

1 mod_perl Installation

115 Feb 2014

1 mod_perl Installationmod_perl Installation

1.1 Description
An in-depth explanation of the mod_perl installation process, from the basic installation (in 10 steps), to a
more complex one (with all the possible options you might want to use, including DSO build). It includes
troubleshooting tips too.

First of all:

 Apache 2.0 doesn’t work with mod_perl 1.0.
 Apache 1.0 doesn’t work with mod_perl 2.0.

1.2 A Summary of a Basic mod_perl Installation
The following 10 commands summarize the execution steps required to build and install a basic mod_perl
enabled Apache server on almost any standard flavor of Unix OS.

 % cd /usr/src
 % lwp-download http://www.apache.org/dist/httpd/apache_1.3.xx.tar.gz
 % lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz
 % tar xzvf apache_1.3.xx.tar.gz
 % tar xzvf mod_perl-1.xx.tar.gz
 % cd mod_perl-1.xx
 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_1.3.xx
 % make install

Of course you should replace 1.xx and 1.3.x with the real version numbers of mod_perl and Apache.

All that’s left is to add a few configuration lines to httpd.conf , the Apache configuration file, start the
server and enjoy mod_perl.

If you have stumbled upon a problem at any of the above steps, don’t despair, the next sections will
explain in detail each and every step.

Of course there is a way of installing mod_perl in only a couple of minutes if you are using a Linux distri-
bution that uses RPM packages:

 % rpm -i apache-1.3.xx.rpm
 % rpm -i mod_perl-1.xx.rpm

or apt system:

 % apt-get install libapache-mod-perl

These should set up both Apache and mod_perl correctly for your system. Using a packaged distribution
can make installing and reinstalling a lot quicker and easier. (Note that the filenames will vary, and xx will
differ.)

15 Feb 20142

1.1 Description

Since mod_perl can be configured in many different ways (features can be enabled or disabled, directories
can be modified, etc.) it’s preferable to use a manual installation, as a prepackaged version might not suit
your needs. Manual installation will allow you to make the fine tuning for the best performance as well.

In this chapter we will talk extensively about the prepackaged versions, and ways to prepare your own
packages for reuse on many machines. Win32 users should consult the Win32 documentation for details
on that platform.

1.3 The Gory Details
We saw that the basic mod_perl installation is quite simple and takes about 10 commands. You can copy
and paste them from these pages. The parameter EVERYTHING=1 selects a lot of options, but sometimes
you will need different ones. You may need to pass only specific parameters, to bundle other components
with mod_perl etc. You may want to build mod_perl as a loadable object instead of compiling it into
Apache, so that it can be upgraded without rebuilding Apache itself.

To accomplish this you will need to understand various techniques for mod_perl configuration and build-
ing. You need to know what configuration parameters are available to you and when and how to use them.

As with Perl, with mod_perl simple things are simple. But when you need to accomplish more compli-
cated tasks you may have to invest some time to gain a deeper understanding of the process. In this chapter
I will take the following route. I’ll start with a detailed explanation of the four stages of the mod_perl
installation process, then continue with the different paths each installation might take according to your
goal, followed by a few copy-and-paste real world installation scenarios. Towards the end of the chapter I
will show you various approaches that make the installations easier, automating most of the steps. Finally
I’ll cover some of the general issues that can cause new users to stumble while installing mod_perl.

We can clearly separate the installation process into the following stages:

Source Configuration,
Building,
Testing and
Installation.

1.3.1 Source Configuration (perl Makefile.PL ...)

Before building and installing mod_perl you have to configure it. You configure mod_perl just like any
other Perl module:

 % perl Makefile.PL [parameters]

In this section we will go through most of the parameters mod_perl can accept and explain each one of
them.

First let’s see what configuration mechanisms we have available. Basically they all define a special set of
parameters to be passed to perl Makefile.PL . Depending on the chosen configuration, the final
product might be a stand-alone httpd binary or a loadable object.

315 Feb 2014

1.3 The Gory Detailsmod_perl Installation

The source configuration mechanism in Apache 1.3 provides four major features (which of course are
available to mod_perl):

Per-module configuration scripts (ConfigStart/End)

This is a mechanism modules can use to link themselves into the configuration process. It is useful
for automatically adjusting the configuration and build parameters from the modules sources. It is
triggered by ConfigStart /ConfigEnd sections inside modulename.module files (e.g.
libperl.module).

Apache Autoconf-style Interface (APACI)

This is the new top-level configure script from Apache 1.3 which provides a GNU Autoconf-style
interface. It is useful for configuring the source tree without manually editing any src/Configuration
files. Any parameterization can be done via command line options to the configure script. Inter-
nally this is just a nifty wrapper to the old src/Configure script.

Since Apache 1.3 this is the way to install mod_perl as cleanly as possible. Currently this is a pure
Unix-based solution because at present the complete Apache 1.3 source configuration mechanism is
only available under Unix. It doesn’t work on the Win32 platform for example.

Dynamic Shared Object (DSO) support

Besides Windows NT support this is one of most interesting features in Apache 1.3. Its a way to build
Apache modules as so-called dynamic shared objects (usually named modulename.so) which can be
loaded via the LoadModule directive in Apache’s httpd.conf file. The benefit is that the modules
are part of the httpd executable only on demand, i.e. only when the user wants a module it is loaded
into the address space of the httpd executable. This is interesting for instance in relation to memory
consumption and upgrading.

The DSO mechanism is provided by Apache’s mod_so module which needs to be compiled into the
httpd binary. This is done automatically when DSO is enabled for module mod_foo via:

 ./configure --enable-module=foo

or by explicitly adding mod_so via:

 ./configure --enable-module=so

APache eXtenSion (APXS) support tool

This is a new support tool from Apache 1.3 which can be used to build an Apache module as a DSO
even outside the Apache source-tree. One can say APXS is for Apache what MakeMaker and XS are
for Perl. It knows the platform dependent build parameters for making DSO files and provides an
easy way to run the build commands with them.

(MakeMaker allows an easy automatic configuration, build, testing and installation of the Perl
modules, and XS allows to call functions implemented in C/C++ from Perl code.)

15 Feb 20144

1.3.1 Source Configuration (perl Makefile.PL ...)

Taking these four features together provides a way to integrate mod_perl into Apache in a very clean and
smooth way. No patching of the Apache source tree is needed in the standard situation and in the APXS
situation not even the Apache source tree is needed.

To benefit from the above features a new hybrid build environment was created for the Apache side of
mod_perl. The Apache-side consists of the mod_perl C source files which have to be compiled into the
httpd program. They are usually copied to the subdirectory src/modules/perl/ in the Apache source tree.
To integrate this subtree into the Apache build process a lot of adjustments were done by mod_perl’s
Makefile.PL in the past. And additionally the Makefile.PL controlled the Apache build process.

This approach is problematic in several ways. It is very restrictive and not very clean because it assumes
that mod_perl is the only third-party module which has to be integrated into Apache.

The new approach described below avoids these problems. It prepares only the src/modules/perl/ subtree
inside the Apache source tree without adjusting or editing anything else. This way, no conflicts can occur.
Instead, mod_perl is activated later (when the Apache source tree is configured, via APACI calls) and then
it configures itself.

We will return to each of the above configuration mechanisms when describing different installation
passes, once the overview of the four building steps is completed.

1.3.1.1 Configuration parameters

The command perl Makefile.PL , which is also known as a "configuration stage", accepts various
parameters. In this section we will learn what they are, and when should they be used.

1.3.1.1.1 APACHE_SRC

If you specify neither the DO_HTTPD nor the NO_HTTPD parameters you will be asked the following
question during the configuration stage:

 Configure mod_perl with ../apache_1.3.xx/src ?

APACHE_SRC should be used to define Apache’s source tree directory. For example:

 APACHE_SRC=../apache_1.3.xx/src

Unless APACHE_SRC is specified, Makefile.PL makes an intelligent guess by looking at the directories at
the same level as the mod_perl sources and suggests a directory with the highest version of Apache found
there.

Answering ’y’ confirms either Makefile.PL’s guess about the location of the tree, or the directory you have
specified with APACHE_SRC.

If you use DO_HTTPD=1 or NO_HTTPD, the first Apache source tree found or the one you have defined
will be used for the rest of the build process.

515 Feb 2014

1.3.1 Source Configuration (perl Makefile.PL ...)mod_perl Installation

1.3.1.1.2 DO_HTTPD, NO_HTTPD, PREP_HTTPD

Unless any of DO_HTTPD, NO_HTTPD or PREP_HTTPD is used, you will be prompted by the following
question:

 Shall I build httpd in ../apache_1.3.xx/src for you?

Answering ’y’ will make sure an httpd binary will be built in ../apache_1.3.xx/src when you run make.

To avoid this prompt when the answer is Yes specify the following argument:

 DO_HTTPD=1

Note that if you set DO_HTTPD=1, but do not use APACHE_SRC=../apache_1.3.xx/src then the
first apache source tree found will be used to configure and build against. Therefore it’s highly advised to
always use an explicit APACHE_SRC parameter, to avoid confusion.

PREP_HTTPD=1 just means default ’n’ to the latter prompt, meaning: Do not build (make) httpd in the
Apache source tree. But it will still ask you about Apache’s source location even if you have used the
APACHE_SRC parameter. Providing the APACHE_SRC parameter will just eliminate the need for perl
Makefile.PL to make a guess.

To avoid the two prompts:

 Configure mod_perl with ../apache_1.3.xx/src ?
 Shall I build httpd in ../apache_1.3.xx/src for you?

and avoid building httpd, use:

 NO_HTTPD=1

If you choose not to build the binary you will have to do that manually. We will talk about it later. In any
case you will need to run make install in the mod_perl source tree, so the Perl side of mod_perl will
be installed. Note that, make test won’t work until you have built the server.

1.3.1.1.3 Callback Hooks

A callback hook (abbrev. callback) is a reference to a subroutine. In Perl we create callbacks with the
$callback = \&subroutine syntax, where in this example, $callback contains a reference to the subrou-
tine called "subroutine". Callbacks are used when we want some action (subroutine call) to occur when
some event takes place. Since we don’t know exactly when the event will take place we give the event
handler a callback to the subroutine we want executed. The handler will call our subroutine at the right
time.

By default, most of the callback hooks except for PerlHandler ,PerlChildInitHandler ,
PerlChildExitHandler , PerlConnectionApi , and PerlServerApi are turned off. You may
enable them by editing src/modules/perl/Makefile, or when running perl Makefile.PL .

15 Feb 20146

1.3.1 Source Configuration (perl Makefile.PL ...)

The possible parameters for the appropriate hooks are:

 PERL_POST_READ_REQUEST
 PERL_TRANS
 PERL_INIT
 PERL_RESTART (experimental)

 PERL_HEADER_PARSER
 PERL_AUTHEN
 PERL_AUTHZ
 PERL_ACCESS
 PERL_TYPE
 PERL_FIXUP
 PERL_LOG
 PERL_CLEANUP
 PERL_CHILD_INIT
 PERL_CHILD_EXIT
 PERL_DISPATCH

 PERL_STACKED_HANDLERS
 PERL_METHOD_HANDLERS
 PERL_SECTIONS
 PERL_SSI

As with any parameters that are either defined or not, use PERL_hookname=1 to enable them (e.g.
PERL_AUTHEN=1).

To enable all, but the last 4 callback hooks use:

 ALL_HOOKS=1

1.3.1.1.4 EVERYTHING

To enable everything set:

 EVERYTHING=1

1.3.1.1.5 PERL_TRACE

To enable debug tracing set: PERL_TRACE=1

1.3.1.1.6 APACHE_HEADER_INSTALL

By default, the Apache source headers files are installed into the $Config{sitearch-
exp}/auto/Apache/include directory.

The reason for installing the header files is to make life simpler for module authors/users when build-
ing/installing a module that taps into some Apache C functions, e.g. Embperl , Apache::Peek , etc.

If you don’t wish to install these files use:

715 Feb 2014

1.3.1 Source Configuration (perl Makefile.PL ...)mod_perl Installation

 APACHE_HEADER_INSTALL=0

1.3.1.1.7 PERL_STATIC_EXTS

Normally, if an extension is statically linked with Perl it is listed in Config.pm ’s
$Config{static_exts} , in which case mod_perl will also statically link this extension with httpd.
However, if an extension is statically linked with Perl after it is installed, it is not listed in Config.pm .
You may either edit Config.pm and add these extensions, or configure mod_perl like this:

 perl Makefile.PL "PERL_STATIC_EXTS=Something::Static Another::One"

1.3.1.1.8 APACI_ARGS

When you use the USE_APACI=1 parameter, you can tell Makefile.PL to pass any arguments you
want to the Apache ./configure utility, e.g:

 % perl Makefile.PL USE_APACI=1 \
 APACI_ARGS=’--sbindir=/usr/local/httpd_perl/sbin, \
 --sysconfdir=/usr/local/httpd_perl/etc, \
 --localstatedir=/usr/local/httpd_perl/var, \
 --runtimedir=/usr/local/httpd_perl/var/run, \
 --logfiledir=/usr/local/httpd_perl/var/logs, \
 --proxycachedir=/usr/local/httpd_perl/var/proxy’

Notice that all APACI_ARGS (above) must be passed as one long line if you work with t?csh !!!
However it works correctly as shown above (breaking the long lines with ’\ ’) with (ba)?sh . If you use
t?csh it does not work, since t?csh passes the APACI_ARGS arguments to ./configure leaving
the newlines untouched, but stripping the backslashes. This causes all the arguments except the first to be
ignored by the configuration process.

1.3.1.1.9 APACHE_PREFIX

Alternatively to:

 APACI_ARGS=’--prefix=/usr/local/httpd_perl’

from the previous section you can use the APACHE_PREFIX parameter. When USE_APACI is enabled,
this attribute will specify the --prefix option just like the above setting does.

In addition when the APACHE_PREFIX option is used make install be executed in the Apache
source directory, which makes these two equivalent:

15 Feb 20148

1.3.1 Source Configuration (perl Makefile.PL ...)

 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
 APACI_ARGS=’--prefix=/usr/local/httpd_perl’
 % make && make test && make install
 % cd ../apache_1.3.xx
 % make install

 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
 APACHE_PREFIX=/usr/local/httpd_perl
 % make && make test && make install

Now you can pick your favorite installation method.

1.3.1.2 Environment Variables

There are a few environment variables that influence the build/test process.

1.3.1.2.1 APACHE_USER and APACHE_GROUP

You can use the environment variables APACHE_USER and APACHE_GROUP to override the default
User and Group settings in the httpd.conf used for ’make test’ stage. (Introduced in mod_perl v1.23.)

1.3.1.3 Reusing Configuration Parameters

When you have to upgrade the server, it’s quite hard to remember what parameters were used in a
mod_perl build. So it’s better to save them in a file. For example if you create a file at
~/.mod_perl_build_options, with contents:

 APACHE_SRC=../apache_1.3.xx/src DO_HTTPD=1 USE_APACI=1 \
 EVERYTHING=1

You can build the server with the following command:

 % perl Makefile.PL ‘cat ~/.mod_perl_build_options‘
 % make && make test && make install

But mod_perl has a standard method to perform this trick. If a file named makepl_args.mod_perl is found
in the same directory as the mod_perl build location with any of these options, it will be read in by Make-
file.PL. Parameters supplied at the command line will override the parameters given in this file.

 % ls -1 /usr/src
 apache_1.3.xx/
 makepl_args.mod_perl
 mod_perl-1.xx/

 % cat makepl_args.mod_perl
 APACHE_SRC=../apache_1.3.xx/src DO_HTTPD=1 USE_APACI=1 \
 EVERYTHING=1

 % cd mod_perl-1.xx
 % perl Makefile.PL
 % make && make test && make install

915 Feb 2014

1.3.1 Source Configuration (perl Makefile.PL ...)mod_perl Installation

Now the parameters from makepl_args.mod_perl file will be used, as if they were directly typed in.

Notice that this file can be located in your home directory or in the ../ directory relative to the mod_perl
distribution directory. This file can also start with dot (.makepl_args.mod_perl) so you can keep it nicely
hidden along with the rest of the dot files in your home directory.

There is a sample makepl_args.mod_perl in the eg/ directory of the mod_perl distribution package, in
which you might find a few options to enable experimental features to play with too!

If you are faced with a compiled Apache and no trace of the parameters used to build it, you can usually
still find them if the sources were not make clean ’d. You will find the Apache specific parameters in
apache_1.3.xx/config.status and the mod_perl parameters in
mod_perl-1.xx/apaci/mod_perl.config .

1.3.1.4 Discovering Whether Some Option Was Configured

mod_perl version 1.25 has introduced Apache::Myconfig , which provides access to the various hooks
and features set when mod_perl is built. This circumvents the need to set up a live server just to find out if
a certain callback hook is available.

To see whether some feature was built in or not, check the %Apache::MyConfig::Setup hash. For
example after installing mod_perl with the following options:

 panic% perl Makefile.PL EVERYTHING=1

but on the next day we don’t remember what callback hooks were enabled, and we want to know whether
PERL_LOG callback hook is enabled. One of the ways to find this out is to run the following code:

 panic% perl -MApache::MyConfig \
 -e ’print $Apache::MyConfig::Setup{PERL_LOG}’
 1

which prints ’1’--meaning that PERL_LOG callback hook was enabled. (That’s because EVERYTHING=1
enables them all.)

Another approach is to configure Apache::Status and run http://localhost/perl-status?hooks to check
for enabled hooks.

You also may try to look at the symbols inside the httpd executable with help of nm(1) or a similar
utility. For example if you want to see whether you enabled PERL_LOG=1 while building mod_perl, we
can search for a symbol with the same name but in lowercase:

 panic% nm httpd | grep perl_log
 08071724 T perl_logger

Indeed we can see that in our example PERL_LOG=1 was enabled. But this will only work if you have an
unstripped httpd binary. By default, make install strips the binary before installing it. Use the
--without-execstrip ./Configure option to prevent stripping during make install phase.

15 Feb 201410

1.3.1 Source Configuration (perl Makefile.PL ...)

http://localhost/perl-status?hooks

Yet another approach that will work in most of the cases is to try to use the feature in question. If it wasn’t
configured Apache will give an error message

1.3.1.5 Using an Alternative Configuration File

By default mod_perl provides its own copy of the Configuration file to Apache’s ./configure utility.
If you wish to pass it your own version, do this:

 % perl Makefile.PL CONFIG=Configuration.custom

Where Configuration.custom is the pathname of the file relative to the Apache source tree you build
against.

1.3.1.6 perl Makefile.PL Troubleshooting

1.3.1.6.1 "A test compilation with your Makefile configuration failed..."

When you see this during the perl Makefile.PL stage:

 ** A test compilation with your Makefile configuration
 ** failed. This is most likely because your C compiler
 ** is not ANSI. Apache requires an ANSI C Compiler, such
 ** as gcc. The above error message from your compiler
 ** will also provide a clue.
 Aborting!

you’ve got a problem with your compiler. It is possible that it’s improperly installed or not installed at all.
Sometimes the reason is that your Perl executable was built on a different machine, and the software
installed on your machine is not the same. Generally this happens when you install the prebuilt packages,
like RPM or deb. The dependencies weren’t properly defined in the Perl binary package and you were
allowed to install it, although some essential package is not installed.

The most frequent pitfall is a missing gdbm library. See Missing or Misconfigured libgdbm.so for more
info.

But why guess, when we can actually see the real error message and understand what the real problem is.
To get a real error message, edit the Apache src/Configure script. Down around line 2140 you will see a
line like this:

 if ./helpers/TestCompile sanity; then

change it to:

 if ./helpers/TestCompile -v sanity; then

and try again. Now you should get a useful error message.

1115 Feb 2014

1.3.1 Source Configuration (perl Makefile.PL ...)mod_perl Installation

1.3.1.6.2 Missing or Misconfigured libgdbm.so

On some Linux RedHat systems you might encounter a problem during the perl Makefile.PL stage,
when the installed from the rpm package Perl was built with the gdbm library, but the library isn’t actually
installed. If this is your situation make sure you install it before proceeding with the build process.

You can check how Perl was built by running the perl -V command:

 % perl -V | grep libs

On my machine I get:

 libs=-lnsl -lndbm -lgdbm -ldb -ldl -lm -lc -lposix -lcrypt

Sometimes the problem is even more obscure: you do have libgdbm installed but it’s not properly
installed. Do this:

 % ls /usr/lib/libgdbm.so*

If you get at least three lines like I do:

 lrwxrwxrwx /usr/lib/libgdbm.so -> libgdbm.so.2.0.0
 lrwxrwxrwx /usr/lib/libgdbm.so.2 -> libgdbm.so.2.0.0
 -rw-r--r-- /usr/lib/libgdbm.so.2.0.0

you are all set. On some installations the libgdbm.so symbolic link is missing, so you get only:

 lrwxrwxrwx /usr/lib/libgdbm.so.2 -> libgdbm.so.2.0.0
 -rw-r--r-- /usr/lib/libgdbm.so.2.0.0

To fix this problem add the missing symbolic link:

 % cd /usr/lib
 % ln -s libgdbm.so.2.0.0 libgdbm.so

Now you should be able to build mod_perl without any problems.

Note that you might need to prepare this symbolic link as well:

 lrwxrwxrwx /usr/lib/libgdbm.so.2 -> libgdbm.so.2.0.0

with:

 % ln -s libgdbm.so.2.0.0 libgdbm.so.2

Of course if when you read this a new version of the libgdbm library will be released, you will have to
adjust the version numbers. We didn’t use the usual xx version replacement here, to make it easier to
understand how the symbolic links should be set.

15 Feb 201412

1.3.1 Source Configuration (perl Makefile.PL ...)

1.3.1.6.3 About gdbm, db and ndbm libraries

Both the gdbm and db libraries offer ndbm emulation, which is the interface that Apache actually uses, so
when you build mod_perl you end up with whichever library was linked first by the perl compile. If you
build apache without mod_perl you end up with whatever appears to be your ndbm library which will vary
between systems, and especially Linux distributions. You may have to work a bit to get both Apache and
Perl to use the same library and you are likely to have trouble copying the dbm file from one system to
another or even using it after an upgrade.

1.3.1.6.4 Undefined reference to ‘PL_perl_destruct_level’

When manually building mod_perl using the shared library:

 cd mod_perl-1.xx
 perl Makefile.PL PREP_HTTPD=1
 make
 make test
 make install

 cd ../apache_1.3.xx
 ./configure --with-layout=RedHat --target=perlhttpd
 --activate-module=src/modules/perl/libperl.a

you might get:

 gcc -c -I./os/unix -I./include -DLINUX=2 -DTARGET=\"perlhttpd\" -DUSE_HSREGEX
 -DUSE_EXPAT -I./lib/expat-lite ‘./apaci‘ buildmark.c
 gcc -DLINUX=2 -DTARGET=\"perlhttpd\" -DUSE_HSREGEX -DUSE_EXPAT
 -I./lib/expat-lite ‘./apaci‘ \
 -o perlhttpd buildmark.o modules.o modules/perl/libperl.a
 modules/standard/libstandard.a main/libmain.a ./os/unix/libos.a ap/libap.a
 regex/libregex.a lib/expat-lite/libexpat.a -lm -lcrypt
 modules/perl/libperl.a(mod_perl.o): In function ‘perl_shutdown’:
 mod_perl.o(.text+0xf8): undefined reference to ‘PL_perl_destruct_level’
 mod_perl.o(.text+0x102): undefined reference to ‘PL_perl_destruct_level’
 mod_perl.o(.text+0x10c): undefined reference to ‘PL_perl_destruct_level’
 mod_perl.o(.text+0x13b): undefined reference to ‘Perl_av_undef’
 [more errors snipped]

This happens when you have a statically linked perl build (i.e. without a shared libperl.so library). Build a
dynamically linked perl (with libperl.so) and the problem will disappear. See the "Building a shared Perl
library" section from the INSTALL file that comes with Perl source.

Also see "Chapter 15.4 - Perl Build Options" from Practical mod_perl.

1.3.1.6.5 Further notes on libperl.(a|so)

Library files such as libfoo.a are archives that are used at linking time - these files are completely included
in the final application that linked it.

1315 Feb 2014

1.3.1 Source Configuration (perl Makefile.PL ...)mod_perl Installation

http://modperlbook.org/html/ch15_04.html
http://modperlbook.org/

Whereas libfoo.so indicates that it’s a shared library. At the linking time the application only knows which
library it wants. Only at the loading time (runtime) that shared library will be loaded.

One of the benefits of using a shared library, is that it’s loaded only once. If there are two application
linking to libperl.so that run at the same time, only the first application will need to load it. The second
application will share that loaded library (that service is provided by the OS kernel). In the case of static
libfoo.a, it’ll be loaded as many times as there are applications that included it, thus consuming more
memory. Of course this is not the only benefit of using shared libs.

In mod_perl 1.0, the library file is unfortunately named libperl.(so|a). So you have libperl.(so|a) which is
perl, and you have libperl.(so|a) which is modperl. You are certainly looking at the modperl version of
libperl.a if you find it in the apache directory. perl’s libperl.(so|a) lives under the perl tree (e.g. in
5.8.6/i686-linux/CORE/libperl.so).

Some distributions (notably Debian) have chosen to put libperl.so and libperl.a into the global library
loader path (e.g., /usr/lib) which will cause linking problems when compiling mod_perl (if compiling
against static perl), in which case you should move aside the libperl.a while building mod_perl or else will
likely encounter further errors. If building against the dynamic perl’s libperl.so, you may have similar
problems but at startup time. It’s the best to get rid of perl that installs its libs into /usr/lib (or similar) and
reinstall a new perl, which puts its library under the perl tree. Also see libperl.so and libperl.a.

1.3.2 mod_perl Building (make)

After completing the configuration you build the server, by calling:

 % make

which compiles the source files and creates an httpd binary and/or a separate library for each module,
which can either be inserted into the httpd binary when make is called from the Apache source directory
or loaded later, at run time.

Note: don’t put the mod_perl directory inside the Apache directory. This confuses the build process.

1.3.2.1 make Troubleshooting

1.3.2.1.1 Undefined reference to ’Perl_newAV’

This and similar error messages may show up during the make process. Generally it happens when you
have a broken Perl installation. Make sure it’s not installed from a broken RPM or another binary package.
If it is, build Perl from source or use another properly built binary package. Run perl -V to learn what
version of Perl you are using and other important details.

1.3.2.1.2 Unrecognized format specifier for...

This error usually reported due to the problems with some versions of SFIO library. Try to use the latest
version to get around this problem. Or if you don’t really need SFIO, rebuild Perl without this library.

15 Feb 201414

1.3.2 mod_perl Building (make)

1.3.3 Built Server Testing (make test)

After building the server, it’s a good idea to test it thoroughly, by calling:

 % make test

Fortunately mod_perl comes with a bunch of tests, which attempt to use all the features you asked for at
the configuration stage. If any of the tests fails, the make test stage will fail.

Running make test will start a freshly built httpd on port 8529 running under the uid and gid of the
perl Makefile.PL process. The httpd will be terminated when the tests are finished.

Each file in the testing suite generally includes more than one test, but when you do the testing, the
program will only report how many tests were passed and the total number of tests defined in the test file.
However if only some of the tests in the file fail you want to know which ones failed. To gain this infor-
mation you should run the tests in verbose mode. You can enable this mode by using the
TEST_VERBOSE parameter:

 % make test TEST_VERBOSE=1

To change the default port (8529) used for the test do this:

 % perl Makefile.PL PORT=xxxx

To start the newly built Apache:

 % make start_httpd

To shutdown Apache:

 % make kill_httpd

NOTE to Ben-SSL users: httpsd does not seem to handle /dev/null as the location of certain files (for
example some of the configuration files mentioned in httpd.conf can be ignored by reading them from
/dev/null) so you’ll have to change these by hand. The tests are run with the SSLDisable directive.

1.3.3.1 Manual Testing

Tests are invoked by running the ./TEST script located in the ./t directory. Use the -v option for verbose
tests. You might run an individual test like this:

 % t/TEST -v modules/file.t

or all tests in a test sub-directory:

 % t/TEST modules

The TEST script starts the server before the test is executed. If for some reason it fails to start, use make
start_httpd to start it manually.

1515 Feb 2014

1.3.3 Built Server Testing (make test)mod_perl Installation

1.3.3.2 make test Troubleshooting

1.3.3.2.1 make test fails

You cannot run make test before you build Apache, so if you told perl Makefile.PL not to build
the httpd executable, there is no httpd to run the test against. Go to the Apache source tree and run make,
then return to the mod_perl source tree and continue with the server testing.

1.3.3.2.2 mod_perl.c is incompatible with this version of Apache

If you had a stale old Apache header layout in one of the include paths during the build process you will
see this message when you try to execute httpd. Run the find (or locate) utility in order to locate the
file ap_mmn.h. Delete it and rebuild Apache. RedHat installed a copy of /usr/local/include/ap_mmn.h on
my system.

For all RedHat fans, before you build Apache yourself, do:

 % rpm -e apache

to remove the pre-installed RPM package first!

Users with apt systems would do:

 % apt-get remove apache

instead.

1.3.3.2.3 make test......skipping test on this platform

While doing make test you will notice that some of the tests are reported as skipped. The reason is that
you are missing some optional modules for these test to be passed. For a hint you might want to peek at
the content of each test (you will find them all in the ./t directory (mnemonic - t, tests). I’ll list a few
examples, but of course things may change in the future.

 modules/cookie......skipping test on this platform
 modules/request.....skipping test on this platform

Install libapreq package which includes among others the Apache::Request and Apache::Cookie
modules.

 modules/psections...skipping test on this platform

Install Devel::Symdump and Data::Dumper

 modules/sandwich....skipping test on this platform

Install Apache::Sandwich

15 Feb 201416

1.3.3 Built Server Testing (make test)

 modules/stage.......skipping test on this platform

Install Apache::Stage

 modules/symbol......skipping test on this platform

Install Devel::Symdump

Chances are that all of these are installed if you use CPAN.pm to install Bundle::Apache .

1.3.3.2.4 make test Fails Due to Misconfigured localhost Entry

The make test suite uses localhost to run the tests that require a network. Make sure you have this
entry in /etc/hosts:

 127.0.0.1 localhost.localdomain localhost

Also make sure that you have the loopback device [lo] configured. [Hint: try ’ifconfig lo’ to test for its
existence.]

1.3.4 Installation (make install)

After testing the server, the last step left is to install it. First install all the Perl side files:

 % make install

Then go to the Apache source tree and complete the Apache installation (installing the configuration files,
httpd and utilities):

 % cd ../apache_1.3.xx
 % make install

Now the installation should be considered complete. You may now configure your server and start using
it.

1.3.5 Building Apache and mod_perl by Hand

If you wish to build httpd separately from mod_perl, you should use the NO_HTTPD=1 option during the
perl Makefile.PL (mod_perl build) stage. Then you will need to configure various things by hand
and proceed to build Apache. You shouldn’t run perl Makefile.PL before following the steps
described in this section.

If you choose to manually build mod_perl, there are three things you may need to set up before the build
stage:

mod_perl’s Makefile

When perl Makefile.PL is executed, $APACHE_SRC/modules/perl/Makefile may need to be
modified to enable various options (e.g. ALL_HOOKS=1).

1715 Feb 2014

1.3.4 Installation (make install)mod_perl Installation

Optionally, instead of tweaking the options during perl Makefile.PL you may edit
mod_perl-1.xx/src/modules/perl/Makefile before running perl Makefile.PL .

Configuration

Add to apache_1.3.xx/src/Configuration :

 AddModule modules/perl/libperl.a

We suggest you add this entry at the end of the Configuration file if you want your callback hooks to
have precedence over core handlers.

Add the following to EXTRA_LIBS:

 EXTRA_LIBS=‘perl -MExtUtils::Embed -e ldopts‘

Add the following to EXTRA_CFLAGS:

 EXTRA_CFLAGS=‘perl -MExtUtils::Embed -e ccopts‘

mod_perl Source Files

Return to the mod_perl directory and copy the mod_perl source files into the apache build directory:

 % cp -r src/modules/perl apache_1.3.xx/src/modules/

When you have done with the configuration parts, run:

 % perl Makefile.PL NO_HTTPD=1 DYNAMIC=1 EVERYTHING=1\
 APACHE_SRC=../apache_1.3.xx/src

DYNAMIC=1 enables a build of the shared mod_perl library. Add other options if required.

 % make install

Now you may proceed with the plain Apache build process. Note that in order for your changes to the
apache_1.3.xx/src/Configuration file to take effect, you must run apache_1.3.xx/src/Configure
instead of the default apache_1.3.xx/configure script:

 % cd ../apache_1.3.xx/src
 % ./Configure
 % make
 % make install

1.4 Installation Scenarios for Standalone mod_perl
There are various ways available to build Apache with the new hybrid build environment (using
USE_APACI=1):

15 Feb 201418

1.4 Installation Scenarios for Standalone mod_perl

1.4.1 The All-In-One Way

If your goal is just to build and install Apache with mod_perl out of their source trees and have no special
interest in further adjusting or enhancing Apache proceed as before:

 % tar xzvf apache_1.3.xx.tar.gz
 % tar xzvf mod_perl-1.xx.tar.gz
 % cd mod_perl-1.xx
 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_1.3.xx
 % make install

This builds Apache statically with mod_perl, installs Apache under the default /usr/local/apache
tree and mod_perl into the site_perl hierarchy of your existing Perl installation. All in one step.

1.4.2 The Flexible Way

This is the normal situation where you want to be flexible while building. Statically building mod_perl
into the Apache binary (httpd) but via different steps, so you have a chance to include other third-party
Apache modules, etc.

1. Prepare the Apache source tree

The first step is as before, extract the distributions:

 % tar xvzf apache_1.3.xx.tar.gz
 % tar xzvf mod_perl-1.xx.tar.gz

2. Install mod_perl’s Perl-side and prepare the Apache-side

The second step is to install the Perl-side of mod_perl into the Perl hierarchy and prepare the
src/modules/perl/ subdirectory inside the Apache source tree:

 $ cd mod_perl-1.xx
 $ perl Makefile.PL \
 APACHE_SRC=../apache_1.3.xx/src \
 NO_HTTPD=1 \
 USE_APACI=1 \
 PREP_HTTPD=1 \
 EVERYTHING=1 \
 [...]
 $ make
 $ make install
 $ cd ..

The APACHE_SRC option sets the path to your Apache source tree, the NO_HTTPD option forces this
path and only this path to be used, the USE_APACI option triggers the new hybrid build environment
and the PREP_HTTPD option forces preparation of the APACHE_SRC/modules/perl/ tree but
no automatic build.

1915 Feb 2014

1.4.1 The All-In-One Waymod_perl Installation

Then the configuration process prepares the Apache-side of mod_perl in the Apache source tree but
doesn’t touch anything else in it. It then just builds the Perl-side of mod_perl and installs it into the Perl
installation hierarchy.

Important: If you use PREP_HTTPD as described above, to complete the build you must go into the
Apache source directory and run make and make install .

3. Additionally prepare other third-party modules

Now you have a chance to prepare third-party modules. For instance the PHP language can be added
in a manner similar to the mod_perl procedure.

4. Build the Apache Package

Finally it’s time to build the Apache package and thus also the Apache-side of mod_perl and any
other third-party modules you’ve prepared:

 $ cd apache_1.3.xx
 $./configure \
 --prefix=/path/to/install/of/apache \
 --activate-module=src/modules/perl/libperl.a \
 [...]
 $ make
 $ make install

The --prefix option is needed if you want to change the default target directory of the Apache
installation and the --activate-module option activates mod_perl for the configuration process
and thus also for the build process. If you choose --prefix=/usr/share/apache the Apache
directory tree will be installed in /usr/share/apache.

Note that the files activated by --activate-module do not exist at this time. They will be gener-
ated during compilation.

The last three steps build, test and install the Apache-side of the mod_perl enabled server. Presum-
ably your new server includes third-party components, otherwise you probably won’t choose this
method of building.

The method described above enables you to insert mod_perl into Apache without having to mangle the
Apache source tree for mod_perl. It also gives you the freedom to add third-party modules.

1.4.3 When DSO can be Used

Perl versions prior to 5.6.0, built with -Dusemymalloc , and versions 5.6.0 and newer, built with
-Dusemymalloc and -Dbincompat5005 , pollute the main httpd program with free and malloc
symbols. When httpd restarts (happens at startup too), any references in the main program to free and
malloc become invalid, and this causes memory leaks and segfaults.

15 Feb 201420

1.4.3 When DSO can be Used

To determine if you can use a DSO mod_perl with your version of Perl, first find out which malloc your
Perl was built with by running:

 % perl -V:usemymalloc

If you get:

 usemymalloc=’n’;

then it means that Perl is using the system malloc, so mod_perl will work fine as DSO.

If you get:

 usemymalloc=’y’;

it means that Perl is using its own malloc. If you are running Perl older than 5.6.0, you must rebuild Perl
with -Uusemymalloc in order to use it with a DSO mod_perl. If you are running Perl 5.6.0 or newer,
you must either rebuild Perl with -Uusemymalloc , or make sure that binary compatibility with Perl
5.005 turned off. To find out, run:

 % perl -V:bincompat5005

If you get:

 bincompat5005=’define’;

then you must either rebuild Perl with -Ubincompat5005 or with -Uusemymalloc to use it with a
DSO mod_perl. We recommend that you rebuild Perl with -Ubincompat5005 if Perl’s malloc is a
better choice for your OS.

Note that mod_perl’s build system issues a warning about this problem.

If you needed to rebuild Perl don’t forget to rebuild mod_perl too.

1.4.4 Build mod_perl as a DSO inside the Apache Source Tree via
APACI

We have already said that the new mod_perl build environment (USE_APACI) is a hybrid. What does it
mean? It means for instance that the same src/modules/perl/ stuff can be used to build mod_perl as
a DSO or not, without having to edit anything especially for this. When you want to build libperl.so
all you have to do is to add one single option to the above steps.

1.4.4.1 libperl.so and libperl.a

libmodperl.so would be more correct for the mod_perl file, but the name has to be libperl.so
because of prehistoric Apache issues. Don’t confuse the libperl.so for mod_perl with the file of the
same name which comes with Perl itself. They are two different things. It is unfortunate that they happen
to have the same name.

2115 Feb 2014

1.4.4 Build mod_perl as a DSO inside the Apache Source Tree via APACImod_perl Installation

There is also a libperl.a which comes with the Perl installation. That’s different too.

You have two options here, depending on which way you have chosen above: If you choose the
All-In-One way from above then add

 USE_DSO=1

to the perl Makefile.PL options. If you choose the Flexible way then add:

 --enable-shared=perl

to Apache’s ./configure options.

As you can see only an additional USE_DSO=1 or --enable-shared=perl option is needed. Every-
thing else is done automatically: mod_so is automatically enabled, the Makefiles are adjusted automati-
cally and even the install target from APACI now additionally installs libperl.so into the Apache
installation tree. And even more: the LoadModule and AddModule directives (which dynamically load
and insert mod_perl into httpd) are automatically added to httpd.conf.

1.4.5 Build mod_perl as a DSO outside the Apache Source Tree via
APXS

Above we’ve seen how to build mod_perl as a DSO inside the Apache source tree. But there is a nifty
alternative: building mod_perl as a DSO outside the Apache source tree via the new Apache 1.3 support
tool apxs (APache eXtension). The advantage is obvious: you can extend an already installed Apache
with mod_perl even if you don’t have the sources (for instance, you may have installed an Apache binary
package from your vendor).

Here are the build steps:

 % tar xzvf mod_perl-1.xx.tar.gz
 % cd mod_perl-1.xx
 % perl Makefile.PL \
 USE_APXS=1 \
 WITH_APXS=/path/to/bin/apxs \
 EVERYTHING=1 \
 [...]
 % make && make test && make install

This will build the DSO libperl.so outside the Apache source tree with the new Apache 1.3 support
tool apxs and install it into the existing Apache hierarchy.

1.5 Installation Scenarios for mod_perl and Other Compo-
nents
([ReaderMETA]: Please send more scenarios of mod_perl + other components installation guidelines.
Thanks!)

15 Feb 201422

1.5 Installation Scenarios for mod_perl and Other Components

You have now seen very detailed installation instructions for specific cases, but since mod_perl is used
with many other components that plug into Apache, you will definitely want to know how to build them
together with mod_perl.

Since all the steps are simple, and assuming that you now understand how the build process works, I’ll
show only the commands to be executed with no comments unless there is something we haven’t
discussed before.

Generally every example that I’m going to show consist of:

1. downloading the source distributions of the components to be used

2. un-packing them

3. configuring them

4. building Apache using the parameters appropriate to each component

5. make test and make install .

All these scenarios were tested on a Linux platform, you might need to refer to the specific component’s
documentation if something doesn’t work for you as described below. The intention of this section is not
to show you how to install other non-mod_perl components alone, but how to do this in a bundle with
mod_perl.

Also, notice that the links I’ve used below are very likely to have changed by the time you read this docu-
ment. That’s why I have used the x.x.x convention, instead of using hardcoded version numbers. Remem-
ber to replace the xx place-holders with the version numbers of the distributions you are about to use. To
find out the latest stable version number, visit the components’ sites. So if the instructions say:

 http://apache.org/dist/perl/mod_perl-1.xx.tar.gz

go to http://perl.apache.org/download/ in order to learn the version number of the latest stable release and
download the appropriate file.

Unless otherwise noted, all the components install themselves into a default location. When you run make
install the installation program tells you where it’s going to install the files.

1.5.1 mod_perl and mod_ssl (+openssl)

mod_ssl provides strong cryptography for the Apache 1.3 webserver via the Secure Sockets Layer (SSL
v2/v3) and Transport Layer Security (TLS v1) protocols by the help of the Open Source SSL/TLS toolkit
OpenSSL, which is based on SSLeay from Eric A. Young and Tim J. Hudson.

Download the sources:

2315 Feb 2014

1.5.1 mod_perl and mod_ssl (+openssl)mod_perl Installation

http://perl.apache.org/download/

 % lwp-download http://www.apache.org/dist/apache_1.3.xx.tar.gz
 % lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz
 % lwp-download http://www.modssl.org/source/mod_ssl-x.x.x-x.x.x.tar.gz
 % lwp-download http://www.openssl.org/source/openssl-x.x.x.tar.gz

Un-pack:

 % tar xvzf mod_perl-1.xx
 % tar xvzf apache_1.3.xx.tar.gz
 % tar xvzf mod_ssl-x.x.x-x.x.x.tar.gz
 % tar xvzf openssl-x.x.x.tar.gz

Configure, build and install openssl:

 % cd openssl-x.x.x
 % ./config
 % make && make test && make install

Configure mod_ssl:

 % cd mod_ssl-x.x.x-x.x.x
 % ./configure --with-apache=../apache_1.3.xx

Configure mod_perl:

 % cd ../mod_perl-1.xx
 % perl Makefile.PL USE_APACI=1 EVERYTHING=1 \
 DO_HTTPD=1 SSL_BASE=/usr/local/ssl \
 APACHE_PREFIX=/usr/local/apachessl \
 APACHE_SRC=../apache_1.3.xx/src \
 APACI_ARGS=’--enable-module=ssl,--enable-module=rewrite’

Note: Do not forget that if you use csh or tcsh you may need to put all the arguments to ‘perl Make-
file.PL’ on a single command line.

Note: If when specifying SSL_BASE=/usr/local/ssl Apache’s configure doesn’t find the ssl
libraries, please refer to the mod_ssl documentation to figure out what SSL_BASE argument it expects
(usually needed when ssl is not installed in the standard places). This topic is out of scope of this docu-
ment. For some setups using SSL_BASE=/usr/local does the trick.

Build, test and install:

 % make && make test && make install
 % cd ../apache_1.3.xx
 % make certificate
 % make install

Now proceed with the mod_ssl and mod_perl parts of the server configuration before starting the server.

When the server starts you should see the following or similar in the error_log file:

15 Feb 201424

1.5.1 mod_perl and mod_ssl (+openssl)

 [Fri Nov 12 16:14:11 1999] [notice] Apache/1.3.9 (Unix)
 mod_perl/1.21_01-dev mod_ssl/2.4.8 OpenSSL/0.9.4 configured
 -- resuming normal operations

1.5.2 mod_perl and mod_ssl Rolled from RPMs

As in the previous section this shows an installation of mod_perl and mod_ssl, but this time using
sources/binaries prepackaged in RPMs.

As always, replace xx with the proper version numbers. And replace i386 with the identifier for your
platform if it is different.

1.

 % get apache-mod_ssl-x.x.x.x-x.x.x.src.rpm

Source: http://www.modssl.org

2.

 % get openssl-x.x.x.i386.rpm

Source: http://www.openssl.org/

3.

 % lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz

Source: http://apache.org/dist/perl

4.

 % lwp-download http://www.engelschall.com/sw/mm/mm-x.x.xx.tar.gz

Source: http://www.engelschall.com/sw/mm/

5.

 % rpm -ivh openssl-x.x.x.i386.rpm

6.

 % rpm -ivh apache-mod_ssl-x.x.x.x-x.x.x.src.rpm

7.

 % cd /usr/src/redhat/SPECS

8.

 % rpm -bp apache-mod_ssl.spec

9.

2515 Feb 2014

1.5.2 mod_perl and mod_ssl Rolled from RPMsmod_perl Installation

http://www.modssl.org/
http://www.openssl.org/
http://apache.org/dist/perl
http://www.engelschall.com/sw/mm/

 % cd /usr/src/redhat/BUILD/apache-mod_ssl-x.x.x.x-x.x.x

10.

 % tar xvzf mod_perl-1.xx.tar.gz

11.

 % cd mod_perl-1.xx

12.

 % perl Makefile.PL APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 \
 USE_APACI=1 \
 PREP_HTTPD=1 \
 EVERYTHING=1

Add or remove parameters if appropriate.

13.

 % make

14.

 % make install

15.

 % cd ../mm-x.x.xx/

16.

 % ./configure --disable-shared

17.

 % make

18.

 % cd ../mod_ssl-x.x.x-x.x.x

19.

 % ./configure \
 --with-perl=/usr/bin/perl \
 --with-apache=../apache_1.3.xx\
 --with-ssl=SYSTEM \
 --with-mm=../mm-x.x.x \
 --with-layout=RedHat \
 --disable-rule=WANTHSREGEX \
 --enable-module=all \
 --enable-module=define \
 --activate-module=src/modules/perl/libperl.a \
 --enable-shared=max \
 --disable-shared=perl

15 Feb 201426

1.5.2 mod_perl and mod_ssl Rolled from RPMs

20.

 % make

21.

 % make certificate

with whatever option is suitable to your configuration.

22.

 % make install

You should be all set.

Note: If you use the standard config for mod_ssl don’t forget to run Apache like this:

 % httpd -DSSL

1.5.3 mod_perl and apache-ssl (+openssl)

Apache-SSL is a secure Webserver, based on Apache and SSLeay/OpenSSL. It is licensed under a
BSD-style license which means, in short, that you are free to use it for commercial or non-commercial
purposes, so long as you retain the copyright notices.

Download the sources:

 % lwp-download http://www.apache.org/dist/apache_1.3.xx.tar.gz
 % lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz
 % lwp-download http://www.apache-ssl.org/.../apache_1.3.xx+ssl_x.xx.tar.gz
 % lwp-download http://www.openssl.org/source/openssl-x.x.x.tar.gz

Un-pack:

 % tar xvzf mod_perl-1.xx
 % tar xvzf apache_1.3.xx.tar.gz
 % tar xvzf openssl-x.x.x.tar.gz

Configure and install openssl:

 % cd openssl-x.x.x
 % ./config
 % make && make test && make install

Patch Apache with SSLeay paths

 % cd apache_x.xx
 % tar xzvf ../apache_1.3.xx+ssl_x.xx.tar.gz
 % FixPatch
 Do you want me to apply the fixed-up Apache-SSL patch for you? [n] y

2715 Feb 2014

1.5.3 mod_perl and apache-ssl (+openssl)mod_perl Installation

Now edit the src/Configuration file if needed and then configure:

 % cd ../mod_perl-1.xx
 % perl Makefile.PL USE_APACI=1 EVERYTHING=1 \
 DO_HTTPD=1 SSL_BASE=/usr/local/ssl \
 APACHE_SRC=../apache_1.3.xx/src

Build, test and install:

 % make && make test && make install
 % cd ../apache_1.3.xx/src
 % make certificate
 % make install

Note that you might need to modify the ’make test’ stage, as it takes much longer for this server to get
started and make test waits only a few seconds for Apache to start before it times out.

Now proceed with configuration of the apache_ssl and mod_perl parts of the server configuration files,
before starting the server.

1.5.4 mod_perl and Stronghold

Stronghold is a secure SSL Web server for Unix which allows you to give your web site full-strength,
128-bit encryption.

You must first build and install Stronghold without mod_perl, following Stronghold’s install procedure.
For more information visit http://www.c2.net/products/sh2/ .

Having done that, download the sources:

 % lwp-download http://apache.org/dist/perl/mod_perl-1.xx.tar.gz

Unpack:

 % tar xvzf mod_perl-1.xx.tar.gz

Configure (assuming that you have the Stronghold sources extracted at /usr/local/stronghold):

 % cd mod_perl-1.xx
 % perl Makefile.PL APACHE_SRC=/usr/local/stronghold/src \
 DO_HTTPD=1 USE_APACI=1 EVERYTHING=1

Build:

 % make

Before running make test , you must add your StrongholdKey to t/conf/httpd.conf. If you are
configuring by hand, be sure to edit src/modules/perl/Makefile and uncomment the #APACHE_SSL direc-
tive.

15 Feb 201428

1.5.4 mod_perl and Stronghold

http://www.c2.net/products/sh2/

Test and Install:

 % make test && make install
 % cd /usr/local/stronghold
 % make install

1.5.4.1 Note For Solaris 2.5 users

There has been a report related to the REGEX library that comes with Stronghold, that after building
Apache with mod_perl it would produce core dumps. To work around this problem, in
$STRONGHOLD/src/Configuration change:

 Rule WANTHSREGEX=default

to:

 Rule WANTHSREGEX=no

1.5.5 mod_perl and mod_php

This is a simple installation scenario of the mod_perl and mod_php in Apache server:

1. Configure Apache.

 % cd apache_1.3.xx
 % ./configure --prefix=/usr/local/etc/httpd

(this step might be redundant with the recent versions of mod_php, but it’s harmless.)

2. Build mod_perl.

 % cd ../mod_perl-1.xx
 % perl Makefile.PL APACHE_SRC=../apache_1.3.xxx/src NO_HTTPD=1 \
 USE_APACI=1 PREP_HTTPD=1 EVERYTHING=1
 % make

3. Build mod_php.

 % cd ../php-x.x.xx
 % ./configure --with-apache=../apache_1.3.xxx \
 --with-mysql --enable-track-vars
 % make
 % make install

4. Build Apache:

 % cd ../apache_1.3.xxx
 % ./configure --prefix=/usr/local/etc/httpd \
 --activate-module=src/modules/perl/libperl.a \
 --activate-module=src/modules/php4/libphp4.a \
 --enable-module=stats \
 --enable-module=rewrite
 % make

2915 Feb 2014

1.5.5 mod_perl and mod_phpmod_perl Installation

Note: libperl.a and libphp4.a do not exist at this time. They will be generated during compilation.

5. Test and install mod_perl

 % cd ../mod_perl-1.xx
 % make test
 # make install.

6. Complete the Apache installation.

 % cd ../apache_1.3.xxx
 # make install

Note: If you need to build mod_ssl as well, make sure that you add the mod_ssl first.

1.6 mod_perl Installation with the CPAN.pm Interactive
Shell
Installation of mod_perl and all the required packages is much easier with help of the CPAN.pm module,
which provides you among other features with a shell interface to the CPAN repository. CPAN is the
Comprehensive Perl Archive Network, a repository of thousands of Perl modules, scripts as well as a vast
amount of documentation. See http://cpan.org for more information.

The first thing first is to download the Apache source code and unpack it into a directory -- the name of
which you will need very soon.

Now execute:

 % perl -MCPAN -eshell

If it’s the first time that you have used it, CPAN.pm will ask you about a dozen questions to configure the
module. It’s quite easy to accomplish this task, and very helpful hints come along with the questions.
When you are finished you will see the CPAN prompt:

 cpan>

It can be a good idea to install a special CPAN bundle of modules to make using the CPAN module easier.
Installation is as simple as typing:

 cpan> install Bundle::CPAN

The CPAN shell can download mod_perl for you, unpack it, check for prerequisites, detect any missing
third party modules, and download and install them. All you need to do to install mod_perl is to type at the
prompt:

 cpan> install mod_perl

15 Feb 201430

1.6 mod_perl Installation with the CPAN.pm Interactive Shell

http://cpan.org/

You will see (I’ll use x.xx as a placeholder for real version numbers, since these change very frequently):

 Running make for DOUGM/mod_perl-1.xx.tar.gz
 Fetching with LWP:
 http://www.cpan.org/authors/id/DOUGM/mod_perl-1.xx.tar.gz

 CPAN.pm: Going to build DOUGM/mod_perl-1.xx.tar.gz

 Enter ‘q’ to stop search
 Please tell me where I can find your apache src
 [../apache_1.3.xx/src]

CPAN.pm will search for the latest Apache sources and suggest a directory. Here, unless the CPAN shell
found it and suggested the right directory, you need to type the directory into which you unpacked
Apache. The next question is about the src directory, which resides at the root level of the unpacked
Apache distribution. In most cases the CPAN shell will suggest the correct directory.

 Please tell me where I can find your apache src
 [../apache_1.3.xx/src]

Answer yes to all the following questions, unless you have a reason not to do that.

 Configure mod_perl with /usr/src/apache_1.3.xx/src ? [y]
 Shall I build httpd in /usr/src/apache_1.3.xx/src for you? [y]

Now we will build Apache with mod_perl enabled. Quit the CPAN shell, or use another terminal. Go to the
Apache sources root directory and run:

 % make install

which will complete the installation by installing Apache’s headers and the binary in the appropriate direc-
tories.

The only caveat of the process I’ve described is that you don’t have control over the configuration process.
Actually, that problem is easy to solve -- you can tell CPAN.pm to pass whatever parameters you want to
perl Makefile.PL . You do this with o conf makepl_arg command:

 cpan> o conf makepl_arg ’DO_HTTPD=1 USE_APACI=1 EVERYTHING=1’

Just list all the parameters as if you were passing them to the familiar perl Makefile.PL . If you add
the APACHE_SRC=/usr/src/apache_1.3.xx/src and DO_HTTPD=1 parameters, you will not be
asked a single question. Of course you must give the correct path to the Apache source distribution.

Now proceed with install mod_perl as before. When the installation is completed, remember to
unset the makepl_arg variable by executing:

 cpan> o conf makepl_arg ’’

If you have previously set makepl_arg to some value, before you alter it for the mod_perl installation
you will probably want to save it somewhere so that you can restore it when you have finished with the
mod_perl installation. To see the original value, use:

3115 Feb 2014

1.6 mod_perl Installation with the CPAN.pm Interactive Shellmod_perl Installation

 cpan> o conf makepl_arg

You can now install all the modules you might want to use with mod_perl. You install them all by typing a
singe command:

 cpan> install Bundle::Apache

This will install mod_perl if isn’t yet installed, and many other packages such as: ExtUtils::Embed ,
MIME::Base64 , URI::URL , Digest::MD5 , Net::FTP , LWP, HTML::TreeBuilder , CGI,
Devel::Symdump , Apache::DB , Tie::IxHash , Data::Dumper etc.

A helpful hint: If you have a system with all the Perl modules you use and you want to replicate them all
elsewhere, and if you cannot just copy the whole /usr/lib/perl5 directory because of a possible
binary incompatibility on the other system, making your own bundle is a handy solution. To accomplish
this the command autobundle can be used on the CPAN shell command line. This command writes a
bundle definition file for all modules that are installed for the currently running perl interpreter.

With the clever bundle file you can then simply say

 cpan> install Bundle::my_bundle

and after answering a few questions, go out for a coffee.

1.7 Installing on multiple machines
You may wish to build httpd once, then copy it to other machines. The Perl side of mod_perl needs the
Apache headers files to compile. To avoid dragging and build Apache on all your other machines, there
are a few Makefile targets to help you out:

 % make tar_Apache

This will tar all files mod_perl installs in your Perl’s site_perl directory, into a file called Apache.tar. You
can then unpack this under the site_perl directory on another machine.

 % make offsite-tar

This will copy all the header files from the Apache source directory which you configured mod_perl
against, then it will make dist which creates a mod_perl-1.xx.tar.gz, ready to unpack on another
machine to compile and install the Perl side of mod_perl.

If you really want to make your life easy you should use one of the more advanced packaging systems. For
example, almost all Linux OS distributions use packaging tools on top of plain tar.gz, allowing you to
track prerequisites for each package, and providing easy installation, upgrade and cleanup. One of the
most widely-used packagers is RPM (Red Hat Package Manager). See http://www.rpm.org for more infor-
mation.

All you have to do is prepare a SRPM (source distribution package), then build a binary release. This can
be installed on any number of machines in a matter of seconds.

15 Feb 201432

1.7 Installing on multiple machines

http://www.rpm.org/

It will even work on live machines! If you have two identical machines (identical software and hardware,
although depending on your setup hardware may be less critical). Let’s say that one is a live server and the
other is in development. You build an RPM with a mod_perl binary distribution, install it on the develop-
ment machine and satisfy yourself that it is working and stable. You can then install the RPM package on
the live server without any fear. Make sure that httpd.conf is correct, since it generally includes parameters
such as hostname which are unique to the live machine.

When you have installed the package, just restart the server. It can be a good idea to keep a package of the
previous system, in case something goes wrong. You can then easily remove the installed package and put
the old one back.

([ReaderMETA]: Dear reader, Can you please share a step by step scenario of preparation of SRPMs for
mod_perl? Thanks!!!)

1.8 using RPM and other packages to install mod_perl
[ReaderMETA]: Currently only RPM package. Please submit info about other available packages if you
use such.

1.8.1 A word on mod_perl RPM packages

The virtues of RPM packages is a subject of much debate among mod_perl users. While RPMs do take the
pain away from package installation and maintenance for most applications, the nuances of mod_perl
make RPMs somewhat less than ideal for those just getting started. The following help and advice is for
those new to mod_perl, Apache, Linux, and RPMs. If you know what you are doing, this is probably Old
Hat - contributing your past experiences is, as always, welcomed by the community.

1.8.2 Getting Started

If you are new to mod_perl and are using this Guide and the Eagle Book to help you on your way, it is
probably better to grab the latest Apache and mod_perl sources and compile the sources yourself. Not only
will you find that this is less daunting than you suspect, but it will probably save you a few headaches
down the line for several reasons.

First, given the pace at which the open source community produces software, RPMs, especially those
found on distribution CDs, are often several versions out of date. The most recent version will not only be
more stable, but will likely incorporate some new functionality that you will eventually want to play with.

It is also unlikely that the file system layout of an RPM package will match what you see in the Eagle
Book and this Guide. If you are new to mod_perl, Apache, or both you will probably want to get familiar
with the file system layout used by the examples given here before trying something non-standard.

Finally, the RPMs found on a typical distribution’s CDs use mod_perl built with Apache’s Dynamic
Shared Objects (DSO) support. While mod_perl can be successfully used as a DSO module, it adds a layer
of complexity that you may want to live without for now.

3315 Feb 2014

1.8 using RPM and other packages to install mod_perlmod_perl Installation

All that being said, should you still feel that rolling your own mod_perl enabled Apache server is not
likely, here are a few helpful hints...

1.8.3 Compiling RPM source files

It is possible to compile the source files provided by RPM packages, but if you are using RPMs to ease
mod_perl installation, that is not the way to do it. Both Apache and mod_perl RPMs are designed to be
install-and-go. If you really want to compile mod_perl to your own specific needs, your best bet is to get
the most recent sources from CPAN.

1.8.4 Mix and Match RPM and source

It is probably not the best idea to use a self-compiled Apache with a mod_perl RPM (or vice versa). Stick-
ing with one format or the other at first will result in fewer headaches and more hair.

1.8.5 Installing a single apache+mod_perl RPM

If you use an Apache+mod_perl RPM, chances are rpm -i or glint (GUI for RPM) will have you up
and running immediately, no compilation necessary. If you encounter problems, try downloading from
another mirror site or searching http://rpmfind.net/ for a different package - there are plenty out there to
choose from.

David Harris has started an effort to build better RPM/SRPM mod_perl packages. You will find the link to
David’s site from Binary distributions.

Features of this RPM:

Installs mod_perl as an "add in" to the RedHat Apache package, but does not install mod_perl as a
DSO.

Includes the four header files required for building libapreq (Apache::Request)

Distributes plain text forms of the pod documentation files that come with mod_perl.

Checks the module magic number on the existing Apache package to see if things are compatible

Notes on this un-conventional RPM packaging of mod_perl

by David Harris <dharris (at) drh.net> on Oct 13, 1999

This package will install the mod_perl library files on your machine along with the following two Apache
files:

 /usr/lib/apache/mod_include_modperl.so
 /usr/sbin/httpd_modperl

15 Feb 201434

1.8.3 Compiling RPM source files

http://rpmfind.net/

This package does not install a complete Apache subtree built with mod_perl, but rather just the two above
files that are different for mod_perl. This conceptually thinks of mod_perl as a kind of an "add on" that we
would like to add to the regular Apache tree. However, we are prevented from distributing mod_perl as an
actual DSO, because it is not recommended by the mod_perl developers and various features must be
turned off. So, instead, we distribute an httpd binary with mod_perl statically linked (httpd_modperl) and
the special modified mod_include.so required for this binary (mod_include_modperl.so). You can use the
exact same configuration files and other DSO modules, but you just "enable" the mod_perl "add on" by
following the directions below.

To enable mod_perl, do the following:

 (1) Configure /etc/rc.d/init.d/httpd to run httpd_modperl instead of
 httpd by changing the "daemon" command line.
 (2) Replace mod_include.so with mod_include_modperl.so in the
 module loading section of /etc/httpd/conf/httpd.conf
 (3) Uncomment the "AddModule mod_perl.c" line in /etc/httpd/conf/httpd.conf

Or run the following command:

 /usr/sbin/modperl-enable on

and to disable mod_perl:

 /usr/sbin/modperl-enable off

1.8.6 Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl
RPM

Libapreq provides the Apache::Request module.

Despite many reports of libapreq not working properly with various RPM packages, it is possible to inte-
grate libapreq with mod_perl RPMs. It just requires a few additional steps.

1. Make certain you have the apache-devel-x.x.x-x.i386.rpm package installed. Also,
download the latest version of libapreq from CPAN.

2. Install the source RPM for your mod_perl RPM and then do a build prep, (with rpm -bp
apache-devel-x.x.x-x.src.rpm) which unpacks the sources. From there, copy the four
header files (mod_perl.h, mod_perl_version.h, mod_perl_xs.h, and mod_PL.h) to
/usr/include/apache .

2.1 Get the SRPM from somemir-
ror.../redhat-x.x/SRPMS/mod_perl-1.xx-x.src.rpm .

2.2 Install the SRPM. This creates files in /usr/src/redhat/SPECS and
/usr/src/redhat/SOURCES . Run:

3515 Feb 2014

1.8.6 Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl RPMmod_perl Installation

 % rpm -ih mod_perl-1.xx-x.src.rpm

2.3 Do a "prep" build of the package, which just unpackages the sources and applies any
patches.

 % rpm -bp /usr/src/redhat/SPECS/mod_perl.spec
 Executing: %prep
 + umask 022
 + cd /usr/src/redhat/BUILD
 + cd /usr/src/redhat/BUILD
 + rm -rf mod_perl-1.19
 + /bin/gzip -dc /usr/src/redhat/SOURCES/mod_perl-1.19.tar.gz
 + tar -xf -
 + STATUS=0
 + [0 -ne 0]
 + cd mod_perl-1.19
 ++ /usr/bin/id -u
 + [0 = 0]
 + /bin/chown -Rf root .
 ++ /usr/bin/id -u
 + [0 = 0]
 + /bin/chgrp -Rf root .
 + /bin/chmod -Rf a+rX,g-w,o-w .
 + echo Patch #0:
 Patch #0:
 + patch -p1 -b --suffix .rh -s
 + exit 0

NOTE: Steps 2.1 through 2.3 are just a fancy un-packing of the source tree that builds the RPM
into /usr/src/redhat/BUILD/mod_perl-1.xx . You could unpack the
mod_perl-1.xx.tar.gz file somewhere and then do the following steps on that source
tree. The method shown above is more "pure" because you’re grabbing the header files from the
same tree that built the RPM. But this does not matter because RedHat is not patching that file.
So, it might be better if you just grab the mod_perl source and unpack it to get these files. Less
fuss and mess.

2.4 Look at the files you will copy: (this is not really a step, but useful to show)

 % find /usr/src/redhat/BUILD/mod_perl-1.19 -name ’*.h’
 /usr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/mod_perl.h
 /usr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/mod_perl_xs.h
 /usr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/mod_perl_version.h
 /usr/src/redhat/BUILD/mod_perl-1.19/src/modules/perl/perl_PL.h

2.5 Copy the files into /usr/include/apache .

 % find /usr/src/redhat/BUILD/mod_perl-1.19 -name ’*.h’ \
 -exec cp {} /usr/include/apache \;

NOTE: You should not have to do:

15 Feb 201436

1.8.6 Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl RPM

 % mkdir /usr/include/apache

because that directory should be created by apache-devel.

3. Apply this patch to libapreq: http://www.davideous.com/modperl-
rpm/distrib/libapreq-0.31_include.patch

4. Follow the libapreq directions as usual:

 % perl Makefile.PL
 % make && make test && make install

1.8.7 Installing separate Apache and mod_perl RPMs

If you are trying to install separate Apache and mod_perl RPMs, like those provided by the RedHat distri-
butions, you may be in for a bit of a surprise. Installing the Apache RPM will go just fine, and http://local-
host will bring up some type of web page for you. However, after installation of the mod_perl RPM, the
How can I tell whether mod_perl is running test will show that Apache is not mod_perl enabled. This is
because mod_perl needs to be added as a separate module using Apache’s Dynamic Shared Objects.

To use mod_perl as a DSO, make the following modifications to your Apache configuration files:

 httpd.conf:

 LoadModule perl_module modules/libperl.so
 AddModule mod_perl.c

 PerlModule Apache::Registry
 Alias /perl/ /home/httpd/perl/
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 PerlSendHeader On
 Options +ExecCGI
 </Location>

After a complete shutdown and startup of the server, mod_perl should be up and running.

1.8.8 Testing the mod_perl API

Some people have reported that even when the server responds positively to the How can I tell whether
mod_perl is running tests, the mod_perl API will not function properly. You may want to run the follow-
ing script to verify the availability of the mod_perl API.

 use strict;
 my $r = shift;
 $r->send_http_header(’text/html’);
 $r->print("It worked!!!\n");

3715 Feb 2014

1.8.7 Installing separate Apache and mod_perl RPMsmod_perl Installation

http://www.davideous.com/modperlrpm/distrib/libapreq-0.31_include.patch
http://www.davideous.com/modperlrpm/distrib/libapreq-0.31_include.patch
http://localhost/
http://localhost/

1.9 Installation Without Superuser Privileges
As you have already learned, mod_perl enabled Apache consists of two main components: Perl modules
and Apache itself. Let’s tackle the tasks one at a time.

I’ll show a complete installation example using stas as a username, assuming that /home/stas is the home
directory of that user.

1.9.1 Installing Perl Modules into a Directory of Choice

Since without superuser permissions you aren’t allowed to install modules into system directories like
/usr/lib/perl5, you need to find out how to install the modules under your home directory. It’s easy.

First you have to decide where to install the modules. The simplest approach is to simulate the portion of
the / file system relevant to Perl under your home directory. Actually we need only two directories:

 /home/stas/bin
 /home/stas/lib

We don’t have to create them, since that will be done automatically when the first module is installed.
99% of the files will go into the lib directory. Occasionally, when some module distribution comes with
Perl scripts, these will go into the bin directory. This directory will be created if it doesn’t exist.

Let’s install the CGI.pm package, which includes a few other CGI::* modules. As usual, download the
package from the CPAN repository, unpack it and chdir to the newly-created directory.

Now do a standard perl Makefile.PL to prepare a Makefile, but this time tell MakeMaker to use
your Perl installation directories instead of the defaults.

 % perl Makefile.PL PREFIX=/home/stas

PREFIX=/home/stas is the only part of the installation process which is different from usual. Note
that if you don’t like how MakeMaker chooses the rest of the directories, or if you are using an older
version of it which requires an explicit declaration of all the target directories, you should do this:

 % perl Makefile.PL PREFIX=/home/stas \
 INSTALLPRIVLIB=/home/stas/lib/perl5 \
 INSTALLSCRIPT=/home/stas/bin \
 INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
 INSTALLBIN=/home/stas/bin \
 INSTALLMAN1DIR=/home/stas/lib/perl5/man \
 INSTALLMAN3DIR=/home/stas/lib/perl5/man3

The rest is as usual:

 % make
 % make test
 % make install

15 Feb 201438

1.9 Installation Without Superuser Privileges

make install installs all the files in the private repository. Note that all the missing directories are
created automatically, so there is no need to create them in first place. Here (slightly edited) is what it does
:

 Installing /home/stas/lib/perl5/CGI/Cookie.pm
 Installing /home/stas/lib/perl5/CGI.pm
 Installing /home/stas/lib/perl5/man3/CGI.3
 Installing /home/stas/lib/perl5/man3/CGI::Cookie.3
 Writing /home/stas/lib/perl5/auto/CGI/.packlist
 Appending installation info to /home/stas/lib/perl5/perllocal.pod

If you have to use the explicit target parameters, instead of a single PREFIX parameter, you will find it
useful to create a file called for example ~/.perl_dirs (where ~ is /home/stas in our example) contain-
ing:

 PREFIX=/home/stas \
 INSTALLPRIVLIB=/home/stas/lib/perl5 \
 INSTALLSCRIPT=/home/stas/bin \
 INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
 INSTALLBIN=/home/stas/bin \
 INSTALLMAN1DIR=/home/stas/lib/perl5/man \
 INSTALLMAN3DIR=/home/stas/lib/perl5/man3

From now on, any time you want to install perl modules locally you simply execute:

 % perl Makefile.PL ‘cat ~/.perl_dirs‘
 % make
 % make test
 % make install

Using this method you can easily maintain several Perl module repositories. For example, you could have
one for production Perl and another for development:

 % perl Makefile.PL ‘cat ~/.perl_dirs.production‘

or

 % perl Makefile.PL ‘cat ~/.perl_dirs.develop‘

1.9.2 Making Your Scripts Find the Locally Installed Modules

Perl modules are generally placed in four main directories. To find these directories, execute:

 % perl -V

The output contains important information about your Perl installation. At the end you will see:

3915 Feb 2014

1.9.2 Making Your Scripts Find the Locally Installed Modulesmod_perl Installation

 Characteristics of this binary (from libperl):
 Built under linux
 Compiled at Apr 6 1999 23:34:07
 @INC:
 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

It shows us the content of the Perl special variable @INC, which is used by Perl to look for its modules. It
is equivalent to the PATH environment variable in Unix shells which is used to find executable programs.

Notice that Perl looks for modules in the . directory too, which stands for the current directory. It’s the last
entry in the above output.

Of course this example is from version 5.00503 of Perl installed on my x86 architecture PC running
Linux. That’s why you see i386-linux and 5.00503. If your system runs a different version of Perl, operat-
ing system, processor or chipset architecture, then some of the directories will have different names.

I also have a perl-5.6.0 installed under /usr/local/lib/ so when I do:

 % /usr/local/bin/perl5.6.0 -V

I see:

 @INC:
 /usr/local/lib/perl5/5.6.0/i586-linux
 /usr/local/lib/perl5/5.6.0
 /usr/local/lib/site_perl/5.6.0/i586-linux
 /usr/local/lib/site_perl

Note that it’s still Linux, but the newer Perl version uses the version of my Pentium processor (thus the
i586 and not i386). This makes use of compiler optimizations for Pentium processors when the binary Perl
extensions are created.

All the platform specific files, such as compiled C files glued to Perl with XS or SWIG, are supposed to go
into the i386-linux -like directories.

Important: As we have installed the Perl modules into non-standard directories, we have to let Perl know
where to look for the four directories. There are two ways to accomplish this. You can either set the
PERL5LIB environment variable, or you can modify the @INC variable in your scripts.

Assuming that we use perl-5.00503, in our example the directories are:

 /home/stas/lib/perl5/5.00503/i386-linux
 /home/stas/lib/perl5/5.00503
 /home/stas/lib/perl5/site_perl/5.005/i386-linux
 /home/stas/lib/perl5/site_perl/5.005

15 Feb 201440

1.9.2 Making Your Scripts Find the Locally Installed Modules

As mentioned before, you find the exact directories by executing perl -V and replacing the global Perl
installation’s base directory with your home directory.

Modifying @INC is quite easy. The best approach is to use the lib module (pragma), by adding the
following snippet at the top of any of your scripts that require the locally installed modules.

 use lib qw(/home/stas/lib/perl5/5.00503/
 /home/stas/lib/perl5/site_perl/5.005);

Another way is to write code to modify @INC explicitly:

 BEGIN {
 unshift @INC,
 qw(/home/stas/lib/perl5/5.00503
 /home/stas/lib/perl5/5.00503/i386-linux
 /home/stas/lib/perl5/site_perl/5.005
 /home/stas/lib/perl5/site_perl/5.005/i386-linux);
 }

Note that with the lib module we don’t have to list the corresponding architecture specific directories,
since it adds them automatically if they exist (to be exact, when $dir/$archname/auto exists).

Also, notice that both approaches prepend the directories to be searched to @INC. This allows you to
install a more recent module into your local repository and Perl will use it instead of the older one installed
in the main system repository.

Both approaches modify the value of @INC at compilation time. The lib module uses the BEGIN block
as well, but internally.

Now, let’s assume the following scenario. I have installed the LWP package in my local repository. Now I
want to install another module (e.g. mod_perl) and it has LWP listed in its prerequisites list. I know that I
have LWP installed, but when I run perl Makefile.PL for the module I’m about to install I’m told
that I don’t have LWP installed.

There is no way for Perl to know that we have some locally installed modules. All it does is search the
directories listed in @INC, and since the latter contains only the default four directories (plus the . direc-
tory), it cannot find the locally installed LWP package. We cannot solve this problem by adding code to
modify @INC, but changing the PERL5LIB environment variable will do the trick. If you are using
t?csh for interactive work, do this:

 setenv PERL5LIB /home/stas/lib/perl5/5.00503:
 /home/stas/lib/perl5/site_perl/5.005

It should be a single line with directories separated by colons (:) and no spaces. If you are a (ba)?sh
user, do this:

 export PERL5LIB=/home/stas/lib/perl5/5.00503:
 /home/stas/lib/perl5/site_perl/5.005

4115 Feb 2014

1.9.2 Making Your Scripts Find the Locally Installed Modulesmod_perl Installation

Again make it a single line. If you use bash you can use multi-line commands by terminating split lines
with a backslash (\), like this:

 export PERL5LIB=/home/stas/lib/perl5/5.00503:\
 /home/stas/lib/perl5/site_perl/5.005

As with use lib , perl automatically prepends the architecture specific directories to @INC if those exist.

When you have done this, verify the value of the newly configured @INC by executing perl -V as
before. You should see the modified value of @INC:

 % perl -V

 Characteristics of this binary (from libperl):
 Built under linux
 Compiled at Apr 6 1999 23:34:07
 %ENV:
 PERL5LIB="/home/stas/lib/perl5/5.00503:
 /home/stas/lib/perl5/site_perl/5.005"
 @INC:
 /home/stas/lib/perl5/5.00503/i386-linux
 /home/stas/lib/perl5/5.00503
 /home/stas/lib/perl5/site_perl/5.005/i386-linux
 /home/stas/lib/perl5/site_perl/5.005
 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

When everything works as you want it to, add these commands to your .tcshrc or .bashrc file. The next
time you start a shell, the environment will be ready for you to work with the new Perl.

Note that if you have a PERL5LIB setting, you don’t need to alter the @INC value in your scripts. But if
for example someone else (who doesn’t have this setting in the shell) tries to execute your scripts, Perl will
fail to find your locally installed modules. The best example is a crontab script that might use a different
SHELL environment and therefore the PERL5LIB setting won’t be available to it.

So the best approach is to have both the PERL5LIB environment variable and the explicit @INC exten-
sion code at the beginning of the scripts as described above.

1.9.3 The CPAN.pm Shell and Locally Installed Modules

As we saw in the section describing the usage of the CPAN.pm shell to install mod_perl, it saves a great
deal of time. It does the job for us, even detecting the missing modules listed in prerequisites, fetching and
installing them. So you might wonder whether you can use CPAN.pm to maintain your local repository as
well.

When you start the CPAN interactive shell, it searches first for the user’s private configuration file and
then for the system wide one. When I’m logged as user stas the two files on my setup are:

15 Feb 201442

1.9.3 The CPAN.pm Shell and Locally Installed Modules

 /home/stas/.cpan/CPAN/MyConfig.pm
 /usr/lib/perl5/5.00503/CPAN/Config.pm

If there is no CPAN shell configured on your system, when you start the shell for the first time it will ask
you a dozen configuration questions and then create the Config.pm file for you.

If you’ve got it already system-wide configured, you should have a
/usr/lib/perl5/5.00503/CPAN/Config.pm . If you have a different Perl version, alter the path
to use your Perl’s version number, when looking up the file. Create the directory (mkdir -p creates the
whole path at once) where the local configuration file will go:

 % mkdir -p /home/stas/.cpan/CPAN

Now copy the system wide configuration file to your local one.

 % cp /usr/lib/perl5/5.00503/CPAN/Config.pm \
 /home/stas/.cpan/CPAN/MyConfig.pm

The only thing left is to change the base directory of .cpan in your local file to the one under your home
directory. On my machine I replace /usr/src/.cpan (that’s where my system’s .cpan directory
resides) with /home/stas . I use Perl of course!

 % perl -pi -e ’s|/usr/src|/home/stas|’ \
 /home/stas/.cpan/CPAN/MyConfig.pm

Now you have the local configuration file ready, you have to tell it what special parameters you need to
pass when executing the perl Makefile.PL stage.

Open the file in your favorite editor and replace line:

 ’makepl_arg’ => q[],

with:

 ’makepl_arg’ => q[PREFIX=/home/stas],

Now you’ve finished the configuration. Assuming that you are logged in as the same user you have
prepared the local installation for (stas in our example), start it like this:

 % perl -MCPAN -e shell

From now on any module you try to install will be installed locally. If you need to install some system
modules, just become the superuser and install them in the same way. When you are logged in as the supe-
ruser, the system-wide configuration file will be used instead of your local one.

If you have used more than just the PREFIX variable, modify MyConfig.pm to use them. For example if
you have used these variables:

4315 Feb 2014

1.9.3 The CPAN.pm Shell and Locally Installed Modulesmod_perl Installation

 perl Makefile.PL PREFIX=/home/stas \
 INSTALLPRIVLIB=/home/stas/lib/perl5 \
 INSTALLSCRIPT=/home/stas/bin \
 INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
 INSTALLBIN=/home/stas/bin \
 INSTALLMAN1DIR=/home/stas/lib/perl5/man \
 INSTALLMAN3DIR=/home/stas/lib/perl5/man3

then replace PREFIX=/home/stas in the line:

 ’makepl_arg’ => q[PREFIX=/home/stas],

with all the variables from above, so that the line becomes:

 ’makepl_arg’ => q[PREFIX=/home/stas \
 INSTALLPRIVLIB=/home/stas/lib/perl5 \
 INSTALLSCRIPT=/home/stas/bin \
 INSTALLSITELIB=/home/stas/lib/perl5/site_perl \
 INSTALLBIN=/home/stas/bin \
 INSTALLMAN1DIR=/home/stas/lib/perl5/man \
 INSTALLMAN3DIR=/home/stas/lib/perl5/man3],

If you arrange all the above parameters in one line, you can remove the backslashes (\).

1.9.4 Making a Local Apache Installation

Just like with Perl modules, if you don’t have permissions to install files into the system area you have to
install them locally under your home directory. It’s almost the same as a plain installation, but you have to
run the server listening to a port number greater than 1024 since only root processes can listen to lower
numbered ports.

Another important issue you have to resolve is how to add startup and shutdown scripts to the directories
used by the rest of the system services. You will have to ask your system administrator to assist you with
this issue.

To install Apache locally, all you have to do is to tell .configure in the Apache source directory what
target directories to use. If you are following the convention that I use, which makes your home directory
look like the / (base) directory, the invocation parameters would be:

 ./configure --prefix=/home/stas

Apache will use the prefix for the rest of its target directories instead of the default
/usr/local/apache . If you want to see what they are, before you proceed add the --show-layout
option:

 ./configure --prefix=/home/stas --show-layout

You might want to put all the Apache files under /home/stas/apache following Apache’s conven-
tion:

15 Feb 201444

1.9.4 Making a Local Apache Installation

 ./configure --prefix=/home/stas/apache

If you want to modify some or all of the names of the automatically created directories:

 ./configure --prefix=/home/stas/apache \
 --sbindir=/home/stas/apache/sbin
 --sysconfdir=/home/stas/apache/etc
 --localstatedir=/home/stas/apache/var \
 --runtimedir=/home/stas/apache/var/run \
 --logfiledir=/home/stas/apache/var/logs \
 --proxycachedir=/home/stas/apache/var/proxy

That’s all!

Also remember that you can start the script only under a user and group you belong to. You must set the
User and Group directives in httpd.conf to appropriate values.

1.9.5 Manual Local mod_perl Enabled Apache Installation

Now when we have learned how to install local Apache and Perl modules separately, let’s see how to
install mod_perl enabled Apache in our home directory. It’s almost as simple as doing each one separately,
but there is one wrinkle you need to know about which I’ll mention at the end of this section.

Let’s say you have unpacked the Apache and mod_perl sources under /home/stas/src and they look like
this:

 % ls /home/stas/src
 /home/stas/src/apache_1.3.xx
 /home/stas/src/mod_perl-1.xx

where xx are the version numbers as usual. You want the Perl modules from the mod_perl package to be
installed under /home/stas/lib/perl5 and the Apache files to go under /home/stas/apache. The following
commands will do that for you:

 % perl Makefile.PL \
 PREFIX=/home/stas \
 APACHE_PREFIX=/home/stas/apache \
 APACHE_SRC=../apache_1.3.xx/src \
 DO_HTTPD=1 \
 USE_APACI=1 \
 EVERYTHING=1
 % make && make test && make install
 % cd ../apache_1.3.xx
 % make install

If you need some parameters to be passed to the .configure script, as we saw in the previous section
use APACI_ARGS. For example:

4515 Feb 2014

1.9.5 Manual Local mod_perl Enabled Apache Installationmod_perl Installation

 APACI_ARGS=’--sbindir=/home/stas/apache/sbin, \
 --sysconfdir=/home/stas/apache/etc, \
 --localstatedir=/home/stas/apache/var, \
 --runtimedir=/home/stas/apache/var/run, \
 --logfiledir=/home/stas/apache/var/logs, \
 --proxycachedir=/home/stas/apache/var/proxy’

Note that the above multiline splitting will work only with (ba)?sh , t?csh users will have to list all the
parameters on a single line.

Basically the installation is complete. The only remaining problem is the @INC variable. This won’t be
correctly set if you rely on the PERL5LIB environment variable unless you set it explicitly in a startup
file which is require ’d before loading any other module that resides in your local repository. A much
nicer approach is to use the lib pragma as we saw before, but in a slightly different way--we use it in the
startup file and it affects all the code that will be executed under mod_perl handlers. For example:

 PerlRequire /home/stas/apache/perl/startup.pl

where startup.pl starts with:

 use lib qw(/home/stas/lib/perl5/5.00503/
 /home/stas/lib/perl5/site_perl/5.005);

Note that you can still use the hard-coded @INC modifications in the scripts themselves, but be aware that
scripts modify @INC in BEGIN blocks and mod_perl executes the BEGIN blocks only when it performs
script compilation. As a result, @INC will be reset to its original value after the scripts are compiled and
the hard-coded settings will be forgotten. See the section ’@INC and mod_perl’ for more information.

The only place you can alter the "original" value is during the server configuration stage either in the
startup file or by putting

 PerlSetEnv Perl5LIB \
 /home/stas/lib/perl5/5.00503/:/home/stas/lib/perl5/site_perl/5.005

in httpd.conf, but the latter setting will be ignored if you use the PerlTaintcheck setting, and I hope
you do use it.

The rest of the mod_perl configuration and use is just the same as if you were installing mod_perl as supe-
ruser.

1.9.5.1 Resource Usage

Another important thing to keep in mind is the consumption of system resources. mod_perl is memory
hungry. If you run a lot of mod_perl processes on a public, multiuser machine, most likely the system
administrator of this machine will ask you to use less resources and may even shut down your mod_perl
server and ask you to find another home for it. You have a few options:

Reduce resources usage (see Preventing Your Processes from Growing).

15 Feb 201446

1.9.5 Manual Local mod_perl Enabled Apache Installation

Ask your ISP’s system administrator whether they can setup a dedicated machine for you, so that you
will be able to install as much memory as you need. If you get a dedicated machine the chances are
that you will want to have root access, so you may be able to manage the administration yourself.
Then you should consider keeping on the list of the system administrator’s responsibilities the
following items: a reliable electricity supply and network link. And of course making sure that the
important security patches get applied and the machine is configured to be secure. Finally having the
machine physically protected, so no one will turn off the power or break it.

Look for another ISP with lots of resources or one that supports mod_perl. You can find a list of these
ISPs on this site.

1.9.6 Local mod_perl Enabled Apache Installation with CPAN.pm

Again, CPAN makes installation and upgrades simpler. You have seen how to install a mod_perl enabled
server using CPAN.pm’s interactive shell. You have seen how to install Perl modules and Apache locally.
Now all you have to do is to merge these techniques into a single "local mod_perl Enabled Apache Instal-
lation with CPAN.pm" technique.

Assuming that you have configured CPAN.pm to install Perl modules locally, the installation is very
simple. Start the CPAN.pm shell, set the arguments to be passed to perl Makefile.PL (modify the
example setting to suit your needs), and tell CPAN.pm to do the rest for you:

 % perl -MCPAN -eshell
 cpan> o conf makepl_arg ’DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
 PREFIX=/home/stas APACHE_PREFIX=/home/stas/apache’
 cpan> install mod_perl

When you use CPAN.pm for local installations, after the mod_perl installation is complete you must make
sure that the value of makepl_arg is restored to its original value.

The simplest way to do this is to quit the interactive shell by typing quit and reenter it. But if you insist
here is how to make it work without quitting the shell. You really want to skip this :)

If you want to continue working with CPAN *without* quitting the shell, you must:

1. remember the value of makepl_arg
2. change it to suit your new installation
3. build and install mod_perl
4. restore it after completing mod_perl installation

this is quite a cumbersome task as of this writing, but I believe that CPAN.pm will eventually be improved
to handle this more easily.

So if you are still with me, start the shell as usual:

 % perl -MCPAN -eshell

4715 Feb 2014

1.9.6 Local mod_perl Enabled Apache Installation with CPAN.pmmod_perl Installation

First, read the value of the makepl_arg :

 cpan> o conf makepl_arg

 PREFIX=/home/stas

It will be something like PREFIX=/home/stas if you configured CPAN.pm to install modules locally.
Save this value:

 cpan> o conf makepl_arg.save PREFIX=/home/stas

Second, set a new value, to be used by the mod_perl installation process. (You can add parameters to this
line, or remove them, according to your needs.)

 cpan> o conf makepl_arg ’DO_HTTPD=1 USE_APACI=1 EVERYTHING=1 \
 PREFIX=/home/stas APACHE_PREFIX=/home/stas/apache’

Third, let CPAN.pm build and install mod_perl for you:

 cpan> install mod_perl

Fourth, reset the original value to makepl_arg . We do this by printing the value of the saved variable
and assigning it to makepl_arg .

 cpan> o conf makepl_arg.save

 PREFIX=/home/stas

 cpan> o conf makepl_arg PREFIX=/home/stas

Not so neat, but a working solution. You could have written the value on a piece of paper instead of saving
it to makepl_arg.save , but you are more likely to make a mistake that way.

1.10 Automating installation
Apache Builder

James G Smith wrote an Apache Builder, that can install a combination of Apache, mod_perl, and
mod_ssl -- it also has limited support for including mod_php in the mix. The builder is available from
James’ CPAN directory: $CPAN/authors/id/J/JS/JSMITH/ in the package build-apache-xx.tar.gz.

Aphid Apache Installer

Aphid provides a facility for bootstrapping SSL-enabled Apache web servers (mod_ssl) with an
embedded Perl interpreter (mod_perl). Source is downloaded from the Internet, compiled, and the
resulting system is installed in the directory you specify.

http://sourceforge.net/projects/aphid/

15 Feb 201448

1.10 Automating installation

http://sourceforge.net/projects/aphid/

1.11 How can I tell whether mod_perl is running?
There are a few ways. In older versions of apache (< 1.3.6 ?) you could check that by running httpd
-v , but it no longer works. Now you should use httpd -l . Please note that it is not enough to have it
installed, you have to configure it for mod_perl and restart the server too.

1.11.1 Checking the error_log

When starting the server, just check the error_log file for the following message:

 [Thu Dec 3 17:27:52 1998] [notice] Apache/1.3.1 (Unix) mod_perl/1.15 configured
 ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
 -- resuming normal operations

1.11.2 Testing by viewing /perl-status

Assuming that you have configured the <Location /perl-status> section in the server configuration file
fetch: http://www.example.com/perl-status using your favorite Mozilla browser :-)

You should see something like this:

 Embedded Perl version 5.00503 for Apache/1.3.9 (Unix) mod_perl/1.21
 process 50880, running since Mon Dec 6 14:31:45 1999

1.11.3 Testing via telnet

Knowing the port you have configured apache to listen on, you can use telnet to talk directly to it.

Assuming that your mod_perl enabled server listens to port 8080, telnet to your server at port 8080, and
type HEAD / HTTP/1.0 then press the ENTER key TWICE:

 % telnet localhost 8080<ENTER>
 HEAD / HTTP/1.0<ENTER><ENTER>

You should see a response like this:

 HTTP/1.1 200 OK
 Date: Mon, 06 Dec 1999 12:27:52 GMT
 Server: Apache/1.3.9 (Unix) mod_perl/1.21
 Connection: close
 Content-Type: text/html

 Connection closed.

The line

 Server: Apache/1.3.9 (Unix) mod_perl/1.21

4915 Feb 2014

1.11 How can I tell whether mod_perl is running?mod_perl Installation

http://www.example.com/perl-status

confirms that you have mod_perl installed and its version is 1.21 .

However, just because you have got mod_perl linked in there, that does not mean that you have configured
your server to handle Perl scripts with mod_perl. You will find configuration assistance at ModPerlCon-
figuration

1.11.4 Testing via a CGI script

Another method is to invoke a CGI script which dumps the server’s environment.

I assume that you have configured the server so that scripts running under location /perl/ are handled by
the Apache::Registry handler and that you have the PerlSendHeader directive set to On.

Copy and paste the script below (no need for a shebang line!). Let’s say you name it test.pl, save it at the
root of the CGI scripts and CGI root is mapped directly to the /perl location of your server.

 print "Content-type: text/plain\r\n\r\n";
 print "Server’s environment\n";
 foreach (keys %ENV) {
 print "$_\t$ENV{$_}\n";
 }

Make it readable and executable by server (you may need to tune these permissions on a public host):

 % chmod a+rx test.pl

Now fetch the URL http://www.example.com:8080/perl/test.pl (replace 8080 with the
port your mod_perl enabled server is listening to). You should see something like this (the output has been
edited):

 SERVER_SOFTWARE Apache/1.3.10-dev (Unix) mod_perl/1.21_01-dev
 GATEWAY_INTERFACE CGI-Perl/1.1
 DOCUMENT_ROOT /home/httpd/docs
 REMOTE_ADDR 127.0.0.1
 [more environment variables snipped]
 MOD_PERL mod_perl/1.21_01-dev
 [more environment variables snipped]

If you see the that the value of GATEWAY_INTERFACE is CGI-Perl/1.1 everything is OK.

If there is an error you might have to add a shebang line #!/usr/bin/perl as a first line of the CGI
script and then try it again. If you see:

 GATEWAY_INTERFACE CGI/1.1

it means that you have configured this location to run under mod_cgi and not mod_perl.

Also note that there is a MOD_PERL environment variable if you run under a mod_perl handler, it’s set to
the mod_perl/x.xx string, where x.xx is the version number of mod_perl.

15 Feb 201450

1.11.4 Testing via a CGI script

http://www.example.com:8080/perl/test.pl

Based on this difference you can write code like this:

 BEGIN {
 # perl5.004 or better is a must under mod_perl
 require 5.004 if $ENV{MOD_PERL};
 }

You might wonder why in the world you would need to know what handler you are running under. Well,
for example you will want to use Apache::exit() and not CORE::exit() in your modules, but if
you think that your script might be used in both environments (mod_cgi and mod_perl) you will have to
override the exit() subroutine and to make decision what method to use at the runtime.

Note that if you run scripts under the Apache::Registry handler, it takes care of overriding the
exit() call for you, so it’s not an issue. For reasons and implementations see: Terminating requests and
processes, exit() function and also Writing Mod Perl scripts and Porting plain CGIs to it.

1.11.5 Testing via lwp-request

Yet another one. Why do I show all these approaches? While here they serve a very simple purpose, they
can be helpful in other situations.

Assuming you have the libwww-perl (LWP) package installed (you will need it installed in order to
pass mod_perl’s make test anyway):

 % lwp-request -e -d http://www.example.com

Will show you all the headers. The -d option disables printing the response content.

 % lwp-request -e -d http://www.example.com | egrep ’^Server:’

To see the server version only.

Specify the port number if your server is listening to a port other than port 80. For example:
http://www.example.com:8080 .

This technique works only if ServerTokens directive is set to Full or not specified in httpd.conf.
That’s because this directive controls whether the components information is displayed or not.

1.12 General Notes

1.12.1 Is it possible to run mod_perl enabled Apache as suExec?

The answer is No. The reason is that you can’t "suid" a part of a process. mod_perl lives inside the Apache
process, so its UID and GID are the same as the Apache process.

You have to use mod_cgi if you need this functionality.

5115 Feb 2014

1.12 General Notesmod_perl Installation

http://www.example.com:8080/

Another solution is to use a crontab to call some script that will check whether there is something to do
and will execute it. The mod_perl script will be able to create and update this todo list.

1.12.2 Should I Rebuild mod_perl if I have Upgraded Perl?

Yes, you should. You have to rebuild the mod_perl enabled server since it has a hard-coded @INC vari-
able. This points to the old Perl and it is probably linked to an old libperl library. If for some reason
you need to keep the old Perl version around you can modify @INC in the startup script, but it is better to
build afresh to save you getting into a mess.

1.12.3 Perl installation requirements

Make sure you have Perl installed! The latest stable version if possible. Minimum perl 5.004! If you don’t
have it, install it. Follow the instructions in the distribution’s INSTALL file.

During the configuration stage (while running ./Configure), to be able to dynamically load Perl
module extensions, make sure you answer YES to the question:

 Do you wish to use dynamic loading? [y]

1.12.4 mod_auth_dbm nuances

If you are a mod_auth_dbm or mod_auth_db user you may need to edit Perl’s Config module.
When Perl is configured it attempts to find libraries for ndbm, gdbm, db, etc., for the DB*_File modules.
By default, these libraries are linked with Perl and remembered by the Config module. When mod_perl
is configured with apache, the ExtUtils::Embed module requires these libraries to be linked with
httpd so Perl extensions will work under mod_perl. However, the order in which these libraries are stored
in Config.pm may confuse mod_auth_db* . If mod_auth_db* does not work with mod_perl, take a
look at the order with the following command:

 % perl -V:libs

Here’s an example:

 libs=’-lnet -lnsl_s -lgdbm -lndbm -ldb -ldld -lm -lc -lndir -lcrypt’;

If -lgdbm or -ldb is before -lndbm (as it is in the example) edit Config.pm and move -lgdbm and
-ldb to the end of the list. Here’s how to find Config.pm:

 % perl -MConfig -e ’print "$Config{archlibexp}/Config.pm\n"’

Under Solaris, another solution for building Apache/mod_perl+mod_auth_dbm is to remove the DBM and
NDBM "emulation" from libgdbm.a. It seems that Solaris already provides its own DBM and NDBM, and
in our installation we found there’s no reason to build GDBM with them.

In our Makefile for GDBM, we changed

15 Feb 201452

1.12.2 Should I Rebuild mod_perl if I have Upgraded Perl?

 OBJS = $(DBM_OF) $(NDBM_OF) $(GDBM_OF)

to

 OBJS = $(GDBM_OF)

Rebuild libgdbm before Apache/mod_perl.

1.12.5 Stripping Apache to make it almost a Perl-server

Since most of the functionality that various apache mod_* modules provide is implemented in the
Apache::{*} Perl modules, it was reported that one can build an Apache server with mod_perl only. If
you can reduce the requirements to whatever mod_perl can handle, you can eliminate almost every other
module. Then basically you will have a Perl-server, with C code to handle the tricky HTTP bits. The only
module you will need to leave in is mod_actions .

1.12.6 Saving the config.status Files with mod_perl, php, ssl and Other
Components

Typically, when building the bloated Apache that sits behind Squid or whatever, you need mod_perl, php,
mod_ssl and the rest. As you install each they typically overwrite each other’s config.status files.
Save them after each step, so you will be able to reuse them later.

1.12.7 What Compiler Should Be Used to Build mod_perl?

All Perl modules that use C extensions must be compiled using the same compiler that your copy of Perl
was built with and the same compile options.

When you run perl Makefile.PL , a Makefile is created. This Makefile includes the same compilation
options that were used to build Perl itself. They are stored in the Config.pm module and can be displayed
with the Perl -V command. All these options are re-applied when compiling Perl modules.

If you use a different compiler to build Perl extensions, chances are that the options that a different
compiler uses won’t be the same, or they might be interpreted in a completely different way. So the code
either won’t compile or it will dump core when run or maybe it will behave in most unexpected ways.

Since mod_perl uses Perl, Apache and third party modules, and they all work together, it’s essential to use
the same compiler while building each of the components.

You shouldn’t worry about this when compiling Perl modules since Perl will choose what’s right automat-
ically. Unless you override things. If you do that, you are on your own...

Similarly, if you compile a non-Perl component separately, you should make sure to use both the same
compiler and the same options used to build Perl.

5315 Feb 2014

1.12.5 Stripping Apache to make it almost a Perl-servermod_perl Installation

1.12.8 Unescaping error_log

Starting from 1.3.30, the Apache logging API escapes everything that goes to error_log, therefore if
you’re annoyed by this feature during the development phase (as your error messages will be all messed
up) you can disable the escaping during the Apache build time:

 % CFLAGS="-DAP_UNSAFE_ERROR_LOG_UNESCAPED" ./configure ...

Or if you build a static perl

 % perl Makefile.PL ... PERL_EXTRA_CFLAGS=-DAP_UNSAFE_ERROR_LOG_UNESCAPED

Do not use that CFLAGS in production unless you know what you are doing.

1.13 OS Related Notes
Gary Shea <shea (at) xmission.com> discovered a nasty BSDI bug (seen in versions 2.1 and 3.0)
related to dynamic loading and found two workarounds:

It turns out that they use argv[0] to determine where to find the link tables at run-time, so if a
program either changes argv[0] , or does a chdir() (like Apache!) it can easily confuse the dynamic
loader. The short-term solutions to the problem are simple. Either of the following will work:

1) Call httpd with a full path, e.g. /opt/www/bin/httpd

2) Put the httpd you wish to run in a directory in your PATH before any other directory containing a
version of httpd, then call it as ’httpd’. Don’t use a relative path!

1.14 Pros and Cons of Building mod_perl as DSO
On modern Unix derivatives there is a nifty mechanism usually called dynamic linking/loading of
Dynamic Shared Objects (DSO), which provides a way to build a piece of program code in a special
format for loading in at run-time into the address space of an executable program.

As of Apache 1.3, the configuration system supports two optional features for taking advantage of the
modular DSO approach: compilation of the Apache core program into a DSO library for shared usage and
compilation of the Apache modules into DSO files for explicit loading at run-time.

Should you use this method? Read the pros and cons and decide for yourself.

Pros:

The server package is more flexible at run-time because the actual server process can be assembled at
run-time via LoadModule httpd.conf configuration commands instead of Configuration AddMod-
ule commands at build-time. For instance this way one is able to run different server instances (stan-
dard & SSL version, with and without mod_perl) with only one Apache installation.

15 Feb 201454

1.13 OS Related Notes

The server package can be easily extended with third-party modules even after installation. This is at
least a great benefit for vendor package maintainers who can create an Apache core package and
additional packages containing extensions like PHP4, mod_perl, mod_fastcgi, etc.

Easier Apache module prototyping because with the DSO/apxs pair you can both work outside the
Apache source tree and only need an apxs -i command followed by an apachectl restart to bring a new
version of your currently developed module into the running Apache server.

Cons:

The DSO mechanism cannot be used on every platform because not all operating systems support
dynamic loading of code into the address space of a program.

The server starts up approximately 20% slower because of the symbol resolving overhead the Unix
loader now has to do.

The server runs approximately 5% slower on some platforms because position independent code
(PIC) sometimes needs complicated assembler tricks for relative addressing which are not necessarily
as fast as absolute addressing.

Because DSO modules cannot be linked against other DSO-based libraries (ld -lfoo) on all platforms
(for instance a.out-based platforms usually don’t provide this functionality while ELF-based plat-
forms do) you cannot use the DSO mechanism for all types of modules. Or in other words, modules
compiled as DSO files are restricted to only use symbols from the Apache core, from the C library
(libc) and all other dynamic or static libraries used by the Apache core, or from static library archives
(libfoo.a) containing position independent code. The only way you can use other code is to either
make sure the Apache core itself already contains a reference to it, loading the code yourself via
dlopen() or enabling the SHARED_CHAIN rule while building Apache when your platform supports
linking DSO files against DSO libraries.

Under some platforms (many SVR4 systems) there is no way to force the linker to export all global
symbols for use in DSO’s when linking the Apache httpd executable program. But without the visi-
bility of the Apache core symbols no standard Apache module could be used as a DSO. The only
workaround here is to use the SHARED_CORE feature because this way the global symbols are
forced to be exported. As a consequence the Apache src/Configure script automatically enforces
SHARED_CORE on these platforms when DSO features are used in the Configuration file or on the
configure command line.

1.15 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

5515 Feb 2014

1.15 Maintainersmod_perl Installation

http://stason.org/

1.16 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201456

1.16 Authors

http://stason.org/

Table of Contents:
................. 11 mod_perl Installation
................... 21.1 Description
........... 21.2 A Summary of a Basic mod_perl Installation
................. 31.3 The Gory Details
.......... 31.3.1 Source Configuration (perl Makefile.PL ...)
............. 51.3.1.1 Configuration parameters
............... 51.3.1.1.1 APACHE_SRC
........ 61.3.1.1.2 DO_HTTPD, NO_HTTPD, PREP_HTTPD
............... 61.3.1.1.3 Callback Hooks
............... 71.3.1.1.4 EVERYTHING
............... 71.3.1.1.5 PERL_TRACE
........... 71.3.1.1.6 APACHE_HEADER_INSTALL
............. 81.3.1.1.7 PERL_STATIC_EXTS
............... 81.3.1.1.8 APACI_ARGS
.............. 81.3.1.1.9 APACHE_PREFIX
.............. 91.3.1.2 Environment Variables
......... 91.3.1.2.1 APACHE_USER and APACHE_GROUP
........... 91.3.1.3 Reusing Configuration Parameters
........ 101.3.1.4 Discovering Whether Some Option Was Configured
.......... 111.3.1.5 Using an Alternative Configuration File
............ 111.3.1.6 perl Makefile.PL Troubleshooting
.... 111.3.1.6.1 "A test compilation with your Makefile configuration failed..."
.......... 121.3.1.6.2 Missing or Misconfigured libgdbm.so
.......... 131.3.1.6.3 About gdbm, db and ndbm libraries
....... 131.3.1.6.4 Undefined reference to ‘PL_perl_destruct_level’
............ 131.3.1.6.5 Further notes on libperl.(a|so)
.............. 141.3.2 mod_perl Building (make)
.............. 141.3.2.1 make Troubleshooting
.......... 141.3.2.1.1 Undefined reference to ’Perl_newAV’
.......... 141.3.2.1.2 Unrecognized format specifier for...
............. 151.3.3 Built Server Testing (make test)
................ 151.3.3.1 Manual Testing
............. 161.3.3.2 make test Troubleshooting
............... 161.3.3.2.1 make test fails
...... 161.3.3.2.2 mod_perl.c is incompatible with this version of Apache
......... 161.3.3.2.3 make test......skipping test on this platform
...... 171.3.3.2.4 make test Fails Due to Misconfigured localhost Entry
.............. 171.3.4 Installation (make install)
........... 171.3.5 Building Apache and mod_perl by Hand
........... 181.4 Installation Scenarios for Standalone mod_perl
............... 191.4.1 The All-In-One Way
................ 191.4.2 The Flexible Way
............... 201.4.3 When DSO can be Used
..... 211.4.4 Build mod_perl as a DSO inside the Apache Source Tree via APACI

i15 Feb 2014

Table of Contents:mod_perl Installation

............... 211.4.4.1 libperl.so and libperl.a

...... 221.4.5 Build mod_perl as a DSO outside the Apache Source Tree via APXS

......... 221.5 Installation Scenarios for mod_perl and Other Components

.............. 231.5.1 mod_perl and mod_ssl (+openssl)

............ 251.5.2 mod_perl and mod_ssl Rolled from RPMs

............. 271.5.3 mod_perl and apache-ssl (+openssl)

................ 281.5.4 mod_perl and Stronghold

.............. 291.5.4.1 Note For Solaris 2.5 users

................ 291.5.5 mod_perl and mod_php

......... 301.6 mod_perl Installation with the CPAN.pm Interactive Shell

............... 321.7 Installing on multiple machines

........... 331.8 using RPM and other packages to install mod_perl

............. 331.8.1 A word on mod_perl RPM packages

.................. 331.8.2 Getting Started

............... 341.8.3 Compiling RPM source files

.............. 341.8.4 Mix and Match RPM and source

............ 341.8.5 Installing a single apache+mod_perl RPM

..... 351.8.6 Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl RPM

........... 371.8.7 Installing separate Apache and mod_perl RPMs

............... 371.8.8 Testing the mod_perl API

............. 381.9 Installation Without Superuser Privileges

.......... 381.9.1 Installing Perl Modules into a Directory of Choice

......... 391.9.2 Making Your Scripts Find the Locally Installed Modules

.......... 421.9.3 The CPAN.pm Shell and Locally Installed Modules

............. 441.9.4 Making a Local Apache Installation

......... 451.9.5 Manual Local mod_perl Enabled Apache Installation

................. 461.9.5.1 Resource Usage

........ 471.9.6 Local mod_perl Enabled Apache Installation with CPAN.pm

................. 481.10 Automating installation

............ 491.11 How can I tell whether mod_perl is running?

................ 491.11.1 Checking the error_log

.............. 491.11.2 Testing by viewing /perl-status

................. 491.11.3 Testing via telnet

................ 501.11.4 Testing via a CGI script

................ 511.11.5 Testing via lwp-request

................... 511.12 General Notes

........ 511.12.1 Is it possible to run mod_perl enabled Apache as suExec?

......... 521.12.2 Should I Rebuild mod_perl if I have Upgraded Perl?

.............. 521.12.3 Perl installation requirements

................ 521.12.4 mod_auth_dbm nuances

.......... 531.12.5 Stripping Apache to make it almost a Perl-server

.... 531.12.6 Saving the config.status Files with mod_perl, php, ssl and Other Components

......... 531.12.7 What Compiler Should Be Used to Build mod_perl?

................ 541.12.8 Unescaping error_log

.................. 541.13 OS Related Notes

............ 541.14 Pros and Cons of Building mod_perl as DSO

................... 551.15 Maintainers

15 Feb 2014ii

Table of Contents:

.................... 561.16 Authors

iii15 Feb 2014

Table of Contents:mod_perl Installation

	1€€mod_perl Installation
	1.1€€Description
	1.2€€A Summary of a Basic mod_perl Installation
	1.3€€The Gory Details
	1.3.1€€Source Configuration (perl Makefile.PL ...)
	1.3.1.1€€Configuration parameters
	1.3.1.1.1€€APACHE_SRC
	1.3.1.1.2€€DO_HTTPD, NO_HTTPD, PREP_HTTPD
	1.3.1.1.3€€Callback Hooks
	1.3.1.1.4€€EVERYTHING
	1.3.1.1.5€€PERL_TRACE
	1.3.1.1.6€€APACHE_HEADER_INSTALL
	1.3.1.1.7€€PERL_STATIC_EXTS
	1.3.1.1.8€€APACI_ARGS
	1.3.1.1.9€€APACHE_PREFIX

	1.3.1.2€€Environment Variables
	1.3.1.2.1€€APACHE_USER and APACHE_GROUP

	1.3.1.3€€Reusing Configuration Parameters
	1.3.1.4€€Discovering Whether Some Option Was Configured
	1.3.1.5€€Using an Alternative Configuration File
	1.3.1.6€€perl Makefile.PL Troubleshooting
	1.3.1.6.1€€"A test compilation with your Makefile configuration failed..."
	1.3.1.6.2€€Missing or Misconfigured libgdbm.so
	1.3.1.6.3€€About gdbm, db and ndbm libraries
	1.3.1.6.4€€Undefined reference to `PL_perl_destruct_level'
	1.3.1.6.5€€Further notes on libperl.(a|so)

	1.3.2€€mod_perl Building (make)
	1.3.2.1€€make Troubleshooting
	1.3.2.1.1€€Undefined reference to 'Perl_newAV'
	1.3.2.1.2€€Unrecognized format specifier for...

	1.3.3€€Built Server Testing (make test)
	1.3.3.1€€Manual Testing
	1.3.3.2€€make test Troubleshooting
	1.3.3.2.1€€make test fails
	1.3.3.2.2€€mod_perl.c is incompatible with this version of Apache
	1.3.3.2.3€€make test......skipping test on this platform
	1.3.3.2.4€€make test Fails Due to Misconfigured localhost Entry

	1.3.4€€Installation (make install)
	1.3.5€€Building Apache and mod_perl by Hand

	1.4€€Installation Scenarios for Standalone mod_perl
	1.4.1€€The All-In-One Way
	1.4.2€€The Flexible Way
	1.4.3€€When DSO can be Used
	1.4.4€€Build mod_perl as a DSO inside the Apache Source Tree via APACI
	1.4.4.1€€libperl.so and libperl.a

	1.4.5€€Build mod_perl as a DSO outside the Apache Source Tree via APXS

	1.5€€Installation Scenarios for mod_perl and Other Components
	1.5.1€€mod_perl and mod_ssl (+openssl)
	1.5.2€€mod_perl and mod_ssl Rolled from RPMs
	1.5.3€€mod_perl and apache-ssl (+openssl)
	1.5.4€€mod_perl and Stronghold
	1.5.4.1€€Note For Solaris 2.5 users

	1.5.5€€mod_perl and mod_php

	1.6€€mod_perl Installation with the CPAN.pm Interactive Shell
	1.7€€Installing on multiple machines
	1.8€€using RPM and other packages to install mod_perl
	1.8.1€€A word on mod_perl RPM packages
	1.8.2€€Getting Started
	1.8.3€€Compiling RPM source files
	1.8.4€€Mix and Match RPM and source
	1.8.5€€Installing a single apache+mod_perl RPM
	1.8.6€€Compiling libapreq (Apache::Request) with the RH 6.0 mod_perl RPM
	1.8.7€€Installing separate Apache and mod_perl RPMs
	1.8.8€€Testing the mod_perl API

	1.9€€Installation Without Superuser Privileges
	1.9.1€€Installing Perl Modules into a Directory of Choice
	1.9.2€€Making Your Scripts Find the Locally Installed Modules
	1.9.3€€The CPAN.pm Shell and Locally Installed Modules
	1.9.4€€Making a Local Apache Installation
	1.9.5€€Manual Local mod_perl Enabled Apache Installation
	1.9.5.1€€Resource Usage

	1.9.6€€Local mod_perl Enabled Apache Installation with CPAN.pm

	1.10€€Automating installation
	1.11€€How can I tell whether mod_perl is running?
	1.11.1€€Checking the error_log
	1.11.2€€Testing by viewing /perl-status
	1.11.3€€Testing via telnet
	1.11.4€€Testing via a CGI script
	1.11.5€€Testing via lwp-request

	1.12€€General Notes
	1.12.1€€Is it possible to run mod_perl enabled Apache as suExec?
	1.12.2€€Should I Rebuild mod_perl if I have Upgraded Perl?
	1.12.3€€Perl installation requirements
	1.12.4€€mod_auth_dbm nuances
	1.12.5€€Stripping Apache to make it almost a Perl-server
	1.12.6€€Saving the config.status Files with mod_perl, php, ssl and Other Components
	1.12.7€€What Compiler Should Be Used to Build mod_perl?
	1.12.8€€Unescaping error_log

	1.13€€OS Related Notes
	1.14€€Pros and Cons of Building mod_perl as DSO
	1.15€€Maintainers
	1.16€€Authors

