

1 Code Snippets

115 Feb 2014

1 Code SnippetsCode Snippets

1.1 Description
A collection of mod_perl code snippets which you can either adapt to your own use or integrate directly
into your own code.

1.2 File Upload with Apache::Request
The Apache::Request module gives you an easy way to get form content, including uploaded files. In
order to add file upload functionality to your form, you need to add two things.

First, you’ll need to add a form field which is type file. This will put a browse button on the form that
will allow the user to choose a file to upload.

Second, you’ll neet to make sure to add, to the form tag the following:

 enctype="multipart/form-data"

You won’t be able to upload a file unless you have added this to the form tag.

In your code, you’ll need to take a few extra steps to actually retrieve that file that has been uploaded.
Using the following form() method will allow you to have a standard function that handles all of your
forms, and does the right thing in the event that there was a file uploaded. You can put this function in
your mod_perl handler, or in whatever module you want.

 sub form {
 use Apache::Request;
 my $r = Apache->request();
 my $apr = Apache::Request->new($r);
 my @keys = $apr->param;

 my %form;
 foreach my $key(@keys) {

 my @value = $apr->param($key);
 next unless scalar @value;

 if (@value > 1) {
 $form{$key} = \@value;
 } else {
 $form{$key} = $value[0];
 }
 }

 my $upload = $apr->upload;
 if ($upload) {
 $form{UPLOAD} = $upload;
 }

 return \%form;
 }

15 Feb 20142

1.1 Description

In your code, you can get the contents of the form by calling this function:

 my $form = Your::Class::form(); # Wherever you put this function

The value returned from this function is compatible with CGI.pm and other modules such as
CGI::Lite Which is to say, the function returns a hashref. The keys of the hash are the names in your
form. The values in the hash are the values entered in those fields, with the exception that a multiple select
list with multiple things selected will return a listref of the selected values.

If your form contained a file upload element, then $form{UPLOAD} will contain a file upload object,
which you can make calls back into.

For example:

 my $form = Your::Class::form(); # Wherever you put this function
 if (my $file = $form->{UPLOAD}) {
 my $filename = $file->filename; # If you need the name

 # And, if you want to save the file at $filelocation ...
 open F, ">$filelocation";
 my $filehandle = $file->fh;
 while (my $d = <$filehandle>) {
 print F $d;
 }
 close F;
 }

That should give you the general idea of how this works. This lets you have a generic form handler that
does "normal" forms as well as file upload forms, in mod_perl, without having to mess with CGI.pm , and
without having to do custom things when you have a file upload.

You will need to see the documentation for Apache::Upload for more information about how to deal
with the file upload object once you have it. Note that the Apache::Upload docs are embeded in the
Apache::Request documentation, so you’ll need to look there for that information.

1.3 Redirecting Errors to the Client Instead of error_log
Many error conditions result in an exception (or signal -- same thing) which is raised in order to tell the
operating system that a condition has arisen which needs more urgent attention than can be given by other
means. One of the most familiar ways of raising a signal is to hit Ctrl-C on your terminal’s keyboard.
The signal interrupts the processor. In the case of Ctrl-C the INT signal is generated and the interrupt is
usually trapped by a default signal handler supplied by OS, which causes the operating system to stop the
process currently attached to the terminal.

Under mod_perl, a Perl runtime error causes an exception. By default this exception is trapped by default
mod_perl handler. The handler logs information about the error (such as the date and time that the error
occurred) to error_log. If you want to redirect this information to the client instead of to error_log you
have to take the responsibility yourself, by writing your own exception handler to implement this
behaviour. See the section "Exception Handling for mod_perl" for more information.

315 Feb 2014

1.3 Redirecting Errors to the Client Instead of error_logCode Snippets

The code examples below can be useful with your own exception handlers as well as with the default
handlers.

META: Integrate the 2 sections

The CGI::Carp package implements handlers for signals. To trap (almost) all Perl run-time errors and send
the output to the client instead of to Apache’s error_log add this line to your script:

 use CGI::Carp qw(fatalsToBrowser);

Refer to the CGI::Carp man page for more detailed information.

You can trap individual exceptions: for example you can write custom __DIE__ and __WARN__ signal
handlers. The special %SIG hash contains references to signal handlers. The signal handler is just a
subroutine, in the example below it is called "mydie". To install the handler we assign a reference to our
handler to the appropriate element of the %SIG hash. This causes the signal handler to call
mydie(error_message) whenever the die() sub is called as a result of something which happened when
our script was executing.

Do not forget the local keyword! If you do, then after the signal handler has been loaded it will be
called whenever die() is called by any script executed by the same process. Probably that’s not what
you want. If it is, you can put the assignment statement in any module, as long as it will be executed at the
right time.

Here is an example of a handler which I wrote because I wanted users to know that there was an error,
without displaying the error message, but instead email it to me. If the error is caused by user (e.g. upload-
ing image whose size is bigger than the limit I had set) I want to tell them about it. I wrote this handler for
the mod_perl environment, but it works correctly when called from the shell. The code shown below is a
stripped-down version with additional comments.

The following code must be added to the script:

 # Using the local() keyword restricts the scope of the directive to
 # the block in which it is found, so this line must be added at the
 # right place in the right script. It will not affect other blocks
 # unless the local() keyword is removed. Usually you will want the
 # directive to affect the entire script, so you just place it near
 # the beginning of the file, where the innermost enclosing block is
 # the file itself.
 local $SIG{__DIE__} = \&mydie;

 # The line above assumes that the subroutine "mydie" is in the same script.
 # Alternatively you can create a separate module for the error handler.
 # If you put the signal handler in a separate module, e.g. Error.pm,
 # you must explicitly give the package name to set the handler in your
 # script, using a line like this instead of the one above:
 local $SIG{__DIE__} = \&Error::mydie;
 # again within the script!

 # Do not forget the C<local()>, unless you want this signal handler to
 # be invoked every time any scripts dies (including events where this
 # treatment may be undesirable).

15 Feb 20144

1.3 Redirecting Errors to the Client Instead of error_log

 my $max_image_size = 100*1024; # 100k
 my $admin_email = ’foo@example.com’;

 # and the handler itself
 # Here is the handler itself:
 # The handler is called with a text message in a scalar argument
 sub mydie{
 my $why = shift;

 chomp $why;
 my $orig_why = $why; # an ASCII copy for email report

 # handle the shell execution case (so we will not get all the HTML)
 print("Error: $why\n"), exit unless $ENV{MOD_PERL};

 my $should_email = 0;
 my $message = ’’;

 $why =~ s/[<&>]/"&#".ord($&).";"/ge; # entity escape

 # Now we need to trap various kinds of errors that come from CGI.pm
 # We don’t want these errors to be emailed to us, since
 # they aren’t programmatical errors
 if ($orig_why =~ /Client attempted to POST (\d+) bytes/o) {

 $message = qq{
 You cannot POST messages bigger than
 @{[1024*$max_image_size]} bytes.

 You have tried to post $1 bytes

 If you are trying to upload an image, make sure its
 size is no bigger than @{[1024*$max_image_size]}
 bytes.<P>
 Thank you!
 };

 } elsif ($orig_why =~ /Malformed multipart POST/o) {

 $message = qq{
 Have you tried to upload an image in the wrong way?<P>
 To successfully upload an image you must use a browser that supports
 image upload and use the ’Browse’ button to select that image.
 DO NOT type the path to the image into the upload field.<P>
 Thank you!
 };

 } elsif ($orig_why =~ /closed socket during multipart read/o) {

 $message = qq{
 Have you pressed a ’STOP’ button?

 Please try again!<P>
 Thank you!
 };

 } else {

515 Feb 2014

1.3 Redirecting Errors to the Client Instead of error_logCode Snippets

 $message = qq{
 You need take no action since
 the error report has already been
 sent to the webmaster.
<P>

 Thank you for your patience!
 };

 $should_email = 1;
 }

 print qq{Content-type: text/html

 <HTML><BODY BGCOLOR="white">
 Oops, Something went wrong.<P>
 $message
 </BODY></HTML>};

 # send email report if appropriate
 if ($should_email){

 # import sendmail subs
 use Mail ();
 # prepare the email error report:
 my $subject ="Error Report";
 my $body = qq|
 An error has happened:

 $orig_why

 |;

 # send error reports to admin
 send_mail($admin_email,$admin_email,$subject,$body);
 print STDERR "[".scalar localtime()."] [SIGDIE] Sending Error Email\n";
 }

 # print to error_log so we will know there was an error
 print STDERR "[".scalar localtime()."] [SIGDIE] $orig_why \n";

 exit 1;
 } # end of sub mydie

You may have noticed that I trap the CGI.pm’s die() calls here, I don’t see any reason why my users
should see ugly error messages, but that’s the way CGI.pm written. The workaround is to trap them your-
self.

Please note that as of version 2.49, CGI.pm provides the cgi_error() method to print the errors and won’t
die() unless you want it to.

15 Feb 20146

1.3 Redirecting Errors to the Client Instead of error_log

1.4 Reusing Data from POST request
What happens if you need to access the POSTed data more than once, say to reuse it in subsequent
handlers of the same request? POSTed data comes directly from the socket, and at the low level data can
only be read from a socket once. So you have to store it to make it available for reuse.

There is an experimental option for Makefile.PL called PERL_STASH_POST_DATA. If you turn it
on, you can get at it again with $r->subprocess_env("POST_DATA") . This is not enabled by
default because it adds a processing overhead for each POST request.

But what do we do with large multipart file uploads? Because POST data is not all read in one clump, it’s
a problem that’s not easy to solve in a general way. A transparent way to do this is to switch the request
method from POST to GET, and store the POST data in the query string. This handler does exactly this:

 Apache/POST2GET.pm

 package Apache::POST2GET;
 use Apache::Constants qw(M_GET OK DECLINED);

 sub handler {
 my $r = shift;
 return DECLINED unless $r->method eq "POST";
 $r->args(scalar $r->content);
 $r->method(’GET’);
 $r->method_number(M_GET);
 $r->headers_in->unset(’Content-length’);
 return OK;
 }
 1;
 __END__

In httpd.conf add:

 PerlInitHandler Apache::POST2GET

or even this:

 <Limit POST>
 PerlInitHandler Apache::POST2GET
 </Limit>

To save a few more cycles, so the handler will be called only for POST requests.

Effectively, this trick turns the POST request into a GET request internally. Now when CGI.pm ,
Apache::Request or whatever module parses the client data, it can do so more than once since
$r->args doesn’t go away (unless you make it go away by resetting it).

If you are using Apache::Request , it solves this problem for you with its instance() class method,
which allows Apache::Request to be a singleton. This means that whenever you call
Apache::Request ->instance() within a single request you always get the same Apache::Request
object back.

715 Feb 2014

1.4 Reusing Data from POST requestCode Snippets

1.5 Redirecting POST Requests
Under mod_cgi it’s not easy to redirect POST requests to some other location. With mod_perl you can
easily redirect POST requests. All you have to do is read in the content, set the method to GET, populate
args() with the content to be forwarded and finally do the redirect:

 use Apache::Constants qw(M_GET);
 my $r = shift;
 my $content = $r->content;
 $r->method("GET");
 $r->method_number(M_GET);
 $r->headers_in->unset("Content-length");
 $r->args($content);
 $r->internal_redirect_handler("/new/url");

Of course that last line can be any other kind of redirect.

1.6 Redirecting While Maintaining Environment Variables
Let’s say you have a module that sets some environment variables.

If you redirect, that’s most likely telling the web browser to fetch the new page. This makes it a totally
new request, so no environment variables are preserved.

However, if you’re using internal_redirect(), you can make the environment variables seen in the
sub-process via subprocess_env(). The only nuance is that the %ENV keys will be prefixed with REDI-
RECT_.

1.7 Terminating a Child Process on Request Completion
If you want to terminate the child process serving the current request, upon completion of processing
anywhere in the code call:

 $r->child_terminate;

Apache won’t actually terminate the child until everything it needs to do is done and the connection is
closed.

1.8 Setting Content-type and Content-encoding headers in
non-OK responses
You cannot set Content-type and Content-encoding headers in non-OK responses, since Apache overrides
these in http_protocol.c, ap_send_error_response():

15 Feb 20148

1.5 Redirecting POST Requests

 r->content_type = "text/html; charset=iso-8859-1";

1.9 More on Relative Paths
Many people use relative paths for require , use , etc., and when they open files in their scripts they
make assumptions about the current directory. This will fail if you don’t chdir() to the correct directory
first (as could easily happen if you have another script which calls the first script by its full path).

For example:

 /home/httpd/perl/test.pl:

 #!/usr/bin/perl
 open IN, "./foo.txt";

This snippet would work if we call the script like this:

 % chdir /home/httpd/perl
 % ./test.pl

since foo.txt is located in the current directory. But when the current directory isn’t /home/httpd/perl,
if we call the script like this:

 % /home/httpd/perl/test.pl

then the script will fail to find foo.txt . Think about crontab s!

Notice that you cannot use the FindBin.pm package, something that you’d do in the regular Perl scripts,
because it relies on the BEGIN block it won’t work under mod_perl. It’s loaded and executed only for the
first script executed inside the process, all the others will use the cached value, which would be probably
incorrect if they reside in different directories. Perl 5.9.1 provides a new function FindBin::again
which will do the right thing. Also the CPAN module FindBin::Real provides a working alternative
working under mod_perl.

1.10 Watching the error_log File Without Telneting to the
Server
I wrote this script a long time ago, when I had to debug my CGI scripts but didn’t have access to the
error_log file. I asked the admin to install this script and have used it happily since then.

If your scripts are running on these ’Get-free-site’ servers, and you cannot debug your script because you
can’t telnet to the server or can’t see the error_log , you can ask your sysadmin to install this script.

Note, that it was written for plain Apache, and isn’t prepared to handle the complex multiline error and
warning messages generated by mod_perl. It also uses a system() call to do the main work with the tail()
utility, probably a more efficient perl implementation is due (take a look at File::Tail module). You
are welcome to fix it and contribute it back to mod_perl community. Thank you!

915 Feb 2014

1.9 More on Relative PathsCode Snippets

Here is the code:

 # !/usr/bin/perl -Tw

 use strict;

 my $default = 10;
 my $error_log = "/usr/local/apache/logs/error_log";
 use CGI;

 # untaint $ENV{PATH}
 $ENV{’PATH’} = ’/bin:/usr/bin’;
 delete @ENV{’IFS’, ’CDPATH’, ’ENV’, ’BASH_ENV’};

 my $q = new CGI;

 my $counts = (defined $q->param(’count’) and $q->param(’count’))
 ? $q->param(’count’) : $default;

 print $q->header,
 $q->start_html(-bgcolor => "white",
 -title => "Error logs"),
 $q->start_form,
 $q->center(
 $q->b(’How many lines to fetch? ’),
 $q->textfield(’count’,10,3,3),
 $q->submit(’’, ’Fetch’),
 $q->reset,
),
 $q->end_form,
 $q->hr;

 # untaint $counts
 $counts = ($counts =~ /(\d+)/) ? $1 : 0;

 print($q->b("$error_log doesn’t exist!!!")),exit unless -e $error_log;

 open LOG, "tail -$counts $error_log|"
 or die "Can’t tail $error_log :$!\n";
 my @logs = <LOG>;
 close LOG;
 # format and colorize each line nicely

 foreach (@logs) {
 s{
 \[(.*?)\]\s* # date
 \[(.*?)\]\s* # type of error
 \[(.*?)\]\s* # client part
 (.*) # the message
 }
 {
 "[$1]
 [".
 colorize($2,$2).
 "]
 [$3] <PRE>".
 colorize($2,$4).
 "</PRE>"
 }ex;

15 Feb 201410

1.10 Watching the error_log File Without Telneting to the Server

 print "
$_
";
 }

 #############
 sub colorize{
 my ($type,$context) = @_;

 my %colors =
 (
 error => ’red’,
 crit => ’black’,
 notice => ’green’,
 warn => ’brown’,
);

 return exists $colors{$type}
 ? qq{$context}
 : $context;
 }

1.11 Accessing Variables from the Caller’s Package
Sometimes you want to access variables from the caller’s package. One way is to do something like this:

 {
 no strict ’vars’ ;
 my $caller = caller;
 print qq[$caller --- ${"${caller}::var"}];
 }

1.12 Handling Cookies
Unless you use some well known module like CGI::Cookie or Apache::Cookie , you need to
handle cookies yourself.

Cookies come in the $ENV{HTTP_COOKIE} variable. You can print the raw cookie string as
$ENV{HTTP_COOKIE}.

Here is a fairly well-known bit of code to take cookie values and put them into a hash:

 sub get_cookies {
 # cookies are separated by a semicolon and a space, this will
 # split them and return a hash of cookies
 local(@rawCookies) = split (/; /,$ENV{’HTTP_COOKIE’});
 local(%cookies);

 foreach(@rawCookies){
 ($key, $val) = split (/=/,$_);
 $cookies{$key} = $val;

1115 Feb 2014

1.11 Accessing Variables from the Caller’s PackageCode Snippets

 }

 return %cookies;
 }

Or a slimmer version:

 sub get_cookies {
 map { split /=/, $_, 2 } split /; /, $ENV{’HTTP_COOKIE’} ;
 }

1.13 Sending Multiple Cookies with the Perl API
Given that you have prepared your cookies in @cookies , the following code will submit all the cookies:

 for (@cookies){
 $r->headers_out->add(’Set-Cookie’ => $_);
 }

1.14 Sending Cookies in REDIRECT Response
You should use err_headers_out() and not headers_out() when you want to send cookies in the REDI-
RECT response.

 use Apache::Constants qw(REDIRECT OK);
 my $r = shift;
 # prepare the cookie in $cookie
 $r->err_headers_out->add(’Set-Cookie’ => $cookie);
 $r->headers_out->set(Location => $location);
 $r->status(REDIRECT);
 $r->send_http_header;
 return OK;

1.15 Apache::Cookie example: Login Pages by Setting
Cookies and Refreshing
On occassion you will need to set a cookie and then redirect the user to another page. This is probably
most common when you want a Location to be password protected, and if the user is unauthenticated,
display to them a login page, otherwise display another page, but both at the same URL.

1.15.1 Logic

The logic goes something like this:

Check for login cookie

15 Feb 201412

1.13 Sending Multiple Cookies with the Perl API

If found, display the page

If not found, display a login page

Get username/password from a POST

Authenticate username/password

If the authentication failed, re-display the login page

If the authentication passed, set a cookie and redirect to the same page, and display

1.15.2 Example Situation

Let’s say that we are writing a handler for the location /dealers which is a protected area to be accessed
only by people who can pass a username / password authentication check.

We will use Apache::Cookie here as it runs pretty fast under mod_perl, but CGI::Cookie has
pretty much the same syntax, so you can use that if you prefer.

For the purposes of this example, we’ll assume that we already have any passed parameters in a %params
hash, the authenticate() routine returns true or false, display_login() shows the username and pass-
word prompt, and display_main_page() displays the protected content.

1.15.2.1 Code

 if($params{user} and $params{pass}) {
 if(!authenticate(%params)) {

Authentication failed, send them back to the login page. NOTE: It’s a good idea to use no_cache() to
make sure that the client browser doesn’t cache the login page.

 $r->content_type(’text/html’);
 $r->no_cache(1);
 $r->send_http_header;
 display_login();
 } else {

The user is authenticated, create the cookie with Apache::Cookie

 my $c = Apache::Cookie->new($r,
 -name => ’secret’,
 -value => ’foo’
 -expires => ’+3d’,
 -path => ’/dealers’
);

NOTE: when setting the ’expires’ tag you must set it with either a leading + or -, as if either of these is
missing, it will be put literally into the cookie header.

1315 Feb 2014

1.15.2 Example SituationCode Snippets

Now send them on their way via the authenticated page

 $r->content_type(’text/html’);
 $c->bake;
 $r->header_out("Refresh"=>"0;url=/dealers");
 $r->no_cache(1);
 $r->send_http_header;
 $r->print("Authenticated... heading to main page!);

The above code will set the headers to refresh (this is the same syntax as for the HTML meta tag) after 0
seconds. The page that is flashed on the screen will have the text in the $r->print

 }
 }
 elsif($cookies{secret}) {

If they already have a secret cookie, display the main (protected) page. Don’t forget to check the validity
of cookie data!

 display_main_page();
 }

1.16 Passing and Preserving Custom Data Structures
Between Handlers
Let’s say that you wrote a few handlers to process a request, and they all need to share some custom Perl
data structure. The pnotes() method comes to your rescue.

 # a handler that gets executed first
 my %my_data = (foo => ’mod_perl’, bar => ’rules’);
 $r->pnotes(’my_data’ => \%my_data);

The handler prepares the data in hash %my_data and calls pnotes() method to store the data internally for
other handlers to re-use. All the subsequently called handlers can retrieve the stored data in this way:

 my $info = $r->pnotes(’my_data’);
 print $info->{foo};

prints:

 mod_perl

The stored information will be destroyed at the end of the request.

1.17 Passing Notes Between mod_perl and other (non-Perl)
Apache Modules

15 Feb 201414

1.16 Passing and Preserving Custom Data Structures Between Handlers

The notes() method can be used to make various Apache modules talk to each other. In the following
snippet the PHP module talks to the mod_perl code (PHP code):

 if (isset($user) && substr($user,0,1) == "+") {
 apache_note("user", substr($user,1));
 virtual("/internal/getquota");
 $quota = apache_note("quota");
 $usage_pp = apache_note("usage_pp");
 $percent_pp = apache_note("percent_pp");
 if ($quota)
 $message .= " | Using $percent_pp% of $quota_pp limit";
 }

The PHP code sets the user and the username pair using the notes mechanism. Then issuing a sub-request
to a perl handler:

 use Apache::Constants qw(REDIRECT OK);
 my $r = shift;
 my $notes = $r->main->notes();
 my ($quota,usage_pp,percent_pp) = getquota($notes->{user}||’’);
 $r->notes(’quota’,$quota);
 $r->notes(’usage_pp’,$usage_pp);
 $r->notes(’percent_pp’,$percent_pp);
 return OK;

which retrieves the username from the notes (using $r->main->notes), uses some getquota() function
to get the quota related data and then sets the acquired data in the notes for the PHP code. Now the PHP
code reads the data from the notes and proceeds with setting $message if $quota is set.

So any Apache modules can communicate with each other over the Apache notes() mechanism.

You can use notes along with the sub-request methods lookup_uri() and lookup_filename() too. To make it
work, you need to set a note in the sub-request. For example if you want to call a php sub-request from
within mod_perl and pass it a note, you can do it in the following way:

 my $subr = $r->lookup_uri(’wizard.php3’);
 $subr->notes(’answer’ => 42);
 $subr->run;

As of the time of this writing you cannot access the parent request tables from a PHP handler, therefore
you must set this note for the sub-request. Whereas if the sub-request is running in the mod_perl domain,
you can always keep the notes in the parent request notes table and access them via the method main():

 $r->main->notes(’answer’);

1.18 Passing Environment Variables Between Handlers
This is a simple example of passing environment variables between handlers:

1515 Feb 2014

1.18 Passing Environment Variables Between HandlersCode Snippets

Having a configuration:

 PerlAccessHandler My::Access
 PerlLogHandler My::Log

and in startup.pl:

 sub My::Access::handler {
 my $r = shift;
 $r->subprocess_env(TICKET => $$);
 $r->notes(TICKET => $$);
 }

 sub My::Log::handler {
 my $r = shift;
 my $env = $r->subprocess_env(’TICKET’);
 my $note = $r->notes(’TICKET’);
 warn "env=$env, note=$note\n";
 }

Adding %{TICKET}e and %{TICKET}n to the LogFormat for access_log works fine too.

1.19 Verifying Whether A Request Was Received Over An
SSL Connection
Just like $ENV{MODPERL} is checked to see whether the code is run under mod_perl, $ENV{HTTPS} is
set by ssl modules and therefore can be used to check whether a request is running over SSL connection.
For example:

 print "SSL" if $ENV{HTTPS};

If PerlSetupEnv Off setting is in effect, $ENV{HTTPS} won’t be available, and then:

 print "SSL" if $r->subprocess_env(’https’);

should be used instead.

Note that it’s also possible to check the scheme:

 print "SSL" if Apache::URI->parse($r)->scheme =~ m/^https/;

but it’s not one hundred percent certain unless you control the server and you know that you run a secure
server on the port 443.

1.20 CGI::params in the mod_perl-ish Way
You can retrieve the request parameters in a similar to CGI::params way using this technique:

15 Feb 201416

1.19 Verifying Whether A Request Was Received Over An SSL Connection

 my $r = shift; # or $r = Apache->request
 my %params = $r->method eq ’POST’ ? $r->content : $r->args;

assuming that all your variables are single key-value pairs.

Also take a look at Apache::Request which has the same API as CGI.pm for extracting and setting
request parameters.

1.21 Subclassing Apache::Request
To subclass a package you simply modify @ISA, for example:

 package My::TestAPR;

 use strict;
 use vars qw/@ISA/;
 @ISA = qw/Apache::Request/;

 sub new {
 my ($proto, $apr) = @_;
 my $class = ref($proto) || $proto;
 bless { _r => $apr }, $class;
 }

 sub param {
 my ($self, $key) = @_;
 my $apr = $self->{_r};
 # Here we are calling the Apache::Request object’s param method
 $apr->param($key);
 }

 sub sum {
 my ($self, $key) = @_;
 my $apr = $self->{_r};
 my @values = $apr->param($key);
 my $sum = 0;
 for (@values) {
 $sum += $_;
 }
 $sum;
 }
 1;
 __END__

1.22 Sending Email from mod_perl
There is nothing special about sending email from mod_perl, it’s just that we do it a lot. There are a few
important issues. The most widely used approach is starting a sendmail process and piping the headers
and the body to it. The problem is that sendmail is a very heavy process and it makes mod_perl
processes less efficient.

1715 Feb 2014

1.21 Subclassing Apache::RequestCode Snippets

If you don’t want your process to wait until delivery is complete, you can tell sendmail not to deliver
the email straight away, but either do it in the background or just queue the job until the next queue run.
This can significantly reduce the delay for the mod_perl process which would otherwise have to wait for
the sendmail process to complete. This can be specified for all deliveries in sendmail.cf or on each
invocation on the sendmail command line:

-odb (deliver in the background)

-odq (queue-only) or

-odd (queue, and also defer the DNS/NIS lookups).

The trend is to move away from sendmail(1) and switch to using lighter mail delivery programs like
qmail(1) or postfix(1). You should check the manpage of your favorite mailer application for equivalent
configuration presented for sendmail(1).

The most efficient approach is to talk directly to the SMTP server. Luckily Net::SMTP modules makes
this very easy. The only problem is when Net::SMTP fails to deliver the mail, because the destination
peer server is temporarily down. But from the other side Net::SMTP allows you to send email much
faster, since you don’t have to invoke a dedicated process. Here is an example of a subroutine that sends
email.

 use Net::SMTP ();
 use Carp qw(carp verbose);

 #
 # Sends email by using the SMTP Server
 #
 # The SMTP server as defined in Net::Config
 # Alternatively you can hardcode it here, look for $smtp_server below
 #
 sub send_mail{
 my ($from, $to, $subject, $body) = @_;

 carp "From missing" unless defined $from ; # Prefer to exit early if errors
 carp "To missing" unless defined $to ;

 my $mail_message = <<__END_OF_MAIL__;
 To: $to
 From: $from
 Subject: $subject

 $body

 __END_OF_MAIL__

 # Set this parameter if you don’t have a valid Net/Config.pm
 # entry for SMTP host and uncomment it in the Net::SMTP->new
 # call
 # my $smtp_server = ’localhost’;

 # init the server
 my $smtp = Net::SMTP->new(

15 Feb 201418

1.22 Sending Email from mod_perl

 # $smtp_server,
 Timeout => 60,
 Debug => 0,
);

 $smtp->mail($from) or carp ("Failed to specify a sender [$from]\n");
 $smtp->to($to) or carp ("Failed to specify a recipient [$to]\n");
 $smtp->data([$mail_message]) or carp ("Failed to send a message\n");

 $smtp->quit or carp ("Failed to quit\n");

 } # end of sub send_mail

1.23 A Simple Handler To Print The Environment Variables
The code:

 package MyEnv;
 use Apache;
 use Apache::Constants;
 sub handler{
 my $r = shift;
 print $r->send_http_header("text/plain");
 print map {"$_ => $ENV{$_}\n"} keys %ENV;
 return OK;
 }
 1;

The configuration:

 PerlModule MyEnv
 <Location /env>
 SetHandler perl-script
 PerlHandler MyEnv
 </Location>

The invocation:

 http://localhost/env

1.24 mod_rewrite in Perl
We can easily implement everything mod_rewrite does in Perl. We do this with help of PerlTransHandler,
which is invoked at the beginning of request processing. For example consider that we need to perform a
redirect based on query string and URI, the following handler does that.

 package Apache::MyRedirect;
 use Apache::Constants qw(OK REDIRECT);
 use constant DEFAULT_URI => ’http://www.example.org’;

 sub handler {
 my $r = shift;
 my %args = $r->args;

1915 Feb 2014

1.23 A Simple Handler To Print The Environment VariablesCode Snippets

 my $path = $r->uri;

 my $uri = (($args{’uri’}) ? $args{’uri’} : DEFAULT_URI) . $path;

 $r->header_out(Location => $uri);
 $r->status(REDIRECT);
 $r->send_http_header;

 return OK;
 }

Set it up in httpd.conf as:

 PerlTransHandler Apache::MyRedirect

The code consists of three parts: request data retrieval, deciding what to do based on this data and finally
setting the headers and the status and issuing redirect.

So if a client submits a request of this kind:

 http://www.example.com/news/?uri=http://www2.example.com/

$uri will hold http://www2.example.com/news/ and that’s where the request will be redirected.

1.25 URI Rewrite in PerlTransHandler
Suppose that before a content handler is invoked you want to make this translation:

 /articles/10/index.html => /articles/index.html?id=10

This TransHandler will do that for you:

 My/Trans.pm

 package My::Trans;
 use Apache::Constants qw(:common);
 sub handler {
 my $r = shift;
 my $uri = $r->uri;
 my ($id) = ($uri =~ m|^/articles/(.*?)/|);
 $r->uri("/articles/index.html");
 $r->args("id=$id");
 return DECLINED;
 }
 1;

and in httpd.conf:

 PerlModule My::Trans
 PerlTransHandler My::Trans

15 Feb 201420

1.25 URI Rewrite in PerlTransHandler

http://www2.example.com/news/

The handler code retrieves the request object and the URI. Then it retrieves the id using the regular expres-
sion. Finally it sets the new value of the URI and the arguments string. The handler returns DECLINED so
the default Apache transhandler will take care of URI to filename remapping.

Notice the technique to set the arguments. By the time the Apache-request object has been created, argu-
ments are handled in a separate slot, so you cannot just push them into the original URI. Therefore the
args() method should be used.

1.26 Setting PerlHandler Based on MIME Type
It’s very easy to implement a dispatching module based on the MIME type of request. So a different
content handler will be called for a different MIME type. This is an example of such a dispatcher:

 package My::MimeTypeDispatch;
 use Apache::Constants qw(DECLINED);

 my %mime_types = (
 ’text/html’ => \&HTML::Template::handler,
 ’text/plain’ => \&My::Text::handler,
);

 sub handler {
 my $r = shift;
 if (my $h = $mime_types{$r->content_type}) {
 $r->push_handlers(PerlHandler => $h);
 $r->handler(’perl-script’);
 }
 return DECLINED;
 }
 1;
 __END__

And in httpd.conf we add:

 PerlFixupHandler My::MimeTypeDispatch

After declaring the package name and importing constants, we set a translation table of MIME types and
corresponding handlers to be called. Then comes the handler, where the request object is retrieved and if
its MIME type is found in our translation table we set the handler that should handle this request. Other-
wise we do nothing. At the end we return DECLINED so some other fixup handler could take over.

1.27 SSI and Embperl -- Doing Both
This handler lets you use both SSI and Embperl in the same request:

Use it in a <FilesMatch> Section or similar:

 PerlModule Apache::EmbperlFilter Apache::SSI
 <FilesMatch "\.epl">
 PerlSetVar Filter On
 PerlHandler Apache::EmbperlFilter Apache::SSI

2115 Feb 2014

1.26 Setting PerlHandler Based on MIME TypeCode Snippets

 </FilesMatch>

 package Apache::EmbperlFilter;

 use Apache::Util qw(parsedate);
 use HTML::Embperl;
 use Apache::SSI ();
 use Apache::Constants;

 use strict;
 use vars qw($VERSION);

 $VERSION = ’0.03’;
 my ($r, %param, $input, $output);

 sub handler {
 $r = shift;
 my ($fh, $status) = $r->filter_input();
 unless ($status == OK) {
 return $status
 }
 local $/ = undef;
 $input = scalar(<$fh>);
 %param = ();
 $param{input} = \$input;
 $param{req_rec} = $r;
 $param{output} = \$output;
 $param{mtime} = mtime();
 $param{inputfile} = $r->filename();
 HTML::Embperl::ScanEnvironement(\%param);
 HTML::Embperl::Execute(\%param);
 print $output;
 return OK;
 }

 sub mtime {

 my $mtime = undef;
 if (my $last_modified = $r->headers_out->{’Last-Modified’}) {
 $mtime = parsedate $last_modified;
 }
 $mtime;
 }

 1;
 __END__

1.28 Getting the Front-end Server’s Name in the Back-end
Server
Assume that you have more than one front-end server, and you want to dynamically figure out the
front-end server name in the back-end server. mod_proxy and mod_rewrite provide the solution.

15 Feb 201422

1.28 Getting the Front-end Server’s Name in the Back-end Server

Compile apache with both mod_proxy and mod_rewrite, then use a directive something like this:

 RewriteEngine On
 RewriteLog /somewhere/rewrite.log
 RewriteLogLevel 3
 RewriteRule ^/foo/bar(.*)$ \
 http://example.com:8080/foo/bar/$1?IP=%{REMOTE_HOST} [QSA,P]

This will have all the urls starting with /some/url proxied off to the other server at the same url. It will
append the REMOTE_HOST header as a query string argument. (QSA = Query String Append, P = Proxy).
There is probably a way to remap it as an X-Header of some sort, but if query string is good enough for
you, then this should work really nicely.

1.29 Authentication Snippets
Getting the authenticated username: $r->connection->user() , or $ENV{REMOTE_USER} if
you’re in a CGI emulation.

Example:

 my $r = shift;

 my ($res, $sent_pwd) = $r->get_basic_auth_pw;
 return $res if $res; #decline if not Basic

 my $user = $r->connection->user;

1.30 Emulating the Authentication Mechanism
You can provide your own mechanism to authenticate users, instead of the standard one. If you want to
make Apache think that the user was authenticated by the standard mechanism, set the username with:

 $r->connection->user(’username’);

Now you can use this information for example during the logging, so that you can have your "username"
passed as if it was transmitted to Apache through HTTP authentication.

1.31 An example of using Apache::Session::DBI with cookies
META: should be annotated at some point. (an example was posted to the mod_perl list)

 use strict;
 use DBI;
 use Apache::Session::DBI;
 use CGI;

 # [...]

 # Initiate a session ID
 my $session = ();

2315 Feb 2014

1.29 Authentication SnippetsCode Snippets

 my $opts = { autocommit => 0,
 lifetime => 3600 }; # 3600 is one hour

 # Read in the cookie if this is an old session
 my $r = Apache->request;
 my $no_cookie = ’’;
 my $cookie = $r->header_in(’Cookie’);
 {
 # eliminate logging from Apache::Session::DBI’s use of ‘warn’
 local $^W = 0;

 if (defined($cookie) && $cookie ne ’’) {
 $cookie =~ s/SESSION_ID=(\w*)/$1/;
 $session = Apache::Session::DBI->open($cookie, $opts);
 $no_cookie = ’Y’ unless defined($session);
 }
 # Could have been obsolete - get a new one
 $session = Apache::Session::DBI->new($opts) unless defined($session);
 }

 # Might be a new session, so let’s give them a cookie back
 if (! defined($cookie) || $no_cookie) {
 local $^W = 0;

 my $session_cookie = "SESSION_ID=$session->{’_ID’}";
 $r->header_out("Set-Cookie" => $session_cookie);
 }

1.32 Detecting a Client Abort
META: should be annotated at some point. (an example was posted to the mod_perl list)

 # IsClientConnected? Might already be disconnected for busy
 # site, if a user hits stop/reload
 my $conn = $r->connection;
 my $is_connected = $conn->aborted ? 0 : 1;
 if ($is_connected) {
 my $fileno = $conn->fileno;
 if (defined $fileno) {
 my $s = IO::Select->new($fileno);
 $is_connected = $s->can_read(0) ? 0 : 1;
 }
 }

More comments in this thread: http://marc.theaims-
group.com/?l=apache-modperl&m=100057943909683&w=2

1.33 Using DESTROY to Finalize Output
Well, as always with Perl -- TMTOWTDI (There’s More Than One Way To Do It), one of the readers is
using DESTROY to finalize output, and as a cheap means of buffering.

15 Feb 201424

1.32 Detecting a Client Abort

http://marc.theaimsgroup.com/?l=apache-modperl&m=100057943909683&w=2
http://marc.theaimsgroup.com/?l=apache-modperl&m=100057943909683&w=2

 package buffer;
 use Apache;

 sub new {
 my $class = shift;
 my $self = bless {
 ’r’ => shift,
 ’message’ => ""
 }, $class;
 $self->{apr} = Apache::Request->new($self->{r},
 POST_MAX=>(32*1024));
 $self->content_type(’text/plain’);
 $self->{r}->no_cache(1);
 }

 sub message {
 my $self = shift;
 $self->{message} .= join("\n", @_);
 }

 sub DESTROY {
 my $self = shift;
 $self->{apr}->send_http_header;
 $self->{apr}->print($self->{message});
 }
 1;

Now you can have perl scripts like:

 use buffer;
 my $b = new buffer(shift);

 $b->message(p("Hello World"));
 # end

and save a bunch of duplicate code across otherwise inconvenient gaggles of small scripts.

But suppose you also want to redirect the client under some circumstances, and send the HTTP status code
302. You might try this:

 sub redir {
 my $self = shift;
 $self->{redirect} = shift;
 exit;
 }

and re-code DESTROY as:

 sub DESTROY {
 my $self = shift;
 if ($self->{redirect}) {
 $self->{apr}->status{REDIRECT};
 $self->{apr}->header_out("Location", $self->{redirect});
 $self->{apr}->send_http_header;
 $self->{apr}->print($self->{redirect});
 } else {

2515 Feb 2014

1.33 Using DESTROY to Finalize OutputCode Snippets

 $self->{apr}->send_http_header;
 $self->{apr}->print($self->{message});
 }
 }

But you’ll find that while the browser redirects itself, mod_perl logs the result code as 200. It turns out
that status() only touches the Apache response, and the log message is determined by the Apache return
code.

Aha! So we’ll change the exit() in redir() to exit(REDIRECT). This fixes the log code, but causes a bogus
"[error] 302" line in the error_log. That comes from Apache::Registry :

 my $errsv = "";
 if($@) {
 $errsv = $@;
 $@ = ’’; #XXX fix me, if we don’t do this Apache::exit() breaks
 $@{$uri} = $errsv;
 }

 if($errsv) {
 $r->log_error($errsv);
 return SERVER_ERROR unless $Debug && $Debug & 2;
 return Apache::Debug::dump($r, SERVER_ERROR);
 }

So you see that any time the return code causes $@ to return true, we’ll get an error line. Not wanting this,
what can we do?

We can hope that a future version of mod_perl will allow us to set the HTTP result code independent from
the handler return code (perhaps a log_status() method? or at least an
Apache::LOG_HANDLER_RESULT config variable?).

In the meantime, there’s Apache::RedirectLogFix , distributed with mod_perl.

Add to your httpd.conf:

 PerlLogHandler Apache::RedirectLogFix

and take a look at the source code below. Note that it requires us to return the HTTP status code 200.

 package Apache::RedirectLogFix;

 use Apache::Constants qw(OK DECLINED REDIRECT);

 sub handler {
 my $r = shift;
 return DECLINED unless $r->handler && ($r->handler eq "perl-script");

 if(my $loc = $r->header_out("Location")) {
 if($r->status == 200 and substr($loc, 0, 1) ne "/") {
 $r->status(REDIRECT);
 return OK
 }
 }

15 Feb 201426

1.33 Using DESTROY to Finalize Output

 return DECLINED;
 }

 1;

Now, if we wanted to do the same sort of thing for an error 500 handler, we could write another Perl-
LogHandler (call it ServerErrorLogFix). But we’ll leave that as an exercise for the reader, and
hope that it won’t be needed in the next mod_perl release. After all, it’s a little awkward to need a
LogHandler to clean up after ourselves....

1.34 Passing Arguments to a SSI script
Consider the following Apache::Include snippet:

 <!--#perl sub="Apache::Include" arg="/perl/ssi.pl" -->

Now if you want to pass arguments, you cannot do that with Apache::Include . The solution is to
define a subroutine that’s pulled in at the startup:

 sub My::ssi {
 my ($r, $one, $two, $three) = @_;
 ...
 }

In the html file:

 <!--#perl sub="My::ssi" arg="one" arg="two" arg="three" -->

1.35 Setting Environment Variables For Scripts Called
From CGI.
Perl uses sh() for its system() and open() calls. So if you want to set a temporary variable when
you call a script from your CGI you do something like this:

 open UTIL, "USER=stas ; script.pl | " or die "...: $!\n";

or

 system "USER=stas ; script.pl";

This is useful, for example, if you need to invoke a script that uses CGI.pm from within a mod_perl script.
We are tricking the Perl script into thinking it’s a simple CGI, which is not running under mod_perl.

 open(PUBLISH, "GATEWAY_INTERFACE=CGI/1.1 ; script.cgi
 \"param1=value1¶m2=value2\" |") or die "...: $!\n";

Make sure that the parameters you pass are shell safe -- all "unsafe" characters like single-quote and
back-tick should be properly escaped.

2715 Feb 2014

1.34 Passing Arguments to a SSI scriptCode Snippets

Unfortunately mod_perl uses fork() to run the script, so you have probably thrown out the window most of
the performance gained from using mod_perl. To avoid the fork, change script.cgi to a module containing
a subroutine which you can then call directly from your mod_perl script.

1.36 Mysql Backup and Restore Scripts
This is somewhat off-topic, but since many of us use mysql or some other RDBMS in their work with
mod_perl driven sites, it’s good to know how to backup and restore the databases in case of database
corruption.

First we should tell mysql to log all the clauses that modify the databases (we don’t care about SELECT
queries for database backups). Modify the safe_mysql script by adding the --log-update options to the
mysql server startup parameters and restart the server. From now on all the non-select queries will be
logged to the /var/lib/mysql/www.bar.com logfile. Your hostname will show up instead of www.bar.com.

Now create a dump directory under /var/lib/mysql/. That’s where the backups will be stored (you can name
the directory as you wish of course).

Prepare the backup script and store it in a file, e.g: /usr/local/sbin/mysql/mysql.backup.pl

This is the original code code/mysql-3.22.29_backup.pl:

#!/usr/bin/perl -w

this script should be run from the crontab every night or in shorter
intervals. This scripts does a few things.
1. dump all the tables into a separate dump files (these dump files
are ready for DB restore)
2. backups the last update log file and create a new log file

use strict;
my $data_dir = "/var/lib/mysql";
my $update_log = "$data_dir/www.bar.com";
my $dump_dir = "$data_dir/dump";
my $gzip_exec = "/bin/gzip";
my @db_names = qw(bugs mysql bonsai);
my $mysql_admin_exec = "/usr/bin/mysqladmin ";

 # convert unix time to date + time
my ($sec,$min,$hour,$mday,$mon,$year) = localtime(time);
my $time = sprintf("%0.2d:%0.2d:%0.2d",$hour,$min,$sec);
my $date = sprintf("%0.2d.%0.2d.%0.4d",++$mon,$mday,$year+1900);
my $timestamp = "$date.$time";

dump all the DBs we want to backup
foreach my $db_name (@db_names) {
 my $dump_file = "$dump_dir/$timestamp.$db_name.dump";
 my $dump_command = "/usr/bin/mysqldump -c -e -l -q --flush-logs $db_name > $dump_file";
 system $dump_command;
}

move update log to backup for later restore if needed

15 Feb 201428

1.36 Mysql Backup and Restore Scripts

rename $update_log, "$dump_dir/$timestamp.log" if -e $update_log;

restart the update log to log to a new file!
‘/usr/bin/mysqladmin refresh‘;

compress all the created files
system "$gzip_exec $dump_dir/$timestamp.*";

This is the code modified to work with mysql-3.22.30+ code/mysql-3.22.30+_backup.pl:

#!/usr/bin/perl -w

this script should be run from the crontab every night or in shorter
intervals. This scripts does a few things.
1. dump all the tables into a separate dump files (these dump files
are ready for DB restore)
2. backups the last update log file and create a new log file

#This script originates from the perl.apache.org site, but I have adapted it to work
#properly with the newer versions of MySQL, where the log files are named differently
#WVW 14/02/2000 w@ba.be

use strict;

my $data_dir = "/var/lib/mysql";
my $update_log = "$data_dir/central2.001";
my $dump_dir = "$data_dir/backup";
my $gzip_exec = "/bin/gzip";
my @db_names = qw(mysql besup);
my $mysql_admin_exec = "/usr/bin/mysqladmin ";
my $hostname = "central2";

my $password = "babedb";

convert unix time to date + time
my ($sec,$min,$hour,$mday,$mon,$year) = localtime(time);
my $time = sprintf("%0.2d:%0.2d:%0.2d",$hour,$min,$sec);
my $date = sprintf("%0.2d.%0.2d.%0.4d",++$mon,$mday,$year+1900);
my $timestamp = "$date.$time";

dump all the DBs we want to backup
foreach my $db_name (@db_names) {
 my $dump_file = "$dump_dir/$timestamp.$db_name.dump";
 my $dump_command = "/usr/bin/mysqldump -c -e -l -q --flush-logs -p$password $db_name > $dump_file";
 system $dump_command;
}

mkdir "$dump_dir/$timestamp.log", 0;
‘mv $data_dir/$hostname.[0-9]* $dump_dir/$timestamp.log‘;

move update log to backup for later restore if needed
#rename $update_log, "$dump_dir/$timestamp.log" if -e $update_log;

restart the update log to log to a new file!
‘/usr/bin/mysqladmin refresh -p$password‘;

compress all the created files
system "$gzip_exec $dump_dir/$timestamp.log/*";
system "$gzip_exec $dump_dir/$timestamp.*.dump*";

2915 Feb 2014

1.36 Mysql Backup and Restore ScriptsCode Snippets

You might need to change the executable paths according to your system. List the names of the databases
you want to backup using the db_names array.

Here is another version using File::Backup :

 #!/usr/bin/perl
 # written by Miroslav Madzarevic, mire@modperldev.com
 use strict;

 umask 0177;

 use File::Backup qw|backup|;

 backup(
 ’from’ => "",
 ’to’ => "/opt/backup/mysql/backup",
 ’torootname’ => "example_backup_",
 ’keep’ => 4,
 ’tar’ => "/usr/bin/mysqldump",
 ’compress’ => "/usr/bin/bzip2",
 ’tarflags’ => "example -uroot -proot_pass -a >",
 ’compressflags’ => "",
 ’tarsuffix’ => ’.sql’,
);

Now make the script executable and arrange the crontab entry to run the backup script nightly. Note that
the disk space used by the backups will grow without bound and you should remove the old backups. Here
is a sample crontab entry to run the script at 4am every day:

 0 4 * * * /usr/local/sbin/mysql/mysql.backup.pl > /dev/null 2>&1

So now at any moment we have the dump of the databases from the last execution of the backup script and
the log file of all the clauses that have updated the databases since then. If the database gets corrupted we
have all the information to restore it to the state it was in at our last backup. We restore it with the follow-
ing script, which I put in: /usr/local/sbin/mysql/mysql.restore.pl

This is the original code code/mysql-3.22.29_restore.pl:

#!/usr/bin/perl -w

this scripts restores the DBs

Usage: mysql.restore.pl update.log.gz dump.db1.gz [... dump.dbn.gz]
all files dump* are compressed as we expect them to be created by
mysql.backup utility

example:
% mysql.restore.pl myhostname.log.gz 12.10.1998.16:37:12.*.dump.gz

.dump.gz extension.

use strict;

use FindBin qw($Bin);

15 Feb 201430

1.36 Mysql Backup and Restore Scripts

my $data_dir = "/var/lib/mysql";
my $dump_dir = "$data_dir/dump";
my $gzip_exec = "/bin/gzip";
my $mysql_exec = "/usr/bin/mysql -f ";
my $mysql_backup_exec = "$Bin/mysql.backup.pl";
my $mysql_admin_exec = "/usr/bin/mysqladmin ";

my $update_log_file = ’’;
my @dump_files = ();

split input files into an update log and the dump files
foreach (@ARGV) {
 push(@dump_files, $_),next unless /\.log\.gz/;
 $update_log_file = $_;
}

die "Usage: mysql.restore.pl update.log.gz dump.db1.gz [... dump.dbn.gz]\n"
 unless defined @dump_files and @dump_files > 0;

load the dump files
foreach (@dump_files) {

 # check the file exists
 warn("Can’t locate $_"),next unless -e $_;

 # extract the db name from the dump file
 my $db_name = $1 if /\d\d\.\d\d.\d\d.\d\d:\d\d:\d\d\.(\w+)\.dump\.gz/;

 warn("Can’t extract DB name from the file name,
 probably an error in the file format"),
 next unless defined $db_name and $db_name;

 # we want to drop the table since restore will rebuild it!
 # force to drop the db without confirmation
 my $drop_command = "$mysql_admin_exec -f drop $db_name";
 system $drop_command;

 $drop_command = "$mysql_admin_exec create $db_name";
 system $drop_command;

 # build the command and execute it
 my $restore_command = "$gzip_exec -cd $_ | $mysql_exec $db_name";
 system $restore_command;
}

now load the update_log file (update the db with the changes since
the last dump
warn("Can’t locate $update_log_file"),next unless -e $update_log_file;

my $restore_command =
 "$gzip_exec -cd $update_log_file |$mysql_exec";
system $restore_command;

rerun the mysql.backup.pl since we have reloaded the dump files
and update log , and we must rebuild backups!
system $mysql_backup_exec;

3115 Feb 2014

1.36 Mysql Backup and Restore ScriptsCode Snippets

This is the code modified to work with mysql-3.22.30+ code/mysql-3.22.30+_restore.pl:

#!/usr/bin/perl -w

this scripts restores the DBs

Usage: mysql.restore.pl update.log.gz dump.db1.gz [... dump.dbn.gz]
all files dump* are compressed as we expect them to be created by
mysql.backup utility

example:
% mysql.restore.pl myhostname.log.gz 12.10.1998.16:37:12.*.dump.gz

.dump.gz extension.

use strict;

use FindBin qw($Bin);

my $data_dir = "/var/lib/mysql";
my $dump_dir = "$data_dir/backup";
my $gzip_exec = "/bin/gzip";
my $mysql_exec = "/usr/bin/mysql -f -pbabedb";
my $mysql_backup_exec = "$Bin/mysql_backup.pl";
my $mysql_admin_exec = "/usr/bin/mysqladmin -pbabedb";

my $update_log_dir = ’’;
my @dump_files = ();

split input files into an update log and the dump files
foreach (@ARGV) {
 push(@dump_files, $_),next unless /\.log/;
 $update_log_dir = $_;
}

die "Usage: mysql.restore.pl update.log.dir dump.db1.gz [... dump.dbn.gz]\n"
 unless defined @dump_files and @dump_files > 0;

load the dump files
foreach (@dump_files) {

 # check the file exists
 warn("Can’t locate $_"),next unless -e $_;

 # extract the db name from the dump file
 my $db_name = $1 if /\d\d\.\d\d.\d\d\d\d.\d\d:\d\d:\d\d\.(\w+)\.dump\.gz/;

 warn("Can’t extract DB name from the file name,
 probably an error in the file format"),
 next unless defined $db_name and $db_name;

 # we want to drop the table since restore will rebuild it!
 # force to drop the db without confirmation
 my $drop_command = "$mysql_admin_exec -f drop $db_name";
 system $drop_command;

 $drop_command = "$mysql_admin_exec create $db_name";

15 Feb 201432

1.36 Mysql Backup and Restore Scripts

 system $drop_command;

 # build the command and execute it
 my $restore_command = "$gzip_exec -cd $_ | $mysql_exec $db_name";
 system $restore_command;
}

now load the update_log file (update the db with the changes since
the last dump
warn("Can’t locate $update_log_dir"),next unless -d $update_log_dir;

my $restore_command =
 "$gzip_exec -cd $update_log_dir/* |$mysql_exec";
system $restore_command;

rerun the mysql.backup.pl since we have reloaded the dump files
and update log , and we must rebuild backups!
system $mysql_backup_exec;

These are kinda dirty scripts, but they work... if you come up with cleaner scripts, please contribute them...
thanks

Update: there is now a "mysqlhotcopy" utility distributed with MySQL that can make an atomic snapshot
of a database. (by Tim Bunce) So you may consider using it instead.

1.37 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

1.38 Authors
Stas Bekman [http://stason.org/]

Alan Bailward, <alan (at) ufies.org>

Only the major authors are listed above. For contributors see the Changes file.

3315 Feb 2014

1.37 MaintainersCode Snippets

http://stason.org/
http://stason.org/

Table of Contents:
................... 11 Code Snippets
................... 21.1 Description
............. 21.2 File Upload with Apache::Request
.......... 31.3 Redirecting Errors to the Client Instead of error_log
.............. 71.4 Reusing Data from POST request
............... 81.5 Redirecting POST Requests
......... 81.6 Redirecting While Maintaining Environment Variables
......... 81.7 Terminating a Child Process on Request Completion
..... 81.8 Setting Content-type and Content-encoding headers in non-OK responses
................ 91.9 More on Relative Paths
....... 91.10 Watching the error_log File Without Telneting to the Server
.......... 111.11 Accessing Variables from the Caller’s Package
................. 111.12 Handling Cookies
........... 121.13 Sending Multiple Cookies with the Perl API
........... 121.14 Sending Cookies in REDIRECT Response
.... 121.15 Apache::Cookie example: Login Pages by Setting Cookies and Refreshing
................... 121.15.1 Logic
................ 131.15.2 Example Situation
.................. 131.15.2.1 Code
...... 141.16 Passing and Preserving Custom Data Structures Between Handlers
..... 141.17 Passing Notes Between mod_perl and other (non-Perl) Apache Modules
.......... 151.18 Passing Environment Variables Between Handlers
..... 161.19 Verifying Whether A Request Was Received Over An SSL Connection
............ 161.20 CGI::params in the mod_perl-ish Way
.............. 171.21 Subclassing Apache::Request
.............. 171.22 Sending Email from mod_perl
........ 191.23 A Simple Handler To Print The Environment Variables
................ 191.24 mod_rewrite in Perl
............. 201.25 URI Rewrite in PerlTransHandler
........... 211.26 Setting PerlHandler Based on MIME Type
.............. 211.27 SSI and Embperl -- Doing Both
....... 221.28 Getting the Front-end Server’s Name in the Back-end Server
............... 231.29 Authentication Snippets
............ 231.30 Emulating the Authentication Mechanism
........ 231.31 An example of using Apache::Session::DBI with cookies
............... 241.32 Detecting a Client Abort
............. 241.33 Using DESTROY to Finalize Output
............. 271.34 Passing Arguments to a SSI script
....... 271.35 Setting Environment Variables For Scripts Called From CGI.
............. 281.36 Mysql Backup and Restore Scripts
.................. 331.37 Maintainers
................... 331.38 Authors

i15 Feb 2014

Table of Contents:Code Snippets

	1€€Code Snippets
	1.1€€Description
	1.2€€File Upload with Apache::Request
	1.3€€Redirecting Errors to the Client Instead of error_log
	1.4€€Reusing Data from POST request
	1.5€€Redirecting POST Requests
	1.6€€Redirecting While Maintaining Environment Variables
	1.7€€Terminating a Child Process on Request Completion
	1.8€€Setting Content-type and Content-encoding headers in non-OK responses
	1.9€€More on Relative Paths
	1.10€€Watching the error_log File Without Telneting to the Server
	1.11€€Accessing Variables from the Caller's Package
	1.12€€Handling Cookies
	1.13€€Sending Multiple Cookies with the Perl API
	1.14€€Sending Cookies in REDIRECT Response
	1.15€€Apache::Cookie example: Login Pages by Setting Cookies and Refreshing
	1.15.1€€Logic
	1.15.2€€Example Situation
	1.15.2.1€€Code

	1.16€€Passing and Preserving Custom Data Structures Between Handlers
	1.17€€Passing Notes Between mod_perl and other (non-Perl) Apache Modules
	1.18€€Passing Environment Variables Between Handlers
	1.19€€Verifying Whether A Request Was Received Over An SSL Connection
	1.20€€CGI::params in the mod_perl-ish Way
	1.21€€Subclassing Apache::Request
	1.22€€Sending Email from mod_perl
	1.23€€A Simple Handler To Print The Environment Variables
	1.24€€mod_rewrite in Perl
	1.25€€URI Rewrite in PerlTransHandler
	1.26€€Setting PerlHandler Based on MIME Type
	1.27€€SSI and Embperl -- Doing Both
	1.28€€Getting the Front-end Server's Name in the Back-end Server
	1.29€€Authentication Snippets
	1.30€€Emulating the Authentication Mechanism
	1.31€€An example of using Apache::Session::DBI with cookies
	1.32€€Detecting a Client Abort
	1.33€€Using DESTROY to Finalize Output
	1.34€€Passing Arguments to a SSI script
	1.35€€Setting Environment Variables For Scripts Called From CGI.
	1.36€€Mysql Backup and Restore Scripts
	1.37€€Maintainers
	1.38€€Authors

