has many of them, unless a huge chunk of memory is devoted to Squid they won't all be cached
and the heavy mod_perl server will still have the task of serving static objects.

How do we measure the overhead? The difference between the two servers is in memory consumption,
everything else (e.g. I/0) should be equal. So you have to estimate the time needed to fetch each static
object for the first time at a peak period and thus the number of additional servers you need for serving the
static objects. This will allow you to calculate the additional memory requirements. | imagine that this
amount could be significant in some installations.

So on for production servers | have decided to stick with the Squid, httpd_docs and httpd_perl scenario,
where | can optimize and fine tune everything. But if in your case there is almost no static objects to serve,
the httpd_docs server is definitely redundant. And all you need are the mod_perl server and Squid to
buffer the output from it.

If you want to proceed with this setup, install mod_perl enabled Apache and Squid. Then use a configura-
tion similar to the previous section, but now httpd_docs is not there anymore. Also we do not need the
redirector anymore and we spechijtpd_accel_host as a name of the server and mistual

Because we do not redirect there is no need to bind two servers on the same port so there &imaeither
norListen directives inhttpd.conf

The madified configuration for this simplified setup (see the explanations in the previous section):

httpd_accel_host put.your.hostname.here
httpd_accel_port 8080

http_port 80

icp_port O

acl QUERY urlpath_regex /cgi-bin /perl
no_cache deny QUERY

debug_options 28
redirect_program /usr/lib/squid/redirect.pl

redirect_children 10
redirect_rewrites_host_header off

15 Feb 2014 327

13.7 mod_proxy

request_body_max_size 1000 KB

acl all src 0.0.0.0/0.0.0.0

acl manager proto cache_object

acl localhost src 127.0.0.1/255.255.255.255
acl myserver src 127.0.0.1/255.255.255.255
acl SSL_ports port 443 563

acl Safe_ports port 80 81 8080 81 443 563
acl CONNECT method CONNECT

http_access allow manager localhost
http_access allow manager myserver
http_access deny manager

http_access deny !Safe_ports
http_access deny CONNECT !SSL_ports
http_access allow all

cache_effective_user squid
cache_effective_group squid

cache_mem 20 MB
memory_pools on

cachemgr_passwd disable shutdown

13.7 mod_proxy

mod_proxy implements a proxy/cache for Apache. It implements proxying capability for FTP, CONNECT
(for SSL), HTTP/0.9, and HTTP/1.0. The module can be configured to connect to other proxy modules for
these and other protocols.

13.7.1 Concepts and Configuration Directives

In the following explanation, we will useww.example.comas the main server users access when they
want to get some kind of service abackend.example.coas a machine that does the heavy work. The
main and the back-end are different servers, they may or may not coexist on the same machine.

The mod_proxy module is built into the server that answers requestswaviihexample.corhostname.
For the matter of this discussion it doesn’t matter what functionality is built inteattieend.example.com
server, obviously it'll be mod_perl for most of us.

13.7.1.1 ProxyPass

You can use throxyPass configuration directive for mapping remote hosts into the space of the local
server; the local server does not act as a proxy in the conventional sense, but appears to be a mirror of the
remote server.

328 15 Feb 2014

Real World Scenarios 13.7.1 Concepts and Configuration Directives

Let's explore what this rule does:

ProxyPass /modperl/ http://backend.example.com/modperl/

When a user initiates a requesf to_http://www.example.com/modperlfoo.pl, the request will be redirected
to |http://backend.example.com/modperl/fop.pl, and starting from this moment user will see
|http://backend.example.cdm/ in her location window, instead of http://www.example.com/.

You have probably noticed many examples of this from real life Internet sites you've visited. Free-email
service providers and other similar heavy online services display the login or the main page from their
main server, and then when you log-in you see somethinglikexample.conthenw59.example.com

etc. These are the back-end servers that do the actual work.

Obviously this is not an ideal solution, but usually users don't really care about what they see in the loca-
tion window. So you can get away with this approach. As I'll show in a minute there is a better solution
which removes this caveat and provides even more useful functionalities.

13.7.1.2 ProxyPassReverse

This directive lets Apache adjust the URL in ttecation header on HTTP redirect responses. This is
essential for example, when Apache is used as a reverse proxy to avoid by-passing the reverse proxy
because of HTTP redirects on the back-end servers which stay behind the reverse proxy. Generally used in
conjunction with thé’roxyPass directive to build a complete front-end proxy server.

ProxyPass /modperl/ http://backend.example.com/modperl/
ProxyPassReverse /modperl/ http://backend.example.com/modperl/

When a user initiates a requesf to_http://www.example.com/modperlfoo.pl, the request will be redirected
to |http://backend.example.com/modperl/fop.pl but on the way PackyPassReverse will correct

the location URL to become_http://www.example.com/modperl/fpo.pl . This happens completely transpar-
ently. The end user will never know that something has happened to his request behind the scenes.

Note that thisProxyPassReverse directive can also be used in conjunction with the proxy
pass-through feature:

RewriteRule ... [P]

from mod_rewrite because its doesn’'t depend on a correspdpidirgPass directive.

13.7.1.3 Security Issues

Whenever you use mod_proxy you need to make sure that your server will not become a proxy for free
riders. Allowing clients to issue proxy requests is controlled byRitwxyRequests directive. Its

default setting i®ff , which means proxy requests are handled only if generated internalrqiy-

Pass or RewriteRule...[P] directives.) Do not use thBroxyRequests directive on your
reverse proxy servers.

15 Feb 2014 329

http://www.example.com/modperl/foo.pl
http://backend.example.com/modperl/foo.pl
http://backend.example.com/
http://www.example.com/
http://www.example.com/modperl/foo.pl
http://backend.example.com/modperl/foo.pl
http://www.example.com/modperl/foo.pl

13.7.2 Buffering Feature

13.7.2 Buffering Feature

In addition to correcting the URI on its way back from the back-end server, mod_proxy also provides
buffering services which mod_perl and similar heavy modules benefit from. The buffering feature allows
mod_perl to pass the generated data to mod_proxy and move on to serve new requests, instead of waiting
for a possibly slow client to receive all the data.

This figure depicts this feature:

[socket] wire ‘0’
[mod_perl]=>[]=>[mod_proxy] => = /\
[buffer] /\

From looking at this figure it's easy to see that the bottleneck is the socket buffer; it has to be able to
absorb all the data that mod_perl has generated in order to free the mod_perl process immediately;
mod_proxy will take the data as fast as mod_perl can deliver it, freeing the mod_perl server to service new
requests as soon as possible while mod_proxy feeds the client at whatever rate the client requires.

ProxyReceiveBufferSize is the name of the parameter that specifies the size of the socket buffer.
Configuring:

ProxyReceiveBufferSize 16384

will create a buffer of 16KB in size. If mod_perl generates output which is less than 16KB, the process
will be immediately untied and allowed to serve new requests, if the output is bigger than 16KB, the
following process will take place:

1. The first 16KB will enter the system buffer.
2. mod_proxy picks the first 8KB and sends it down the wire.
3. mod_perl writes the next 8KB into the place of the 8KB of data that was just sent off by mod_proxy.

Stages 2 and 3 are repeated until mod_perl has no more data to send. When this happens, mod_perl can
serve a new request while stage 2 is repeated until all the data was picked from the system buffer and sent
down the wire.

Of course you want to set the buffer size as large as possible, since you want the heavy mod_perl
processes to be utilized in the most efficient way, so you don’t want them to waste their time waiting for a
client to receive the data, especially if a client has a slow downstream connection.

As theProxyReceiveBufferSize name states, its buffering feature applies onlyawnstream data
(coming from the origin server to the proxy) and not upstream data. There is no buffering of data uploaded
from the client browser to the proxy, thus you cannot use this technique to prevent the heavy mod_perl
server from being tied up during a large POST such as a file upload. Falling back to mod_cgi seems to be
the best solution for these specific scripts whose major function is receiving large amounts of upstream
data.

330 15 Feb 2014

Real World Scenarios 13.7.3 Setting the Buffering Limits on Various OSs

[META: check this: --]

Of course just like mod_perl, mod_proxy writes the data it proxy-passes into its outgoing socket buffer,
therefore the mod_proxy process gets released as soon as the last chunk of data is deposited into this
buffer, even if the client didn’t complete the download. Its the OS’s problem to complete the transfer and
release the TCP socket used for this transfer.

Therefore if you don’'t use mod_proxy and mod_perl sends its data directly to the client, and you have a
big socket buffer, the mod_perl process will be released as soon as the last chunk of data enters the buffer.
Just like with mod_proxy, the OS will deal with completing the data transfer.

[based on this comment] yes, too (but receive and transmit buffer may be of different size, depending on
the OS)

The problem | don’t know is, does the call to close the socket wait, until all data is actually send success-
fully or not. If it doesn’t wait, you may not be noticed of any failure, but because the proxying Apache can
write as fast to the socket transmission buffer as it can read, it should be possible that the proxying Apache
copies all the data from the receive to the transmission buffer and after that releasing the receive buffer, so
the mod_perl Apache is free to do other things, while the proxying Apache still wait until the client returns
the success of data transmission. (The last, is the part | am not sure on)

[IMETA]

Unfortunately you cannot set the socket buffer size as large as you want because there is a limit of the
available physical memory and OSs have their own upper limits on the possible buffer size.

This doesn’t mean that you cannot change the OS imposed limits, but to do that you have to know the
techniques for doing that. In the next section we will present a few OSs and the ways to increase their
socket buffer sizes.

To increase the physical memory limits you just have to add more memory.

13.7.3 Setting the Buffering Limits on Various OSs

As we just saw there are a few kinds of parameters we might want to adjust for our needs.

13.7.3.1 IOBUFSIZE Source Code Definition

The first parameter is used pyoxy_util.c;ap_proxy_send_fb{9 loop over content being proxy passed in
8KB chunks (as of this writing), passing that on to the client. In other words it specifies the size of the data
that is sent down the wire.

This parameter is defined by tH@BUFSIZE:

#define IOBUFSIZE 8192

15 Feb 2014 331

13.7.3 Setting the Buffering Limits on Various OSs

You have no control over this setting in the server configuration file, therefore you might want to change it
in the source files, before you compile the server.

13.7.3.2 ProxyReceiveBufferSize Configuration Directive
You can control the socket buffer size with BrexyReceiveBufferSize directive:
ProxyReceiveBufferSize 16384

The above setting will set a buffer size of 16KB. If it is not set explicitly, or if it is set to 0, then the default
buffer size is used. The number should be an integral multiple of 512.

Note that if you set the value ®froxyReceiveBufferSize larger than the OS limit, the default
value will be used.

Both the default and the maximum possible valudPaixyReceiveBufferSize depend on the
Operating System.

® Linux

For 2.2 kernels the maximum limit is fproc/sys/net/core/rmem_mand the default value is in
/proc/sys/net/core/rmem_defaulf you want to increas®CVBUFsize above 65535, the default
maximum value, you have to raise first the absolute limfpriac/sys/net/core/rmem_mako do that
at the run time, execute this command to raise it to 128KB:

% echo 131072 > /proc/sys/net/core/rmem_max

You probably want to put this command iédc/rc.d/rc.localso the change will take effect at system
reboot.

On Linux OS with kernel 2.2.5 the maximum and default values are either 32KB or 64KB. You can
also change the default and maximum values during kernel compilation; for that you should alter the
SK_RMEM_DEFAULANdSK_RMEM_MAdefinitions respectively. (Since kernel source files tend to
change, use grep(1) utility to find the files.)

® FreeBSD

Under FreeBSD it’'s possible to configure the kernel to have bigger socket buffers:
% sysctl -w kern.ipc.maxsockbuf=2621440

® Solaris
Under Solaris this upper limit is specified top_max_buparameter and is 256KB.
® Other OSs

[ReaderMeta]: If you use an OS that is not listed here and know how to increase the socket buffer
size please let me know.

332 15 Feb 2014

Real World Scenarios 13.8 Front-end Back-end Proxying with Virtual Hosts

When you tell the kernel to use bigger sockets you can set bigger vallrrexgReceiveBufferSize.g.
1048576 (1MB).

13.7.3.3 Hacking the Code

Some folks have patched the Apache’s 1.3.x source code to make the application buffer configurable as
well. After the patch there are two configuration directives available:

® ProxyReceiveBufferSize -- sets the socket buffer size
e ProxylnternalBufferSize -- sets the application buffer size

To patch the source, rename ap_breate() to ap_bcreate_size() and add a size parameter, which defaults to
IOBUFSIZEIf 0 is passed. Then add

#define ap_bcreate(p,flags) ap_bcreate(p,flags,0)
and add a new ap_bcreate() which calls ap_bcreate_size() for binary compatibility.

Actually the ProxyReceiveBufferSize should be calledProxySocketBufferSize . This
would also remove some of the confusion about what it actually does.

13.7.4 Caching Feature

META: complete the conf details

Apache does caching as well. It's relevant to mod_perl only if you produce proper headers, so your
scripts’ output can be cached. See the Apache documentation for more details on the configuration of this
capability.

13.7.5 Build Process

To build mod_proxy into Apache just adeénable-module=proxyluring the Apache/configure stage.
Since you probably will need the mod_rewrite capability enable it as wellgithble-module=rewrite

13.8 Front-end Back-end Proxying with Virtual Hosts

This section explains a configuration setup for proxying your back-end mod_perl servers when you need
to use Virtual Hosts.

The termVirtual Hostrefers to the practice of maintaining more than one server on one machine, as differ-
entiated by their apparent hostname. For example, it is often desirable for companies sharing a web server
to have their own domains, with web servers accessiblevascompanyl.comndwww.company2.com

without requiring the user to know any extra path information.

15 Feb 2014 333

13.8 Front-end Back-end Proxying with Virtual Hosts

The approach is to use a unique port number for each virtual host at the back-end server, so you can redi-
rect from the front-end server to localhost:1234, and name-based virtual servers on the front end, though
any technique on the front-end will do.

If you run the front-end and the back-end servers on the same machine you can prevent any direct outside
connections to the back-end server if you bind tightly to add289.0.1 (localhos} as you will see
in the following configuration example.

The front-end (light) server configuration:

<VirtualHost 10.10.10.10>

ServerName www.example.com

ServerAlias example.com

RewriteEngine On

RewriteOptions 'inherit’

RewriteRule \.(gif|jpg|png|txt|htmI)$ - [last]

RewriteRule ~/(.*)$ http://localhost:4077/$1 [proxy]
</VirtualHost>

<VirtualHost 10.10.10.10>
ServerName foo.example.com
RewriteEngine On
RewriteOptions 'inherit’
RewriteRule \.(gif|jpg|png|txt|htmI)$ - [last]
RewriteRule ~/(.*)$ http://localhost:4078/$1 [proxy]
</VirtualHost>

The above front-end configuration handles two virtual hestsy.example.corandfoo.example.conThe
two setups are almost identical.

The front-end server will handle files with the extensi@if .jpg, .png .txt and.htmlinternally, the rest
will be proxied to be handled by the back-end server.

The only difference between the two virtual hosts settings is that the former rewrites requestéQé7port
at the back-end machine and the latter to 4078 .

If your server is configured to run traditional CGI scripts (under mod_cgi) as well as mod_perl CGI
programs, then it would be beneficial to configure the front-end server to run the traditional CGI scripts

directly. This can be done by altering gifjpg|png|txt Rewriterule to addcgi at the end if all
your mod_cgi scripts have thegi extension, or adding a new rule to handlgai-bin/* locations
locally.

The back-end (heavy) server configuration:
Port 80
PerlPostReadRequestHandler My::ProxyRemoteAddr
Listen 4077
<VirtualHost localhost:4077>
ServerName www.example.com

DocumentRoot /home/httpd/docs/www.example.com
Directorylndex index.shtml index.html

334 15 Feb 2014

Real World Scenarios 13.9 Getting the Remote Server IP in the Back-end server in the Proxy Setup

</VirtualHost>

Listen 4078
<VirtualHost localhost:4078>
ServerName foo.example.com
DocumentRoot /home/httpd/docs/foo.example.com
Directorylndex index.shtml index.html
</VirtualHost>

The back-end server knows to tell which virtual host the request is made to, by checking the port number
the request was proxied to and using the appropriate virtual host section to handle it.

We set "Port 80" so that any redirects don't get sent directly to the back-end port.

To get thereal remote IP addresses from proxy, the My::ProxyRemoteAddr handler is used based on the
mod_proxy_add_forward Apache module. Prior to mod_perl 1.22 this setting must have been set
per-virtual host, since it wasn't inherited by the virtual hosts.

The following configuration is yet another useful example showing the other way around. It specifies what
to be proxied and then the rest is served by the front end:

RewriteEngine on

RewriteLogLevel 0

RewriteRule MN(perl.*)$ http://127.0.0.1:8052/$1 [P,L]
NoCache *

ProxyPassReverse / http://www.example.com/

So we don't have to specify the rule for static objects to be served by the front-end as we did in the previ-

ous example to handle files with the extensigifs.jpg, .pngand.txt internally.

13.9 Getting the Remote Server IP in the Back-end server in
the Proxy Setup

Ask Bjoern Hansen has written thmod_proxy add_forward module for Apache. It sets the
X-Forwarded-For field when doing &roxyPass , similar to what Squid can do. Its location is spec-
ified in the download section.

Basically, this module adds an extra HTTP header to proxying requests. You can access that header in the
mod_perl-enabled server, and set the IP address of the remote server. You won't need to compile anything
into the back-end server.

13.9.1 Build

Download the module and use its location as a value ofdb@vate-moduleargument for the/configure
utility within the Apache source code, so the module can be found.

15 Feb 2014 335

13.9.2 Usage

Jconfigure \

"--with-layout=Apache" \
"--activate-module=src/modules/extra/mod_proxy_add_forward.c" \
"--enable-module=proxy_add_forward" \

... other options ...

--enable-module=proxy_add_forwamhables this module as you have guessed already.

13.9.2 Usage

If you are usingApache::Registry or Apache::PerlRun modules just put the following code
into startup.pl

use Apache::Constants ();
sub My::ProxyRemoteAddr ($) {
my $r = shift;

we'll only look at the X-Forwarded-For header if the requests
comes from our proxy at localhost
return Apache::Constants::OK
unless ($r->connection->remote_ip eq "127.0.0.1")
and $r->header_in("X-Forwarded-For’);

Select last value in the chain -- original client’s ip
if (my ($ip) = $r->headers_in->{’X-Forwarded-For’} =~ /([*\s]+)$/) {
$r->connection->remote_ip($ip);

}

return Apache::Constants::OK;

}
And in the mod_perl'&ttpd.conf

PerlPostReadRequestHandler My::ProxyRemoteAddr

and the right thing will happen transparently for your scripts. Otherwise if you write your own mod_perl
content handler, you can retrieve it directly in your code using a similar code.

13.9.3 Security

Different sites have different needs. If you use the header to set the IP address, Apache believes it. This is
reflected in the logging for example. You really don’t want anyone but your own system to set the header,
which is why therecommended codebove checks where the request really came from before changing
remote_ip

Generally you shouldn’t trust theX-Forwarded-For header. You only want to rely on
X-Forwarded-For headers from proxies you control yourself. If you know how to spoof a cookie
you've probably got the general idea on making HTTP headers and can spXefdhearded-For

header as well. The only address you can count on as being a reliable value is the onedromc-
tion->remote_ip

336 15 Feb 2014

Real World Scenarios 13.9.4 Caveats

From that point on, the remote IP address is correct. You should be able to access
$ENV{REMOTE_ADDRgnvironment variable as usual.

13.9.4 Caveats

It was reported that Ben Laurie’s Apache-SSL does not seem to put the IP addresses in the
X-Forwarded-For header--it does not set up such a header at all. However, the
$ENV{REMOTE_ADDREnvironment variable it sets up contains the IP address of the original client
machine.

Prior to mod_perl 1.22 there was a need to repeat the PerlPostReadRequestHandler My::ProxyRe-
moteAddr directive for each virtual host, since it wasn't inherited by the virtual hosts.

13.9.5 mod_proxy _add_forward Module’s Order Precedence

Some users report that they cannot get this module to work as advertised. They verify that the module is
built in, but the front-end server is not generating XaEorwarded-For header when requests are
being proxied to the back-end server. As a result, the back-end server has no idea what the remote IP is.

As it turns outmod_proxy_add_forwardeeds to be configured in Apache befored proxyin order to
operate properly, since Apache gives highest precedence to the last defined module.

Moving the two build options required to enalied_proxy_add_forwardvhile configuring Apache
appears to have no effect on the default configuration order of modules, since in each case, the resulting
builds showmod_proxy_add_forwarthst in the list (or first vidserver-infq.

One solution is to explicitly define the configuration order in th#p.conf file, so that
mod_proxy_add_forwardappears beforanod_proxy and therefore gets executed afteod_proxy
(Modules are being executedreverseorder, i.e. module that wagldedfirst will be executed last.)

Obviously, this list would need to be tailored to match the build environment, but to ease this task just
insert anAddModule directive before each entry reportedHitpd -| (and removindittpd_core.¢of
course):

ClearModuleList

AddModule mod_env.c

[more modules snipped]

AddModule mod_proxy_add_forward.c
AddModule mod_proxy.c

AddModule mod_rewrite.c

AddModule mod_setenvif.c

Note that the above snippet is addedtittpd.confof the front-end server.

Another solution is to reorder the module list during configuration by using one or more
--permute-module arguments to théconfigureutility. (Try ./configure --help to see if your
version of Apache supports this optior-permute-module=foo:bar will swap the position of
mod_fooandmod_barin the list,--permute-module=BEGIN:foo will move mod_foato the begin-

ning of the list, and-permute-module=foo:END will move mod_footo the end. For example

15 Feb 2014 337

13.10 HTTP Authentication With Two Servers Plus a Proxy

suppose your module list frohttpd -I looks like:

http_core.c

[more modules snipped]
mod_proxy.c
mod_setenvif.c
mod_proxy_add_forward.c

You might add the following arguments.foonfigureto movemod_proxy_add_forwartb the position in
the list just beforenod_proxy

Jconfigure \

"--with-layout=Apache" \
"--activate-module=src/modules/extra/mod_proxy_add_forward.c" \
"--enable-module=proxy_add_forward" \

... other options ...

"--permute-module=proxy:proxy_add_forward" \
"--permute-module=setenvif:END"

With this change, th&-Forwarded-For header is now being sent to the back-end server, and the
remote IP appears in the back-end senastess_lodile.

13.10 HTTP Authentication With Two Servers Plus a Proxy

Assuming that you have a setup of one "front-end" server, which proxies the "back-end" (mod_perl)
server, if you need to perform authentication in the "back-end" server it should handle all authentication
itself. If Apache proxies correctly, it will pass through all authentication information, making the
"front-end" Apache somewhat "dumb", as it does nothing but pass through the information.

In the configuration file youAuth configuration directives need to be inside <i@rectory ...>
</Directory> sections because if you use the sectocation ...> ... <[Location> the
proxy server will take the authentication information for itself and not pass it on.

The same applies to mod_ssl and similar Apache SSL modules. If it gets plugged into a front-end server, it
will properly encode/decode all the SSL requests. So if your machine is secured from inside, your
back-end server can do secure transactions.

13.11 mod_rewrite Examples

Example code for using mod_rewrite with mod_perl application servers. Several examples were taken
from the mailing list.

13.11.1 Rewriting Requests Based on File Extension

In the mod_proxy + mod_perl servers scenafmxyPass was used to redirect all requests to the
mod_perl server, by matching the beginning of the relative URI fged). What should you do if you
want everything, but files with extensions likgif, .cgi and similar, to be proxypassed to the mod_perl
server. These files are to be served by the light Apache server which carries the mod_proxy module.

338 15 Feb 2014

Real World Scenarios 13.11.2 Internet Exporer 5 favicon.ico 404

The following example rewrites everything to the mod_perl server. It locally handles all requests for files
with extensiongif, jpg, png css txt, cgi and relative URIs starting witkegi-bin (e.g. if you want some
scripts to be executed under mod_cgi).

RewriteEngine On

handle GIF and JPG images and traditional CGI’s directly

RewriteRule \.(gif|jpg|png|css|txt|cgi)$ - [last]

RewriteRule */cgi-bin - [last]

pass off everything but images to the heavy-weight server via proxy

RewriteRule ~/(.*)$ http://localhost:4077/$1 [proxy]

That is, first, handle locally what you want to handle locally, then hand off everything else to the back-end
guy.

This is the configuration of the logging facilities.

RewriteLogLevel 1
RewriteLog "| /usr/local/apache_proxy/bin/rotatelogs \
lusr/local/apache-common/logs/r_log 86400"

It says: log all the rewrites thru the pipe to théatelogs utility which will rotate the logs every 2
hours (86400 secs).

13.11.2 Internet Exporer 5 favicon.ico 404

Redirect all those IE5 requests favicon.icoto a central image:

RewriteRule .*favicon.ico /wherever/favicon.ico [PT,NS]

13.11.3 Hiding Extensions for Dynamic Pages

A quick way to make dynamic pages look static:

RewriteRule Mwherever/([a-zA-Z]+).html /perl-bin/$1.cgi [PT]

13.11.4 Serving Static Content Locally and Rewriting Everything Else

Instead of keeping all your Perl scripts/perl and your static content everywhere else, you could keep
your static content in special directories and keep your Perl scripts everywhere else. You can still use the
light/heavy apache separation approach described before, with a few minor modifications.

In thelight Apache’shttpd.conffile, turn rewriting on:

RewriteEngine On

Now list all directories that contain only static objects. For example if the only relateciament-
Root directories aréimagesandstyleyou can set the following rule:

15 Feb 2014 339

13.11.5 Upgrading mod_perl Heavy Application Instances

RewriteRule "/(images|style) - [L]

The[L] (Lash means that the rewrite engine should stop if it has a match. This is necessary because the
very last rewrite rule proxies everything to tieavyserver:

RewriteRule ~/(.*) http://www.example.com:8080/$1 [P]

This line is the difference between a server for which static content is the default and one for which
dynamic (perlish) content is the default.

You should also add threverse rewrite rules before:
ProxyPassReverse / http://www.example.com/
so that the user doesn’t see the port nunm@@80 in the browser’s location window.

It is possible to usocalhost in theRewriteRule above if the heavy and light servers are on the
same machine. So if we sum up the above setup we get:

RewriteEngine On

RewriteRule "/(images|style) - [L]

RewriteRule ~/(.*) http://www.example.com:8080/$1 [P]
ProxyPassReverse / http://www.example.com/

13.11.5 Upgrading mod_perl Heavy Application Instances

When using a light/heavy separation method one of the challenges of running a production environment is
being able to upgrade to newer versions of mod_perl or your own application. The following method can
be used without having to do a server restart.

Add the following rewrite rule to your httpd.conf file:

RewriteEngine On
RewriteMap maps txt:/etc/httpd.maps
RewriteRule ~(.*) http://${maps:appserver}$1 [proxy]

Create the file /etc/httpd.maps and add the following entry:
appserver foo.com:9999

Mod_rewrite rereads (or checks the mtime of) the file on every request so the change takes effect immedi-
ately. To seamlessly upgrade your application server to a new version, install a new version on a different
port. After checking for a quality installation, edit /etc/httpd.maps to point to the new server. After the file

is written the next request the server processes will be redirected to the new installation.

13.11.6 Blocking IP Addresses

The following rewrite code blocks IP addresses:

340 15 Feb 2014

Real World Scenarios 13.12 Caching in mod_proxy

RewriteCond /web/site/var/blocked/REMOTE_ADDR-%{REMOTE_ADDR} -f
RewriteRule .* http://YOUR-HOST-BLOCKED-FOR-EXCESSIVE-CONSUMPTION [redirect,last]

To block IP address 10.1.2.3, simply touch

/web/site/var/blocked/REMOTE_ADDR-10.1.2.3

This has an advantage over Apache parsing a long file of addresses in that the OS is better at a file lookup.

13.12 Caching in mod_proxy

This is not really mod_perl related, so I'll just stress one point. If you want the caching to work the follow-
ing HTTP headers should be suppliedst-Modified , Content-Length andExpires

13.13 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

13.14 Authors

e Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 341

http://stason.org/
http://stason.org/

14 Performance Tuning

14 Performance Tuning

342 15 Feb 2014

Performance Tuning 14.1 Description

14.1 Description

An exhaustive list of various techniques you might want to use to get the most performance possible out of
your mod_perl server: configuration, coding, memory use, and more.

14.2 The Big Picture

To make the user’'s Web browsing experience as painless as possible, every effort must be made to wring
the last drop of performance from the server. There are many factors which affect Web site usability, but

speed is one of the most important. This applies to any webserver, not just Apache, so it is very important
that you understand it.

How do we measure the speed of a server? Since the user (and not the computer) is the one that interacts
with the Web site, one good speed measurement is the time elapsed between the moment when she clicks
on a link or pressesSubmitbutton to the moment when the resulting page is fully rendered.

The requests and replies are broken into packets. A request may be made up of several packets, a reply
may be many thousands. Each packet has to make its own way from one machine to another, perhaps
passing through many interconnection nodes. We must measure the time starting from when the first
packet of the request leaves our user's machine to when the last packet of the reply arrives back there.

A webserver is only one of the entities the packets see along their way. If we follow them from browser to
server and back again, they may travel by different routes through many different entities. Before they are
processed by your server the packets might have to go through proxy (accelerator) servers and if the
request contains more than one packet, packets might arrive to the server by different routes with different
arrival times, therefore it's possible that some packets that arrive earlier will have to wait for other packets
before they could be reassembled into a chunk of the request message that will be then read by the server.
Then the whole process is repeated in reverse.

You could work hard to fine tune your webserver’s performance, but a slow Network Interface Card (NIC)
or a slow network connection from your server might defeat it all. That's why it's important to think about
the Big Picture and to be aware of possible bottlenecks between the server and the Web.

Of course there is little that you can do if the user has a slow connection. You might tune your scripts and
webserver to process incoming requests ultra quickly, so you will need only a small number of working
servers, but you might find that the server processes are all busy waiting for slow clients to accept their
responses.

But there are techniques to cope with this. For example you can deliver the respond after it was
compressed. If you are delivering a pure text respond--gzip compression will sometimes reduce the size of
the respond by 10 times.

You should analyze all the involved components when you try to create the best service for your users,
and not the web server or the code that the web server executes. A Web service is like a car, if one of the
parts or mechanisms is broken the car may not go smoothly and it can even stop dead if pushed too far
without first fixing it.

15 Feb 2014 343

14.3 System Analysis

And let me stress it again--if you want to have a success in the web service business you should start
worrying about the client’s browsing experience antlonly how good your code benchmarks are.

14.3 System Analysis

Before we try to solve a problem we need to identify it. In our case we want to get the best performance
we can with as little monetary and time investment as possible.

14.3.1 Software Requirements

Covered in the section "Choosing an Operating System".

14.3.2 Hardware Requirements

(META: Only partial analysis. Please submit more points. Many points are scattered around the document
and should be gathered here, to represent the whole picture. It also should be merged with the above item!)

You need to analyze all of the problem’s dimensions. There are several things that need to be considered:
e How long does it take to process each request?
® How many requests can you process simultaneously?
e How many simultaneous requests are you planning to get?
® At what rate are you expecting to receive requests?

The first one is probably the easiest to optimize. Following the performance optimization tips in this and
other documents allows a perl (mod_perl) programmer to exercise their code and improve it.

The second one is a function of RAM. How much RAM is in each box, how many boxes do you have, and
how much RAM does each mod_perl process use? Multiply the first two and divide by the third. Ask
yourself whether it is better to switch to another, possibly just as inefficient language or whether that will
actually cost more than throwing another powerful machine into the rack.

Also ask yourself whether switching to another language will even help. In some applications, for example
to link Oracle runtime libraries, a huge chunk of memory is needed so you would save nothing even if you
switched from Perl to C.

The last two are important. You need a realistic estimate. Are you really expecting 8 million hits per day?
What is the expected peak load, and what kind of response time do you need to guarantee? Remember that
these numbers might change drastically when you apply code changes and your site becomes popular.
Remember that when you get a very high hit rate, the resource requirements don’t grow linearly but expo-
nentially!

344 15 Feb 2014

Performance Tuning 14.4 Essential Tools

More coverage is provided in the section "Choosing Hardware".

14.4 Essential Tools

In order to improve performance we need measurement tools. The main tool categories are benchmarking
and code profiling.

It's important to understand that in a major number of the benchmarking tests that we will execute we will
not look at the absolute result numbers but the relation between the two and more result sets, since in most
cases we would try to show which coding approach is preferable and the you shouldn’t try to compare the
absolute results collected while running the same benchmarks on your machine, since you won’t have the
exact hardware and software setup anyway. So this kind of comparison would be misleading. Compare the
relative results from the tests running on your machine, don’t compare your absolute results with those in
this Guide.

14.4.1 Benchmarking Applications

How much faster is mod_perl than mod_cgi (aka plain perl/CGI)? There are many ways to benchmark the
two. I'll present a few examples and numbers below. Check oub¢hehmark directory of the
mod_perl distribution for more examples.

If you are going to write your own benchmarking utility, use Bemchmark module for heavy scripts
and theTime::HiRes module for very fast scripts (faster than 1 sec) where you will need better time
precision.

There is no need to write a special benchmark though. If you want to impress your boss or colleagues, just
take some heavy CGI script you have (e.g. a script that crunches some data and prints the results to
STDOUT), open 2 xterms and call the same script in mod_perl mode in one xterm and in mod_cgi mode
in the other. You can udep-get from theLWPpackage to emulate the browser. THemchmark

directory of the mod_perl distribution includes such an example.

See also two tools for benchmarking: ApacheBench and crashme test

14.4.1.1 Benchmarking Perl Code

If you are going to write your own benchmarking utility, use Benchmark module and the
Time::HiRes module where you need better time precision (less than 10msec).

An example of th&enchmark.pm module usage:

benchmark.pl

use Benchmark;

timethis (1_000,
sub {
my $x = 100;
my $y = log ($x ** 100) for (0..10000);

15 Feb 2014 345

14.4.1 Benchmarking Applications

s

% perl benchmark.pl
timethis 1000: 25 wallclock secs (24.93 usr + 0.00 sys = 24.93 CPU)

If you want to get the benchmark results in micro-seconds you will have to udentbeHiRes
module, its usage is similar Benchmark ’s.

use Time::HiRes gw(gettimeofday tv_interval);

my $start_time = [gettimeofday];

sub_that_takes_a_teeny_bit_of time();

my $end_time = [gettimeofday];

my $elapsed = tv_interval($start_time,$end_time);
print "The sub took $elapsed seconds."

See also the crashme test.

14.4.1.2 Benchmarking a Graphic Hits Counter with Persistent DB Connections

Here are the numbers from Michael Parker's mod_perl presentation at the Perl Conference (Aug, 98).
(Sorry, there used to be links here to the source, but they went dead one day, so | removed them). The
script is a standard hits counter, but it logs the counts into a mysql relational DataBase:

Benchmark: timing 100 iterations of cgi, perl... [rate 1:28]

cgi: 56 secs (0.33 usr 0.28 sys = 0.61 cpu)
perl: 2 secs (0.31 usr 0.27 sys = 0.58 cpu)

Benchmark: timing 1000 iterations of cgi,perl... [rate 1:21]

cgi: 567 secs (3.27 usr 2.83 sys = 6.10 cpu)
perl: 26 secs (3.11 usr 2.53 sys = 5.64 cpu)

Benchmark: timing 10000 iterations of cgi, perl [rate 1:21]

cgi: 6494 secs (34.87 usr 26.68 sys = 61.55 cpu)
perl: 299 secs (32.51 usr 23.98 sys = 56.49 cpu)

We don’t know what server configurations were used for these tests, but | guess the numbers speak for
themselves.

The source code of the script was available at http://www.realtime.net/~parkerm/perl/conf98/sId006.htm.
It's now a dead link. If you know its new location, please let me know.

14.4.1.3 Benchmarking Response Times

In the next sections we will talk about tools that allow us to benchmark response times.

346 15 Feb 2014

http://www.realtime.net/~parkerm/perl/conf98/sld006.htm

Performance Tuning 14.4.1 Benchmarking Applications

14.4.1.3.1 ApacheBench

ApacheBenchgb) is a tool for benchmarking your Apache HTTP server. It is designed to give you an
idea of the performance that your current Apache installation can give. In particular, it shows you how
many requests per second your Apache server is capable of servirah Tow comes bundled with the
Apache source distribution.

Let's try it. We will simulate 10 wusers concurrently requesting a very light script at
www.example.com/perl/test.pl . Each simulated user makes 10 requests.

% ./ab -n 100 -c 10 www.example.com/perl/test.pl

The results are:

Document Path: Iperlitest.pl
Document Length: 319 bytes

Concurrency Level: 10

Time taken for tests: 0.715 seconds
Complete requests: 100

Failed requests: 0

Total transferred: 60700 bytes
HTML transferred: 31900 bytes
Requests per second: 139.86
Transfer rate: 84.90 kb/s received

Connection Times (ms)
min avg max
Connect: 0O 0 3
Processing: 13 67 71
Total: 13 67 74

We can see that under load of ten concurrent users our server is capable of processing 140 requests per
second. Of course this benchmark is correct only when the script under test is used. We can also learn
about the average processing time, which in this case was 67 milli-seconds. Other numbers reglorted by
may or may not be of interest to you.

For example if we believe that the scrgarl/test.plis not efficient we will try to improve it and run the
benchmark again, to see whether we have any improve in performance.

HTTPD::Bench::ApacheBench , available from CPAN, provides a Perl interfacedbr

14.4.1.3.2 httperf

httperf is a utility written by David Mosberger. Just like ApacheBench, it measures the performance of the
webserver.

A sample command line is shown below:

15 Feb 2014 347

14.4.1 Benchmarking Applications

httperf --server hostname --port 80 --uri /test.html \
--rate 150 --num-conn 27000 --num-call 1 --timeout 5

This command causes httperf to use the web server on the host with IP hame hostname, running at port 80.
The web page being retrieved/iest.htmland, in this simple test, the same page is retrieved repeatedly.
The rate at which requests are issued is 150 per second. The test involves initiating a total of 27,000 TCP
connections and on each connection one HTTP call is performed. A call consists of sending a request and
receiving a reply.

The timeout option defines the number of seconds that the client is willing to wait to hear back from the
server. If this timeout expires, the tool considers the corresponding call to have failed. Note that with a
total of 27,000 connections and a rate of 150 per second, the total test duration will be approximately 180
seconds (27,000/150), independently of what load the server can actually sustain. Here is a result that one
might get:

Total: connections 27000 requests 26701 replies 26701 test-duration 179.996 s

Connection rate: 150.0 conn/s (6.7 ms/conn, <=47 concurrent connections)
Connection time [ms]: min 1.1 avg 5.0 max 315.0 median 2.5 stddev 13.0
Connection time [ms]: connect 0.3

Request rate: 148.3 req/s (6.7 ms/req)
Request size [B]: 72.0

Reply rate [replies/s]: min 139.8 avg 148.3 max 150.3 stddev 2.7 (36 samples)
Reply time [ms]: response 4.6 transfer 0.0

Reply size [B]: header 222.0 content 1024.0 footer 0.0 (total 1246.0)

Reply status: 1xx=0 2xx=26701 3xx=0 4xx=0 5xx=0

CPU time [s]: user 55.31 system 124.41 (user 30.7% system 69.1% total 99.8%)
Net 1/0O: 190.9 KB/s (1.6*10"6 bps)

Errors: total 299 client-timo 299 socket-timo 0 connrefused 0 connreset 0
Errors: fd-unavail 0 addrunavail 0 ftab-full O other O

httperf download

14.4.1.3.3 http_load

http_load is yet another utility that does webserver load testing. It can simulate 33.6kbps modem
connection {throttle) and allows you to provide a file with a list of URLSs, which we be fetched randomly.
You can specify how many parallel connections to run usingptm@llel N option, or you can specify the
number of requests to generate per second-véth Noption. Finally you can tell the utility when to stop

by specifying either the test time lengtbgconds Nor the total number of fetchedgtches)

A sample run with the filarls including:

http://www.example.com/foo/
http://www.example.com/bar/

348 15 Feb 2014

Performance Tuning 14.4.1 Benchmarking Applications

We ask to generate three requests per second and run for only two seconds. Here is the generated output:

% ./http_load -rate 3 -seconds 2 urls

http://www.example.com/foo/: check-connect SUCCEEDED, ignoring
http://www.example.com/bar/: check-connect SUCCEEDED, ignoring
http://www.example.com/bar/: check-connect SUCCEEDED, ignoring
http://www.example.com/bar/: check-connect SUCCEEDED, ignoring
http://www.example.com/foo/: check-connect SUCCEEDED, ignoring
5 fetches, 3 max parallel, 96870 bytes, in 2.00258 seconds

19374 mean bytes/connection

2.49678 fetches/sec, 48372.7 bytes/sec

msecs/connect: 1.805 mean, 5.24 max, 0.79 min
msecs/first-response: 291.289 mean, 560.338 max, 34.349 min

So you can see that it has reported 2.5 requests per second. Of course for the real test you will want to load
the server heavily and run the test for a longer time to get more reliable results.

Note that when you provide a file with a list of URLs make sure that you don’t have empty lines in it. If
you do -- the utility won’t work complaining:

Jhttp_load: unknown protocol -

http_load download

14.4.1.3.4 the crashme Script

This is another crashme suite originally written by Michael Schilli (and was located at
[http://www.linux-magazin.de site, but now the link has gone). | made a few modifications, mostly adding
my () operators. | also allowed it to accept more than one url to test, since sometimes you want to test
more than one script.

The tool provides the same resultsasabove but it also allows you to set the timeout value, so requests
will fail if not served within the time out period. You also get valuesL&tency (seconds per request)
andThroughput (requests per second). It can do a complete simulation of your favorite Netscape browser
') and give you a better picture.

| have noticed while running these two benchmarking suitesathgave me results from two and a half
to three times better. Both suites were run on the same machine, with the same load and the same parame-
ters, but the implementations were different.

Sample output;

URL(s): http://www.example.com/perl/access/access.cgi
Total Requests: 100

Parallel Agents: 10

Succeeded: 100 (100.00%)

Errors: NONE

Total Time: 9.39 secs

Throughput: 10.65 Requests/sec

Latency: 0.85 secs/Request

15 Feb 2014 349

http://www.linux-magazin.de/

14.4.1 Benchmarking Applications

And the code:

The LWP::Parallel::UserAgent benchmackde/lwp-bench.pl
#l/usr/bin/perl -w

use LWP::Parallel::UserAgent;
use Time::HiRes qw(gettimeofday tv_interval);
use strict;

HitHt
Configuration
HitHt

my $nof_parallel_connections = 10;

my $nof_requests_total = 100;

my $timeout = 10;

my @uirls = (
"http://www.example.com:81/perl/faq_manager/faq_manager.pl’,

"http://www.example.com:81/perl/access/access.cgi’,

);

HHEHEHE R
Derived Class for latency timing
HHEHEHEHE T

package MyParallelAgent;
@MyParallelAgent::ISA = qw(LWP::Parallel::UserAgent);
use strict;

HiH
Is called when connection is opened
Hi#H
sub on_connect {
my ($self, $request, $response, $entry) = @_;
$self->{__start_times}->{$entry} = [Time::HiRes::gettimeofday];
}

H#H

Are called when connection is closed

Hi#H

sub on_return {
my ($self, $request, $response, $entry) = @_;
my $start = $self->{__start_times}->{$entry};
$self->{__latency_total} += Time::HiRes::tv_interval($start);

}

sub on_failure {
on_return(@_); # Same procedure

}

Hi#H
Access function for new instance var
Hi#H
sub get_latency_total {
return shift->{__latency_total};

350

15 Feb 2014

Performance Tuning

}

HHHH R A R R R R R B R R
package main;

HHHHHHH AR R
it

Init parallel user agent

Hit

my $ua = MyParallelAgent->new();

$ua->agent("pounder/1.0");
$ua->max_req($nof_parallel_connections);

$ua->redirect(0); # No redirects

#it
Register all requests
i
foreach (1..$nof_requests_total) {
foreach my $url (@urls) {
my $request = HTTP::Request->new('GET’, $url);
$ua->register($request);
}
}

HiH#

Launch processes and check time

HiH

my $start_time = [gettimeofday];

my $results = $ua->wait($timeout);

my $total_time = tv_interval($start_time);

HitH

Requests all done, check results
H#itH

my $succeeded =0;

my %errors = ();

foreach my $entry (values %$results) {
my $response = $entry->response();
if($response->is_success()) {
$succeeded++; # Another satisfied customer
}else {
Error, save the message
$response->message("TIMEOUT") unless $response->code();
$errors{$response->message}++;
}
}

i

Format errors if any from %errors

#ittt

my $errors = join(’,’, map "$_ ($errors{$_})", keys %errors);
$errors = "NONE" unless $errors;

HiH

Format results
HitH

15 Feb 2014

14.4.1 Benchmarking Applications

351

14.4.1 Benchmarking Applications

#@urls = map {($_,".")} @Quirls;

my @P = (
"URL(s)" => join("\n\t\t ", @urls),
"Total Requests" => $nof_requests_total * @urls,
"Parallel Agents" => $nof_parallel_connections,

"Succeeded" => sprintf("$succeeded (%.2f%%)\n",

$succeeded * 100 / ($nof_requests_total * @uirls)),
"Errors" => $errors,
"Total Time" => sprintf("%.2f secs\n", $total_time),

"Throughput" => sprintf("%.2f Requests/sec\n",
($nof_requests_total * @urls) / $total_time),
"Latency"” => sprintf("%.2f secs/Request",
($ua->get_latency total() || 0) /
($nof_requests_total * @urls)),

);

my ($left, $right);

H#itH

Print out statistics

HiHE

format STDOUT =
@<<<<LLLLL LKL L L @

"$left:", $right

while(($left, $right) = splice(@P, 0, 2)) {
write;

}
14.4.1.4 Benchmarking PerlHandlers

The Apache::Timeit module doe®erlHandler = Benchmarking. With the help of this module you

can log the time taken to process the request, just like you'd uBetithmark module to benchmark a
regular Perl script. Of course you can extend this module to perform more advanced processing like
putting the results into a database for a later processing. But all it takes is adding this configuration direc-
tive insidehttpd.conf

PerlFixupHandler Apache:: Timeit

Since scripts running undépache::Registry are running inside the PerlHandler these are bench-
marked as well.

An example of the lines which show up in #reor_log file:

timing request for /perl/setupenvoff.pl:

0 wallclock secs (0.04 usr + 0.01 sys = 0.05 CPU)
timing request for /perl/setupenvoff.pl:

0 wallclock secs (0.03 usr + 0.00 sys = 0.03 CPU)

The Apache::Timeit package is a part of th&pache-Perl-contribfiles collection available from
CPAN.

352 15 Feb 2014

Performance Tuning 14.4.1 Benchmarking Applications

14.4.1.5 Other Benchmarking Tools
Other tools you may want to take a look at:
e HTTP: : WebTest

HTTP::WebTest module runs tests on remote URLs or local web files containing
Perl/JSP/HTML/JavaScript/etc. and generates a detailed test report.

It's available from CPAN.
e HTTP: : Monkeywr ench

HTTP::Monkeywrench is a test-harness application to test the integrity of a user’s path through a
web site.

It's available from CPAN.
® Apache:: Recorder andHTTP: : Recor dedSessi on

Apache::Recorder is a mod_perl handler that records an HTTP session and stores it on the web
server’s file systemHTTP::RecordedSession reads the recorded session from the file system,
and formats it for playback usingTTP::WebTest or HTTP::Monkeywrench . This is useful

when writing acceptance and regression tests.

It's available from CPAN.
e \\ébstone

This tool is somewhat complex to set up, but once you get it running it gives you stats that you could
only duplicate with ab or http_load if you did quite a bit of extra scripting around them. It also allows
multiple client machines to be used for providing heavy loads. This tool is useful if you need to know
things like at what point people start finding your sight slow, as opposed to at what point the server
becomes unresponsive.

Webstone download
e Fl ood

Flood is a load-tester being developed through the Apache Software Foundation. From the Flood
FAQ:

"Flood is a profile-driven HTTP load tester. In layman’s terms, it means that flood is capable of
generating large amounts of web traffic. Flood's flexibility and power arises in its configuration
syntax. It is able to work well with dynamic content."

Flood download

15 Feb 2014 353

14.4.2 Code Profiling Techniques

14.4.2 Code Profiling Techniques

The profiling process helps you to determine which subroutines or just snippets of code take the longest
time to execute and which subroutines are called most often. Probably you will want to optimize those.

When do you need to profile your code? You do that when you suspect that some part of your code is
called very often and may be there is a need to optimize it to significantly improve the overall perfor-
mance.

For example if you have ever used fiiagnostics pragma, which extends the terse diagnostics
normally emitted by both the Perl compiler and the Perl interpreter, augmenting them with the more
verbose and endearing descriptions found inptddiag manpage. You know that it might tremen-
dously slow you code down, so let’s first prove that it is correct.

We will run a benchmark, once with diagnostics enabled and once disabled, on a subroutine called
test_code

The code inside the subroutine does an arithmetic and a humeric comparison of two strings. It assigns one
string to another if the condition tests true but the condition always tests false. To demonstiiatg the

nostics overhead the comparison operator is intentionatiyng It should be a string comparison, not

a numeric one.

use Benchmark;
use diagnostics;
use strict;

my $count = 50000;

disable diagnostics;
my $t1 = timeit($count,\&test_code);

enable diagnostics;
my $t2 = timeit($count,\&test_code);

print "Off: " timestr($t1),"\n";
print "On : " timestr($t2),"\n";

sub test_code{
my ($a,$b) = qw(foo bar);
my $c;
if ($a == $b) {
$c = $a;
}
}

For only a few lines of code we get:

Off: 1 wallclock secs (0.81 usr + 0.00 sys = 0.81 CPU)
On : 13 wallclock secs (12.54 usr + 0.01 sys = 12.55 CPU)

354 15 Feb 2014

Performance Tuning 14.4.2 Code Profiling Techniques

With diagnostics enabled, the subroutine test_code() is 16 times slower, thardiaghostics
disabled!

Now let’s fix the comparison the way it should be, by replasiagvith eq, so we get:

my ($a,$b) = qw(foo bar);
my $c;
if ($a eq $b) {
$c = $a;
}

and run the same benchmark again:

Off: 1 wallclock secs (0.57 usr + 0.00 sys = 0.57 CPU)
On: 1 wallclock secs (0.56 usr + 0.00 sys = 0.56 CPU)

Now there is no overhead at all. Ttliegnostics pragma slows things down only when warnings are
generated.

After we have verified that using thiagnostics pragma might adds a big overhead to execution
runtime, let's use the code profiling to understand why this happens. We are going to use
Devel::DProf to profile the code. Let’'s use this code:

diagnostics.pl
use diagnostics;
print "Content-type:text/htmi\n\n";
test_code();
sub test_code{
my ($a,$b) = qw(foo bar);
my $c;
if ($a == $b) {
$c = $a;
}
}

Run it with the profiler enabled, and then create the profiling stastics with the help of dprofpp:

% perl -d:DProf diagnostics.pl
% dprofpp

Total Elapsed Time = 0.342236 Seconds

User+System Time = 0.335420 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name

92.1 0.309 0.358 1 0.3089 0.3578 main::BEGIN

14.9 0.050 0.039 3161 0.0000 0.0000 diagnostics::unescape
2.98 0.010 0.010 2 0.0050 0.0050 diagnostics::BEGIN
0.00 0.000 -0.000 0.0000 - Exporter::import
0.00 0.000 -0.000 0.0000 - Exporter::export
0.00 0.000 -0.000 0.0000 - Config::BEGIN

0.00 0.000 -0.000 0.0000 - Config::TIEHASH
0.00 0.000 -0.000 0.0000 - Config::FETCH

0.00 0.000 -0.000 0.0000 - diagnostics::import
0.00 0.000 -0.000 0.0000 - main::test_code

PR NRRPNN

15 Feb 2014 355

14.4.2 Code Profiling Techniques

0.00 0.000-0.000 2 0.0000 - diagnostics::warn_trap
0.00 0.000-0.000 2 0.0000 - diagnostics::splainthis
0.00 0.000-0.000 2 0.0000 - diagnostics::transmo
0.00 0.000-0.000 2 0.0000 - diagnostics::shorten
0.00 0.000-0.000 2 0.0000 - diagnostics::autodescribe

It's not easy to see what is responsible for this enormous overhead, evain:iBEGIN seems to be
running most of the time. To get the full picture we must see the OPs tree, which shows us who calls
whom, so we run:

% dprofpp -T
and the output is:

main::BEGIN
diagnostics::BEGIN
Exporter::import
Exporter::export
diagnostics::BEGIN
Config::BEGIN
Config::TIEHASH
Exporter::import
Exporter::export
Config::FETCH
Config::FETCH
diagnostics::unescape

diagnostics::unescape
diagnostics::import
diagnostics::warn_trap
diagnostics::splainthis
diagnostics::transmo
diagnostics::shorten
diagnostics::autodescribe
main::test_code
diagnostics::warn_trap
diagnostics::splainthis
diagnostics::transmo
diagnostics::shorten
diagnostics::autodescribe
diagnostics::warn_trap
diagnostics::splainthis
diagnostics::transmo
diagnostics::shorten
diagnostics::autodescribe

So we see that two executionsdiignostics::BEGIN and 3161 ofliagnostics::unescape
are responsible for most of the running overhead.

If we comment out thdiagnostics module, we get:

356 15 Feb 2014

Performance Tuning 14.4.3 Measuring the Memory of the Process

Total Elapsed Time = 0.079974 Seconds
User+System Time = 0.059974 Seconds

Exclusive Times

%Time ExclSec CumulS #Calls sec/call Csec/c Name
0.00 0.000-0.000 1 0.0000 - main:test_code

It is possible to profile code running under mod_perl with Diewel::DProf module, available on
CPAN. However, you must have apache version 1.3b3 or higher ariettihildExitHandler

enabled during the httpd build process. When the server is saeeel;:DProf installs anENDblock

to write thetmon.outfile. This block will be called at server shutdown. Here is how to start and stop a
server with the profiler enabled:

% setenv PERL50OPT -d:DProf

% httpd -X -d ‘pwd‘ &

... make some requests to the server here ...
% kill ‘cat logs/httpd.pid*

% unsetenv PERL50PT

% dprofpp

The Devel::DProf package is a Perl code profiler. It will collect information on the execution time of
a Perl script and of the subs in that script (remembempitiraty() andmap() are just like any other
subroutines you write, but they come bundled with Perl!)

Another approach is to us&pache::DProf , which hooksDevel::DProf into mod_perl. The
Apache::DProf module will run aDevel::DProf profiler inside each child server and write the
tmon.oulffile in the directory$ServerRoot/logs/dprof/$$ when the child is shutdown (whe$g

is the number of the child process). All it takes is to adutfu.conf

PerlModule Apache::DProf

Remember that any PerlHandler that was pulled in befgrache::DProf in the httpd.confor
startup.pl will not have its code debugging information inserted. Todpmofpp , chdir to$Server-
Root/logs/dprof/$$ and run:

% dprofpp

(Lookup theServerRoot directive’s value irhttpd.confto figure out what's yousServerRoot)

14.4.3 Measuring the Memory of the Process

Very important aspect of performance tuning is to make sure that your applications don’t use much
memory, since if they do you cannot run many servers and therefore in most cases under a heavy load the
overall performance degrades.

In addition the code may not be clean and leak memory, which is even worse, since if the same process
serves many requests and after each request more memory is used, after awhile all RAM will be used and
machine will start swapping (use the swap partition) which is a very undesirable event, since it may lead to
a machine crash.

15 Feb 2014 357

14.4.3 Measuring the Memory of the Process

The simplest way to figure out how big the processes are and see whether they grow is to watch the output
of top(1) or ps(1) utilities.

For example the output of top(1):

8:51am up 66 days, 1:44, 1 user, load average: 1.09, 2.27, 2.61
95 processes: 92 sleeping, 3 running, 0 zombie, 0 stopped
CPU states: 54.0% user, 9.4% system, 1.7% nice, 34.7% idle
Mem: 387664K av, 309692K used, 77972K free, 111092K shrd, 70944K buff
Swap: 128484K av, 11176K used, 117308K free 170824K cached

PID USER PRI NI SIZE RSS SHARE STAT LIB %CPU %MEM TIME COMMAND
29225 nobody 0 0 97609760 7132 S 0125 2.5 0:00 httpd_perl
29220 nobody 0 0 95409540 7136 S 0 9.0 2.4 0:00 httpd_perl
29215 nobody 1 0 96729672 6884S 0 4.6 2.4 0:01 httpd_perl
29255root 7 0 10361036 824R 0 3.2 0.2 0:01top
376 squid 0 015920 14M 556S 0 1.1 3.8 209:12 squid
29227 mysqgl 5 5 18921892 956 SN 0 1.1 0.4 0:00 mysqld
29223 mysqgl 5 5 18921892 956 SN 0 0.9 0.4 0:00 mysqld
29234 mysql 5 5 18921892 956 SN 0 0.9 0.4 0:00 mysqld

Which starts with overall information of the system and then displays the most active processes at the
given moment. So for example if we look at titgpd _perl processes we can see the size of the resi-
dent RS9 and sharedSHARE memory segments. This sample was taken on the production server
running linux.

But of course we want to see all the apache/mod_perl processes, and that's where ps(1) comes to help. The
options of this utility vary from one Unix flavor to another, and some flavors provide their own tools.
Let's check the information about mod_perl processes:

% ps -0 pid,user,rss,vsize,%cpu,%mem,ucomm -C httpd_perl

PID USER
29213 root
29215 nobody
29216 nobody
29217 nobody
29218 nobody
29219 nobody
29220 nobody
29221 nobody
29222 nobody
29224 nobody
29225 nobody
29235 nobody

RSS VSZ %CPU %MEM COMMAND
8584 10264 0.0 2.2 httpd_perl

9740 11316
9668 11252
9824 11408
9712 11292
8860 10528
9616 11200
8860 10528
8860 10528
8860 10528
9760 11340
9524 11104

1.0
0.7
0.6
0.6
0.0
0.5
0.0
0.0
0.0
0.7
0.4

2.5 httpd_perl
2.4 httpd_perl
2.5 httpd_perl
2.5 httpd_perl
2.2 httpd_perl
2.4 httpd_perl
2.2 httpd_perl
2.2 httpd_perl
2.2 httpd_perl
2.5 httpd_perl
2.4 httpd_perl

Now you can see the resideRYg and virtual ¥S2) memory segments (and shared memory segment if
you ask for it) of all mod_perl processes. Please refer to the top(1) and ps(1) man pages for more informa-
tion.

You probably agree that using top(1) and ps(1) is cumbersome if we want to use memory size sampling
during the benchmark test. We want to have a way to print memory sizes during the program execution at

desired places. If you hav®Top modules installed, which is a perl glue to thmytop library, it's
exactly what we need.
358 15 Feb 2014

Performance Tuning 14.4.3 Measuring the Memory of the Process

Note: GTop requires thdibgtop library but is not available for all platforms. See the docs in the source
at |ftp://ftp.gnome.org/pub/GNOME/stable/sources/gtop/ to check whether your platform/flavor is
supported.

GTop provides an API for retrieval of information about processes and the whole system. We are inter-
ested only in memory sampling API methods. To print all the process related memory information we can
execute the following code:

use GTop;
my $gtop = GTop->new;
my $proc_mem = $gtop->proc_mem($$);
for (qw(size vsize share rss)) {
printf " %s => %d\n", $_, $proc_mem->$_();
}

When executed we see the following output (in bytes):

size => 1900544

vsize => 3108864

share => 1392640
rss => 1900544

So if we are interested in to print the process resident memory segment before and after some event we
just do it: For example if we want to see how much extra memory was allocated after a variable creation
we can write the following code:

use GTop;

my $gtop = GTop->new;

my $before = $gtop->proc_mem($$)->rss;
my $x ='a’ x 10000;

my $after = $gtop->proc_mem($$)->rss;
print "diff: ", $after-$before, " bytes\n";

and the output

diff: 20480 bytes

So we can see that Perl has allocated extra 20480 bytes to ®xe@€ course the creation affter
needed a few bytes as well, but it's insignificant compared to a s§€) of

The Apache::VMonitor module with help of thé&Top module allows you to watch all your system
information using your favorite browser from anywhere in the world without a need to telnet to your
machine. If you are looking at what information you can retrieve Wiifop, you should look at
Apache::VMonitor as it deploys a big part of the ABITop provides.

If you are running a true BSD system, you may BS®::Resource::getrusage instead ofGTop.
For example:

print "used memory = ".(BSD::Resource::getrusage)[2]."\n"

15 Feb 2014 359

ftp://ftp.gnome.org/pub/GNOME/stable/sources/gtop/

14.4.4 Measuring the Memory Usage of Subroutines

For more information refer to tH®SD::Resource manpage.

14.4.4 Measuring the Memory Usage of Subroutines
With help of Apache::Status you can find out the size of each and every subroutine.
1. Build and install mod_perl as you always do, make sure it's version 1.22 or higher.

2. Configure /perl-status if you haven't already:

<Location /perl-status>
SetHandler perl-script
PerlHandler Apache::Status
order deny,allow
#deny from all
#allow from ...

</Location>

3. Add to httpd.conf
PerlSetVar StatusOptionsAll On
PerlSetVar StatusTerse On
PerlSetVar StatusTerseSize On
PerlSetVar StatusTerseSizeMainSummary On

PerlModule B::TerseSize

4. Start the server (best in httpd -X mode)

5. From your favorite browser fetch http://localhost/perl-status

6. Click on’Loaded Modules’ or 'Compiled Registry Scripts’

7. Click on the module or script of your choice (you might need to run some script/handler before you
will see it here unless it was preloaded)

8. Click on '"Memory Usage’ at the bottom

9. You should see all the subroutines and their respective sizes.
Now you can start to optimize your code. Or test which of the several implementations is of the least size.
For example let's compaf@Gl.pm’s OO vs. procedural interfaces:

As you will see below the first OO script uses about 2k bytes while the second script (procedural interface)
uses about 5k.

Here are the code examples and the numbers:

360 15 Feb 2014

http://localhost/perl-status

Performance Tuning

cgi_oo.pl

use CGI ();

my $g = CGl->new;
print $g->header;
print $g->b("Hello");

cgi_mtd.pl

use CGI gw(header b);
print header();

print b("Hello");

14.4.4 Measuring the Memory Usage of Subroutines

After executing each script in single server mode (-X) the results are:

1.

Totals: 1966 bytes | 27 OPs

handler 1514 bytes | 27 OPs
exit 116 bytes| 0 OPs

Totals: 4710 bytes | 19 OPs

handler 1117 bytes | 19 OPs
basefont 120 bytes | 0 OPs
frameset 120 bytes | 0 OPs
caption 119 bytes| 0 OPs
applet 118 bytes| 0 OPs
script 118 bytes | 0 OPs
ilayer 118 bytes| 0 OPs
header 118 bytes| 0 OPs
strike 118 bytes | 0 OPs
layer 117 bytes| 0 OPs
table 117 bytes| 0 OPs
frame 117 bytes| 0 OPs
style 117 bytes| 0 OPs
Param 117 bytes| 0 OPs
small 117 bytes| 0 OPs
embed 117 bytes| 0 OPs
font 116 bytes| 0 OPs
span 116 bytes| 0 OPs
exit 116 bytes| 0 OPs
big 115 bytes | 0 OPs
div 115 bytes | 0 OPs
sup 115 bytes | 0 OPs
Sub 115 bytes | 0 OPs
TR 114 bytes | 0 OPs

15 Feb 2014

361

14.5 Know Your Operating System

td 114 bytes | 0 OPs
Tr 114 bytes | 0 OPs
th 114 bytes | 0 OPs
b 113 bytes | 0 OPs

Note, that the above is correct if you didn’t precompileC&l.pm’s methods at server startup. Since if

you did, the procedural interface in the second test will take up to 18k and not 5k as we saw. That's
because the whole &Gl.pm’s namespace is inherited and it already has all its methods compiled, so it
doesn't really matter whether you attempt to import only the symbols that you need. So if you have:

use CGI gw(-compile :all);

in the server startup script. Having:
use CGI gw(header);

or
use CGI gw(:all);

is essentially the same. You will have all the symbols precompiled at startup imported even if you ask for
only one symbol. It seems to me like a bug, but probably that'sd®lapm works.

BTW, you can check the number of opcodes in the code by a simple command line run. For example
comparing 'my %hash’ vs. 'my %hash = ().
% perl -MO=Terse -e 'my %hash’ | wc -|
-e syntax OK
4
% perl -MO=Terse -e 'my %hash = ()’ | wc -I

-e syntax OK
10

The first one has less opcodes.

Note that you shouldn’t us&pache::Status module on production server as it adds quite a bit of
overhead for each request.

14.5 Know Your Operating System

In order to get the best performance it helps to get intimately familiar with the Operating System (OS) the
web server is running on. There are many OS specific things that you may be able to optimize which will
improve your web server’s speed, reliability and security.

The following sections will reveal some of the most important details you should know about your OS.

362 15 Feb 2014

Performance Tuning 14.5.1 Sharing Memory

14.5.1 Sharing Memory

The sharing of memory is one very important factor. If your OS supports it (and most sane systems do),
you might save memory by sharing it between child processes. This is only possible when you preload
code at server startup. However, during a child process’ life its memory pages tend to become unshared.

There is no way we can make Perl allocate memory so that (dynamic) variables land on different memory
pages from constants, so tt@py-on-write effect (we will explain this in a moment) will hit you almost at
random.

If you are pre-loading many modules you might be able to trade off the memory that stays shared against
the time for an occasional fork by tuniddaxRequestsPerChild . Each time a child reaches this
upper limit and dies it should release its unshared pages. The new child which replaces it will share its
fresh pages until it scribbles on them.

The ideal is a point where your processes usually restart before too much memory becomes unshared. You
should take some measurements to see if it makes a real difference, and to find the range of reasonable
values. If you have success with this tuning the valuMatRequestsPerChild will probably be

peculiar to your situation and may change with changing circumstances.

It is very important to understand that your goal is not to hdaeRequestsPerChild to be 10000.
Having a child serving 300 requests on precompiled code is already a huge overall speedup, so if it is 100
or 10000 it probably does not really matter if you can save RAM by using a lower value.

Do not forget that if you preload most of your code at server startup, the newly forked child gets ready
very fast, because it inherits most of the preloaded code and the perl interpreter from the parent process.

During the life of the child its memory pages (which aren’t really its own to start with, it uses the parent’s

pages) gradually get ‘dirty’ - variables which were originally inherited and shared are updated or modified
-- and thecopy-on-writehappens. This reduces the number of shared memory pages, thus increasing the
memory requirement. Killing the child and spawning a new one allows the new child to get back to the
pristine shared memory of the parent process.

The recommendation is thistaxRequestsPerChild should not be too large, otherwise you lose some
of the benefit of sharing memory.

See Choosing MaxRequestsPerChild for more about tuningakBRequestsPerChild parameter.

14.5.1.1 How Shared Is My Memory?

You've probably noticed that the word shared is repeated many times in relation to mod_perl. Indeed,
shared memory might save you a lot of money, since with sharing in place you can run many more servers
than without it. Sefe the Formula and the numbers.

How much shared memory do you have? You can see it by either using the memory utility that comes
with your system or you can deploy Bdop module:

15 Feb 2014 363

14.5.1 Sharing Memory

use GTop ();
print "Shared memory of the current process: ",
GTop->new->proc_mem($$)->share,"\n";

print "Total shared memory: ",
GTop->new->mem->share,"\n";

When you watch the output of thep utility, don’t confuse thd&RES (or RSS columns with thesHARE
column.RESis RESident memory, which is the size of pages currently swapped in.

14.5.1.2 Calculating Real Memory Usage

| have shown how to measure the size of the process’ shared memory, but we still want to know what the
real memory usage is. Obviously this cannot be calculated simply by adding up the memory size of each
process because that wouldn’t account for the shared memory.

On the other hand we cannot just subtract the shared memory size from the total size to get the real
memory usage numbers, because in reality each process has a different history of processed requests,
therefore the shared memory is not the same for all processes.

So how do we measure the real memory size used by the server we run? It's probably too difficult to give
the exact number, but I've found a way to get a fair approximation which was verified in the following
way. | have calculated the real memory used, by the technique you will see in the moment, and then have
stopped the Apache server and saw that the memory usage report indicated that the total used memory
went down by almost the same number I've calculated. Note that some OSs do smart memory pages
caching so you may not see the memory usage decrease as soon as it actually happens when you quit the
application.

This is a technique I've used:

1. For each process sum up the difference between shared and system memory. To calculate a difference
for a single process use:

use GTop;
my $proc_mem = GTop->new->proc_mem($$);
my $diff = $proc_mem->size - $proc_mem->share;

print "Difference is $diff bytes\n";

2. Now if we add the shared memory size of the process with maximum shared memory, we will get all
the memory that actually is being used by all httpd processes, except for the parent process.

3. Finally, add the size of the parent process.

Please note that this might be incorrect for your system, so you use this number on your own risk.

I've used this technique to display real memory usage in the mpdule Apache::VMonitor, so instead of
trying to manually calculate this number you can use this module to do it automatically. In fact in the
calculations used in this module there is no separation between the parent and child processes, they are all
counted indifferently using the following code:

364 15 Feb 2014

Performance Tuning 14.5.1 Sharing Memory

use GTop ();
my $gtop = GTop->new;
my $total_real = 0;
my $max_shared = 0;
@mod_perl_pids is initialized by Apache::Scoreboard, irrelevant here
my @mod_perl_pids = some_code();
for my $pid (@mod_perl_pids)
my $proc_mem = $gtop->proc_mem($pid);
my $size = $proc_mem->size($pid);
my $share = $proc_mem->share($pid);
$total_real += $size - $share;
$max_shared = $share if $max_shared < $share;

}

my $total_real += $max_shared;

So as you see we that we accumulate the difference between the shared and reported memory:

$total_real += $size-$share;

and at the end add the biggest shared process size:

my $total_real += $max_shared;

So nowstotal_real contains approximately the really used memory.

14.5.1.3 Are My Variables Shared?

How do you find out if the code you write is shared between the processes or not? The code should be
shared, except where it is on a memory page with variables that change. Some variables are read-only in
usage and never change. For example, if you have some variables that use a lot of memory and you want
them to be read-only. As you know the variable becomes unshared when the process modifies its value.

So imagine that you have this 10Mb in-memory database that resides in a single variable, you perform
various operations on it and want to make sure that the variable is still shared. For example if you do some
matching regular expression (regex) processing on this variable and want to use the pos() function, will it
make the variable unshared or not?

The Apache::Peek module comes to rescue. Let's write a module cdllsEhared.pmwhich we
preload at server startup, so all the variables of this module are initially shared by all children.

MyShared.pm

package MyShared;
use Apache::Peek;

my $readonly = "Chris";

sub match { $readonly =~ \w/g; }
sub print_pos{ print "pos: “,pos($readonly),"\n";}
sub dump { Dump($readonly); }

1

15 Feb 2014 365

14.5.1 Sharing Memory

This module declares the packaggShared , loads theApache::Peek module and defines the lexi-
cally scopedbreadonly variable which is supposed to be a variable of large size (think about a huge
hash data structure), but we will use a small one to simplify this example.

The module also defines three subroutines: match() that does a simple character matching, print_pos() that
prints the current position of the matching engine inside the string that was last matched and finally the
dump() subroutine that calls th&pache::Peek module’s Dump() function to dump a raw Perl
data-type of th&readonly variable.

Now we write the script that prints the process ID (PID) and calls all three functions. The goal is to check
whether pos() makes the variabliety and therefore unshared.

share_test.pl

use MyShared;

print "Content-type: text/plain\r\in\r\n";
print "PID: $$\n";

MyShared::match();
MyShared::print_pos();
MyShared::dump();

Before you restart the server hitipd.confset:

MaxClients 2

for easier tracking. You need at least two servers to compare the print outs of the test program. Having
more than two can make the comparison process harder.

Now open two browser windows and issue the request for this script several times in both windows, so
you get different processes PIDs reported in the two windows and each process has processed a different
number of requests to tlsbare_test.pscript.

In the first window you will see something like that:

PID: 27040
pos: 1
SV = PVMG(0x853db20) at 0x8250e8c
REFCNT =3
FLAGS = (PADBUSY,PADMY,SMG,POK,pPOK)
V=0
NV =0
PV = 0x8271af0 "Chris"™\0
CUR =5
LEN=6
MAGIC = 0x853dd80
MG_VIRTUAL = &vtbl_mglob
MG_TYPE ='¢’
MG_LEN =1

And in the second window:

366 15 Feb 2014

Performance Tuning 14.5.1 Sharing Memory

PID: 27041
pos: 2
SV = PVYMG(0x853db20) at 0x8250e8¢c
REFCNT =3
FLAGS = (PADBUSY,PADMY,SMG,POK,pPOK)
V=0
NV =0
PV = 0x8271af0 "Chris"\0
CUR=5
LEN = 6
MAGIC = 0x853dd80
MG_VIRTUAL = &vtbl_mglob
MG_TYPE =g’
MG_LEN =2

We see that all the addresses of the supposedly big structures are the same, 0x8250e8c for SV, and
0x8271af0 for PV, therefore the variable data structure is almost completely shared. The only difference is
in SV.MAGIC.MG_LENrecord, which is not shared.

So given that th&readonly variable is a big one, its value is still shared between the processes, while
part of the variable data structure is non-shared. But it's almost insignificant because it takes a very little
memory space.

Now if you need to compare more than variable, doing it by hand can be quite time consuming and error
prune. Therefore it's better to correct the testing script to dump the Perl data-types into files (e.g
/tmp/dump.$$where$$ is the PID of the process) and then using diff(1) utility to see whether there is
some difference.

So correcting the dump() function to write the info to the file will do the job. Notice that we use
Devel::Peek and notApache::Peek . The both are almost the same, Bpache::Peek prints it

output directly to the opened socket so we cannot intercept and redirect the result to the file. Since
Devel::Peek dumps results to the STDERR stream we can use the old trick of saving away the default
STDERR handler, and open a new filehandler using the STDERR. In our exampl®eausnPeek

now prints to STDERR it actually prints to our file. When we are done, we make sure to restore the origi-
nal STDERR filehandler.

So this is the resulting code:

MyShared2.pm

package MyShared2;
use Devel::Peek;

my $readonly = "Chris";

sub match { $readonly =~ \w/g; }
sub print_pos{ print "pos: ",pos($readonly),"\n";}
sub dump{

my $dump_file = "/tmp/dump.$$";

print "Dumping the data into $dump_file\n";

open OLDERR, ">&STDERR";

open STDERR, ">".$dump_file or die "Can’t open $dump_file: $!";
Dump($readonly);

15 Feb 2014 367

14.5.1 Sharing Memory

close STDERR ;
open STDERR, ">&OLDERR";

}
3
When if we modify the code to use the modified module:

share_test2.pl

use MyShared?;

print "Content-type: text/plain\r\in\r\n";
print "PID: $$\n";
MyShared?2::match();
MyShared?2::print_pos();
MyShared?2::dump();

And run it as before (with MaxClients 2), two dump files will be created in the direttopyIn our test
these were created dsp/dump.1224&nd/tmp/dump.1225Vhen we run diff(1):

% diff /tmp/dump.1224 /tmp/dump.1225
12c12
< MG LEN=1

> MG_LEN=2

We see that the two padlists (of the variaieledonly) are different, as we have observed before when
we did a manual comparison.

In fact we if we think about these results again, we get to a conclusion that there is no need for two
processes to find out whether the variable gets modified (and therefore unshared). It's enough to check the
datastructure before the script was executed and after that. You can modifyShared2 module to

dump the padlists into a different file after each invocation and than to run the diff(1) on the two files.

If you want to watch whether some lexically scoped (with my ()) variables inAmche::Registry

script inside the same process get changed between invocations you can use the
Apache::RegistryLexInfo module instead. Since it does exactly this: it makes a snapshot of the
padlist before and after the code execution and shows the difference between the two. This specific
module was written to work witApache::Registry scripts so it won't work for loaded modules. Use

the technique we have described above for any type of variables in modules and scripts.

Surely another way of ensuring that a scalar is readonly and therefore sharable is to either use the
constant pragma oreadonly pragma. But then you won't be able to make calls that alter the vari-
able even a little, like in the example that we just showed, because it will be a true constant variable and
you will get compile time error if you try this:

MyConstant.pm

package MyConstant;
use constant readonly => "Chris";

sub match { readonly =~ A\w/g; }
sub print_pos{ print "pos: ",pos(readonly),"\n";}

368 15 Feb 2014

Performance Tuning 14.5.1 Sharing Memory

% perl -c MyConstant.pm

Can’'t modify constant item in match position at MyConstant.pm line
5, near "readonly)"
MyConstant.pm had compilation errors.

However this code is just right:

MyConstantl.pm

package MyConstant1;
use constant readonly => "Chris";

sub match { readonly =~ Aw/g; }
1

14.5.1.4 Preloading Perl Modules at Server Startup

You can use th@erlRequire andPerlModule directives to load commonly used modules such as
CGl.pm, DBI and etc., when the server is started. On most systems, server children will be able to share
the code space used by these modules. Just add the following directivetpohtonf

PerlModule CGI
PerlModule DBI

But an even better approach is to create a separate startup file (where you code in plain perl) and put there
things like:

use DBI ();
use Carp ();

Don't forget to prevent importing of the symbols exported by default by the module you are going to
preload, by placing empty parenthegpsafter a module’s name. Unless you need some of these in the
startup file, which is unlikely. This will save you a few more memory bits.

Then yourequire() this startup file imttpd.confwith thePerlRequire directive, placing it before
the rest of the mod_perl configuration directives:

PerlRequire /path/to/start-up.pl

CGl.pm is a special case. OrdinariGGIl.pm autoloads most of its functions on an as-needed basis. This
speeds up the loading time by deferring the compilation phase. When you use mod_perl, FastCGI or
another system that uses a persistent Perl interpreter, you will want to precompile the functions at initial-
ization time. To accomplish this, call the package function compile() like this:

use CGI ();
CGl->compile(’:all’);

The arguments toompile() are a list of method names or sets, and are identical to those accepted by
theuse() andimport() operators. Note that in most cases you will want to replate with the
tag names that you actually use in your code, since generally you only use a subset of them.

15 Feb 2014 369

14.5.1 Sharing Memory

Let's conduct a memory usage test to prove that preloading, reduces memory requirements.

In order to have an easy measurement we will use only one child process, therefore we will use this
setting:

MinSpareServers 1
MaxSpareServers 1
StartServers 1

MaxClients 1
MaxRequestsPerChild 100

We are going to use thgpache::Registry scriptmemuse.plvhich consists of two parts: the first one
preloads a bunch of modules (that most of them aren’t going to be used), the second part reports the
memory size and the shared memory size used by the single child process that we start. and of course it
prints the difference between the two sizes.

memuse.pl

use strict;

use CGI ();

use DB_File ();

use LWP::UserAgent ();
use Storable ();

use DBI ();

use GTop ();

my $r = shift;

$r->send_http_header(text/plain’);

my $proc_mem = GTop->new->proc_mem($$);

my $size = $proc_mem->size;

my $share = $proc_mem->share;

my $diff = $size - $share;

printf "%10s %10s %10s\n", qw(Size Shared Difference);
printf "%10d %210d %10d (bytes)\n",$size,$share, $diff;

First we restart the server and execute this CGI script when none of the above modules preloaded. Here is
the result:

Size Shared Diff
4706304 2134016 2572288 (bytes)

Now we take all the modules:

use strict;

use CGI ();

use DB_File ();

use LWP::UserAgent ();
use Storable ();

use DBI ();

use GTop ();

and copy them into the startup script, so they will get preloaded. The script remains unchanged. We restart
the server and execute it again. We get the following.

370 15 Feb 2014

Performance Tuning 14.5.1 Sharing Memory

Size Shared Diff
4710400 3997696 712704 (bytes)

Let's put the two results into one table:

Preloading Size Shared Diff
Yes 4710400 3997696 712704 (bytes)
No 4706304 2134016 2572288 (bytes)

Difference 4096 1863680 -1859584

You can clearly see that when the modules weren’t preloaded the shared memory pages size, were about
1864Kb smaller relative to the case where the modules were preloaded.

Assuming that you have had 256M dedicated to the web server, if you didn't preload the modules, you
could have:

268435456 = X * 2572288 + 2134016

X = (268435456 - 2134016) / 2572288 = 103
103 servers.
Now let’s calculate the same thing with modules preloaded:

268435456 = X * 712704 + 3997696

X = (268435456 - 3997696) / 712704 = 371
You can have almost 4 times more servers!!!

Remember that we have mentioned before that memory pages gets dirty and the size of the shared memory
gets smaller with time? So we have presented the ideal case where the shared memory stays intact. There-
fore the real numbers will be a little bit different, but not far from the numbers in our example.

Also it's obvious that in your case it's possible that the process size will be bigger and the shared memory
will be smaller, since you will use different modules and a different code, so you won't get this fantastic
ratio, but this example is certainly helps to feel the difference.

14.5.1.5 Preloading Registry Scripts at Server Startup

What happens if you find yourself stuck with Perl CGI scripts and you cannot or don’t want to move most
of the stuff into modules to benefit from modules preloading, so the code will be shared by the children.
Luckily you can preload scripts as well. This time #pache::RegistryLoader modules comes to

aid. Apache::RegistryLoader compilesApache::Registry scripts at server startup.

For example to preload the scriperl/test.plwhich is in fact the fildhome/httpd/perl/test.ptou would
do the following:

15 Feb 2014 371

14.5.1 Sharing Memory

use Apache::RegistryLoader ();
Apache::RegistryLoader->new->handler("/perl/test.pl”,
"lhome/httpd/perl/test.pl");

You should put this code either irk®erl> sections or into a startup script.

But what if you have a bunch of scripts located under the same directory and you don’t want to list them
one by one. Take the benefit of Perl modules and put them to a good us@deThRad module will
do most of the work for you.

The following code walks the directory tree under whichAglache::Registry scripts are located.
For each encountered file with extensiph it calls theApache::RegistryLoader::handler()
method to preload the script in the parent server, before pre-forking the child processes:

use File::Find gw(finddepth);
use Apache::RegistryLoader ();
{
my $scripts_root_dir = "/home/httpd/perl/";
my $rl = Apache::RegistryLoader->new;
finddepth
(
sub {
return unless A.pl$/;
my $url = "$File::Find::dir/$_";
$url =~ s|$scripts_root_dir/?|/[;
warn “pre-loading $url\n"*;
preload $url
my $status = $rl->handler($url);
unless($status == 200) {
warn "pre-load of ‘$url’ failed, status=$status\n";
}
h
$scripts_root_dir);

}

Note that we didn’t use the second argumertiandler() here, as in the first example. To make the
loader smarter about the URI to filename translation, you might need to provatesg function to
translate the URI to filename. URI to filename translation normally doesn’t happen until HTTP request
time, so the module is forced to roll its own translation. If filename is omitted tmads) function

was not defined, the loader will try using the URI relativ€e¢overRoot

A simple trans() function can be something like that:

sub mytrans {
my $uri = shift;
$uri =~ s|perl/|/home/httpd/perl/|;
return $uri;

}

You can easily derive the right translation by looking atAhas directive. The above mytrans() func-
tion is matching ouAlias

372 15 Feb 2014

Performance Tuning 14.5.1 Sharing Memory

Alias /perl/ /home/httpd/perl/

After defining the URI to filename translation function you should pass it during the creation of the
Apache::RegistryLoader object:

my $rl = Apache::RegistrylL oader->new(trans => \&mytrans);
| won’t show any benchmarks here, since the effect is absolutely the same as with preloading modules.

See also BEGIN blocks

14.5.1.6 Modules Initializing at Server Startup

We have just learned that it's important to preload the modules and scripts at the server startup. It turns out
that it's not enough for some modules and you have to prerun their initialization code to get more memory
pages shared. Basically you will find an information about specific modules in their respective manpages.
We will present a few examples of widely used modules where the code can be initialized.

14.5.1.6.1 Initializing DBIl.pm

The first example is thBBI module. As you knovDBI works with many database drivers falling into the
DBD:: category, e.gDBD::mysqgl . It's not enough to preloaBBI, you should initializeDBI with

driver(s) that you are going to use (usually a single driver is used), if you want to minimize memory use
after forking the child processes. Note that you want to do this under mod_perl and other environments
where the shared memory is very important. Otherwise you shouldn't initialize drivers.

You probably know already that under mod_perl you should us@pghehe::DBI module to get the
connection persistence, unless you open a separate connection for each user--in this case you should not
use this moduleApache::DBI automatically loadBl and overrides some of its methods, so you
should continue coding like there is onlpBI module.

Just as with modules preloading our goal is to find the startup environment that will lead to the smallest
"difference"between the shared and normal memory reported, therefore a smaller total memory usage.

And again in order to have an easy measurement we will use only one child process, therefore we will use
this setting irhttpd.conf

MinSpareServers 1
MaxSpareServers 1
StartServers 1

MaxClients 1
MaxRequestsPerChild 100

We always preload these modules:

use Gtop();
use Apache::DBI(); # preloads DBI as well

15 Feb 2014 373

14.5.1 Sharing Memory

We are going to run memory benchmarks on five different versions efattap.pilfile.
® option 1
Leave the file unmodified.
® option 2
Install MySQL driver (we will use MySQL RDBMS for our test):
DBI->install_driver("mysql");
It's safe to use this method, since just like wiste() , if it can’t be installed it'll die().
® option 3
Preload MySQL driver module:
use DBD::mysql;
® option 4

Tell Apache::DBI to connect to the database when the child process st@rg- (
dinitHandler), no driver is preload before the child gets spawned!

Apache::DBI->connect_on_init(DBIl:mysql:test::localhost’,

{ :

PrintError => 1, # warn() on errors
RaiseError => 0, # don’t die on error
AutoCommit => 1, # commit executes
immediately

}
)

or die "Cannot connect to database: $DBI::errstr";
® option 5
Options 2 and 4: using connect_on_init() and install_driver().

Here is theApache::Registry test script that we have used:

preload_dbi.pl

use strict;

use GTop ();

use DBI ();

my $dbh = DBI->connect("DBI:mysql:test::localhost",

{ :

PrintError => 1, # warn() on errors

374 15 Feb 2014

Performance Tuning 14.5.1 Sharing Memory

RaiseError => 0, # don't die on error
AutoCommit => 1, # commit executes
immediately
}

or die "Cannot connect to database: $DBI::errstr";

my $r = shift;
$r->send_http_header('text/plain’);

my $do_sqgl = "show tables";
my $sth = $dbh->prepare($do_sql);
$sth->execute();
my @data = ();
while (my @row = $sth->fetchrow_array){
push @data, @row;
}
print "Data: @data\n";
$dbh->disconnect(); # NOP under Apache::DBI

my $proc_mem = GTop->new->proc_mem($$);
my $size = $proc_mem->size;

my $share = $proc_mem->share;

my $diff = $size - $share;

printf "%8s %8s %8s\n", qw(Size Shared Diff);
printf "%8d %8d %8d (bytes)\n",$size,$share,$diff;

The script opens a opens a connection to the datéleaseand issues a query to learn what tables the
databases has. When the data is collected and printed the connection would be closed in the regular case,
but Apache::DBI overrides it with empty method. When the data is processed a familiar to you already
code to print the memory usage follows.

The server was restarted before each new test.
So here are the results of the five tests that were conducted, sortediiy tdodumn:

1. After the first request:

Test type Size Shared Diff

install_driver (2) 3465216 2621440 843776
install_driver & connect_on_init (5) 3461120 2609152 851968
preload driver (3) 3465216 2605056 860160
nothing added (1) 3461120 2494464 966656
connect_on_init (4) 3461120 2482176 978944

2. After the second request (all the subsequent request showed the same results):

Test type Size Shared Diff

install_driver (2) 3469312 2609152 860160
install_driver & connect_on_init (5) 3481600 2605056 876544
preload driver (3) 3469312 2588672 880640
nothing added (1) 3477504 2482176 995328
connect_on_init (4) 3481600 2469888 1011712

15 Feb 2014 375

14.5.1 Sharing Memory

Now what do we conclude from looking at these numbers. First we see that only after a second reload we
get the final memory footprint for a specific request in question (if you pass different arguments the
memory usage might and will be different).

But both tables show the same pattern of memory usage. We can clearly see that the real winner is the
startup.plfile’s version where the MySQL driver was installed (2). Since we want to have a connection
ready for the first request made to the freshly spawned child process, we generally use the version (5)
which uses somewhat more memory, but has almost the same number of shared memory pages. The
version (3) only preloads the driver which results in smaller shared memory. The last two versions having
nothing initialized (1) and having only the connect_on_init() method used (4). The former is a little bit
better than the latter, but both significantly worse than the first two versions.

To remind you why do we look for the smallest value in the coldifinrecall the real memory usage
formula:

RAM_dedicated_to_mod_perl = diff * number_of_processes
+ the_processes_with_largest_shared_memory

Notice that the smaller the diff is, the bigger the number of processes you can have using the same amount
of RAM. Therefore every 100K difference counts, when you multiply it by the number of processes. If we
take the number from the version (2) vs. (4) and assume that we have 256M of memory dedicated to
mod_perl processes we will get the following numbers using the formula derived from the above formula:

RAM - largest_shared_size
N_of Procs =

Diff

268435456 - 2609152
(ver2) N= ----o-mmommmmeee- =309
860160

268435456 - 2469888
(ver4) N = —--mmmemmmmeeeeeee =262
1011712

So you can tell the difference (17% more child processes in the first version).

14.5.1.6.2 Initializing CGIl.pm

CGl.pm is a big module that by default postpones the compilation of its methods until they are actually
needed, thus making it possible to use it under a slow mod_cgi handler without adding a big overhead.
That's not what we want under mod_perl and if you@&4%.pm you should precompile the methods that

you are going to use at the server startup in addition to preloading the module. Use the compile method for
that:

use CGl;
CGl->compile(’:all’);

376 15 Feb 2014

Performance Tuning 14.5.1 Sharing Memory

where you should replace the tag groalp with the real tags and group tags that you are going to use if
you want to optimize the memory usage.

We are going to compare the shared memory foot print by using the script which is back compatible with
mod_cgi. You will see that you can improve performance of this kind of scripts as well, but if you really
want a fast code think about porting it to usgache::Request for CGI interface and some other
module for HTML generation.

So here is thApache::Registry script that we are going to use to make the comparison:

preload_cgi_pm.pl

use strict;
use CGI ();
use GTop ();

my $q = new CGlI;

print $g->header('text/plain’);

print join "\n", map {"$_ => ".$q->param($_) } $g->param;
print "\n";

my $proc_mem = GTop->new->proc_mem($$);

my $size = $proc_mem->size;

my $share = $proc_mem->share;

my $diff = $size - $share;

printf "%8s %8s %8s\n", qw(Size Shared Diff);

printf "%8d %8d %8d (bytes)\n",$size,$share, $diff;

The script initializes th€Gl object, sends HTTP header and then print all the arguments and values that
were passed to the script if at all. At the end as usual we print the memory usage.

As usual we are going to use a single child process, therefore we will use this séttipd.aonf
MinSpareServers 1
MaxSpareServers 1
StartServers 1

MaxClients 1
MaxRequestsPerChild 100

We are going to run memory benchmarks on three different versions efattep.plfile. We always
preload this module:

use Gtop();
e option 1

Leave the file unmodified.
® option 2

PreloadCGl.pm:

15 Feb 2014 377

14.5.1 Sharing Memory

use CGl ();
e option 3
PreloadCGIl.pm and pre-compile the methods that we are going to use in the script:

use CGlI ();
CGl->compile(qw(header param));

The server was restarted before each new test.
So here are the results of the five tests that were conducted, sortedidy dodumn:

1. After the first request:

Version Size Shared Diff Test type

1 3321856 2146304 1175552 not preloaded
2 3321856 2326528 995328 preloaded
3 3244032 2465792 778240 preloaded & methods+compiled

2. After the second request (all the subsequent request showed the same results):

Version Size Shared Diff Test type

1 3325952 2134016 1191936 not preloaded
2 3325952 2314240 1011712 preloaded
3 3248128 2445312 802816 preloaded & methods+compiled

The first version shows the results of the script execution &hnpm wasn't preloaded. The second
version with module preloaded. The third when it's both preloaded and the methods that are going to be
used are precompiled at the server startup.

By looking at the version one of the second table we can conclude that, preloading adds about 20K of
shared size. As we have mention at the beginning of this section thatG®lopm was implemented--to

reduce the load overhead. Which means that preloading CGI is almost hardly change a thing. But if we
compare the second and the third versions we will see a very significant difference of 207K
(1011712-802816), and we have used only a few method$éi¢ddermethod loads a few more method
transparently for a user). Imagine how much memory we are going to save if we are going to precompile
all the methods that we are using in other scripts thaC@em and do a little bit more than the script

that we have used in the test.

But even in our very simple case using the same formula, what do we see? (assuming that we have 256MB
dedicated for mod_perl)

378 15 Feb 2014

Performance Tuning 14.5.2 Increasing Shared Memory With mergemem

RAM - largest_shared_size

N_of Procs =
Diff
268435456 - 2134016
(ver1l) N= -—--mmmmmmmme- =223
1191936

268435456 - 2445312
(ver3) N = --oommmmommeee =331
802816

If we preloadCGl.pm and precompile a few methods that we use in the test script, we can have 50%
more child processes than when we don't preload and precompile the methods that we are going to use.

META: I've heard that the 3.x generation will be less bloated, so probably I'll have to rerun this using the
new version.

14.5.2 Increasing Shared Memory With mergemem

mergemem is an experimental utility for linux, which lookgery interesting for us mod_perl users:
|http://www.complang.tuwien.ac.at/ulrich/mergemlem/

It looks like it could be run periodically on your server to find and merge duplicate pages. It won't halt
your httpds during the merge, this aspect has been taken into consideration already during the design of
mergemem: Merging is not performed with one big systemcall. Instead most operation is in userspace,
making a lot of small systemcalls.

Therefore blocking of the system should not happen. And, if it really should turn out to take too much time
you can reduce the priority of the process.

The worst case that can happen is thiergememmerges two pages and immediately afterwards they
will be split. The split costs about the same as the time consumed by merging.

This software comes with a utility calledemcmpo tell you how much you might save.

14.5.3 Forking and Executing Subprocesses from mod_perl

It's desirable to avoid forking under mod_perl. Since when you do, you are forking the entire Apache

server, lock, stock and barrel. Not only is your Perl code and Perl interpreter being duplicated, but so is
mod_ssl, mod_rewrite, mod_log, mod_proxy, mod_speling (it's not a typo!) or whatever modules you

have used in your server, all the core routines, etc.

Modern Operating Systems come with a very light version of fork which adds a little overhead when
called, since it was optimized to do the absolute minimum of memory pages duplications. The
copy-on-writetechnique is the one that allows to do so. The gist of this technique is as follows: the parent
process memory pages aren’t immediately copied to the child’'s space on fork(), but this is done only when
the child or the parent modifies the data in some memory pages. Before the pages get modified they get
marked as dirty and the child has no choice but to copy the pages that are to be modified since they cannot

15 Feb 2014 379

http://www.complang.tuwien.ac.at/ulrich/mergemem/

14.5.3 Forking and Executing Subprocesses from mod_perl

be shared any more.

If you need to call a Perl program from your mod_perl code, it's better to try to covert the program into a
module and call it a function without spawning a special process to do that. Of course if you cannot do that
or the program is not written in Perl, you have to call via system() or is equivalent, which spawn a new
process. If the program written in C, you may try to write a Perl glue code with help of XS or SWIG archi-
tectures, and then the program will be executed as a perl subroutine.

Also by trying to spawn a sub-process, you might be trying to déwhang thing" If what you really

want is to send information to the browser and then do some post-processing, look iR&rlthe
CleanupHandler directive. The latter allows you to tell the child process after request has been
processed and user has received the response. This doesn't release the mod_perl process to serve other
requests, but it allows to send the response to the client faster. If this is the situation and you need to run
some cleanup code, you may want to register this code during the request processing via:

my $r = shift;
$r->register_cleanup(\&do_cleanup);
sub do_cleanup{ #some clean-up code here }

But when a long term process needs to be spawned, there is not much choice, but to use fork(). We cannot
just run this long term process within Apache process, since it'll first keep the Apache process busy,
instead of letting it do the job it was designed for. And second, if Apache will be stopped the long term
process might be terminated as well, unless coded properly to detach from Apache processes group.

In the following sections we are going to discuss how to properly spawn new processes under mod_perl.

14.5.3.1 Forking a New Process

This is a typical way to call fork() under mod_perl:

defined (my $kid = fork) or die "Cannot fork: $\n";
if ($kid) {
Parent runs this block
}else {
Child runs this block
some code comes here
CORE::exit(0);
}

possibly more code here usually run by the parent

When using fork(), you should check its return value, since if it retumdsf it means that the call was
unsuccessful and no process was spawned. Something that can happen when the system is running too
many processes and cannot spawn new ones.

When the process is successfully forked--the parent receives the PID of the newly spawned child as a
returned value of the fork() call and the child receives 0. Now the program splits into two. In the above
example the code inside the first block affewill be executed by the parent and the code inside the first
block afterelsewill be executed by the child process.

380 15 Feb 2014

Performance Tuning 14.5.3 Forking and Executing Subprocesses from mod_perl

It's important not to forget to explicitly call exit() at the end of the child code when forking. Since if you
don’t and there is some code outsideiftedse block the child process will execute it as well. But under
mod_perl there is another nuance--you must GE&RE::exit() and notexit() , which would be
automatically overridden bipache::exit() if used in conjunction wit\pache::Registry and

similar modules. And we want the spawned process to quit when its work is done, otherwise it'll just stay
alive use resources and do nothing.

The parent process usually completes its execution path and enters the pool of free servers to wait for a
new assignment. If the execution path is to be aborted earlier for some reason one should use
Apache::exit() or die(), in the case Apache::Registry or Apache::PerlRun handlers a simple

exit() will do the right thing.

The child shares with parent its memory pages until it has to modify some of them, which triggers a
copy-on-write process which copies these pages to the child’s domain before the child is allowed to
modify them. But this all happens afterwards. At the moment the fork() call executed, the only work to be
done before the child process goes on its separate way is setting up the page tables for the virtual memory,
which imposes almost no delay at all.

14.5.3.2 Freeing the Parent Process

In the child code you must also close all the pipes to the connection socket that were opened by the parent
process (i.eSTDIN andSTDOUT and inherited by the child, so the parent will be able to complete the
request and free itself for serving other requests. If you nee8TBd¢N and/orSTDOUTstreams you

should re-open them. You may need to close or re-opeRtBERRlehandle. It's opened to append to
theerror_logfile as inherited from its parent, so chances are that you will want to leave it untouched.

Under mod_perl, the spawned process also inherits the file descriptor that's tied to the socket through

which all the communications between the server and the client happen. Therefore we need to free this
stream in the forked process. If we don'’t do that, the server cannot be restarted while the spawned process
is still running. If an attempt is made to restart the server you will get the following error:

[Mon Dec 11 19:04:13 2000] [crit]
(98)Address already in use: make_sock:
could not bind to address 127.0.0.1 port 8000

Apache::SubProcess comes to help and provides a method cleanup_for_exec() which takes care of
closing this file descriptor.

So the simplest way is to freeing the parent process is to close all three STD* streams if we don’t need
them and untie the Apache socket. In addition you may want to change process’ current dirécory to
the forked process won’t keep the mounted partition busy, if this is to be unmounted at a later time. To
summarize all this issues, here is an example of the fork that takes care of freeing the parent process.

use Apache::SubProcess;
defined (my $kid = fork) or die "Cannot fork: $\n";
if ($kid) {
Parent runs this block
}else {
Child runs this block
$r->cleanup_for_exec(); # untie the socket

15 Feb 2014 381

14.5.3 Forking and Executing Subprocesses from mod_perl

chdir '/’ or die "Can’t chdir to /; $!";
close STDIN;

close STDOUT;

close STDERR;

some code comes here

CORE::exit(0);
}

possibly more code here usually run by the parent

Of course between the freeing the parent code and child process termination the real code is to be placed.

14.5.3.3 Detaching the Forked Process

Now what happens if the forked process is running and we decided that we need to restart the web-server?
This forked process will be aborted, since when parent process will die during the restart it'll kill its child
processes as well. In order to avoid this we need to detach the process from its parent session, by opening
a new session with help of setsid() system call, provided by@&X module:

use POSIX 'setsid’;

defined (my $kid = fork) or die "Cannot fork: $!\n";
if ($kid) {
Parent runs this block
}else {
Child runs this block
setsid or die "Can't start a new session: $!";

-

Now the spawned child process has a life of its own, and it doesn’t depend on the parent anymore.

14.5.3.4 Avoiding Zombie Processes
Now let’s talk about zombie processes.

Normally, every process has its parent. Many processes are childrenrif thgprocess, whoseID is1.
When you fork a process you must wait() or waitpid() for it to finish. If you don’t wait() for it, it becomes
a zombie.

A zombie is a process that doesn’t have a parent. When the child quits, it reports the termination to its
parent. If no parent wait()s to collect the exit status of the child, it"getdused"and becomes a ghost
process, that can be seen as a process, but not killed. It will be killed only when you stop the parent
process that spawned it!

Generally the ps(1) utility displays these processes witkdéunc> tag, and you will see the zombies
counter increment when doing top(). These zombie processes can take up system resources and are gener-
ally undesirable.

382 15 Feb 2014

Performance Tuning 14.5.3 Forking and Executing Subprocesses from mod_perl

So the proper way to do a fork is:

my $r = shift;
$r->send_http_header('text/plain’);

defined (my $kid = fork) or die "Cannot fork: $!";
if ($kid) {
waitpid($kid,0);
print "Parent has finished\n";
}else {
do something
CORE::exit(0);
}

In most cases the only reason you would want to fork is when you need to spawn a process that will take a
long time to complete. So if the Apache process that spawns this new child process has to wait for it to
finish, you have gained nothing. You can neither wait for its completion (because you don’t have the time
to), nor continue because you will get yet another zombie process. This is called a blocking call, since the
process is blocked to do anything else before this call gets completed.

The simplest solution is to ignore your dead children. Just add this line before the fork() call:

$SIG{CHLD} = 'IGNORE;

When you set th€HLD(SIGCHLDIn C) signal handler tdaGNORE’ , all the processes will be collected
by theinit process and are therefore prevented from becoming zombies. This doesn’t work everywhere,
however. It proved to work at least on Linux OS.

Note that you cannot localize this setting wabal() . If you do, it won't have the desired effect.
[META: Can anyone explain why localization doesn’t work?]

So now the code would look like this:

my $r = shift;
$r->send_http_header('text/plain’);

$SIG{CHLD} = IGNORE’;

defined (my $kid = fork) or die "Cannot fork: $\n";
if ($kid) {
print "Parent has finished\n";
}else {
do something time-consuming
CORE::exit(0);
}

Note that waitpid() call has gone. The $SIG{CHLD} =’'IGNORE’; statement protects us from zombies, as
explained above.

15 Feb 2014 383

14.5.3 Forking and Executing Subprocesses from mod_perl

Another, more portable, but slightly more expensive solution is to use a double fork approach.

my $r = shift;
$r->send_http_header('text/plain’);

defined (my $kid = fork) or die "Cannot fork: $!\n";
if ($kid) {
waitpid($kid,0);
}else {
defined (my $grandkid = fork) or die "Kid cannot fork: $!\n";
if (Pgrandkid) {
CORE::exit(0);
}else {
code here
do something long lasting
CORE::exit(0);
}
}

Grandkid becomes'ghild of init", i.e. the child of the process whose PID is 1.

Note that the previous two solutions do allow you to know the exit status of the process, but in our
example we didn’t care about it.

Another solution is to use a differeBlGCHLDhandler:

use POSIX "WNOHANG';
$SIG{CHLD} = sub { while(waitpid(-1, WNOHANG)>0) {} };

Which is useful when you fork() more than one process. The handler could call wait() as well, but for a
variety of reasons involving the handling of stopped processes and the rare event in which two children
exit at nearly the same moment, the best technique is to call waitpid() in a tight loop with a first argument
of -1 and a second argument\WWINOHANG ogether these arguments tell waitpid() to reap the next child
that's available, and prevent the call from blocking if there happens to be no child ready for reaping. The
handler will loop until waitpid() returns a negative number or zero, indicating that no more reapable chil-
dren remain.

While you test and debug your code that uses one of the above examples, You might want to write some
debug information to the error_log file so you know what happens.

Readperlipc manpage for more information about signal handlers.

14.5.3.5 A Complete Fork Example

Now let's put all the bits of code together and show a well written fork code that solves all the problems
discussed so far. We will use Apache::Registry script for this purpose:

proper_fork1.pl

use strict;
use POSIX 'setsid’;
use Apache::SubProcess;

384 15 Feb 2014

Performance Tuning 14.5.3 Forking and Executing Subprocesses from mod_perl

my $r = shift;
$r->send_http_header("text/plain");

$SIG{CHLD} = 'IGNORE’;
defined (my $kid = fork) or die "Cannot fork: $!\n";
if ($kid) {
print "Parent $$ has finished, kid's PID: $kid\n";
}else {
$r->cleanup_for_exec(); # untie the socket
chdir '/’ or die "Can’t chdir to /: $!";
open STDIN, '/dev/null’ or die "Can'’t read /dev/null: $!";
open STDOUT, ">/dev/null’
or die "Can'’t write to /dev/null: $!";
open STDERR, ">/tmp/log’ or die "Can'’t write to /tmp/log: $!";
setsid or die "Can't start a new session: $!";

my $oldfh = select STDERR;
local $| = 1;

select $oldfh;

warn "started\n";

do something time-consuming
sleep 1, warn "$_\n" for 1..20;
warn "completed\n”;

CORE::exit(0); # terminate the process
}

The script starts with the usual declaration of the strict mode, loading PtB8IX and
Apache::SubProcess = modules and importing of the setsid() symbol fromRESIX package.

The HTTP header is sent next, with tBentent-typeof text/plain The parent process gets ready to ignore
the child, to avoid zombies and the fork is called.

The program gets its personality split after fork and the if conditional evaluates to a true value for the
parent process, and to a false value for the child process, therefore the first block is executed by the parent
and the second by the child.

The parent process announces his PID and the PID of the spawned process and finishes its block. If there
will be any code outside it will be executed by the parent as well.

The child process starts its code by disconnecting from the socket, changing its current dirgctory to
opening the STDIN and STDOUT streamddev/null which in effect closes them both before opening.

In fact in this example we don't need neither of these, so we could just close() both. The child process
completes its disengagement from the parent process by opening the STDERR sftegfiom so it

could write there, and creating a new session with help of setsid(). Now the child process has nothing to do
with the parent process and can do the actual processing that it has to do. In our example it performs a
simple series of warnings, which are logged frtap/log

15 Feb 2014 385

14.5.3 Forking and Executing Subprocesses from mod_perl

my $oldfh = select STDERR;
local $| = 1;

select $oldfh;

warn "started\n";

do something time-consuming
sleep 1, warn "$_\n" for 1..20;
warn "completed\n®;

The localized setting d§|=1 unbuffers the STDERR stream, so we can immediately see the debug output
generated by the program. In fact this setting is not required when the output is generated by warn().

Finally the child process terminates by calling:
CORE::exit(0);
which make sure that it won't get out of the block and run some code that it's not supposed to run.

This code example will allow you to verify that indeed the spawned child process has its own life, and its
parent is free as well. Simply issue a request that will run this script, watch that the warnings are started to
be written into thétmp/log file and issue a complete server stop and start. If everything is correct, the
server will successfully restart and the long term process will still be running. You will know that it's still
running, if the warnings will still be printed into tli@np/logfile. You may need to raise the humber of
warnings to do above 20, to make sure that you don’t miss the end of the run.

If there are only 5 warnings to be printed, you should see the following output in this file:

started

abhwnN PR

completed

14.5.3.6 Starting a Long Running External Program

But what happens if we cannot just run a Perl code from the spawned process and we have a compiled
utility, i.e. a program written in C. Or we have a Perl program which cannot be easily converted into a
module, and thus called as a function. Of course in this case we have to use system(), exec(), gx() or
(back ticks) to start it.

When using any of these methods and wherT #ist mode is enabled, we must at least add the following
code to untaint th&ATH environment variable and delete a few other insecure environment variables.
This information can be found in tiperlsecmanpage.

$ENV{PATH’} = "/bin:/usr/bin’;
delete @ENV{'IFS’, "CDPATH’, ENV’, 'BASH_ENV'};

Now all we have to do is to reuse the code from the previous section.

386 15 Feb 2014

Performance Tuning 14.5.3 Forking and Executing Subprocesses from mod_perl

First we move the core program into #wernal.plfile, add the shebang first line so the program will be
executed by Perl, tell the program to run un@aint mode (-T) and possibly enable tvarningsmode
(-w) and make it executable:

external.pl

#!/usr/bin/perl -Tw

open STDIN, '/dev/null’ or die "Can't read /dev/null: $!";
open STDOUT, ">/dev/null’

or die "Can't write to /dev/null: $!";
open STDERR, ">/tmp/log’ or die "Can’t write to /tmp/log: $!";

my $oldfh = select STDERR,;
local $| = 1;

select $oldfh;

warn "started\n";

do something time-consuming
sleep 1, warn "$_\n" for 1..20;
warn "completed\n®;

Now we replace the code that moved into the external program with exec() to call it:

proper_fork_exec.pl

use strict;

use POSIX 'setsid’;

use Apache::SubProcess;

SENV{'PATH'} = '/bin:/usr/bin’;
delete @ENV{IFS’, 'CDPATH’, 'TENV’, 'BASH_ENV};

my $r = shift;
$r->send_http_header("text/html");

$SIG{CHLD} = 'IGNORE’;

defined (my $kid = fork) or die "Cannot fork: $\n";
if ($kid) {
print "Parent has finished, kid’s PID: $kid\n";
}else {
$r->cleanup_for_exec(); # untie the socket
chdir '/’ or die "Can’t chdir to /: $!";
open STDIN, /dev/null’ or die "Can’t read /dev/null: $!";
open STDOUT, ">/dev/null’
or die "Can’t write to /dev/null: $!";
open STDERR, '>&STDOUT’ or die "Can’t dup stdout: $!";
setsid or die "Can't start a new session: $!";

exec "/home/httpd/perl/external.pl” or die "Cannot execute exec: $!";

}

Notice that exec() never returns unless it fails to start the process. Therefore you shouldn’t put any code
after exec()--it will be not executed in the case of success. Use system() or back-ticks instead if you want
to continue doing other things in the process. But then you probably will want to terminate the process

15 Feb 2014 387

14.5.3 Forking and Executing Subprocesses from mod_perl

after the program has finished. So you will have to write:

system "/home/httpd/perl/external.pl” or die "Cannot execute system: $!";
CORE::exit(0);

Another important nuance is that we have to close all STD* stream in the forked process, even if the called
program does that.

If the external program is written in Perl you may pass complicated data structures to it using one of the
methods to serialize Perl data and then to restore itStdrable andFreezeThaw modules come
handy. Let’s say that we have prograraster.plicalling progranslave.pi

master.pl

we are within the mod_perl code

use Storable ();

my @params = (foo => 1, bar => 2);

my $params = Storable::freeze(\@params);

exec "./slave.pl", $params or die "Cannot execute exec: $!";

slave.pl

#!/usr/bin/perl -w

use Storable ();

my @params = @ARGV ? @{ Storable::thaw(shift)||[] } : O;
do something

As you can seanaster.plserializes thg@params data structure witlstorable::freeze and passes
it to slave.plas a single argumenrdlave.plrestores the it wittstorable::thaw , by shifting the first
value of theARGVarray if available. Th€reezeThaw module does a very similar thing.

14.5.3.7 Starting a Short Running External Program

Sometimes you need to call an external program and you cannot continue before this program completes
its run and optionally returns some result. In this case the fork solution doesn’t help. But we have a few
ways to execute this program. First using system():

system "perl -e 'print 5+5™

We believe that you will never call the perl interperter for doing this simple calculation, but for the sake of
a simple example it's good enough.

The problem with this approach is that we cannot get the results prin@XOUT and that's where
back-ticks or gx() come to help. If you use either:

my $result = ‘perl -e 'print 5+5™;

or:

388 15 Feb 2014

Performance Tuning 14.6 Performance Tuning by Tweaking Apache Configuration

my $result = gx{perl -e 'print 5+5};
the whole output of the external program will be stored ir$tesult variable.

Of course you can use other solutions, like opening a pipe the program) if you need to submit many
arguments and more evolved solutions provided by other Perl moduléB@k©pen2 which allows
to open a process for both reading and writing.

14.5.3.8 Executing system() or exec() in the Right Way

The exec() and system() system calls behave identically in the way they spawn a program. For example
let's use system() as an example. Consider the following code:

system("echo","Hi");

Perl will use the first argument as a program to execute/fintecho along the search path, invoke it
directly and pass thi string as an argument.

Perl's system() isiot thesystem(3) call [C-library]. This is how the arguments to system() get inter-
preted. When there is a single argument to system(), it'll be checked for having shell metacharacters first
(like *,?), and if there are any--Perl interpreter invokes a real shell program (/bin/sh -c on Unix plat-
forms). If you pass a list of arguments to system(), they will be not checked for metacharacters, but split
into words if required and passed directly to the C-lexekcvp() system call, which is more efficient.

That's averynice optimization. In other words, only if you do:

system "sh -c 'echo *™"

will the operating system actually exec() a copybaf/sh to parse your command. But even then since
shis almost certainly already running somewhere, the system will notice that (via the disk inode reference)
and replace your virtual memory page table with one pointing to the existing program code plus your data
space, thus will not create this overhead.

14.5.4 OS Specific Parameters for Proxying

Most of the mod_perl enabled servers use a proxy front-end server. This is done in order to avoid serving
static objects, and also so that generated output which might be received by slow clients does not cause the
heavy but very fast mod_perl servers from idly waiting.

There are very important OS parameters that you might want to change in order to improve the server
performance. This topic is discussed in the section: Setting the Buffering Limits on Various OSes

14.6 Performance Tuning by Tweaking Apache Configura-
tion

Correct configuration of the MinSpareServers , MaxSpareServers , StartServers ,
MaxClients , andMaxRequestsPerChild parameters is very important. There are no defaults. If
they are too low, you will under-use the system’s capabilities. If they are too high, the chances are that the

15 Feb 2014 389

14.6.1 Configuration Tuning with ApacheBench

server will bring the machine to its knees.

All the above parameters should be specified on the basis of the resources you have. With a plain apache
server, it's no big deal if you run many servers since the processes are about 1Mb and don’t eat a lot of
your RAM. Generally the numbers are even smaller with memory sharing. The situation is different with
mod_perl. | have seen mod_perl processes of 20Mb and more. Now if yoMag@éents set to 50:
50x20Mb = 1Gb. Do you have 1Gb of RAM? Maybe not. So how do you tune the parameters? Generally
by trying different combinations and benchmarking the server. Again mod_perl processes can be of much
smaller size with memory sharing.

Before you start this task you should be armed with the proper weapon. You needstivae utility,

which will load your server with the mod_perl scripts you possess. You need it to have the ability to
emulate a multiuser environment and to emulate the behavior of multiple clients calling the mod_perl
scripts on your server simultaneously. While there are commercial solutions, you can get away with free
ones which do the same job. You can use the ApacheBsmaltility which comes with the Apache
distribution, the crashme script which us&8P::Parallel::UserAgent , httperf or http_load.

It is important to make sure that you run the load generator (the client which generates the test requests) on
a system that is more powerful than the system being tested. After all we are trying to simulate Internet
users, where many users are trying to reach your service at once. Since the number of concurrent users can
be quite large, your testing machine must be very powerful and capable of generating a heavy load. Of
course you should not run the clients and the server on the same machine. If you do, your test results
would be invalid. Clients will eat CPU and memory that should be dedicated to the server, and vice versa.

14.6.1 Configuration Tuning with ApacheBench

We are going to usApacheBench (ab) utility to tune our server’'s configuration. We will simulate 10
users concurrently requesting a very light script at

|http://www.example.com/perl/access/access.cgi | Each simulated user makes 10
requests.

% ./ab -n 100 -c 10 http://www.example.com/perl/access/access.cgi

The results are:

Document Path: Iperl/access/access.cgi
Document Length: 16 bytes

Concurrency Level: 10

Time taken for tests: 1.683 seconds
Complete requests: 100

Failed requests: 0

Total transferred: 16100 bytes
HTML transferred: 1600 bytes
Requests per second: 59.42
Transfer rate: 9.57 kb/s received

Connnection Times (ms)

390 15 Feb 2014

http://www.example.com/perl/access/access.cgi

Performance Tuning 14.6.1 Configuration Tuning with ApacheBench

min avg max
Connect: 0 29 101
Processing: 77 124 1259
Total: 77 153 1360

The only numbers we really care about are:

Complete requests: 100
Failed requests: 0
Requests per second: 59.42

Let’s raise the request load to 100 x 10 (10 users, each makes 100 requests):

% ./ab -n 1000 -c 10 http://www.example.com/perl/access/access.cgi
Concurrency Level: 10

Complete requests: 1000

Failed requests: 0

Requests per second: 139.76

As expected, nothing changes -- we have the same 10 concurrent users. Now let's raise the number of
concurrent users to 50:

% ./ab -n 1000 -c 50 http://www.example.com/perl/access/access.cgi
Complete requests: 1000

Failed requests: 0

Requests per second: 133.01

We see that the server is capable of serving 50 concurrent users at 133 requests per second! Let's find the
upper limit. Using-n 10000 -c 1000 failed to get results (Broken Pipe?). Usimg10000 -c
500 resulted in 94.82 requests per second. The server’s performance went down with the high load.

The above tests were performed with the following configuration:

MinSpareServers 6
MaxSpareServers 8
StartServers 10

MaxClients 50
MaxRequestsPerChild 1500

Now let’s kill each child after it serves a single request. We will use the following configuration:
MinSpareServers 6
MaxSpareServers 8
StartServers 10

MaxClients 100
MaxRequestsPerChild 1

Simulate 50 users each generating a total of 20 requests:

% ./ab -n 1000 -c 50 http://www.example.com/perl/access/access.cgi

15 Feb 2014 391

14.6.1 Configuration Tuning with ApacheBench

The benchmark timed out with the above configuration.... | watched the ougpsitasf| ran it, the parent
process just wasn't capable of respawning the killed children at that rate. When | raidéaxBe-
guestsPerChild to 10, I got 8.34 requests per second. Very bad - 18 times slower! You can't bench-
mark the importance of thdinSpareServers , MaxSpareServers andStartServers with this

kind of test.

Now let's resetMaxRequestsPerChild to 1500, but reducMaxClients to 10 and run the same
test:

MinSpareServers 6
MaxSpareServers 8
StartServers 10

MaxClients 10
MaxRequestsPerChild 1500

| got 27.12 requests per second, which is better but still 4-5 times slower. (I got 133ax(ients
set to 50.)

Summary: | have tested a few combinations of the server configuration varidbieSgareServers
MaxSpareServers , StartServers , MaxClients andMaxRequestsPerChild). The results |
got are as follows:

MinSpareServers , MaxSpareServers andStartServers are only important for user response
times. Sometimes users will have to wait a bit.

The important parameters awaxClients andMaxRequestsPerChild . MaxClients should be

not too big, so it will not abuse your machine’s memory resources, and not too small, for if it is your users
will be forced to wait for the children to become free to serve tMamRequestsPerChild should be

as large as possible, to get the full benefit of mod_perl, but watch your server at the beginning to make
sure your scripts are not leaking memory, thereby causing your server (and your service) to die very fast.

Also it is important to understand that we didn’t test the response times in the tests above, but the ability of
the server to respond under a heavy load of requests. If the test script was heavier, the numbers would be
different but the conclusions very similar.

The benchmarks were run with:

HW: RS6000, 1Gb RAM

SW: AIX 4.1.5 . mod_perl 1.16, apache 1.3.3

Machine running only mysq|l, httpd docs and mod_perl servers.
Machine was _completely_ unloaded during the benchmarking.

After each server restart when | changed the server's configuration, | made sure that the scripts were
preloaded by fetching a script at least once for every child.

It is important to notice that none of the requests timed out, even if it was kept in the server's queue for
more than a minute! That is the waly works, which is OK for testing purposes but will be unacceptable

in the real world - users will not wait for more than five to ten seconds for a request to complete, and the
client (i.e. the browser) will time out in a few minutes.

392 15 Feb 2014

Performance Tuning 14.6.1 Configuration Tuning with ApacheBench

Now let's take a look at some real code whose execution time is more than a few milliseconds. We will do
some real testing and collect the data into tables for easier viewing.

| will use the following abbreviations:

NR = Total Number of Request
NC = Concurrency

MC = MaxClients

MRPC = MaxRequestsPerChild
RPS = Requests per second

Running a mod_perl script with lots of mysqgl queries (the script under test is mysqgld limited)
(http://www.example.com/perl/access/access.cgi?do _sub=query form), with the configuration:

MinSpareServers 8
MaxSpareServers 16
StartServers 10
MaxClients 50
MaxRequestsPerChild 5000

gives us:

NR NC RPS comment

10 10 3.33 # not a reliable figure
100 10 3.94
1000 10 4.62
1000 50 4.09

Conclusions: Here | wanted to show that when the application is slow (not due to perl loading, code
compilation and execution, but limited by some external operation) it almost does not matter what load we

place on the server. The RPS (Requests per second) is almost the same. Given that all the requests have

been served, you have the ability to queue the clients, but be aware that anything that goes into the queue
means a waiting client and a client (browser) that might time out!

Now we will benchmark the same script without using the mysqgl (code limited by perl only):
(http://lwww.example.com/perl/access/accesk.cqi), it's the same script but it just returns the HTML form,
without making SQL queries.

MinSpareServers 8
MaxSpareServers 16
StartServers 10
MaxClients 50
MaxRequestsPerChild 5000

NR NC RPS comment

10 10 26.95 # not areliable figure
100 10 30.88
1000 10 29.31
1000 50 28.01
1000 100 29.74
10000 200 24.92
100000 400 24.95

15 Feb 2014 393

http://www.example.com/perl/access/access.cgi?do_sub=query_form
http://www.example.com/perl/access/access.cgi

14.6.1 Configuration Tuning with ApacheBench

Conclusions: This time the script we executed was pure perl (not limited by 1/O or mysql), so we see that

the server serves the requests much faster. You can see the number of requests per second is almost the
same for any load, but goes lower when the number of concurrent clients goes ley@ients

With 25 RPS, the machine simulating a load of 400 concurrent clients will be served in 16 seconds. To be
more realistic, assuming a maximum of 100 concurrent clients and 30 requests per second, the client will
be served in 3.5 seconds. Pretty good for a highly loaded server.

Now we will use the server to its full capacity, by keepingvakClients clients alive all the time and
having a bigMaxRequestsPerChild , so that no child will be killed during the benchmarking.

MinSpareServers 50
MaxSpareServers 50
StartServers 50
MaxClients 50
MaxRequestsPerChild 5000

NR NC RPS comment

100 10 32.05
1000 10 33.14
1000 50 33.17
1000 100 31.72

10000 200 31.60

Conclusion: In this scenario there is no overhead involving the parent server loading new children, all the
servers are available, and the only bottleneck is contention for the CPU.

Now we will changeMaxClients and watch the results: Let's redddaxClients to 10.

MinSpareServers 8
MaxSpareServers 10
StartServers 10
MaxClients 10
MaxRequestsPerChild 5000

NR NC RPS comment

10 10 23.87 # notareliable figure
100 10 32.64
1000 10 32.82
1000 50 30.43
1000 100 25.68
1000 500 26.95
2000 500 32.53

Conclusions:Very little difference! Ten servers were able to serve almost with the same throughput as 50
servers. Why? My guess is because of CPU throttling. It seems that 10 servers were serving requests 5
times faster than when we worked with 50 servers. In that case, each child received its CPU time slice five
times less frequently. So having a big valueMaxClients , doesn’'t mean that the performance will be
better. You have just seen the numbers!

394 15 Feb 2014

Performance Tuning 14.6.2 Choosing MaxClients

Now we will start drastically to reduddaxRequestsPerChild

MinSpareServers 8
MaxSpareServers 16
StartServers 10
MaxClients 50

NR NC MRPC RPS comment

100 10 10 5.77

100 10 5 3.32
1000 50 20 8.92
1000 50 10 5.47
1000 50 5 2.83
1000 100 10 6.51

Conclusions:When we drastically reduddaxRequestsPerChild , the performance starts to become
closer to plain mod_cqgi.

Here are the numbers of this run with mod_cgi, for comparison:

MinSpareServers 8
MaxSpareServers 16
StartServers 10
MaxClients 50

NR NC RPScomment

100 10 1.2
1000 50 1.14
1000 100 1.13

Conclusion mod_cgi is much slower. :) In the first test, when NR/NC was 100/10, mod_cgi was capable

of 1.12 requests per second. In the same circumstances, mod_perl was capable of 32 requests per second,
nearly 30 times faster! In the first test each client waited about 100 seconds to be served. In the second and
third tests they waited 1000 seconds!

14.6.2 Choosing MaxClients

The MaxClients directive sets the limit on the number of simultaneous requests that can be supported.
No more than this number of child server processes will be created. To configure more than 256 clients,
you must edit theHARD_SERVER_LIMITentry inhttpd.h and recompile. In our case we want this
variable to be as small as possible, because in this way we can limit the resources used by the server chil-
dren. Since we can restrict each child’s process siz¢ (see Preventing Your Processes from Growing), the
calculation ofMaxClients is pretty straightforward:

Total RAM Dedicated to the Webserver
MaxClients =
MAX child’s process size

15 Feb 2014 395

14.6.2 Choosing MaxClients

So if | have 400Mb left for the webserver to run with, | canMa&tClients to be of 40 if | know that
each child is limited to 10Mb of memory (e.g. wibache::SizeLimit .

You will be wondering what will happen to your server if there are more concurrent users than
MaxClients at any time. This situation is signified by the following warning message in the
error_log

[Sun Jan 24 12:05:32 1999] [error] server reached MaxClients setting,
consider raising the MaxClients setting

There is no problem -- any connection attempts oveMigneClients limit will normally be queued, up
to a number based on théstenBacklog directive. When a child process is freed at the end of a
different request, the connection will be served.

It is an error because clients are being put in the queue rather than getting served immediately, despite the
fact that they do not get an error response. The error can be allowed to persist to balance available system
resources and response time, but sooner or later you will need to get more RAM so you can start more
child processes. The best approach is to try not to have this condition reached at all, and if you reach it
often you should start to worry about it.

It's important to understand how much real memory a child occupies. Your children can share memory
between them when the OS supports that. You must take action to allow the sharing to happen - See
[Preload Perl modules at server stdrtup. If you do this, the chances are tiday6lients can be even

higher. But it seems that it's not so simple to calculate the absolute number. If you come up with a solu-
tion please let us know! If the shared memory was of the same size throughout the child’s life, we could
derive a much better formula:

Total_RAM + Shared_RAM_per_Child * (MaxClients - 1)
MaxClients =

Max_Process_Size
which is:
Total_RAM - Shared_RAM_per_Child

MaxClients =
Max_Process_Size - Shared_RAM_per_Child

Let’s roll some calculations:
Total RAM = 500Mb
Max_Process_Size = 10Mb
Shared_RAM_per_Child = 4Mb

500 - 4

MaxClients = --------- =82

10-4

With no sharing in place

396 15 Feb 2014

Performance Tuning 14.6.3 Choosing MaxRequestsPerChild

500
MaxClients = --------- =50
10

With sharing in place you can have 64% more servers without buying more RAM.

If you improve sharing and keep the sharing level, let's say:

Total_RAM = 500Mb
Max_Process_Size = 10Mb
Shared_RAM_per_Child = 8Mb

500 -8
MaxClients = --------- =246
10-8

392% more servers! Now you can feel the importance of having as much shared memory as possible.

14.6.3 Choosing MaxRequestsPerChild

The MaxRequestsPerChild directive sets the limit on the number of requests that an individual child
server process will handle. AftéMaxRequestsPerChild requests, the child process will die. If
MaxRequestsPerChild is 0, then the process will live forever.

SettingMaxRequestsPerChild to a non-zero limit solves some memory leakage problems caused by
sloppy programming practices, whereas a child process consumes more memory after each request.

If left unbounded, then after a certain number of requests the children will use up all the available memory
and leave the server to die from memory starvation. Note that sometimes standard system libraries leak
memory too, especially on OSes with bad memory management (e.g. Solaris 2.5 on x86 arch).

If this is your case you can 9dbixRequestsPerChild to a small number. This will allow the system
to reclaim the memory that a greedy child process consumed, when it exitslatRequestsPer-
Child requests.

But beware -- if you set this number too low, you will lose some of the speed bonus you get from
mod_perl. Consider usingpache::PerlRun if this is the case.

Another approach is to use the Apache::SizeLimit or Apache::GTopLimit modules. By using either of
these modules you should be able to discontinue usinglax®equestPerChild , although for some
developers, using both in combination does the job. In addition these modules allow you to kill httpd
processes whose shared memory size drops below a specified limit or unshared memory size crosses a
specified threshold.

See alsp Preload Perl modules at server startup and Sharing Memory.

15 Feb 2014 397

14.6.4 Choosing MinSpareServers, MaxSpareServers and StartServers

14.6.4 Choosing MinSpareServers, MaxSpareServers and StartServers

With mod_perl enabled, it might take as much as 20 seconds from the time you start the server until it is
ready to serve incoming requests. This delay depends on the OS, the number of preloaded modules and the
process load of the machine. It's best toStattServers andMinSpareServers to high numbers,

so that if you get a high load just after the server has been restarted the fresh servers will be ready to serve
requests immediately. With mod_perl, it's usually a good idea to raise all 3 variables higher than normal.

In order to maximize the benefits of mod_perl, you don’t want to kill servers when they are idle, rather
you want them to stay up and available to handle new requests immediately. | think an ideal configuration
is to setMinSpareServers andMaxSpareServers to similar values, maybe even the same. Having

the MaxSpareServers close to MaxClients will completely use all of your resources (if
MaxClients has been chosen to take the full advantage of the resources), but it'll make sure that at any
given moment your system will be capable of responding to requests with the maximum speed (assuming
that number of concurrent requests is not higher khaxClients).

Let's try some numbers. For a heavily loaded web site and a dedicated machine | would think of (note
400Mb is just for example):

Available to webserver RAM: 400Mb

Child’s memory size bounded: 10Mb

MaxClients: 400/10 = 40 (larger with mem sharing)
StartServers: 20

MinSpareServers: 20

MaxSpareServers: 35

However if | want to use the server for many other tasks, but make it capable of handling a high load, I'd
think of:

Available to webserver RAM: 400Mb
Child’'s memory size bounded: 10Mb
MaxClients: 400/10 = 40
StartServers: 5
MinSpareServers: 5
MaxSpareServers: 10

These numbers are taken off the top of my head, and shouldn’t be used as a rule, but rather as examples to
show you some possible scenarios. Use this information with caution!

14.6.5 Summary of Benchmarking to tune all 5 parameters
OK, we've run various benchmarks -- let's summarize the conclusions:
® MaxRequestsPerChild

If your scripts are clean and don't leak memory, set this variable to a number as large as possible
(200007?). If you usépache::SizeLimit or Apache::GTopLimit , you can set this parame-
ter to O (treated as infinity).

398 15 Feb 2014

Performance Tuning 14.6.5 Summary of Benchmarking to tune all 5 parameters

® StartServers

If you keep a small number of servers active most of the time, keep this number low. Keep it low
especially ifMaxSpareServers is also low, as if there is no load Apache will kill its children
before they have been utilized at all. If your service is heavily loaded, make this number close to
MaxClients , and keepMaxSpareServers equal toMaxClients

® MinSpareServers

If your server performs other work besides web serving, make this low so the memory of unused chil-
dren will be freed when the load is light. If your server’s load varies (you get loads in bursts) and you
want fast response for all clients at any time, you will want to make it high, so that new children will
be respawned in advance and are waiting to handle bursts of requests.

® MaxSpareServers

The logic is the same as fbtinSpareServers - low if you need the machine for other tasks, high
if it's a dedicated web host and you want a minimal delay between the request and the response.

® MaxClients

Not too low, so you don't get into a situation where clients are waiting for the server to start serving
them (they might wait, but not for very long). However, do not set it too high. With a high MaxClients, if

you get a high load the server will try to serve all requests immediately. Your CPU will have a hard
time keeping up, and if the child size * number of running children is larger than the total available
RAM vyour server will start swapping. This will slow down everything, which in turn will make
things even slower, until eventually your machine will die. It's important that you take pains to
ensure that swapping does not normally happen. Swap space is an emergency pool, not a resource to
be used routinely. If you are low on memory and you badly need it, buy it. Memory is cheap.

But based on the test | conducted above, even if you have plenty of memory like | have (1Gb),
increasingMaxClients sometimes will give you no improvement in performance. The more clients
are running, the more CPU time will be required, the less CPU time slices each process will receive. The
response latency (t