

mod_perl 1.0 API

Here is the documentation for the whole API provided with
the mod_perl distribution, ie. of various Apache:: modules
you will need to use.

Last modified Sun Feb 16 01:33:53 2014 GMT

115 Feb 2014

Table of Contents:mod_perl 1.0 API

Part I: Access to the Apache API

- 1. Apache - Perl interface to the Apache server API
This module provides a Perl interface the Apache API. It is here mainly for mod_perl, but may be
used for other Apache modules that wish to embed a Perl interpreter. We suggest that you also
consult the description of the Apache C API at http://httpd.apache.org/docs/ .

- 2. Apache::Constants - Constants defined in apache header files
Server constants used by apache modules are defined in httpd.h and other header files, this module
gives Perl access to those constants.

- 3. Apache::Options - OPT_* defines from httpd_core.h
The Apache::Options module will export the following bitmask constants:

- 4. Apache::Table - Perl interface to the Apache table structure
This module provides tied interfaces to Apache data structures.

- 5. Apache::File - advanced functions for manipulating files at the server side
Apache::File does two things: it provides an object-oriented interface to filehandles similar to
Perl’s standard IO::File class . While the Apache::File module does not provide all the
functionality of IO::File , its methods are approximately twice as fast as the equivalent
IO::File methods. Secondly, when you use Apache::File , it adds several new methods to the
Apache class which provide support for handling files under the HTTP/1.1 protocol.

- 6. Apache::Log - Interface to Apache logging
The Apache::Log module provides an interface to Apache’s ap_log_error and ap_log_rerror
routines.

- 7. Apache::URI - URI component parsing and unparsing
This module provides an interface to the Apache util_uri module and the uri_components structure.

- 8. Apache::Util - Interface to Apache C util functions
This module provides a Perl interface to some of the C utility functions available in Apache. The
same functionality is avaliable in libwww-perl, but the C versions are faster:

- 9. Apache::Include - Utilities for mod_perl/mod_include integration
The Apache::Include module provides a handler, making it simple to include
Apache::Registry scripts with the mod_include perl directive.

Part II: Run CGI scripts under mod_perl

- 10. Apache::Registry - Run unaltered CGI scrips under mod_perl
Apache::Registry is the Apache module allowing you to run CGI scripts very fast under
mod_perl, by compiling all scripts once and then caching them in memory.

- 11. Apache::PerlRun - Run unaltered CGI scripts under mod_perl
This module’s handler emulates the CGI environment, allowing programmers to write scripts that
run under CGI or mod_perl without change. Unlike Apache::Registry , the
Apache::PerlRun handler does not cache the script inside of a subroutine. Scripts will be

15 Feb 20142

Table of Contents:

http://httpd.apache.org/docs/

"compiled" every request. After the script has run, it’s namespace is flushed of all variables and
subroutines.

- 12. Apache::RegistryLoader - Compile Apache::Registry scripts at server startup
This modules allows compilation of Apache::Registry scripts at server startup.

Part III: Development/Debugging help

- 13. Apache::StatINC - Reload %INC files when updated on disk
When Perl pulls a file via require , it stores the filename in the global hash %INC. The next time
Perl tries to require the same file, it sees the file in %INC and does not reload from disk. This
module’s handler iterates over %INC and reloads the file if it has changed on disk.

- 14. Apache::test - Facilitates testing of Apache::* modules
This module helps authors of Apache::* modules write test suites that can query an actual running
Apache server with mod_perl and their modules loaded into it.

- 15. Apache::Symdump - Symbol table snapshots
Apache::Symdump will record snapshots of the Perl symbol table for you to look at later.

- 16. Apache::src - Methods for locating and parsing bits of Apache source code
This module provides methods for locating and parsing bits of Apache source code.

- 17. Apache::Leak - Module for tracking memory leaks in mod_perl code
Apache::Leak is a module built to track memory leaks in mod_perl code.

- 18. Apache::FakeRequest - fake request object for debugging
Apache::FakeRequest is used to set up an empty Apache request object that can be used for
debugging.

- 19. Apache::Debug - Utilities for debugging embedded perl code
This module sends what may be helpful debugging info to the client rather that the error log.

- 20. Apache::Symbol - Things for symbol things
Apache::Symbol helps mod_perl users avoid Perl warnings related with redefined constant func-
tions.

- 21. Apache::SIG - Override apache signal handlers with Perl’s
When a client drops a connection and apache is in the middle of a write, a timeout will occur and
httpd sends a SIGPIPE . When apache’s SIGPIPE handler is used, Perl may be left in the middle of
it’s eval context, causing bizarre errors during subsequent requests are handled by that child. When
Apache::SIG is used, it installs a different SIGPIPE handler which rewinds the context to make
sure Perl is back to normal state, preventing these bizarre errors.

Part IV: Apache configuration

- 22. Apache::PerlSections - Utilities for work with Perl sections
It is possible to configure you server entirely in Perl using <Perl> sections in httpd.conf. This
module is here to help you with such a task.

315 Feb 2014

Table of Contents:mod_perl 1.0 API

- 23. Apache::httpd_conf - Generate an httpd.conf file
The Apache::httpd_conf module will generate a tiny httpd.conf file, which pulls itself back in via a
<Perl> section.

- 24. Apache::Status - Embedded interpreter status information
The Apache::Status module provides some information about the status of the Perl interpreter
embedded in the server.

Part V: Server Maintenance

- 25. Apache::Resource - Limit resources used by httpd children
Apache::Resource uses the BSD::Resource module, which uses the C function setr-
limit to set limits on system resources such as memory and cpu usage.

- 26. Apache::SizeLimit - Because size does matter.
This module allows you to kill off Apache httpd processes if they grow too large.

See perldoc.perl.org for documentation of the rest of the Apache:: modules

15 Feb 20144

Table of Contents:

http://perldoc.perl.org/

1 Apache - Perl interface to the Apache server API

515 Feb 2014

1 Apache - Perl interface to the Apache server APIApache - Perl interface to the Apache server API

1.1 Synopsis
 use Apache ();

1.2 Description
This module provides a Perl interface the Apache API. It is here mainly for mod_perl, but may be used
for other Apache modules that wish to embed a Perl interpreter. We suggest that you also consult the
description of the Apache C API at http://httpd.apache.org/docs/ .

1.3 The Request Object
The request object holds all the information that the server needs to service a request. Apache
Perl*Handler s will be given a reference to the request object as parameter and may choose to update or
use it in various ways. Most of the methods described below obtain information from or update the request
object. The perl version of the request object will be blessed into the Apache package, it is really a
request_rec* in disguise.

1.3.1 Apache->request([$r])

The Apache->request method will return a reference to the request object.

Perl*Handler s can obtain a reference to the request object when it is passed to them via @_. However,
scripts that run under Apache::Registry, for example, need a way to access the request object.
Apache::Registry will make a request object available to these scripts by passing an object reference to
Apache->request($r) . If handlers use modules such as CGI::Apache that need to access
Apache->request , they too should do this (e.g. Apache::Status).

1.3.2 $r->as_string

Returns a string representation of the request object. Mainly useful for debugging.

1.3.3 $r->main

If the current request is a sub-request, this method returns a blessed reference to the main request structure.
If the current request is the main request, then this method returns undef .

1.3.4 $r->prev

This method returns a blessed reference to the previous (internal) request structure or undef if there is no
previous request.

15 Feb 20146

1.1 Synopsis

http://httpd.apache.org/docs/

1.3.5 $r->next

This method returns a blessed reference to the next (internal) request structure or undef if there is no next
request.

1.3.6 $r->last

This method returns a blessed reference to the last (internal) request structure. Handy for logging modules.

1.3.7 $r->is_main

Returns true if the current request object is for the main request. (Should give the same result as
!$r->main , but will be more efficient.)

1.3.8 $r->is_initial_req

Returns true if the current request is the first internal request, returns false if the request is a sub-request or
internal redirect.

1.3.9 $r->allowed($bitmask)

Get or set the allowed methods bitmask. This allowed bitmask should be set whenever a 405 (method not
allowed) or 501 (method not implemented) answer is returned. The bit corresponding to the method
number should be set.

 unless ($r->method_number == M_GET) {
 $r->allowed($r->allowed | (1<<M_GET) | (1<<M_HEAD) | (1<<M_OPTIONS));
 return HTTP_METHOD_NOT_ALLOWED;
 }

1.4 Sub Requests
Apache provides a sub-request mechanism to lookup a uri or filename, performing all access checks, etc.,
without actually running the response phase of the given request. Notice, we have dropped the sub_req_
prefix here. The request_rec* returned by the lookup methods is blessed into the Apache::SubRe-
quest class. This way, destroy_sub_request() is called automatically during Apache::SubRe-
quest->DESTROY when the object goes out of scope. The Apache::SubRequest class inherits all the
methods from the Apache class.

1.4.1 $r->lookup_uri($uri)
 my $subr = $r->lookup_uri($uri);
 my $filename = $subr->filename;

 unless(-e $filename) {
 warn "can’t stat $filename!\n";
 }

715 Feb 2014

1.4 Sub RequestsApache - Perl interface to the Apache server API

1.4.2 $r->lookup_file($filename)
 my $subr = $r->lookup_file($filename);

1.4.3 $subr->run
 if($subr->run != OK) {
 $subr->log_error("something went wrong!");
 }

1.5 Client Request Parameters
In this section we will take a look at various methods that can be used to retrieve the request parameters
sent from the client. In the following examples, $r is a request object blessed into the Apache class,
obtained by the first parameter passed to a handler subroutine or Apache->request

1.5.1 $r->method([$meth])

The $r->method method will return the request method. It will be a string such as "GET" , "HEAD" or
"POST" . Passing an argument will set the method, mainly used for internal redirects.

1.5.2 $r->method_number([$num])

The $r->method_number method will return the request method number. The method numbers are
defined by the M_GET, M_POST,... constants available from the Apache::Constants module. Passing an
argument will set the method_number , mainly used for internal redirects and testing authorization
restriction masks.

1.5.3 $r->bytes_sent

The number of bytes sent to the client, handy for logging, etc.

1.5.4 $r->the_request

The request line sent by the client, handy for logging, etc.

1.5.5 $r->proxyreq

Returns true if the request is proxy http. Mainly used during the filename translation stage of the request,
which may be handled by a PerlTransHandler .

15 Feb 20148

1.5 Client Request Parameters

1.5.6 $r->header_only

Returns true if the client is asking for headers only, e.g. if the request method was HEAD .

1.5.7 $r->protocol

The $r->protocol method will return a string identifying the protocol that the client speaks. Typical
values will be "HTTP/1.0" or "HTTP/1.1" .

1.5.8 $r->hostname

Returns the server host name, as set by full URI or Host: header.

1.5.9 $r->request_time

Returns the time that the request was made. The time is the local unix time in seconds since the epoch.

1.5.10 $r->uri([$uri])

The $r->uri method will return the requested URI minus optional query string, optionally changing it
with the first argument.

1.5.11 $r->filename([$filename])

The $r->filename method will return the result of the URI --> filename translation, optionally chang-
ing it with the first argument if you happen to be doing the translation.

1.5.12 $r->location

The $r->location method will return the path of the <Location> section from which the current
Perl*Handler is being called.

1.5.13 $r->path_info([$path_info])

The $r->path_info method will return what is left in the path after the URI --> filename translation,
optionally changing it with the first argument if you happen to be doing the translation.

1.5.14 $r->args([$query_string])

The $r->args method will return the contents of the URI query string. When called in a scalar context,
the entire string is returned. When called in a list context, a list of parsed key => value pairs are returned,
i.e. it can be used like this:

915 Feb 2014

1.5.6 $r->header_onlyApache - Perl interface to the Apache server API

 $query = $r->args;
 %in = $r->args;

$r->args can also be used to set the query string. This can be useful when redirecting a POST request.

1.5.15 $r->headers_in

The $r->headers_in method will return a %hash of client request headers. This can be used to
initialize a perl hash, or one could use the $r->header_in() method (described below) to retrieve a
specific header value directly.

Will return a HASH reference blessed into the Apache::Table class when called in a scalar context with no
"key" argument. This requires Apache::Table.

1.5.16 $r->header_in($header_name, [$value])

Return the value of a client header. Can be used like this:

 $ct = $r->header_in("Content-type");
 $r->header_in($key, $val); #set the value of header ’$key’

1.5.17 $r->content

The $r->content method will return the entity body read from the client, but only if the request
content type is application/x-www-form-urlencoded . When called in a scalar context, the
entire string is returned. When called in a list context, a list of parsed key => value pairs are returned.
NOTE: you can only ask for this once, as the entire body is read from the client.

1.5.18 $r->read($buf, $bytes_to_read, [$offset])

This method is used to read data from the client, looping until it gets all of $bytes_to_read or a
timeout happens.

An offset may be specified to place the read data at some other place than the beginning of the string.

In addition, this method sets a timeout before reading with $r->soft_timeout .

1.5.19 $r->get_remote_host

Lookup the client’s DNS hostname. If the configuration directive HostNameLookups is set to off, this
returns the dotted decimal representation of the client’s IP address instead. Might return undef if the host-
name is not known.

15 Feb 201410

1.5.15 $r->headers_in

1.5.20 $r->get_remote_logname

Lookup the remote user’s system name. Might return undef if the remote system is not running an RFC
1413 server or if the configuration directive IdentityCheck is not turned on.

1.5.21 $r->user([$user])

If an authentication check was successful, the authentication handler caches the user name here. Sets the
user name to the optional first argument.

1.5.22 Apache::Connection

More information about the client can be obtained from the Apache::Connection object, as described
below.

1.5.23 $c = $r->connection

The $r->connection method will return a reference to the request connection object (blessed into the
Apache::Connection package). This is really a conn_rec* in disguise. The following methods can be
used on the connection object:

1.5.23.1 $c->remote_host

If the configuration directive HostNameLookups is set to on: then the first time
$r->get_remote_host is called the server does a DNS lookup to get the remote client’s host name.
The result is cached in $c->remote_host then returned. If the server was unable to resolve the remote
client’s host name this will be set to "". Subsequent calls to $r->get_remote_host return this cached
value.

If the configuration directive HostNameLookups is set to off: calls to $r->get_remote_host return
a string that contains the dotted decimal representation of the remote client’s IP address. However this
string is not cached, and $c->remote_host is undefined. So, it’s best to to call
$r->get_remote_host instead of directly accessing this variable.

1.5.23.2 $c->remote_ip

The dotted decimal representation of the remote client’s IP address. This is set by the server when the
connection record is created so is always defined.

You can also set this value by providing an argument to it. This is helpful if your server is behind a squid
accelerator proxy which adds a X-Forwarded-For header.

1115 Feb 2014

1.5.20 $r->get_remote_lognameApache - Perl interface to the Apache server API

1.5.23.3 $c->local_addr

A packed SOCKADDR_IN in the same format as returned by Socket::pack_sockaddr_in , contain-
ing the port and address on the local host that the remote client is connected to. This is set by the server
when the connection record is created so it is always defined.

1.5.23.4 $c->remote_addr

A packed SOCKADDR_IN in the same format as returned by Socket::pack_sockaddr_in , contain-
ing the port and address on the remote host that the server is connected to. This is set by the server when
the connection record is created so it is always defined.

Among other things, this can be used, together with $c->local_addr , to perform RFC1413 ident
lookups on the remote client even when the configuration directive IdentityCheck is turned off.

Can be used like:

 use Net::Ident qw (lookupFromInAddr);
 ...
 my $remoteuser = lookupFromInAddr ($c->local_addr,
 $c->remote_addr, 2);

Note that the lookupFromInAddr interface does not currently exist in the Net::Ident module, but the
author is planning on adding it soon.

1.5.23.5 $c->remote_logname

If the configuration directive IdentityCheck is set to on: then the first time
$r->get_remote_logname is called the server does an RFC 1413 (ident) lookup to get the remote
users system name. Generally for UNI* systems this is their login. The result is cached in
$c->remote_logname then returned. Subsequent calls to $r->get_remote_host return the
cached value.

If the configuration directive IdentityCheck is set to off: then $r->get_remote_logname does
nothing and $c->remote_logname is always undefined.

1.5.23.6 $c->user([$user])

Deprecated, use $r->user instead.

1.5.23.7 $c->auth_type

Returns the authentication scheme that successfully authenticate $c->user , if any.

15 Feb 201412

1.5.23 $c = $r->connection

1.5.23.8 $c->aborted

Returns true if the client stopped talking to us.

1.5.23.9 $c->fileno([$direction])

Returns the client file descriptor. If $direction is 0, the input fd is returned. If $direction is not null or
ommitted, the output fd is returned.

This can be used to detect client disconnect without doing any I/O, e.g. using IO::Select .

1.6 Server Configuration Information
The following methods are used to obtain information from server configuration and access control files.

1.6.1 $r->dir_config($key)

Returns the value of a per-directory variable specified by the PerlSetVar directive.

 # <Location /foo/bar>
 # PerlSetVar Key Value
 # </Location>

 my $val = $r->dir_config(’Key’);

Keys are case-insensitive.

Will return a HASH reference blessed into the Apache::Table class when called in a scalar context with no
"key" argument. See Apache::Table.

1.6.2 $r->dir_config->get($key)

Returns the value of a per-directory array variable specified by the PerlAddVar directive.

 # <Location /foo/bar>
 # PerlAddVar Key Value1
 # PerlAddVar Key Value2
 # </Location>

 my @val = $r->dir_config->get(’Key’);

Alternatively in your code you can extend the setting with:

 $r->dir_config->add(Key => ’Value3’);

Keys are case-insensitive.

1315 Feb 2014

1.6 Server Configuration InformationApache - Perl interface to the Apache server API

Will return a HASH reference blessed into the Apache::Table class when called in a scalar context with no
"key" argument. See Apache::Table.

1.6.3 $r->requires

Returns an array reference of hash references, containing information related to the require directive. This
is normally used for access control, see Apache::AuthzAge for an example.

1.6.4 $r->auth_type

Returns a reference to the current value of the per directory configuration directive AuthType. Normally
this would be set to Basic to use the basic authentication scheme defined in RFC 1945, Hypertext Trans-
fer Protocol -- HTTP/1.0. However, you could set to something else and implement your own authentica-
tion scheme.

1.6.5 $r->auth_name

Returns a reference to the current value of the per directory configuration directive AuthName. The Auth-
Name directive creates protection realm within the server document space. To quote RFC 1945 "These
realms allow the protected resources on a server to be partitioned into a set of protection spaces, each with
its own authentication scheme and/or authorization database." The client uses the root URL of the server
to determine which authentication credentials to send with each HTTP request. These credentials are
tagged with the name of the authentication realm that created them. Then during the authentication stage
the server uses the current authentication realm, from $r->auth_name , to determine which set of
credentials to authenticate.

1.6.6 $r->document_root ([$docroot])

When called with no argument, returns a reference to the current value of the per server configuration
directive DocumentRoot. To quote the Apache server documentation, "Unless matched by a directive like
Alias, the server appends the path from the requested URL to the document root to make the path to the
document." This same value is passed to CGI scripts in the DOCUMENT_ROOT environment variable.

You can also set this value by providing an argument to it. The following example dynamically sets the
document root based on the request’s "Host:" header:

 sub trans_handler
 {
 my $r = shift;
 my ($user) = ($r->header_in(’Host’) =~ /^[^\.]+/);
 $r->document_root("/home/$user/www");
 return DECLINED;
 }

 PerlTransHandler trans_handler

15 Feb 201414

1.6.3 $r->requires

1.6.7 $r->server_root_relative([$relative_path])

If called without any arguments, this method returns the value of the currently-configured ServerRoot
directory.

If a single argument is passed, it concatenates it with the value of ServerRoot . For example here is how
to get the path to the error_log file under the server root:

 my $error_log = $r->server_root_relative("logs/error_log");

See also the next item.

1.6.8 Apache->server_root_relative([$relative_path])

Same as the previous item, but this time it’s used without a request object. This method is usually needed
in a startup file. For example the following startup file modifies @INC to add a local directory with perl
modules located under the server root and after that loads a module from that directory.

 BEGIN {
 use Apache():
 use lib Apache->server_root_relative("lib/my_project");
 }
 use MyProject::Config ();

1.6.9 $r->allow_options

The $r->allow_options method can be used for checking if it is OK to run a perl script. The
Apache::Options module provides the constants to check against.

 if(!($r->allow_options & OPT_EXECCGI)) {
 $r->log_reason("Options ExecCGI is off in this directory",
 $filename);
 }

1.6.10 $r->get_server_port

Returns the port number on which the server is listening.

1.6.11 $s = $r->server

Return a reference to the server info object (blessed into the Apache::Server package). This is really a
server_rec* in disguise. The following methods can be used on the server object:

1515 Feb 2014

1.6.7 $r->server_root_relative([$relative_path])Apache - Perl interface to the Apache server API

1.6.12 $s = Apache->server

Same as above, but only available during server startup for use in <Perl> sections, PerlRequire or
PerlModule.

1.6.13 $s->server_admin

Returns the mail address of the person responsible for this server.

1.6.14 $s->server_hostname

Returns the hostname used by this server.

1.6.15 $s->port

Returns the port that this servers listens too.

1.6.16 $s->is_virtual

Returns true if this is a virtual server.

1.6.17 $s->names

Returns the wild-carded names for ServerAlias servers.

1.6.18 $s->dir_config($key)

Alias for Apache::dir_config .

1.6.19 $s->warn

Alias for Apache::warn .

1.6.20 $s->log_error

Alias for Apache::log_error .

1.6.21 $s->uid

Returns the numeric user id under which the server answers requests. This is the value of the User direc-
tive.

15 Feb 201416

1.6.12 $s = Apache->server

1.6.22 $s->gid

Returns the numeric group id under which the server answers requests. This is the value of the Group
directive.

1.6.23 $s->loglevel

Get or set the value of the current LogLevel. This method is added by the Apache::Log module, which
needs to be pulled in.

 use Apache::Log;
 print "LogLevel = ", $s->loglevel;
 $s->loglevel(Apache::Log::DEBUG);

If using Perl 5.005+, the following constants are defined (but not exported):

 Apache::Log::EMERG
 Apache::Log::ALERT
 Apache::Log::CRIT
 Apache::Log::ERR
 Apache::Log::WARNING
 Apache::Log::NOTICE
 Apache::Log::INFO
 Apache::Log::DEBUG

1.6.24 $r->get_handlers($hook)

Returns a reference to a list of handlers enabled for $hook. $hook is a string representing the phase to
handle. The returned list is a list of references to the handler subroutines.

 $list = $r->get_handlers(’PerlHandler’);

1.6.25 $r->set_handlers($hook, [\&handler, ...])

Sets the list of handlers to be called for $hook. $hook is a string representing the phase to handle. The list
of handlers is an anonymous array of code references to the handlers to install for this request phase. The
special list [\&OK] can be used to disable a particular phase.

 $r->set_handlers(PerlLogHandler => [\&myhandler1, \&myhandler2]);
 $r->set_handlers(PerlAuthenHandler => [\&OK]);

1.6.26 $r->push_handlers($hook, \&handler)

Pushes a new handler to be called for $hook . $hook is a string representing the phase to handle. The
handler is a reference to a subroutine to install for this request phase. This handler will be called before
any configured handlers.

1715 Feb 2014

1.6.22 $s->gidApache - Perl interface to the Apache server API

 $r->push_handlers(PerlHandler => \&footer);

1.6.27 $r->current_callback

Returns the name of the handler currently being run. This method is most useful to PerlDispatchHandlers
who wish to only take action for certain phases.

 if($r->current_callback eq "PerlLogHandler") {
 $r->warn("Logging request");
 }

1.7 Setting Up the Response
The following methods are used to set up and return the response back to the client. This typically
involves setting up $r->status() , the various content attributes and optionally some additional
$r->header_out() calls before calling $r->send_http_header() which will actually send the
headers to the client. After this a typical application will call the $r->print() method to send the
response content to the client.

1.7.1 $r->send_http_header([$content_type])

Send the response line and all headers to the client. Takes an optional parameter indicating the
content-type of the response, i.e. ’text/html ’.

This method will create headers from the $r->content_xxx() and $r->no_cache() attributes
(described below) and then append the headers defined by $r->header_out (or $r->err_header_out
if status indicates an error).

1.7.2 $r->get_basic_auth_pw

If the current request is protected by Basic authentication, this method will return OK. Otherwise, it will
return a value that ought to be propagated back to the client (typically AUTH_REQUIRED). The second
return value will be the decoded password sent by the client.

 ($ret, $sent_pw) = $r->get_basic_auth_pw;

1.7.3 $r->note_basic_auth_failure

Prior to requiring Basic authentication from the client, this method will set the outgoing HTTP headers
asking the client to authenticate for the realm defined by the configuration directive AuthName.

1.7.4 $r->handler([$meth])

Set the handler for a request. Normally set by the configuration directive AddHandler .

15 Feb 201418

1.7 Setting Up the Response

 $r->handler("perl-script");

1.7.5 $r->notes($key, [$value])

Return the value of a named entry in the Apache notes table, or optionally set the value of a named
entry. This table is used by Apache modules to pass messages amongst themselves. Generally if you are
writing handlers in mod_perl you can use Perl variables for this.

 $r->notes("MY_HANDLER" => OK);
 $val = $r->notes("MY_HANDLER");

Will return a HASH reference blessed into the Apache::Table class when called in a scalar context with no
"key" argument. This requires Apache::Table.

1.7.6 $r->pnotes($key, [$value])

Like $r->notes , but takes any scalar as an value.

 $r->pnotes("MY_HANDLER" => [qw(one two)]);
 my $val = $r->pnotes("MY_HANDLER");
 print $val->[0]; # prints "one"

Advantage over just using a Perl variable is that $r->pnotes gets cleaned up after every request.

1.7.7 $r->subprocess_env($key, [$value])

Return the value of a named entry in the Apache subprocess_env table, or optionally set the value of
a named entry. This table is used by mod_include. By setting some custom variables inside a perl handler
it is possible to combine perl with mod_include nicely. If you say, e.g. in a PerlHeaderParserHandler

 $r->subprocess_env(MyLanguage => "de");

you can then write in your .shtml document:

 <!--#if expr="$MyLanguage = en" -->
 English
 <!--#elif expr="$MyLanguage = de" -->
 Deutsch
 <!--#else -->
 Sorry
 <!--#endif -->

Will return a HASH reference blessed into the Apache::Table class when called in a scalar context with no
"key" argument. This requires Apache::Table.

1915 Feb 2014

1.7.5 $r->notes($key, [$value])Apache - Perl interface to the Apache server API

1.7.8 $r->content_type([$newval])

Get or set the content type being sent to the client. Content types are strings like "text/plain" ,
"text/html" or "image/gif" . This corresponds to the "Content-Type" header in the HTTP
protocol. Example of usage is:

 $previous_type = $r->content_type;
 $r->content_type("text/plain");

1.7.9 $r->content_encoding([$newval])

Get or set the content encoding. Content encodings are string like "gzip" or "compress". This correspond
to the "Content-Encoding" header in the HTTP protocol.

1.7.10 $r->content_languages([$array_ref])

Get or set the content languages. The content language corresponds to the "Content-Language" HTTP
header and is an array reference containing strings such as "en" or "no".

1.7.11 $r->status($integer)

Get or set the reply status for the client request. The Apache::Constants module provide mnemonic
names for the status codes.

1.7.12 $r->status_line($string)

Get or set the response status line. The status line is a string like "200 Document follows" and it will take
precedence over the value specified using the $r->status() described above.

1.7.13 $r->headers_out

The $r->headers_out method will return a %hash of server response headers. This can be used to
initialize a perl hash, or one could use the $r->header_out() method (described below) to retrieve or
set a specific header value directly.

Will return a HASH reference blessed into the Apache::Table class when called in a scalar context with no
"key" argument. This requires Apache::Table.

1.7.14 $r->header_out($header, $value)

Change the value of a response header, or create a new one. You should not define any "Content-XXX"
headers by calling this method, because these headers use their own specific methods. Example of use:

15 Feb 201420

1.7.8 $r->content_type([$newval])

 $r->header_out("WWW-Authenticate" => "Basic");
 $val = $r->header_out($key);

1.7.15 $r->err_headers_out

The $r->err_headers_out method will return a %hash of server response headers. This can be used
to initialize a perl hash, or one could use the $r->err_header_out() method (described below) to
retrieve or set a specific header value directly.

The difference between headers_out and err_headers_out is that the latter are printed even on error, and
persist across internal redirects (so the headers printed for ErrorDocument handlers will have them).

Will return a HASH reference blessed into the Apache::Table class when called in a scalar context with no
"key" argument. This requires Apache::Table.

1.7.16 $r->err_header_out($header, [$value])

Change the value of an error response header, or create a new one. These headers are used if the status
indicates an error.

 $r->err_header_out("Warning" => "Bad luck");
 $val = $r->err_header_out($key);

1.7.17 $r->no_cache($boolean)

This is a flag that indicates that the data being returned is volatile and the client should be told not to cache
it. $r->no_cache(1) adds the headers "Pragma: no-cache" and "Cache-control:
no-cache" to the reponse, therefore it must be called before $r->send_http_header .

1.7.18 $r->print(@list)

This method sends data to the client with $r->write_client , but first sets a timeout before sending
with $r->soft_timeout . This method is called instead of CORE::print when you use print()
in your mod_perl programs.

This method treats scalar references specially. If an item in @list is a scalar reference, it will be derefer-
enced before printing. This is a performance optimization which prevents unneeded copying of large
strings, and it is subtly different from Perl’s standard print() behavior.

Example:

 $foo = \"bar"; print($foo);

The result is "bar", not the "SCALAR(0xDEADBEEF)" you might have expected. If you really want the
reference to be printed out, force it into a scalar context by using print(scalar($foo)) .

2115 Feb 2014

1.7.15 $r->err_headers_outApache - Perl interface to the Apache server API

The print-a-scalar-reference feature is now deprecated. There are known bugs when using it and it’s not
supported by mod_perl 2.0. If you have a scalar reference containing a string to be printed, dereference it
before sending it to print.

1.7.19 $r->send_fd($filehandle)

Send the contents of a file to the client. Can for instance be used like this:

 open(FILE, $r->filename) || return 404;
 $r->send_fd(FILE);
 close(FILE);

1.7.20 $r->internal_redirect($newplace)

Redirect to a location in the server namespace without telling the client. For instance:

 $r->internal_redirect("/home/sweet/home.html");

1.7.21 $r->internal_redirect_handler($newplace)

Same as internal_redirect, but the handler from $r is preserved.

1.7.22 $r->custom_response($code, $uri)

This method provides a hook into the ErrorDocument mechanism, allowing you to configure a custom
response for a given response code at request-time.

Example:

 use Apache::Constants ’:common’;

 sub handler {
 my ($r) = @_;

 if($things_are_ok) {
 return OK;
 }

 #<Location $r->uri>
 #ErrorDocument 401 /error.html
 #</Location>

 $r->custom_response(AUTH_REQUIRED, "/error.html");

 #can send a string too
 #<Location $r->uri>
 #ErrorDocument 401 "sorry, go away"
 #</Location>

15 Feb 201422

1.7.19 $r->send_fd($filehandle)

 #$r->custom_response(AUTH_REQUIRED, "sorry, go away");

 return AUTH_REQUIRED;
 }

1.8 Server Core Functions

1.8.1 $r->soft_timeout($message)

1.8.2 $r->hard_timeout($message)

1.8.3 $r->kill_timeout

1.8.4 $r->reset_timeout

(Documentation borrowed from http_main.h)

There are two functions which modules can call to trigger a timeout (with the per-virtual-server timeout
duration); these are hard_timeout and soft_timeout .

The difference between the two is what happens when the timeout expires (or earlier than that, if the client
connection aborts) --- a soft_timeout just puts the connection to the client in an "aborted" state, which
will cause http_protocol.c to stop trying to talk to the client, but otherwise allows the code to continue
normally. hard_timeout() , by contrast, logs the request, and then aborts it completely ---
longjmp() ing out to the accept() loop in http_main . Any resources tied into the request resource
pool will be cleaned up; everything that is not will leak.

soft_timeout() is recommended as a general rule, because it gives your code a chance to clean up.
However, hard_timeout() may be the most convenient way of dealing with timeouts waiting for
some external resource other than the client, if you can live with the restrictions.

When a hard timeout is in scope, critical sections can be guarded with block_alarms() and
unblock_alarms() --- these are declared in alloc.c because they are most often used in conjunction
with routines to allocate something or other, to make sure that the cleanup does get registered before any
alarm is allowed to happen which might require it to be cleaned up; they * are, however, implemented in
http_main.c.

kill_timeout() will disarm either variety of timeout.

reset_timeout() resets the timeout in progress.

2315 Feb 2014

1.8 Server Core FunctionsApache - Perl interface to the Apache server API

1.8.5 $r->post_connection($code_ref)

1.8.6 $r->register_cleanup($code_ref)

Register a cleanup function which is called just before $r->pool is destroyed.

 $r->register_cleanup(sub {
 my $r = shift;
 warn "registered cleanup called for ", $r->uri, "\n";
 });

Cleanup functions registered in the parent process (before forking) will run once when the server is shut
down:

 #PerlRequire startup.pl
 warn "parent pid is $$\n";
 Apache->server->register_cleanup(sub { warn "server cleanup in $$\n"});

The post_connection method is simply an alias for register_cleanup, as this method may be used to run
code after the client connection is closed, which may not be a cleanup.

1.9 CGI Support
We also provide some methods that make it easier to support the CGI type of interface.

1.9.1 $r->send_cgi_header()

Take action on certain headers including Status:, Location: and Content-type: just as mod_cgi does, then
calls $r->send_http_header(). Example of use:

 $r->send_cgi_header(<<EOT);
 Location: /foo/bar
 Content-type: text/html

 EOT

1.10 Error Logging
The following methods can be used to log errors.

1.10.1 $r->log_reason($message, $file)

The request failed, why?? Write a message to the server errorlog.

 $r->log_reason("Because I felt like it", $r->filename);

15 Feb 201424

1.9 CGI Support

1.10.2 $r->log_error($message)

Uh, oh. Write a message to the server errorlog.

 $r->log_error("Some text that goes in the error_log");

1.10.3 $r->warn($message)

For pre-1.3 versions of apache, this is just an alias for log_error . With 1.3+ versions of apache, this
message will only be send to the error_log if LogLevel is set to warn or higher.

1.11 Utility Functions

1.11.1 Apache::unescape_url($string)
 $unescaped_url = Apache::unescape_url($string)

Handy function for unescapes. Use this one for filenames/paths. Notice that the original $string is
mangled in the process (because the string part of PV shrinks, but the variable is not updated, to speed
things up).

Use unescape_url_info for the result of submitted form data.

1.11.2 Apache::unescape_url_info($string)

Handy function for unescapes submitted form data. In opposite to unescape_url it translates the plus
sign to space.

1.11.3 Apache::perl_hook($hook)

Returns true if the specified callback hook is enabled:

 for (qw(Access Authen Authz ChildInit Cleanup Fixup
 HeaderParser Init Log Trans Type))
 {
 print "$_ hook enabled\n" if Apache::perl_hook($_);
 }

1.12 Global Variables

1.12.1 $Apache::Server::Starting

Set to true when the server is starting.

2515 Feb 2014

1.11 Utility FunctionsApache - Perl interface to the Apache server API

1.12.2 $Apache::Server::ReStarting

Set to true when the server is starting.

1.13 See Also
perl, Apache::Constants, Apache::Registry, Apache::Debug , Apache::Options, CGI

Apache C API notes at http://httpd.apache.org/docs/

1.14 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Adam Pisoni <adam@cnation.com>, but contact modperl docs list

1.15 Authors
Perl interface to the Apache C API written by Doug MacEachern with contributions from Gisle Aas,
Andreas Koenig, Eric Bartley, Rob Hartill, Gerald Richter, Salvador Ortiz and others.

15 Feb 201426

1.13 See Also

http://httpd.apache.org/docs/

2 Apache::Constants - Constants defined in apache
header files

2715 Feb 2014

2 Apache::Constants - Constants defined in apache header filesApache::Constants - Constants defined in apache header files

2.1 Synopsis
 use Apache::Constants;
 use Apache::Constants ’:common’;
 use Apache::Constants ’:response’;

2.2 Description
Server constants used by apache modules are defined in httpd.h and other header files, this module gives
Perl access to those constants.

2.3 Export Tags
common

This tag imports the most commonly used constants.

 OK
 DECLINED
 DONE
 NOT_FOUND
 FORBIDDEN
 AUTH_REQUIRED
 SERVER_ERROR

response

This tag imports the common response codes, plus these response codes:

 DOCUMENT_FOLLOWS
 MOVED
 REDIRECT
 USE_LOCAL_COPY
 BAD_REQUEST
 BAD_GATEWAY
 RESPONSE_CODES
 NOT_IMPLEMENTED
 CONTINUE
 NOT_AUTHORITATIVE

CONTINUE and NOT_AUTHORITATIVE are aliases for DECLINED .

methods

This are the method numbers, commonly used with the Apache method_number method.

 METHODS
 M_CONNECT
 M_DELETE
 M_GET
 M_INVALID

15 Feb 201428

2.1 Synopsis

 M_OPTIONS
 M_POST
 M_PUT
 M_TRACE
 M_PATCH
 M_PROPFIND
 M_PROPPATCH
 M_MKCOL
 M_COPY
 M_MOVE
 M_LOCK
 M_UNLOCK

options

These constants are most commonly used with the Apache allow_options method:

 OPT_NONE
 OPT_INDEXES
 OPT_INCLUDES
 OPT_SYM_LINKS
 OPT_EXECCGI
 OPT_UNSET
 OPT_INCNOEXEC
 OPT_SYM_OWNER
 OPT_MULTI
 OPT_ALL

satisfy

These constants are most commonly used with the Apache satisfies method:

 SATISFY_ALL
 SATISFY_ANY
 SATISFY_NOSPEC

remotehost

These constants are most commonly used with the Apache get_remote_host method:

 REMOTE_HOST
 REMOTE_NAME
 REMOTE_NOLOOKUP
 REMOTE_DOUBLE_REV

http

This is the full set of HTTP response codes: (NOTE: not all implemented here)

 HTTP_OK
 HTTP_MOVED_TEMPORARILY
 HTTP_MOVED_PERMANENTLY
 HTTP_METHOD_NOT_ALLOWED
 HTTP_NOT_MODIFIED
 HTTP_UNAUTHORIZED
 HTTP_FORBIDDEN

2915 Feb 2014

2.3 Export TagsApache::Constants - Constants defined in apache header files

 HTTP_NOT_FOUND
 HTTP_BAD_REQUEST
 HTTP_INTERNAL_SERVER_ERROR
 HTTP_NOT_ACCEPTABLE
 HTTP_NO_CONTENT
 HTTP_PRECONDITION_FAILED
 HTTP_SERVICE_UNAVAILABLE
 HTTP_VARIANT_ALSO_VARIES

server

These are constants related to server version:

 MODULE_MAGIC_NUMBER
 SERVER_VERSION
 SERVER_BUILT

config

These are constants related to configuration directives:

 DECLINE_CMD

types

These are constants related to internal request types:

 DIR_MAGIC_TYPE

override

These constants are used to control and test the context of configuration directives.

 OR_NONE
 OR_LIMIT
 OR_OPTIONS
 OR_FILEINFO
 OR_AUTHCFG
 OR_INDEXES
 OR_UNSET
 OR_ALL
 ACCESS_CONF
 RSRC_CONF

args_how

15 Feb 201430

2.3 Export Tags

 RAW_ARGS
 TAKE1
 TAKE2
 TAKE12
 TAKE3
 TAKE23
 TAKE123
 ITERATE
 ITERATE2
 FLAG
 NO_ARGS

2.4 Warnings
You should be aware of the issues relating to using constant subroutines in Perl. For example, look at this
example:

 $r->custom_response(FORBIDDEN => "File size exceeds quota.");

This will not set a custom response for FORBIDDEN, but for the string "FORBIDDEN", which clearly
isn’t what is expected. You’ll get an error like this:

 [Tue Apr 23 19:46:14 2002] null: Argument "FORBIDDEN" isn’t numeric in subroutine entry at ...

Therefore, you can avoid this by not using the hash notation for things that don’t require it.

 $r->custom_response(FORBIDDEN, "File size exceeds quota.");

Another important note is that you should be using the correct constants defined here, and not direct HTTP
codes. For example:

 sub handler {
 return 200;
 }

Is not correct. The correct use is:

 use Apache::Constants qw(OK);

 sub handler {
 return OK;
 }

Also remember that OK != HTTP_OK .

2.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

3115 Feb 2014

2.4 WarningsApache::Constants - Constants defined in apache header files

The documentation mailing list

2.6 Authors
Doug MacEachern
Gisle Aas
h2xs

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201432

2.6 Authors

3 Apache::Options - OPT_* defines from
httpd_core.h

3315 Feb 2014

3 Apache::Options - OPT_* defines from httpd_core.hApache::Options - OPT_* defines from httpd_core.h

3.1 Synopsis
 use Apache::Options;

3.2 Description
The Apache::Options module will export the following bitmask constants:

 OPT_NONE
 OPT_INDEXES
 OPT_INCLUDES
 OPT_SYMLINKS
 OPT_EXECCGI
 OPT_UNSET
 OPT_INCNOEXEC
 OPT_SYM_OWNER
 OPT_MULTI
 OPT_ALL

These constants can be used to check the return value from
Apache->request->allow_options() method.

This module is simply a stub which imports from Apache::Constants , just as if you had said use
Apache::Constants ’:options’; .

3.3 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

3.4 Authors
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

3.5 See Also
Apache, Apache::Constants

15 Feb 201434

3.1 Synopsis

4 Apache::Table - Perl interface to the Apache table
structure

3515 Feb 2014

4 Apache::Table - Perl interface to the Apache table structureApache::Table - Perl interface to the Apache table structure

4.1 Synopsis
 use Apache::Table ();

 my $headers_out = $r->headers_out;
 while(my ($key,$val) = each %$headers_out) {
 ...
 }

 my $table = $r->headers_out;
 $table->set(From => ’dougm@perl.apache.org’);

mod_perl needs to be compiled with at least one of the following options:

 DYNAMIC=1
 PERL_TABLE_API=1
 EVERYTHING=1

4.2 Description
This module provides tied interfaces to Apache data structures.

4.2.1 Classes

Apache::Table

The Apache::Table class provides methods for interfacing with the Apache table structure.
The following Apache class methods, when called in a scalar context with no "key" argument, will
return a HASH reference blessed into the Apache::Table class and where HASH is tied to
Apache::Table :

 headers_in
 headers_out
 err_headers_out
 notes
 dir_config
 subprocess_env

4.2.2 Methods

get

Corresponds to the ap_table_get function.

 my $value = $table->get($key);

 my $value = $headers_out->{$key};

set

15 Feb 201436

4.1 Synopsis

Corresponds to the ap_table_set function.

 $table->set($key, $value);

 $headers_out->{$key} = $value;

unset

Corresponds to the ap_table_unset function.

 $table->unset($key);

 delete $headers_out->{$key};

clear

Corresponds to the ap_table_clear function.

 $table->clear;

 %$headers_out = ();

add

Corresponds to the ap_table_add function.

 $table->add($key, $value);

merge

Corresponds to the ap_table_merge function.

 $table->merge($key, $value);

4.3 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

4.4 Authors
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

3715 Feb 2014

4.3 MaintainersApache::Table - Perl interface to the Apache table structure

4.5 See Also
Apache, mod_perl

15 Feb 201438

4.5 See Also

5 Apache::File - advanced functions for manipulating
files at the server side

3915 Feb 2014

5 Apache::File - advanced functions for manipulating files at the server sideApache::File - advanced functions for manipulating files at the server side

5.1 Synopsis
 use Apache::File ();

 my $fh = Apache::File->new($filename);
 print $fh ’Hello’;
 $fh->close;

 my ($name, $fh) = Apache::File->tmpfile;

 if ((my $rc = $r->discard_request_body) != OK) {
 return $rc;
 }

 if((my $rc = $r->meets_conditions) != OK) {
 return $rc;
 }

 my $date_string = localtime $r->mtime;

 $r->set_content_length;
 $r->set_etag;
 $r->update_mtime;
 $r->set_last_modified;

5.2 Description
Apache::File does two things: it provides an object-oriented interface to filehandles similar to Perl’s
standard IO::File class . While the Apache::File module does not provide all the functionality
of IO::File , its methods are approximately twice as fast as the equivalent IO::File methods.
Secondly, when you use Apache::File , it adds several new methods to the Apache class which
provide support for handling files under the HTTP/1.1 protocol.

5.3 Apache::File methods
new()

This method creates a new filehandle, returning the filehandle object on success, undef on failure. If
an additional argument is given, it will be passed to the open() method automatically.

 use Apache::File ();
 my $fh = Apache::File->new;

 my $fh = Apache::File->new($filename) or die "Can’t open $filename $!";

open()

Given an Apache::File object previously created with new() , this method opens a file and associates
it with the object. The open() method accepts the same types of arguments as the standard Perl
open() function, including support for file modes.

15 Feb 201440

5.1 Synopsis

 $fh->open($filename);

 $fh->open(">$out_file");

 $fh->open("|$program");

close()

The close() method is equivalent to the Perl builtin close function, returns true upon success, false
upon failure.

 $fh->close or die "Can’t close $filename $!";

tmpfile()

The tmpfile() method is responsible for opening up a unique temporary file. It is similar to the
tmpnam() function in the POSIX module, but doesn’t come with all the memory overhead that
loading POSIX does. It will choose a suitable temporary directory (which must be writable by the
Web server process). It then generates a series of filenames using the current process ID and the
$TMPNAM package global. Once a unique name is found, it is opened for writing, using flags that will
cause the file to be created only if it does not already exist. This prevents race conditions in which the
function finds what seems to be an unused name, but someone else claims the same name before it
can be created.

As an added bonus, tmpfile() calls the register_cleanup() method behind the scenes to
make sure the file is unlinked after the transaction is finished.

Called in a list context, tmpfile() returns the temporary file name and a filehandle opened for
reading and writing. In a scalar context only the filehandle is returned.

 my ($tmpnam, $fh) = Apache::File->tmpfile;

 my $fh = Apache::File->tmpfile;

5.4 Apache Methods added by Apache::File
When a handler pulls in Apache::File , the module adds a number of new methods to the Apache
request object. These methods are generally of interest to handlers that wish to serve static files from disk
or memory using the features of the HTTP/1.1 protocol that provide increased performance through
client-side document caching.

$r->discard_request_body()

This method tests for the existence of a request body and if present, simply throws away the data.
This discarding is especially important when persistent connections are being used, so that the request
body will not be attached to the next request. If the request is malformed, an error code will be
returned, which the module handler should propagate back to Apache.

4115 Feb 2014

5.4 Apache Methods added by Apache::FileApache::File - advanced functions for manipulating files at the server side

 if ((my $rc = $r->discard_request_body) != OK) {
 return $rc;
 }

$r->meets_conditions()

In the interest of HTTP/1.1 compliance, the meets_conditions() method is used to implement
‘‘conditional GET’’ rules. These rules include inspection of client headers, including If-Modi-
fied-Since , If-Unmodified-Since , If-Match and If-None-Match .

As far as Apache modules are concerned, they need only check the return value of this method before
sending a request body. If the return value is anything other than OK, the module should return from
the handler with that value. A common return value other than OK is HTTP_NOT_MODIFIED, which
is sent when the document is already cached on the client side, and has not changed since it was
cached.

 if((my $rc = $r->meets_conditions) != OK) {
 return $rc;
 }
 #else ... go and send the response body ...

$r->mtime()

This method returns the last modified time of the requested file, expressed as seconds since the
epoch.

 my $date_string = localtime $r->mtime;

To change the last modified time use the update_mtime() method.

$r->set_content_length()

This method sets the outgoing Content-length header based on its argument, which should be
expressed in byte units. If no argument is specified, the method will use the size returned by
$r->filename . This method is a bit faster and more concise than setting Content-length in
the headers_out table yourself.

 $r->set_content_length;
 $r->set_content_length(-s $r->finfo); #same as above
 $r->set_content_length(-s $filename);

$r->set_etag()

This method is used to set the outgoing ETag header corresponding to the requested file. ETag is an
opaque string that identifies the currrent version of the file and changes whenever the file is modified.
This string is tested by the meets_conditions() method if the client provide an If-Match or
If-None-Match header.

 $r->set_etag;

$r->set_last_modified()

15 Feb 201442

5.4 Apache Methods added by Apache::File

This method is used to set the outgoing Last-Modified header from the value returned by
$r->mtime . The method checks that the specified time is not in the future. In addition, using
set_last_modified() is faster and more concise than setting Last-Modified in the
headers_out table yourself.

You may provide an optional time argument, in which case the method will first call the
update_mtime() to set the file’s last modification date. It will then set the outgoing
Last-Modified header as before.

 $r->update_mtime((stat $r->finfo)[9]);
 $r->set_last_modified;
 $r->set_last_modified((stat $r->finfo)[9]); #same as the two lines above

$r->update_mtime()

Rather than setting the request record mtime field directly, you can use the update_mtime()
method to change the value of this field. It will only be updated if the new time is more recent than
the current mtime. If no time argument is present, the default is the last modified time of $r->file-
name.

 $r->update_mtime;
 $r->update_mtime((stat $r->finfo)[9]); #same as above
 $r->update_mtime(time);

5.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

5.6 Authors
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

4315 Feb 2014

5.5 MaintainersApache::File - advanced functions for manipulating files at the server side

6 Apache::Log - Interface to Apache logging

15 Feb 201444

6 Apache::Log - Interface to Apache logging

6.1 Synopsis
 use Apache::Log ();
 my $rlog = $r->log;
 $rlog->debug("You only see this if ‘LogLevel’ is set to ‘debug’");

 my $slog = $r->server->log;

6.2 Description
The Apache::Log module provides an interface to Apache’s ap_log_error and ap_log_rerror routines.

The methods listed below can be called as $r> meth($error) , and the error message will appear in the
error log depending on the value of LogLevel .

emerg
alert
crit
error
warn
notice
info
debug

6.3 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

6.4 Authors
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

6.5 See Also
mod_perl, Apache.

4515 Feb 2014

6.1 SynopsisApache::Log - Interface to Apache logging

7 Apache::URI - URI component parsing and unpars-
ing

15 Feb 201446

7 Apache::URI - URI component parsing and unparsing

7.1 Synopsis
 use Apache::URI ();
 my $uri = $r->parsed_uri;

 my $uri = Apache::URI->parse($r, "http://perl.apache.org/");

7.2 Description
This module provides an interface to the Apache util_uri module and the uri_components structure.

7.3 Methods
Apache::parsed_uri

Apache will have already parsed the requested uri components, which can be obtained via the
parsed_uri method defined in the Apache class. This method returns an object blessed into the
Apache::URI class.

 my $uri = $r->parsed_uri;

parse

This method will parse a URI string into uri components which are stashed in the Apache::URI object
it returns.

 my $uri = Apache::URI->parse($r, "http://www.foo.com/path/file.html?query+string");

This method is considerably faster than using URI::URL:

 timethese(5000, {
C => sub { Apache::URI->parse($r, $test_uri) },
Perl => sub { URI::URL->new($test_uri) },
 });

 Benchmark: timing 5000 iterations of C, Perl...
 C: 1 secs (0.62 usr 0.04 sys = 0.66 cpu)
 Perl: 6 secs (6.21 usr 0.08 sys = 6.29 cpu)

unparse

This method will join the uri components back into a string version.

 my $string = $uri->unparse;

scheme

 my $scheme = $uri->scheme;

hostinfo

4715 Feb 2014

7.1 SynopsisApache::URI - URI component parsing and unparsing

 my $hostinfo = $uri->hostinfo;

user

 my $user = $uri->user;

password

 my $password = $uri->password;

hostname

 my $hostname = $uri->hostname;

port

 my $port = $uri->port;

path

 my $path = $uri->path;

rpath

Returns the path minus path_info.

 my $path = $uri->rpath;

query

 my $query = $uri->query;

fragment

 my $fragment = $uri->fragment;

7.4 Author
Doug MacEachern

7.5 See Also
perl.

15 Feb 201448

7.4 Author

8 Apache::Util - Interface to Apache C util functions

4915 Feb 2014

8 Apache::Util - Interface to Apache C util functionsApache::Util - Interface to Apache C util functions

8.1 Synopsis
 use Apache::Util qw(:all);

8.2 Description
This module provides a Perl interface to some of the C utility functions available in Apache. The same
functionality is avaliable in libwww-perl, but the C versions are faster:

 use Benchmark;
 timethese(1000, {
 C => sub { my $esc = Apache::Util::escape_html($html) },
 Perl => sub { my $esc = HTML::Entities::encode($html) },
 });

 Benchmark: timing 1000 iterations of C, Perl...
 C: 0 secs (0.17 usr 0.00 sys = 0.17 cpu)
 Perl: 15 secs (15.06 usr 0.04 sys = 15.10 cpu)

 use Benchmark;
 timethese(10000, {
 C => sub { my $esc = Apache::Util::escape_uri($uri) },
 Perl => sub { my $esc = URI::Escape::uri_escape($uri) },
 });

 Benchmark: timing 10000 iterations of C, Perl...
 C: 0 secs (0.55 usr 0.01 sys = 0.56 cpu)
 Perl: 2 secs (1.78 usr 0.01 sys = 1.79 cpu)

8.3 Functions
escape_html

This routine replaces unsafe characters in $string with their entity representation.

 my $esc = Apache::Util::escape_html($html);

This function will correctly escape US-ASCII output. If you are using a different character set such as
UTF8, or need more control on the escaping process, use HTML::Entities.

escape_uri

This function replaces all unsafe characters in the $string with their escape sequence and returns the
result.

 my $esc = Apache::Util::escape_uri($uri);

unescape_uri

15 Feb 201450

8.1 Synopsis

This function decodes all %XX hex escape sequences in the given URI.

 my $unescaped = Apache::Util::unescape_uri($safe_uri);

unescape_uri_info

This function is similar to unescape_uri() but is specialized to remove escape sequences from the
query string portion of the URI. The main difference is that it translates the ‘‘+’’ character into spaces
as well as recognizing and translating the hex escapes.

Example:

 $string = $r->uri->query;
 my %data = map { Apache::Util::unescape_uri_info($_) }
 split /[=&]/, $string, -1;

This would correctly translate the query string "name=Fred+Flintstone&town=Bedrock" into the
hash:

 data => ’Fred Flintstone’,
 town => ’Bedrock’

parsedate

Parses an HTTP date in one of three standard forms:

 Sun, 06 Nov 1994 08:49:37 GMT ; RFC 822, updated by RFC 1123

 Sunday, 06-Nov-94 08:49:37 GMT ; RFC 850, obsoleted by RFC 1036

 Sun Nov 6 08:49:37 1994 ; ANSI C’s asctime() format

Example:

 my $secs = Apache::Util::parsedate($date_str);

ht_time

Format a time string.

Examples:

 my $str = Apache::Util::ht_time(time);

 my $str = Apache::Util::ht_time(time, "%d %b %Y %T %Z");

 my $str = Apache::Util::ht_time(time, "%d %b %Y %T %Z", 0);

size_string

Converts the given file size into a formatted string. The size given in the string will be in units of
bytes, kilobytes, or megabytes, depending on the size.

5115 Feb 2014

8.3 FunctionsApache::Util - Interface to Apache C util functions

 my $size = Apache::Util::size_string -s $r->finfo;

validate_password

Validate a plaintext password against a smashed one. Use either crypt() (if available),
ap_MD5Encode() or ap_SHA1Encode depending upon the format of the smashed input password.

Returns true if they match, false otherwise.

 if (Apache::Util::validate_password("slipknot", "aXYx4GnaCrDQc")) {
 print "password match\n";
 }
 else {
 print "password mismatch\n";
 }

8.4 Author
Doug MacEachern

8.5 See Also
perl.

15 Feb 201452

8.4 Author

9 Apache::Include - Utilities for
mod_perl/mod_include integration

5315 Feb 2014

9 Apache::Include - Utilities for mod_perl/mod_include integrationApache::Include - Utilities for mod_perl/mod_include integration

9.1 Synopsis
 <!--#perl sub="Apache::Include" arg="/perl/ssi.pl" -->

9.2 Description
The Apache::Include module provides a handler, making it simple to include
Apache::Registry scripts with the mod_include perl directive.

Apache::Registry scripts can also be used in mod_include parsed documents using ’virtual include’.

9.3 Methods
Apache::Include->virtual($uri)

The virtual method may be called to include the output of a given uri in your Perl scripts.
Example:

 use Apache::Include ();

 print "Content-type: text/html\n\n";

 print "before include\n";

 my $uri = "/perl/env.pl";

 Apache::Include->virtual($uri);

 print "after include\n";

9.4 See Also
perl, mod_perl, mod_include

9.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

9.6 Authors
Doug MacEachern

15 Feb 201454

9.1 Synopsis

Only the major authors are listed above. For contributors see the Changes file.

5515 Feb 2014

9.6 AuthorsApache::Include - Utilities for mod_perl/mod_include integration

10 Apache::Registry - Run unaltered CGI scrips
under mod_perl

15 Feb 201456

10 Apache::Registry - Run unaltered CGI scrips under mod_perl

10.1 Synopsis
 #in httpd.conf

 Alias /perl/ /perl/apache/scripts/ #optional
 PerlModule Apache::Registry

 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 </Location>

10.2 Description
Apache::Registry is the Apache module allowing you to run CGI scripts very fast under mod_perl,
by compiling all scripts once and then caching them in memory.

URIs in the form of http://www.example.com/perl/file.pl will be compiled as the body of a perl subroutine
and executed. Each server process or ’child’ will compile the subroutine once and store it in memory. It
will recompile it whenever the file is updated on disk. Think of it as an object oriented server with each
script implementing a class loaded at runtime.

The file looks much like a "normal" script, but it is compiled or ’evaled’ into a subroutine.

Here’s an example:

 my $r = Apache->request;
 $r->content_type("text/html");
 $r->send_http_header;
 $r->print("Hi There!");

This module emulates the CGI environment, allowing programmers to write scripts that run under CGI or
mod_perl without change. Existing CGI scripts may require some changes, simply because a CGI script
has a very short lifetime of one HTTP request, allowing you to get away with "quick and dirty" scripting.
Using mod_perl and Apache::Registry requires you to be more careful, but it also gives new meaning to
the word "quick"!

Be sure to read all mod_perl related documentation for more details, including instructions for setting up
an environment that looks exactly like CGI:

 print "Content-type: text/html\n\n";
 print "Hi There!";

Note that each httpd process or "child" must compile each script once, so the first request to one server
may seem slow, but each request there after will be faster. If your scripts are large and/or make use of
many Perl modules, this difference should be noticeable to the human eye.

5715 Feb 2014

10.1 SynopsisApache::Registry - Run unaltered CGI scrips under mod_perl

http://www.example.com/perl/file.pl

10.3 Security
Apache::Registry::handler will preform the same checks as mod_cgi before running the
script.

10.4 Environment
The Apache function exit overrides the Perl core built-in function.

The environment variable GATEWAY_INTERFACE is set to CGI-Perl/1.1 .

10.5 Command Line Switches on the First Line
Normally when a Perl script is run from the command line or under CGI, arguments on the #! line are
passed to the perl interpreter for processing.

Apache::Registry currently only honors the -w switch and will turn on warnings using the $^W
global variable. Another common switch used with CGI scripts is -T to turn on taint checking. This can
only be enabled when the server starts with the configuration directive:

 PerlTaintCheck On

However, if taint checking is not enabled, but the -T switch is seen, Apache::Registry will write a
warning to the error_log.

10.6 Debugging
You may set the debug level with the $Apache::Registry::Debug bitmask

 1 => log recompile in errorlog
 2 => Apache::Debug::dump in case of $@
 4 => trace pedantically

10.7 Caveats
Apache::Registry makes things look just the CGI environment, however, you must understand that
this is not CGI. Each httpd child will compile your script into memory and keep it there, whereas CGI
will run it once, cleaning out the entire process space. Many times you have heard "always use -w , always
use -w and use strict ". This is more important here than anywhere else!

Your scripts cannot contain the __END__ or __DATA__ token to terminate compilation.

15 Feb 201458

10.3 Security

10.8 See Also
perl, mod_perl, Apache, Apache::Debug

10.9 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

10.10 Authors
Andreas J. Koenig
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

5915 Feb 2014

10.8 See AlsoApache::Registry - Run unaltered CGI scrips under mod_perl

11 Apache::PerlRun - Run unaltered CGI scripts
under mod_perl

15 Feb 201460

11 Apache::PerlRun - Run unaltered CGI scripts under mod_perl

11.1 Synopsis
 #in httpd.conf

 Alias /cgi-perl/ /perl/apache/scripts/
 PerlModule Apache::PerlRun

 <Location /cgi-perl>
 SetHandler perl-script
 PerlHandler Apache::PerlRun
 Options +ExecCGI
 #optional
 PerlSendHeader On
 ...
 </Location>

11.2 Description
This module’s handler emulates the CGI environment, allowing programmers to write scripts that run
under CGI or mod_perl without change. Unlike Apache::Registry , the Apache::PerlRun
handler does not cache the script inside of a subroutine. Scripts will be "compiled" every request. After the
script has run, it’s namespace is flushed of all variables and subroutines.

The Apache::Registry handler is much faster than Apache::PerlRun . However,
Apache::PerlRun is much faster than CGI as the fork is still avoided and scripts can use modules
which have been pre-loaded at server startup time. This module is meant for "Dirty" CGI Perl scripts
which relied on the single request lifetime of CGI and cannot run under Apache::Registry without
cleanup.

11.3 Caveats
If your scripts still have problems running under the Apache::PerlRun handler, the PerlRunOnce
option can be used so that the process running the script will be shutdown. Add this to your httpd.conf:

 <Location ...>
 PerlSetVar PerlRunOnce On
 ...
 </Location>

11.4 See Also
perl, mod_perl, Apache::Registry

6115 Feb 2014

11.1 SynopsisApache::PerlRun - Run unaltered CGI scripts under mod_perl

11.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

11.6 Authors
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201462

11.5 Maintainers

12 Apache::RegistryLoader - Compile
Apache::Registry scripts at server startup

6315 Feb 2014

12 Apache::RegistryLoader - Compile Apache::Registry scripts at server startupApache::RegistryLoader - Compile Apache::Registry scripts at server startup

12.1 Synopsis
 #in your Perl Startup script:

 use Apache::RegistryLoader ();

 my $r = Apache::RegistryLoader->new;

 $r->handler($uri, $filename);

 $r->handler($uri, $filename, $virtual_hostname);

12.2 Description
This modules allows compilation of Apache::Registry scripts at server startup.

The script’s handler routine is compiled by the parent server, of which children get a copy. The
Apache::RegistryLoader handler method takes arguments of uri and the filename . URI to
filename translation normally doesn’t happen until HTTP request time, so we’re forced to roll our own
translation.

If filename is omitted and a trans routine was not defined, the loader will try using the uri relative to
ServerRoot . Example:

 #in httpd.conf
 ServerRoot /opt/www/apache
 Alias /perl/ /opt/www/apache/perl

 #in startup.pl
 use Apache::RegistryLoader ();

 #/opt/www/apache/perl/test.pl
 #is the script loaded from disk here:
 Apache::RegistryLoader->new->handler("/perl/test.pl");

To make the loader smarter about the uri->filename translation, you may provide the new method with a
trans function to translate the uri to filename.

The following example will pre-load all files ending with .pl in the perl-scripts/ directory relative to
ServerRoot . The example code assumes the Location URI /perl is an Alias to this directory.

 {
 use Cwd ();
 use Apache::RegistryLoader ();
 use DirHandle ();
 use strict;

 my $dir = Apache->server_root_relative("perl-scripts/");

 my $rl = Apache::RegistryLoader->new(trans => sub {
 my $uri = shift;
 $uri =~ s:^/perl/:/perl-scripts/:;

15 Feb 201464

12.1 Synopsis

 return Apache->server_root_relative($uri);
 });

 my $dh = DirHandle->new($dir) or die $!;

 for my $file ($dh->read) {
 next unless $file =~ /\.pl$/;
 $rl->handler("/perl/$file");
 }
 }

12.3 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

12.4 Authors
Doug MacEachern
Stas Bekman (Rewrote the handler() to report and handle all the possible erroneous condi-
tions).

Only the major authors are listed above. For contributors see the Changes file.

12.5 See Also
Apache::Registry, Apache, mod_perl

6515 Feb 2014

12.3 MaintainersApache::RegistryLoader - Compile Apache::Registry scripts at server startup

13 Apache::StatINC - Reload %INC files when
updated on disk

15 Feb 201466

13 Apache::StatINC - Reload %INC files when updated on disk

13.1 Synopsis
 #httpd.conf or some such
 #can be any Perl*Handler
 PerlInitHandler Apache::StatINC

13.2 Description
When Perl pulls a file via require , it stores the filename in the global hash %INC. The next time Perl
tries to require the same file, it sees the file in %INC and does not reload from disk. This module’s
handler iterates over %INC and reloads the file if it has changed on disk.

Note that StatINC operates on the current context of @INC. Which means, when called as a Perl*Handler
it will not see @INC paths added or removed by Apache::Registry scripts, as the value of @INC is saved
on server startup and restored to that value after each request. In other words, if you want StatINC to work
with modules that live in custom @INC paths, you should modify @INC when the server is started.
Besides, use lib in startup scripts, you can also set the PERL5LIB variable in the httpd’s environment
to include any non-standard ’lib’ directories that you choose. For example, you might use a script called
’start_httpd’ to start apache, and include a line like this:

 PERL5LIB=/usr/local/foo/myperllibs; export PERL5LIB

When you have problems with modules not being reloaded, please refer to the following lines in perlmod-
lib:

"Always use -w . Try to use strict; (or use strict qw(...);). Remember that you can add
no strict qw(...); to individual blocks of code that need less strictness. Always use -w . Always
use -w ! Follow the guidelines in the perlstyle(1) manual."

Warnings when running under mod_perl is enabled with PerlWarn On in your httpd.conf.

It will most likely help you to find the problem. Really.

13.3 Options
StatINC_UndefOnReload

Normally, StatINC will turn of warnings to avoid "Subroutine redefined" warnings when it reloads
a file. However, this does not disable the Perl mandatory warning when re-defining constant
subroutines (see perldoc perlsub). With this option On, StatINC will invoke the Apache::Symbol
undef_functions method to avoid these mandatory warnings:

 PerlSetVar StatINC_UndefOnReload On

StatINC_Debug

6715 Feb 2014

13.1 SynopsisApache::StatINC - Reload %INC files when updated on disk

You can make StatINC tell when it reloads a module by setting this option to on.

 PerlSetVar StatINC_Debug 1

The only used debug level is currently 1.

13.4 SEE ALSO
mod_perl

13.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Ask Bjoern Hanse <ask (at) netcetera.dk>
The documentation mailing list

13.6 Authors
Doug MacEachern
Ask Bjoern Hansen

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201468

13.4 SEE ALSO

14 Apache::test - Facilitates testing of Apache::*
modules

6915 Feb 2014

14 Apache::test - Facilitates testing of Apache::* modulesApache::test - Facilitates testing of Apache::* modules

14.1 Synopsis
 # In Makefile.PL
 use Apache::test;
 my %params = Apache::test->get_test_params();
 Apache::test->write_httpd_conf(%params, include => $more_directives);
 *MY::test = sub { Apache::test->MM_test(%params) };

 # In t/*.t script (or test.pl)
 use Apache::test qw(skip_test have_httpd);
 skip_test unless have_httpd;
 (Some more methods of Doug’s that I haven’t reviewed or documented yet)

14.2 Description
This module helps authors of Apache::* modules write test suites that can query an actual running
Apache server with mod_perl and their modules loaded into it.

Its functionality is generally separated into methods that go in a Makefile.PL to configure, start, and stop
the server, and methods that go in one of the test scripts to make HTTP queries and manage the results.

14.3 Methods

14.3.1 get_test_params()

This will ask the user a few questions about where the httpd binary is, and what user/group/port should be
used when running the server. It will return a hash of the information it discovers. This hash is suitable for
passing to the write_httpd_conf() method.

14.3.2 write_httpd_conf(%params)

This will write a basic httpd.conf file suitable for starting a HTTP server during the make test stage. A
hash of key/value pairs that affect the written file can be passed as arguments. The following keys are
recognized:

conf_file

The path to the file that will be created. Default is t/httpd.conf.

port

The port that the Apache server will listen on.

user

The user that the Apache server will run as.

15 Feb 201470

14.1 Synopsis

group

The group that the Apache server will run as.

include

Any additional text you want added at the end of the config file. Typically you’ll have some
PerlModule and Perl*Handler directives to pass control to the module you’re testing. The
blib/ directories will be added to the @INC path when searching for modules, so that’s nice.

14.3.3 MM_test(%params)

This method helps write a Makefile that supports running a web server during the make test stage.
When you execute make test , make will run make start_httpd , make run_tests , and make
kill_httpd in sequence. You can also run these commands independently if you want.

Pass the hash of parameters returned by get_test_params() as an argument to MM_test() .

To patch into the ExtUtils::MakeMaker wizardry (voodoo?), typically you’ll do the following in
your Makefile.PL:

 *MY::test = sub { Apache::test->MM_test(%params) };

14.3.4 fetch
 Apache::test->fetch($request);
 Apache::test->fetch($user_agent, $request);

Call this method in a test script in order to fetch a page from the running web server. If you pass two argu-
ments, the first should be an LWP::UserAgent object, and the second should specify the request to
make of the server. If you only pass one argument, it specifies the request to make.

The request can be specified either by a simple string indicating the URI to fetch, or by a hash reference,
which gives you more control over the request. The following keys are recognized in the hash:

uri

The URI to fetch from the server. If the URI does not begin with http , we prepend
http://localhost:$PORT so that we make requests of the test server.

method

The request method to use. Default is GET.

content

The request content body. Typically used to simulate HTML fill-out form submission for POST
requests. Default is null.

7115 Feb 2014

14.3.3 MM_test(%params)Apache::test - Facilitates testing of Apache::* modules

http://localhost/

headers

A hash of headers you want sent with the request. You might use this to send cookies or provide
some application-specific header.

If you don’t provide a headers parameter and you set the method to POST, then we assume that you’re
trying to simulate HTML form submission and we add a Content-Type header with a value of
application/x-www-form-urlencoded .

In a scalar context, fetch() returns the content of the web server’s response. In a list context, fetch()
returns the content and the HTTP::Response object itself. This can be handy if you need to check the
response headers, or the HTTP return code, or whatever.

14.3.5 static_modules
 Example: $mods = Apache::test->static_modules(’/path/to/httpd’);

This method returns a hashref whose keys are all the modules statically compiled into the given httpd
binary. The corresponding values are all 1.

14.4 Examples
No good examples yet. Example submissions are welcome. In the meantime, see http://forum.swarth-
more.edu/~ken/modules/Apache-AuthCookie/ , which I’m retrofitting to use Apache::test .

14.5 To Do
The MM_test method doesn’t try to be very smart, it just writes the text that seems to work in my config-
uration. I am morally against using the make command for installing Perl modules (though of course I do
it anyway), so I haven’t looked into this very much. Send bug reports or better (patches).

I’ve got lots of code in my Apache::AuthCookie module (etc.) that assists in actually making the
queries of the running server. I plan to add that to this module, but first I need to compare what’s already
here that does the same stuff.

14.6 Kudos
To Doug MacEachern for writing the first version of this module.

To caelum@debian.org (Rafael Kitover) for contributing the code to parse existing httpd.conf files for
--enable-shared=max and DSOs.

15 Feb 201472

14.4 Examples

http://forum.swarthmore.edu/~ken/modules/Apache-AuthCookie/
http://forum.swarthmore.edu/~ken/modules/Apache-AuthCookie/

14.7 Caveats
Except for making sure that the mod_perl distribution itself can run make test okay, I haven’t tried
very hard to keep compatibility with older versions of this module. In particular MM_test() has changed
and probably isn’t usable in the old ways, since some of its assumptions are gone. But none of this was
ever documented, and MM_test() doesn’t seem to actually be used anywhere in the mod_perl disribu-
tion, so I don’t feel so bad about it.

14.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

14.9 Authors
Doug MacEachern
Ken Williams

Only the major authors are listed above. For contributors see the Changes file.

7315 Feb 2014

14.7 CaveatsApache::test - Facilitates testing of Apache::* modules

15 Apache::Symdump - Symbol table snapshots

15 Feb 201474

15 Apache::Symdump - Symbol table snapshots

15.1 Synopsis
 PerlLogHandler Apache::Symdump

15.2 Description
Apache::Symdump will record snapshots of the Perl symbol table for you to look at later.

It records them in ServerRoot/logs/symdump.$$.$n . Where $$ is the process id and $n is incre-
mented each time the handler is run. The diff utility can be used to compare snapshots and get an idea of
what might be making a process grow. Normally, new symbols come from modules or scripts that were
not preloaded, the Perl method cache, etc.

 % diff -u symdump.$$.0 symdump.$$.1

15.3 Caveats
Apache::Symdump does not cleanup up its snapshot files, do so simply by:

 % rm logs/symdump.* logs/incdump.*

15.4 See Also
Devel::Symdump , Apache::Leak

15.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

15.6 Authors
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

7515 Feb 2014

15.1 SynopsisApache::Symdump - Symbol table snapshots

16 Apache::src - Methods for locating and parsing
bits of Apache source code

15 Feb 201476

16 Apache::src - Methods for locating and parsing bits of Apache source code

16.1 Synopsis
 use Apache::src ();
 my $src = Apache::src->new;

16.2 Description
This module provides methods for locating and parsing bits of Apache source code.

16.3 Methods
new

Create an object blessed into the Apache::src class.

 my $src = Apache::src->new;

dir

Top level directory where source files are located.

 my $dir = $src->dir;
 -d $dir or die "can’t stat $dir $!\n";

main

Apache’s source tree was reorganized during development of version 1.3. So, common header files
such as httpd.h are in different directories between versions less than 1.3 and those equal to or
greater. This method will return the right directory.

Example:

 -e join "/", $src->main, "httpd.h" or die "can’t stat httpd.h\n";

find

Searches for apache source directories, return a list of those found.

Example:

 for my $dir ($src->find) {
 my $yn = prompt "Configure with $dir ?", "y";
 ...
 }

inc

Print include paths for MakeMaker’s INC argument to WriteMakefile .

7715 Feb 2014

16.1 SynopsisApache::src - Methods for locating and parsing bits of Apache source code

Example:

 use ExtUtils::MakeMaker;

 use Apache::src ();

 WriteMakefile(
 ’NAME’ => ’Apache::Module’,
 ’VERSION’ => ’0.01’,
 ’INC’ => Apache::src->new->inc,
);

module_magic_number

Return the MODULE_MAGIC_NUMBER defined in the apache source.

Example:

 my $mmn = $src->module_magic_number;

httpd_version

Return the server version.

Example:

 my $v = $src->httpd_version;

otherldflags

Return other ld flags for MakeMaker’s dynamic_lib argument to WriteMakefile . This might be
needed on systems like AIX that need special flags to the linker to be able to reference mod_perl or
httpd symbols.

Example:

 use ExtUtils::MakeMaker;

 use Apache::src ();

 WriteMakefile(
 ’NAME’ => ’Apache::Module’,
 ’VERSION’ => ’0.01’,
 ’INC’ => Apache::src->new->inc,
 ’dynamic_lib’ => {
 ’OTHERLDFLAGS’ => Apache::src->new->otherldflags,
 },
);

15 Feb 201478

16.3 Methods

16.4 Author
Doug MacEachern

7915 Feb 2014

16.4 AuthorApache::src - Methods for locating and parsing bits of Apache source code

17 Apache::Leak - Module for tracking memory leaks
in mod_perl code

15 Feb 201480

17 Apache::Leak - Module for tracking memory leaks in mod_perl code

17.1 Synopsis
 use Apache::Leak;

 leak_test {
 my $obj = Foo->new;
 $obj->thingy;
 };
 #now look in error_log for results

17.2 Description
Apache::Leak is a module built to track memory leaks in mod_perl code.

17.3 See Also
Devel::Leak

17.4 Author
Doug MacEachern

Leak.xs was derived from Nick Ing-Simmons’ Devel::Leak

8115 Feb 2014

17.1 SynopsisApache::Leak - Module for tracking memory leaks in mod_perl code

18 Apache::FakeRequest - fake request object for
debugging

15 Feb 201482

18 Apache::FakeRequest - fake request object for debugging

18.1 Synopsis
 use Apache::FakeRequest;
 my $request = Apache::FakeRequest->new(method_name => ’value’, ...);

18.2 Description
Apache::FakeRequest is used to set up an empty Apache request object that can be used for debug-
ging.

The Apache::FakeRequest methods just set internal variables of the same name as the method and
return the value of the internal variables. Initial values for methods can be specified when the object is
created. The print method prints to STDOUT.

Subroutines for Apache constants are also defined so that using Apache::Constants while debugging
works, although the values of the constants are hard-coded rather than extracted from the Apache source
code.

 #!/usr/bin/perl

 use Apache::FakeRequest ();
 use mymodule ();

 my $request = Apache::FakeRequest->new(’get_remote_host’=>’foobar.com’);
 mymodule::handler($request);

18.3 Authors
Doug MacEachern, with contributions from Andrew Ford <A.Ford@ford-mason.co.uk>.

8315 Feb 2014

18.1 SynopsisApache::FakeRequest - fake request object for debugging

19 Apache::Debug - Utilities for debugging embedded
perl code

15 Feb 201484

19 Apache::Debug - Utilities for debugging embedded perl code

19.1 Synopsis
 use Apache::Debug ();

 Apache::Debug::dump($r, SERVER_ERROR, "Uh Oh!");

19.2 Description
This module sends what may be helpful debugging info to the client rather that the error log.

19.3 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The mod_perl docs list.

19.4 Authors
Rob Hartill

Only the major authors are listed above. For contributors see the Changes file.

8515 Feb 2014

19.1 SynopsisApache::Debug - Utilities for debugging embedded perl code

20 Apache::Symbol - Things for symbol things

15 Feb 201486

20 Apache::Symbol - Things for symbol things

20.1 Synopsis
 use Apache::Symbol ();

 @ISA = qw(Apache::Symbol);

20.2 Description
Apache::Symbol helps mod_perl users avoid Perl warnings related with redefined constant functions.

perlsub/Constant Functions says:

 If you redefine a subroutine which was eligible for inlining you’ll
 get a mandatory warning. (You can use this warning to tell whether
 or not a particular subroutine is considered constant.) The warning
 is considered severe enough not to be optional because previously
 compiled invocations of the function will still be using the old
 value of the function.

mandatory warning means there is no way to avoid this warning no matter what tricks you pull in Perl.
This is bogus for us mod_perl users when restarting the server with PerlFreshRestart on or when
Apache::StatINC pulls in a module that has changed on disk.

You can, however, pull some tricks with XS to avoid this warning,
Apache::Symbol::undef_functions does just that.

20.3 Arguments
undef_functions takes two arguments: skip and only_undef_exports .

skip is a regular expression indicating the function names to skip.

Use the only_undef_exports flag to undef only those functions which are listed in @EXPORT,
@EXPORT_OK, %EXPORT_TAGS, or @EXPORT_EXTRAS. @EXPORT_EXTRAS is not used by the
Exporter, it is only exists to communicate with undef_functions .

As a special case, if none of the EXPORT variables are defined ignore only_undef_exports . This
takes care of trivial modules that don’t use the Exporter.

20.4 Players
This module and the undefining of functions is optional, if you wish to have this functionality enabled,
there are one or more switches you need to know about.

PerlRestartHandler

8715 Feb 2014

20.1 SynopsisApache::Symbol - Things for symbol things

Apache::Symbol defines a PerlRestartHandler which can be useful in conjuction with
PerlFreshRestart On as it will avoid subroutine redefinition messages. Configure like so:

 PerlRestartHandler Apache::Symbol

Apache::Registry

By placing the SYNOPSIS bit in you script, Apache::Registry will undefine subroutines in your
script before it is re-compiled to avoid "subroutine re-defined" warnings.

Apache::StatINC

See Apache::StatINC ’s docs.

APACHE_SYMBOL_UNIVERSAL

If this environment variable is true when Symbol.pm is compiled, it will define UNIVER-
SAL::undef_functions , which means all classes will inherit Apache::Symbol::undef_func-
tions.

Others

Modules such as HTML::Embperl and Apache::ePerl which compile and script cache scripts
ala Apache::Registry style can use undef_functions with this bit of code:

 if($package->can(’undef_functions’)) {
 $package->undef_functions;
 }

Where $package is the name of the package in which the script is being re-compiled.

20.5 See Also
perlsub, Devel::Symdump

20.6 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

20.7 Authors
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201488

20.5 See Also

21 Apache::SIG - Override apache signal handlers
with Perl’s

8915 Feb 2014

21 Apache::SIG - Override apache signal handlers with Perl’sApache::SIG - Override apache signal handlers with Perl’s

21.1 Synopsis
 PerlFixupHandler Apache::SIG

21.2 Description
When a client drops a connection and apache is in the middle of a write, a timeout will occur and httpd
sends a SIGPIPE . When apache’s SIGPIPE handler is used, Perl may be left in the middle of it’s eval
context, causing bizarre errors during subsequent requests are handled by that child. When
Apache::SIG is used, it installs a different SIGPIPE handler which rewinds the context to make sure
Perl is back to normal state, preventing these bizarre errors.

If you would like to log when a request was cancelled by a SIGPIPE in your Apache access_log, you can
declare Apache::SIG as a handler (any Perl*Handler will do, as long as it is run before Perl-
Handler , e.g. PerlFixupHandler), and you must also define a custom LogFormat in your
httpd.conf, like so:

 PerlFixupHandler Apache::SIG
 LogFormat "%h %l %u %t \"%r\" %s %b %{SIGPIPE}e"

If the server has noticed that the request was cancelled via a SIGPIPE , then the log line will end with 1,
otherwise it will just be a dash.

21.3 Caveats
The signal handler in this package uses the subprocess_env table of the main request object to supply the
SIGPIPE "environment variable" to the log handler. If you already use the key SIGPIPE in your
subprocess_env table, then you can redefine the key like this:

 $Apache::SIG::PipeKey = ’my_SIGPIPE’;

and log it like this:

 LogFormat "%h %l %u %t \"%r\" %s %b %{my_SIGPIPE}e"

21.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

21.5 Authors
Doug MacEachern
Doug Bagley

15 Feb 201490

21.1 Synopsis

Only the major authors are listed above. For contributors see the Changes file.

21.6 See Also
perlvar(1)

9115 Feb 2014

21.6 See AlsoApache::SIG - Override apache signal handlers with Perl’s

22 Apache::PerlSections - Utilities for work with Perl
sections

15 Feb 201492

22 Apache::PerlSections - Utilities for work with Perl sections

22.1 Synopsis
 use Apache::PerlSections ();

22.2 Description
It is possible to configure you server entirely in Perl using <Perl> sections in httpd.conf. This module is
here to help you with such a task.

22.3 Methods
dump

This method will dump out all the configuration variables mod_perl will be feeding to the apache
config gears. The output is suitable to read back in via eval .

Example:

 <Perl>

 use Apache::PerlSections ();

 $Port = 8529;

 $Location{"/perl"} = {
 SetHandler => "perl-script",
 PerlHandler => "Apache::Registry",
 Options => "ExecCGI",
 };

 @DirectoryIndex = qw(index.htm index.html);

 $VirtualHost{"www.foo.com"} = {
 DocumentRoot => "/tmp/docs",
 ErrorLog => "/dev/null",
 Location => {
 "/" => {
 Allowoverride => ’All’,
 Order => ’deny,allow’,
 Deny => ’from all’,
 Allow => ’from foo.com’,
 },
 },
 };

 print Apache::PerlSections->dump;

 </Perl>

9315 Feb 2014

22.1 SynopsisApache::PerlSections - Utilities for work with Perl sections

This will print something like this:

 package Apache::ReadConfig;
 #scalars:

 $Port = 8529;

 #arrays:

 @DirectoryIndex = (
 ’index.htm’,
 ’index.html’
);

 #hashes:

 %Location = (
 ’/perl’ => {
 PerlHandler => ’Apache::Registry’,
 SetHandler => ’perl-script’,
 Options => ’ExecCGI’
 }
);

 %VirtualHost = (
 ’www.foo.com’ => {
 Location => {
 ’/’ => {
 Deny => ’from all’,
 Order => ’deny,allow’,
 Allow => ’from foo.com’,
 Allowoverride => ’All’
 }
 },
 DocumentRoot => ’/tmp/docs’,
 ErrorLog => ’/dev/null’
 }
);

 1;
 __END__

store

This method will call the dump method, writing the output to a file, suitable to be pulled in via
require .

Example:

 Apache::PerlSections->store("httpd_config.pl");

 require ’httpd_config.pl’;

15 Feb 201494

22.3 Methods

22.4 See Also
mod_perl, Data::Dumper , Devel::Symdump

22.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

22.6 Authors
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

9515 Feb 2014

22.4 See AlsoApache::PerlSections - Utilities for work with Perl sections

23 Apache::httpd_conf - Generate an httpd.conf file

15 Feb 201496

23 Apache::httpd_conf - Generate an httpd.conf file

23.1 Synopsis
 use Apache::httpd_conf ();

 Apache::httpd_conf->write(Port => 8888);

23.2 Description
The Apache::httpd_conf module will generate a tiny httpd.conf file, which pulls itself back in via a
<Perl> section.

Any additional arguments passed to the write method will be added to the generated httpd.conf file, and
will override those defaults set in the <Perl> section. This module is handy mostly for starting httpd
servers to test mod_perl scripts and modules.

23.3 Author
Doug MacEachern

23.4 See Also
mod_perl, Apache::PerlSections

9715 Feb 2014

23.1 SynopsisApache::httpd_conf - Generate an httpd.conf file

24 Apache::Status - Embedded interpreter status
information

15 Feb 201498

24 Apache::Status - Embedded interpreter status information

24.1 Synopsis
 <Location /perl-status>

 # disallow public access
 Order Deny, Allow
 Deny from all
 Allow from 127.0.0.1

 SetHandler perl-script
 PerlHandler Apache::Status
 </Location>

24.2 Description
The Apache::Status module provides some information about the status of the Perl interpreter
embedded in the server.

Configure like so:

 <Location /perl-status>

 # disallow public access
 Order Deny, Allow
 Deny from all
 Allow from 127.0.0.1

 SetHandler perl-script
 PerlHandler Apache::Status
 </Location>

Other modules can "plugin" a menu item like so:

 Apache::Status->menu_item(
 ’DBI’ => "DBI connections", #item for Apache::DBI module
 sub {
 my ($r,$q) = @_; #request and CGI objects
 my (@strings);
 push @strings, "blobs of html";
 return \@strings; #return an array ref
 }
) if Apache->module("Apache::Status"); #only if Apache::Status is loaded

WARNING : Apache::Status must be loaded before these modules via the PerlModule or Perl-
Require directives.

24.3 Options
StatusOptionsAll

9915 Feb 2014

24.1 SynopsisApache::Status - Embedded interpreter status information

This single directive will enable all of the options described below.

 PerlSetVar StatusOptionsAll On

StatusDumper

When browsing symbol tables, the values of arrays, hashes and scalars can be viewed via
Data::Dumper if this configuration variable is set to On:

 PerlSetVar StatusDumper On

StatusPeek

With this option On and the Apache::Peek module installed, functions and variables can be
viewed ala Devel::Peek style:

 PerlSetVar StatusPeek On

StatusLexInfo

With this option On and the B::LexInfo module installed, subroutine lexical variable information
can be viewed.

 PerlSetVar StatusLexInfo On

StatusDeparse

With this option On and B::Deparse version 0.59 or higher (included in Perl 5.005_59+), subrou-
tines can be "deparsed".

 PerlSetVar StatusDeparse On

Options can be passed to B::Deparse::new like so:

 PerlSetVar StatusDeparseOptions "-p -sC"

See the B::Deparse manpage for details.

StatusTerse

With this option On, text-based op tree graphs of subroutines can be displayed, thanks to B::Terse .

 PerlSetVar StatusTerse On

StatusTerseSize

With this option On and the B::TerseSize module installed, text-based op tree graphs of subrou-
tines and their size can be displayed. See the B::TerseSize docs for more info.

 PerlSetVar StatusTerseSize On

StatusTerseSizeMainSummary

15 Feb 2014100

24.3 Options

With this option On and the B::TerseSize module installed, a "Memory Usage" will be added to
the Apache::Status main menu. This option is disabled by default, as it can be rather cpu inten-
sive to summarize memory usage for the entire server. It is strongly suggested that this option only be
used with a development server running in -X mode, as the results will be cached.

 PerlSetVar StatusTerseSizeMainSummary On

StatusGraph

When StatusDumper is enabled, another link "OP Tree Graph" will be present with the dump if
this configuration variable is set to On:

 PerlSetVar StatusGraph

This requires the B module (part of the Perl compiler kit) and B::Graph (version 0.03 or higher)
module to be installed along with the dot program.

Dot is part of the graph visualization toolkit from AT&T:
http://www.research.att.com/sw/tools/graphviz/).

WARNING : Some graphs may produce very large images, some graphs may produce no image if
B::Graph ’s output is incorrect.

Dot

Location of the dot program for StatusGraph , if other than /usr/bin or /usr/local/bin.

GraphDir

Directory where StatusGraph should write it’s temporary image files. Default is $Server-
Root/logs/b_graphs.

24.4 Prerequisites
The Devel::Symdump module, version 2.00 or higher.

24.5 See Also
perl, Apache, Devel::Symdump , Data::Dumper , B, B::Graph

24.6 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

10115 Feb 2014

24.4 PrerequisitesApache::Status - Embedded interpreter status information

http://www.research.att.com/sw/tools/graphviz/

24.7 Authors
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014102

24.7 Authors

25 Apache::Resource - Limit resources used by httpd
children

10315 Feb 2014

25 Apache::Resource - Limit resources used by httpd childrenApache::Resource - Limit resources used by httpd children

25.1 Synopsis
 PerlModule Apache::Resource
 #set child memory limit in megabytes
 #default is 64 Meg
 PerlSetEnv PERL_RLIMIT_DATA 32:48

 #linux does not honor RLIMIT_DATA
 #RLIMIT_AS (address space) will work to limit the size of a process
 PerlSetEnv PERL_RLIMIT_AS 32:48

 #set child cpu limit in seconds
 #default is 360 seconds
 PerlSetEnv PERL_RLIMIT_CPU 120

 PerlChildInitHandler Apache::Resource

25.2 Description
Apache::Resource uses the BSD::Resource module, which uses the C function setrlimit to
set limits on system resources such as memory and cpu usage.

Any RLIMIT operation available to limit on your system can be set by defining that operation as an envi-
ronment variable with a PERL_ prefix. See your system setrlimit manpage for available resources
which can be limited.

The following limit values are in megabytes: DATA, RSS, STACK, FSIZE , CORE, MEMLOCK; all others
are treated as their natural unit.

If the value of the variable is of the form S:H , S is treated as the soft limit, and H is the hard limit. If it is
just a single number, it is used for both soft and hard limits.

25.3 Defaults
To set reasonable defaults for all RLIMITs, add this to your httpd.conf:

 PerlSetEnv PERL_RLIMIT_DEFAULTS On
 PerlModule Apache::Resource

25.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

15 Feb 2014104

25.1 Synopsis

25.5 Authors
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

25.6 SEE ALSO
BSD::Resource , setrlimit(2)

10515 Feb 2014

25.5 AuthorsApache::Resource - Limit resources used by httpd children

26 Apache::SizeLimit - Because size does matter.

15 Feb 2014106

26 Apache::SizeLimit - Because size does matter.

26.1 Synopsis
This module allows you to kill off Apache httpd processes if they grow too large. You can choose to set up
the process size limiter to check the process size on every request:

 # in your startup.pl:
 use Apache::SizeLimit;
 # sizes are in KB
 $Apache::SizeLimit::MAX_PROCESS_SIZE = 10000; # 10MB
 $Apache::SizeLimit::MIN_SHARE_SIZE = 1000; # 1MB
 $Apache::SizeLimit::MAX_UNSHARED_SIZE = 12000; # 12MB

 # in your httpd.conf:
 PerlFixupHandler Apache::SizeLimit
 # you can set this up as any Perl*Handler that handles part of the
 # request, even the LogHandler will do.

Or you can just check those requests that are likely to get big, such as CGI requests. This way of checking
is also easier for those who are mostly just running CGI.pm/Registry scripts:

 # in your CGI:
 use Apache::SizeLimit;
 &Apache::SizeLimit::setmax(10000); # Max size in KB
 &Apache::SizeLimit::setmin(1000); # Min share in KB
 &Apache::SizeLimit::setmax_unshared(12000); # Max unshared size in KB

Since checking the process size can take a few system calls on some platforms (e.g. linux), you may want
to only check the process size every N times. To do so, put this in your startup.pl or CGI:

 $Apache::SizeLimit::CHECK_EVERY_N_REQUESTS = 2;

This will only check the process size every other time the process size checker is called.

26.2 Description
This module allows you to kill off Apache httpd processes if they grow too large.

This module is highly platform dependent, please read the Caveats section.

This module was written in response to questions on the mod_perl mailing list on how to tell the httpd
process to exit if it gets too big.

Actually there are two big reasons your httpd children will grow. First, it could have a bug that causes the
process to increase in size dramatically, until your system starts swapping. Second, your process just does
stuff that requires a lot of memory, and the more different kinds of requests your server handles, the larger
the httpd processes grow over time.

This module will not really help you with the first problem. For that you should probably look into
Apache::Resource or some other means of setting a limit on the data size of your program. BSD-ish
systems have setrlimit() which will croak your memory gobbling processes. However it is a little

10715 Feb 2014

26.1 SynopsisApache::SizeLimit - Because size does matter.

violent, terminating your process in mid-request.

This module attempts to solve the second situation where your process slowly grows over time. The idea is
to check the memory usage after every request, and if it exceeds a threshold, exit gracefully.

By using this module, you should be able to discontinue using the Apache configuration directive
MaxRequestsPerChild , although for some folks, using both in combination does the job. Personally,
I just use the technique shown in this module and set my MaxRequestsPerChild value to 6000.

26.3 Shared Memory Options
In addition to simply checking the total size of a process, this module can factor in how much of the
memory used by the process is actually being shared by copy-on-write. If you don’t understand how
memory is shared in this way, take a look at the Sharing Memory section.

You can take advantage of the shared memory information by setting a minimum shared size and/or a
maximum unshared size. Experience on one heavily trafficked mod_perl site showed that setting
maximum unshared size and leaving the others unset is the most effective policy. This is because it only
kills off processes that are truly using too much physical RAM, allowing most processes to live longer and
reducing the process churn rate.

26.4 Caveats
This module is platform dependent, since finding the size of a process is pretty different from OS to OS,
and some platforms may not be supported. In particular, the limits on minimum shared memory and
maximum shared memory are currently only supported on Linux and BSD. If you can contribute support
for another OS, please do.

Currently supported OSes:

linux

For linux we read the process size out of /proc/self/status. This is a little slow, but usually not too
bad. If you are worried about performance, try only setting up the the exit handler inside CGIs (with
the setmax function), and see if the CHECK_EVERY_N_REQUESTS option is of benefit.

solaris 2.6 and above

For solaris we simply retrieve the size of /proc/self/as, which contains the address-space image of the
process, and convert to KB. Shared memory calculations are not supported.

NOTE: This is only known to work for solaris 2.6 and above. Evidently the /proc filesystem has
changed between 2.5.1 and 2.6. Can anyone confirm or deny?

bsd

15 Feb 2014108

26.3 Shared Memory Options

Uses BSD::Resource::getrusage() to determine process size. This is pretty efficient (a lot
more efficient than reading it from the /proc fs anyway).

AIX?

Uses BSD::Resource::getrusage() to determine process size. Not sure if the shared memory
calculations will work or not. AIX users?

If your platform is not supported, and if you can tell me how to check for the size of a process under your
OS (in KB), then I will add it to the list. The more portable/efficient the solution, the better, of course.

26.5 Todo
Possibly provide a perl make/install so that the SizeLimit.pm is created at build time with only the code
you need on your platform.

If Apache was started in non-forking mode, should hitting the size limit cause the process to exit?

26.6 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

26.7 Authors
Doug Bagley <doug+modperl (at) bagley.org>, channeling Procrustes.

Brian Moseley <ix (at) maz.org>: Solaris 2.6 support

Doug Steinwand and Perrin Harkins <perrin (at) elem.com>: added support for shared memory and
additional diagnostic info

Only the major authors are listed above. For contributors see the Changes file.

10915 Feb 2014

26.5 TodoApache::SizeLimit - Because size does matter.

Table of Contents:
.................. 1mod_perl 1.0 API
........... 5Apache - Perl interface to the Apache server API
.......... 51 Apache - Perl interface to the Apache server API
.................. 61.1 Synopsis
.................. 61.2 Description
................ 61.3 The Request Object
.............. 61.3.1 Apache->request([$r])
................ 61.3.2 $r->as_string
................. 61.3.3 $r->main
................. 61.3.4 $r->prev
................. 71.3.5 $r->next
.................. 71.3.6 $r->last
................. 71.3.7 $r->is_main
............... 71.3.8 $r->is_initial_req
.............. 71.3.9 $r->allowed($bitmask)
................. 71.4 Sub Requests
............... 71.4.1 $r->lookup_uri($uri)
............. 81.4.2 $r->lookup_file($filename)
................. 81.4.3 $subr->run
.............. 81.5 Client Request Parameters
.............. 81.5.1 $r->method([$meth])
............ 81.5.2 $r->method_number([$num])
................ 81.5.3 $r->bytes_sent
................ 81.5.4 $r->the_request
................ 81.5.5 $r->proxyreq
................ 91.5.6 $r->header_only
................ 91.5.7 $r->protocol
................ 91.5.8 $r->hostname
............... 91.5.9 $r->request_time
................ 91.5.10 $r->uri([$uri])
............. 91.5.11 $r->filename([$filename])
................ 91.5.12 $r->location
............ 91.5.13 $r->path_info([$path_info])
............. 91.5.14 $r->args([$query_string])
................ 101.5.15 $r->headers_in
.......... 101.5.16 $r->header_in($header_name, [$value])
................ 101.5.17 $r->content
.......... 101.5.18 $r->read($buf, $bytes_to_read, [$offset])
.............. 101.5.19 $r->get_remote_host
............. 111.5.20 $r->get_remote_logname
............... 111.5.21 $r->user([$user])
.............. 111.5.22 Apache::Connection
.............. 111.5.23 $c = $r->connection
.............. 111.5.23.1 $c->remote_host

i15 Feb 2014

Table of Contents:Apache::SizeLimit - Because size does matter.

................ 111.5.23.2 $c->remote_ip

................ 121.5.23.3 $c->local_addr

................ 121.5.23.4 $c->remote_addr

............... 121.5.23.5 $c->remote_logname

............... 121.5.23.6 $c->user([$user])

................ 121.5.23.7 $c->auth_type

................. 131.5.23.8 $c->aborted

.............. 131.5.23.9 $c->fileno([$direction])

.............. 131.6 Server Configuration Information

................ 131.6.1 $r->dir_config($key)

.............. 131.6.2 $r->dir_config->get($key)

.................. 141.6.3 $r->requires

.................. 141.6.4 $r->auth_type

................. 141.6.5 $r->auth_name

............. 141.6.6 $r->document_root ([$docroot])

........... 151.6.7 $r->server_root_relative([$relative_path])

.......... 151.6.8 Apache->server_root_relative([$relative_path])

................. 151.6.9 $r->allow_options

................ 151.6.10 $r->get_server_port

................. 151.6.11 $s = $r->server

................ 161.6.12 $s = Apache->server

................ 161.6.13 $s->server_admin

................ 161.6.14 $s->server_hostname

................... 161.6.15 $s->port

................. 161.6.16 $s->is_virtual

.................. 161.6.17 $s->names

............... 161.6.18 $s->dir_config($key)

.................. 161.6.19 $s->warn

................. 161.6.20 $s->log_error

................... 161.6.21 $s->uid

................... 171.6.22 $s->gid

.................. 171.6.23 $s->loglevel

............... 171.6.24 $r->get_handlers($hook)

........... 171.6.25 $r->set_handlers($hook, [\&handler, ...])

............ 171.6.26 $r->push_handlers($hook, \&handler)

................ 181.6.27 $r->current_callback

................ 181.7 Setting Up the Response

............ 181.7.1 $r->send_http_header([$content_type])

............... 181.7.2 $r->get_basic_auth_pw

.............. 181.7.3 $r->note_basic_auth_failure

................ 181.7.4 $r->handler([$meth])

............... 191.7.5 $r->notes($key, [$value])

.............. 191.7.6 $r->pnotes($key, [$value])

............ 191.7.7 $r->subprocess_env($key, [$value])

.............. 201.7.8 $r->content_type([$newval])

............. 201.7.9 $r->content_encoding([$newval])

............ 201.7.10 $r->content_languages([$array_ref])

15 Feb 2014ii

Table of Contents:

................ 201.7.11 $r->status($integer)

............... 201.7.12 $r->status_line($string)

................. 201.7.13 $r->headers_out

............. 201.7.14 $r->header_out($header, $value)

................ 211.7.15 $r->err_headers_out

............ 211.7.16 $r->err_header_out($header, [$value])

............... 211.7.17 $r->no_cache($boolean)

................. 211.7.18 $r->print(@list)

............... 221.7.19 $r->send_fd($filehandle)

............. 221.7.20 $r->internal_redirect($newplace)

........... 221.7.21 $r->internal_redirect_handler($newplace)

............. 221.7.22 $r->custom_response($code, $uri)

................. 231.8 Server Core Functions

.............. 231.8.1 $r->soft_timeout($message)

.............. 231.8.2 $r->hard_timeout($message)

................. 231.8.3 $r->kill_timeout

................. 231.8.4 $r->reset_timeout

............. 241.8.5 $r->post_connection($code_ref)

............. 241.8.6 $r->register_cleanup($code_ref)

................... 241.9 CGI Support

................ 241.9.1 $r->send_cgi_header()

.................. 241.10 Error Logging

............. 241.10.1 $r->log_reason($message, $file)

............... 251.10.2 $r->log_error($message)

................ 251.10.3 $r->warn($message)

.................. 251.11 Utility Functions

.............. 251.11.1 Apache::unescape_url($string)

............ 251.11.2 Apache::unescape_url_info($string)

.............. 251.11.3 Apache::perl_hook($hook)

.................. 251.12 Global Variables

............... 251.12.1 $Apache::Server::Starting

.............. 261.12.2 $Apache::Server::ReStarting

................... 261.13 See Also

................... 261.14 Maintainers

.................... 261.15 Authors

......... 27Apache::Constants - Constants defined in apache header files

......... 272 Apache::Constants - Constants defined in apache header files

.................... 282.1 Synopsis

................... 282.2 Description

................... 282.3 Export Tags

................... 312.4 Warnings

................... 312.5 Maintainers

.................... 322.6 Authors

........... 33Apache::Options - OPT_* defines from httpd_core.h

........... 333 Apache::Options - OPT_* defines from httpd_core.h

.................... 343.1 Synopsis

................... 343.2 Description

iii15 Feb 2014

Table of Contents:Apache::SizeLimit - Because size does matter.

................... 343.3 Maintainers

.................... 343.4 Authors

.................... 343.5 See Also

......... 35Apache::Table - Perl interface to the Apache table structure

......... 354 Apache::Table - Perl interface to the Apache table structure

.................... 364.1 Synopsis

................... 364.2 Description

................... 364.2.1 Classes

................... 364.2.2 Methods

................... 374.3 Maintainers

.................... 374.4 Authors

.................... 384.5 See Also

...... 39Apache::File - advanced functions for manipulating files at the server side

...... 395 Apache::File - advanced functions for manipulating files at the server side

.................... 405.1 Synopsis

................... 405.2 Description

................. 405.3 Apache::File methods

............. 415.4 Apache Methods added by Apache::File

................... 435.5 Maintainers

.................... 435.6 Authors

.............. 44Apache::Log - Interface to Apache logging

............. 446 Apache::Log - Interface to Apache logging

.................... 456.1 Synopsis

................... 456.2 Description

................... 456.3 Maintainers

.................... 456.4 Authors

.................... 456.5 See Also

........... 46Apache::URI - URI component parsing and unparsing

.......... 467 Apache::URI - URI component parsing and unparsing

.................... 477.1 Synopsis

................... 477.2 Description

.................... 477.3 Methods

.................... 487.4 Author

.................... 487.5 See Also

............ 49Apache::Util - Interface to Apache C util functions

........... 498 Apache::Util - Interface to Apache C util functions

.................... 508.1 Synopsis

................... 508.2 Description

................... 508.3 Functions

.................... 528.4 Author

.................... 528.5 See Also

........ 53Apache::Include - Utilities for mod_perl/mod_include integration

........ 539 Apache::Include - Utilities for mod_perl/mod_include integration

.................... 549.1 Synopsis

................... 549.2 Description

.................... 549.3 Methods

.................... 549.4 See Also

15 Feb 2014iv

Table of Contents:

................... 549.5 Maintainers

.................... 549.6 Authors

......... 56Apache::Registry - Run unaltered CGI scrips under mod_perl

........ 5610 Apache::Registry - Run unaltered CGI scrips under mod_perl

................... 5710.1 Synopsis

................... 5710.2 Description

.................... 5810.3 Security

.................. 5810.4 Environment

............ 5810.5 Command Line Switches on the First Line

................... 5810.6 Debugging

.................... 5810.7 Caveats

................... 5910.8 See Also

................... 5910.9 Maintainers

................... 5910.10 Authors

......... 60Apache::PerlRun - Run unaltered CGI scripts under mod_perl

........ 6011 Apache::PerlRun - Run unaltered CGI scripts under mod_perl

................... 6111.1 Synopsis

................... 6111.2 Description

.................... 6111.3 Caveats

................... 6111.4 See Also

................... 6211.5 Maintainers

.................... 6211.6 Authors

..... 63Apache::RegistryLoader - Compile Apache::Registry scripts at server startup

..... 6312 Apache::RegistryLoader - Compile Apache::Registry scripts at server startup

................... 6412.1 Synopsis

................... 6412.2 Description

................... 6512.3 Maintainers

.................... 6512.4 Authors

................... 6512.5 See Also

......... 66Apache::StatINC - Reload %INC files when updated on disk

......... 6613 Apache::StatINC - Reload %INC files when updated on disk

................... 6713.1 Synopsis

................... 6713.2 Description

.................... 6713.3 Options

................... 6813.4 SEE ALSO

................... 6813.5 Maintainers

.................... 6813.6 Authors

........... 69Apache::test - Facilitates testing of Apache::* modules

.......... 6914 Apache::test - Facilitates testing of Apache::* modules

................... 7014.1 Synopsis

................... 7014.2 Description

................... 7014.3 Methods

................ 7014.3.1 get_test_params()

.............. 7014.3.2 write_httpd_conf(%params)

................ 7114.3.3 MM_test(%params)

................... 7114.3.4 fetch

................. 7214.3.5 static_modules

v15 Feb 2014

Table of Contents:Apache::SizeLimit - Because size does matter.

................... 7214.4 Examples

.................... 7214.5 To Do

.................... 7214.6 Kudos

.................... 7314.7 Caveats

................... 7314.8 Maintainers

.................... 7314.9 Authors

............. 74Apache::Symdump - Symbol table snapshots

............ 7415 Apache::Symdump - Symbol table snapshots

................... 7515.1 Synopsis

................... 7515.2 Description

.................... 7515.3 Caveats

................... 7515.4 See Also

................... 7515.5 Maintainers

.................... 7515.6 Authors

...... 76Apache::src - Methods for locating and parsing bits of Apache source code

..... 7616 Apache::src - Methods for locating and parsing bits of Apache source code

................... 7716.1 Synopsis

................... 7716.2 Description

................... 7716.3 Methods

.................... 7916.4 Author

....... 80Apache::Leak - Module for tracking memory leaks in mod_perl code

....... 8017 Apache::Leak - Module for tracking memory leaks in mod_perl code

................... 8117.1 Synopsis

................... 8117.2 Description

................... 8117.3 See Also

.................... 8117.4 Author

.......... 82Apache::FakeRequest - fake request object for debugging

......... 8218 Apache::FakeRequest - fake request object for debugging

................... 8318.1 Synopsis

................... 8318.2 Description

.................... 8318.3 Authors

......... 84Apache::Debug - Utilities for debugging embedded perl code

........ 8419 Apache::Debug - Utilities for debugging embedded perl code

................... 8519.1 Synopsis

................... 8519.2 Description

................... 8519.3 Maintainers

.................... 8519.4 Authors

............. 86Apache::Symbol - Things for symbol things

............ 8620 Apache::Symbol - Things for symbol things

................... 8720.1 Synopsis

................... 8720.2 Description

................... 8720.3 Arguments

.................... 8720.4 Players

................... 8820.5 See Also

................... 8820.6 Maintainers

.................... 8820.7 Authors

15 Feb 2014vi

Table of Contents:

.......... 89Apache::SIG - Override apache signal handlers with Perl’s

......... 8921 Apache::SIG - Override apache signal handlers with Perl’s

................... 9021.1 Synopsis

................... 9021.2 Description

.................... 9021.3 Caveats

................... 9021.4 Maintainers

.................... 9021.5 Authors

................... 9121.6 See Also

.......... 92Apache::PerlSections - Utilities for work with Perl sections

......... 9222 Apache::PerlSections - Utilities for work with Perl sections

................... 9322.1 Synopsis

................... 9322.2 Description

................... 9322.3 Methods

................... 9522.4 See Also

................... 9522.5 Maintainers

.................... 9522.6 Authors

............ 96Apache::httpd_conf - Generate an httpd.conf file

........... 9623 Apache::httpd_conf - Generate an httpd.conf file

................... 9723.1 Synopsis

................... 9723.2 Description

.................... 9723.3 Author

................... 9723.4 See Also

.......... 98Apache::Status - Embedded interpreter status information

......... 9824 Apache::Status - Embedded interpreter status information

................... 9924.1 Synopsis

................... 9924.2 Description

.................... 9924.3 Options

................... 10124.4 Prerequisites

................... 10124.5 See Also

................... 10124.6 Maintainers

.................... 10224.7 Authors

.......... 103Apache::Resource - Limit resources used by httpd children

......... 10325 Apache::Resource - Limit resources used by httpd children

................... 10425.1 Synopsis

................... 10425.2 Description

................... 10425.3 Defaults

................... 10425.4 Maintainers

.................... 10525.5 Authors

................... 10525.6 SEE ALSO

............. 106Apache::SizeLimit - Because size does matter.

............ 10626 Apache::SizeLimit - Because size does matter.

................... 10726.1 Synopsis

................... 10726.2 Description

................ 10826.3 Shared Memory Options

.................... 10826.4 Caveats

.................... 10926.5 Todo

................... 10926.6 Maintainers

vii15 Feb 2014

Table of Contents:Apache::SizeLimit - Because size does matter.

.................... 10926.7 Authors

15 Feb 2014viii

Table of Contents:

	1€€Apache - Perl interface to the Apache server API
	1.1€€Synopsis
	1.2€€Description
	1.3€€The Request Object
	1.3.1€€Apache->request([$r])
	1.3.2€€$r->as_string
	1.3.3€€$r->main
	1.3.4€€$r->prev
	1.3.5€€$r->next
	1.3.6€€$r->last
	1.3.7€€$r->is_main
	1.3.8€€$r->is_initial_req
	1.3.9€€$r->allowed($bitmask)

	1.4€€Sub Requests
	1.4.1€€$r->lookup_uri($uri)
	1.4.2€€$r->lookup_file($filename)
	1.4.3€€$subr->run

	1.5€€Client Request Parameters
	1.5.1€€$r->method([$meth])
	1.5.2€€$r->method_number([$num])
	1.5.3€€$r->bytes_sent
	1.5.4€€$r->the_request
	1.5.5€€$r->proxyreq
	1.5.6€€$r->header_only
	1.5.7€€$r->protocol
	1.5.8€€$r->hostname
	1.5.9€€$r->request_time
	1.5.10€€$r->uri([$uri])
	1.5.11€€$r->filename([$filename])
	1.5.12€€$r->location
	1.5.13€€$r->path_info([$path_info])
	1.5.14€€$r->args([$query_string])
	1.5.15€€$r->headers_in
	1.5.16€€$r->header_in($header_name, [$value])
	1.5.17€€$r->content
	1.5.18€€$r->read($buf, $bytes_to_read, [$offset])
	1.5.19€€$r->get_remote_host
	1.5.20€€$r->get_remote_logname
	1.5.21€€$r->user([$user])
	1.5.22€€Apache::Connection
	1.5.23€€$c = $r->connection
	1.5.23.1€€$c->remote_host
	1.5.23.2€€$c->remote_ip
	1.5.23.3€€$c->local_addr
	1.5.23.4€€$c->remote_addr
	1.5.23.5€€$c->remote_logname
	1.5.23.6€€$c->user([$user])
	1.5.23.7€€$c->auth_type
	1.5.23.8€€$c->aborted
	1.5.23.9€€$c->fileno([$direction])

	1.6€€Server Configuration Information
	1.6.1€€$r->dir_config($key)
	1.6.2€€$r->dir_config->get($key)
	1.6.3€€$r->requires
	1.6.4€€$r->auth_type
	1.6.5€€$r->auth_name
	1.6.6€€$r->document_root ([$docroot])
	1.6.7€€$r->server_root_relative([$relative_path])
	1.6.8€€Apache->server_root_relative([$relative_path])
	1.6.9€€$r->allow_options
	1.6.10€€$r->get_server_port
	1.6.11€€$s = $r->server
	1.6.12€€$s = Apache->server
	1.6.13€€$s->server_admin
	1.6.14€€$s->server_hostname
	1.6.15€€$s->port
	1.6.16€€$s->is_virtual
	1.6.17€€$s->names
	1.6.18€€$s->dir_config($key)
	1.6.19€€$s->warn
	1.6.20€€$s->log_error
	1.6.21€€$s->uid
	1.6.22€€$s->gid
	1.6.23€€$s->loglevel
	1.6.24€€$r->get_handlers($hook)
	1.6.25€€$r->set_handlers($hook, [\&handler, ...])
	1.6.26€€$r->push_handlers($hook, \&handler)
	1.6.27€€$r->current_callback

	1.7€€Setting Up the Response
	1.7.1€€$r->send_http_header([$content_type])
	1.7.2€€$r->get_basic_auth_pw
	1.7.3€€$r->note_basic_auth_failure
	1.7.4€€$r->handler([$meth])
	1.7.5€€$r->notes($key, [$value])
	1.7.6€€$r->pnotes($key, [$value])
	1.7.7€€$r->subprocess_env($key, [$value])
	1.7.8€€$r->content_type([$newval])
	1.7.9€€$r->content_encoding([$newval])
	1.7.10€€$r->content_languages([$array_ref])
	1.7.11€€$r->status($integer)
	1.7.12€€$r->status_line($string)
	1.7.13€€$r->headers_out
	1.7.14€€$r->header_out($header, $value)
	1.7.15€€$r->err_headers_out
	1.7.16€€$r->err_header_out($header, [$value])
	1.7.17€€$r->no_cache($boolean)
	1.7.18€€$r->print(@list)
	1.7.19€€$r->send_fd($filehandle)
	1.7.20€€$r->internal_redirect($newplace)
	1.7.21€€$r->internal_redirect_handler($newplace)
	1.7.22€€$r->custom_response($code, $uri)

	1.8€€Server Core Functions
	1.8.1€€$r->soft_timeout($message)
	1.8.2€€$r->hard_timeout($message)
	1.8.3€€$r->kill_timeout
	1.8.4€€$r->reset_timeout
	1.8.5€€$r->post_connection($code_ref)
	1.8.6€€$r->register_cleanup($code_ref)

	1.9€€CGI Support
	1.9.1€€$r->send_cgi_header()

	1.10€€Error Logging
	1.10.1€€$r->log_reason($message, $file)
	1.10.2€€$r->log_error($message)
	1.10.3€€$r->warn($message)

	1.11€€Utility Functions
	1.11.1€€Apache::unescape_url($string)
	1.11.2€€Apache::unescape_url_info($string)
	1.11.3€€Apache::perl_hook($hook)

	1.12€€Global Variables
	1.12.1€€$Apache::Server::Starting
	1.12.2€€$Apache::Server::ReStarting

	1.13€€See Also
	1.14€€Maintainers
	1.15€€Authors

	2€€Apache::Constants - Constants defined in apache header files
	2.1€€Synopsis
	2.2€€Description
	2.3€€Export Tags
	2.4€€Warnings
	2.5€€Maintainers
	2.6€€Authors

	3€€Apache::Options - OPT_* defines from httpd_core.h
	3.1€€Synopsis
	3.2€€Description
	3.3€€Maintainers
	3.4€€Authors
	3.5€€See Also

	4€€Apache::Table - Perl interface to the Apache table structure
	4.1€€Synopsis
	4.2€€Description
	4.2.1€€Classes
	4.2.2€€Methods

	4.3€€Maintainers
	4.4€€Authors
	4.5€€See Also

	5€€Apache::File - advanced functions for manipulating files at the server side
	5.1€€Synopsis
	5.2€€Description
	5.3€€Apache::File methods
	5.4€€Apache Methods added by Apache::File
	5.5€€Maintainers
	5.6€€Authors

	6€€Apache::Log - Interface to Apache logging
	6.1€€Synopsis
	6.2€€Description
	6.3€€Maintainers
	6.4€€Authors
	6.5€€See Also

	7€€Apache::URI - URI component parsing and unparsing
	7.1€€Synopsis
	7.2€€Description
	7.3€€Methods
	7.4€€Author
	7.5€€See Also

	8€€Apache::Util - Interface to Apache C util functions
	8.1€€Synopsis
	8.2€€Description
	8.3€€Functions
	8.4€€Author
	8.5€€See Also

	9€€Apache::Include - Utilities for mod_perl/mod_include integration
	9.1€€Synopsis
	9.2€€Description
	9.3€€Methods
	9.4€€See Also
	9.5€€Maintainers
	9.6€€Authors

	10€€Apache::Registry - Run unaltered CGI scrips under mod_perl
	10.1€€Synopsis
	10.2€€Description
	10.3€€Security
	10.4€€Environment
	10.5€€Command Line Switches on the First Line
	10.6€€Debugging
	10.7€€Caveats
	10.8€€See Also
	10.9€€Maintainers
	10.10€€Authors

	11€€Apache::PerlRun - Run unaltered CGI scripts under mod_perl
	11.1€€Synopsis
	11.2€€Description
	11.3€€Caveats
	11.4€€See Also
	11.5€€Maintainers
	11.6€€Authors

	12€€Apache::RegistryLoader - Compile Apache::Registry scripts at server startup
	12.1€€Synopsis
	12.2€€Description
	12.3€€Maintainers
	12.4€€Authors
	12.5€€See Also

	13€€Apache::StatINC - Reload %INC files when updated on disk
	13.1€€Synopsis
	13.2€€Description
	13.3€€Options
	13.4€€SEE ALSO
	13.5€€Maintainers
	13.6€€Authors

	14€€Apache::test - Facilitates testing of Apache::* modules
	14.1€€Synopsis
	14.2€€Description
	14.3€€Methods
	14.3.1€€get_test_params()
	14.3.2€€write_httpd_conf(%params)
	14.3.3€€MM_test(%params)
	14.3.4€€fetch
	14.3.5€€static_modules

	14.4€€Examples
	14.5€€To Do
	14.6€€Kudos
	14.7€€Caveats
	14.8€€Maintainers
	14.9€€Authors

	15€€Apache::Symdump - Symbol table snapshots
	15.1€€Synopsis
	15.2€€Description
	15.3€€Caveats
	15.4€€See Also
	15.5€€Maintainers
	15.6€€Authors

	16€€Apache::src - Methods for locating and parsing bits of Apache source code
	16.1€€Synopsis
	16.2€€Description
	16.3€€Methods
	16.4€€Author

	17€€Apache::Leak - Module for tracking memory leaks in mod_perl code
	17.1€€Synopsis
	17.2€€Description
	17.3€€See Also
	17.4€€Author

	18€€Apache::FakeRequest - fake request object for debugging
	18.1€€Synopsis
	18.2€€Description
	18.3€€Authors

	19€€Apache::Debug - Utilities for debugging embedded perl code
	19.1€€Synopsis
	19.2€€Description
	19.3€€Maintainers
	19.4€€Authors

	20€€Apache::Symbol - Things for symbol things
	20.1€€Synopsis
	20.2€€Description
	20.3€€Arguments
	20.4€€Players
	20.5€€See Also
	20.6€€Maintainers
	20.7€€Authors

	21€€Apache::SIG - Override apache signal handlers with Perl's
	21.1€€Synopsis
	21.2€€Description
	21.3€€Caveats
	21.4€€Maintainers
	21.5€€Authors
	21.6€€See Also

	22€€Apache::PerlSections - Utilities for work with Perl sections
	22.1€€Synopsis
	22.2€€Description
	22.3€€Methods
	22.4€€See Also
	22.5€€Maintainers
	22.6€€Authors

	23€€Apache::httpd_conf - Generate an httpd.conf file
	23.1€€Synopsis
	23.2€€Description
	23.3€€Author
	23.4€€See Also

	24€€Apache::Status - Embedded interpreter status information
	24.1€€Synopsis
	24.2€€Description
	24.3€€Options
	24.4€€Prerequisites
	24.5€€See Also
	24.6€€Maintainers
	24.7€€Authors

	25€€Apache::Resource - Limit resources used by httpd children
	25.1€€Synopsis
	25.2€€Description
	25.3€€Defaults
	25.4€€Maintainers
	25.5€€Authors
	25.6€€SEE ALSO

	26€€Apache::SizeLimit - Because size does matter.
	26.1€€Synopsis
	26.2€€Description
	26.3€€Shared Memory Options
	26.4€€Caveats
	26.5€€Todo
	26.6€€Maintainers
	26.7€€Authors

