

1 mod_perl and Relational Databases

115 Feb 2014

1 mod_perl and Relational Databasesmod_perl and Relational Databases

1.1 Description
Creating dynamic websites with mod_perl often involves using relational databases. Apache::DBI,
which provides a database connections persistence which boosts the mod_perl performance, is explained
in this chapter.

1.2 Why Relational (SQL) Databases
Nowadays millions of people surf the Internet. There are millions of Terabytes of data lying around. To
manipulate the data new smart techniques and technologies were invented. One of the major inventions
was the relational database, which allows us to search and modify huge stores of data very quickly. We
use SQL (Structured Query Language) to access and manipulate the contents of these databases.

1.3 Apache::DBI - Initiate a persistent database connection
When people started to use the web, they found that they needed to write web interfaces to their databases.
CGI is the most widely used technology for building such interfaces. The main limitation of a CGI script
driving a database is that its database connection is not persistent - on every request the CGI script has to
re-connect to the database, and when the request is completed the connection is closed.

Apache::DBI was written to remove this limitation. When you use it, you have a database connection
which persists for the process’ entire life. So when your mod_perl script needs to use a database,
Apache::DBI provides a valid connection immediately and your script starts work right away without
having to initiate a database connection first.

This is possible only with CGI running under a mod_perl enabled server, since in this model the child
process does not quit when the request has been served.

It’s almost as straightforward as is it sounds; there are just a few things to know about and we will cover
them in this section.

1.3.1 Introduction

The DBI module can make use of the Apache::DBI module. When it loads, the DBI module tests if the
environment variable $ENV{MOD_PERL} is set, and if the Apache::DBI module has already been
loaded. If so, the DBI module will forward every connect() request to the Apache::DBI module.
Apache::DBI uses the ping() method to look for a database handle from a previous connect() request,
and tests if this handle is still valid. If these two conditions are fulfilled it just returns the database handle.

If there is no appropriate database handle or if the ping() method fails, Apache::DBI establishes a new
connection and stores the handle for later re-use. When the script is run again by a child that is still
connected, Apache::DBI just checks the cache of open connections by matching the host, username and
password parameters against it. A matching connection is returned if available or a new one is initiated
and then returned.

15 Feb 20142

1.1 Description

There is no need to delete the disconnect() statements from your code. They won’t do anything because
the Apache::DBI module overloads the disconnect() method with an empty one.

1.3.2 When should this module be used and when shouldn’t it be
used?

You will want to use this module if you are opening several database connections to the server.
Apache::DBI will make them persistent per child, so if you have ten children and each opens two
different connections (with different connect() arguments) you will have in total twenty opened and persis-
tent connections. After the initial connect() you will save the connection time for every connect() request
from your DBI module. This can be a huge benefit for a server with a high volume of database traffic.

You must not use this module if you are opening a special connection for each of your users (meaning that
the login arguments are different for each user). Each connection will stay persistent and after a certain
period the number of open connections will reach the allowed limit (configured by the database server)
and new database connection opening requests will be refused, rendering your service unusable for some
of your users.

If you want to use Apache::DBI but you have both situations on one machine, at the time of writing the
only solution is to run two Apache/mod_perl servers, one which uses Apache::DBI and one which does
not.

1.3.3 Configuration

After installing this module, the configuration is simple - add the following directive to httpd.conf

 PerlModule Apache::DBI

Note that it is important to load this module before any other Apache*DBI module and before the DBI
module itself!

You can skip preloading DBI, since Apache::DBI does that. But there is no harm in leaving it in, as
long as it is loaded after Apache::DBI.

1.3.4 Preopening DBI connections

If you want to make sure that a connection will already be opened when your script is first executed after a
server restart, then you should use the connect_on_init() method in the startup file to preload every
connection you are going to use. For example:

315 Feb 2014

1.3.2 When should this module be used and when shouldn’t it be used?mod_perl and Relational Databases

 Apache::DBI->connect_on_init
 ("DBI:mysql:myDB:myserver",
 "username",
 "passwd",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
);

As noted above, use this method only if you want all of apache to be able to connect to the database server
as one user (or as a very few users), i.e. if your user(s) can effectively share the connection. Do not use
this method if you want for example one unique connection per user.

Be warned though, that if you call connect_on_init() and your database is down, Apache children
will be delayed at server startup, trying to connect. They won’t begin serving requests until either they are
connected, or the connection attempt fails. Depending on your DBD driver, this can take several minutes!

1.3.5 Debugging Apache::DBI

If you are not sure if this module is working as advertised, you should enable Debug mode in the startup
script by:

 $Apache::DBI::DEBUG = 1;

Starting with ApacheDBI-0.84, setting $Apache::DBI::DEBUG = 1 will produce only minimal
output. For a full trace you should set $Apache::DBI::DEBUG = 2.

After setting the DEBUG level you will see entries in the error_log both when Apache::DBI initial-
izes a connection and when it returns one from its cache. Use the following command to view the log in
real time (your error_log might be located at a different path, it is set in the Apache configuration
files):

 tail -f /usr/local/apache/logs/error_log

I use alias (in tcsh) so I do not have to remember the path:

 alias err "tail -f /usr/local/apache/logs/error_log"

1.3.6 Database Locking Risks

Be very careful when locking the database (LOCK TABLE ...) or singular rows if you use
Apache::DBI or similar persistent connections. MySQL threads keep tables locked until the thread ends
(connection is closed) or the tables are unlocked. If your session die()’s while tables are locked, they will
stay neatly locked as your connection won’t be closed either.

See the section Handling the ’User pressed Stop button’ case for more information on prevention.

15 Feb 20144

1.3.5 Debugging Apache::DBI

1.3.7 Troubleshooting

1.3.7.1 The Morning Bug

The SQL server keeps a connection to the client open for a limited period of time. In the early days of
Apache::DBI developers were bitten by so called Morning bug, when every morning the first users to
use the site received a No Data Returned message, but after that everything worked fine.

The error was caused by Apache::DBI returning a handle of the invalid connection (the server closed it
because of a timeout), and the script was dying on that error. The ping() method was introduced to
solve this problem, but it didn’t worked properly till Apache::DBI version 0.82 was released. In that
version and afterwards ping() was called inside the eval block, which resolved the problem.

It’s possible that some DBD:: drivers don’t have the ping() method implemented. The Apache::DBI
manpage explains how to write one.

Another solution was found - to increase the timeout parameter when starting the database server.
Currently we startup MySQL server with a script safe_mysql, so we have modified it to use this option:

 nohup $ledir/mysqld [snipped other options] -O wait_timeout=172800

172800 seconds is equal to 48 hours. This change solves the problem, but the ping() method works prop-
erly in DBD::mysql as well.

1.3.7.2 Opening Connections With Different Parameters

When Apache::DBI receives a connection request, before it decides to use an existing cached connec-
tion it insists that the new connection be opened in exactly the same way as the cached connection. If you
have one script that sets AutoCommit and one that does not, Apache::DBI will make two different
connections. So if for example you have limited Apache to 40 servers at most, instead of having a
maximum of 40 open connections you may end up with 80.

So these two connect() calls will create two different connections:

 my $dbh = DBI->connect
 ("DBI:mysql:test:localhost", ’’, ’’,
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
) or die "Cannot connect to database: $DBI::errstr";

 my $dbh = DBI->connect
 ("DBI:mysql:test:localhost", ’’, ’’,
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 0, # don’t commit executes immediately
 }
) or die "Cannot connect to database: $DBI::errstr";

515 Feb 2014

1.3.7 Troubleshootingmod_perl and Relational Databases

Notice that the only difference is in the value of AutoCommit.

However, you are free to modify the handle immediately after you get it from the cache. So always initiate
connections using the same parameters and set AutoCommit (or whatever) afterwards. Let’s rewrite the
second connect call to do the right thing (not to create a new connection):

 my $dbh = DBI->connect
 ("DBI:mysql:test:localhost", ’’, ’’,
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
) or die "Cannot connect to database: $DBI::errstr";
 $dbh->{AutoCommit} = 0; # don’t commit if not asked to

When you aren’t sure whether you’re doing the right thing, turn debug mode on.

However, when the $dbh attribute is altered after connect() it affects all other handlers retrieving this
database handle. Therefore it’s best to restore the modified attributes to their original value at the end of
database handle usage. As of Apache::DBI version 0.88 the caller has to do it manually. The simplest
way to handle this is to localize the attributes when modifying them:

 my $dbh = DBI->connect(...) ...
 {
 local $dbh->{LongReadLen} = 40;
 }

Here the LongReadLen attribute overrides the value set in the connect() call or its default value only
within the enclosing block.

The problem with this approach is that prior to Perl version 5.8.0 this causes memory leaks. So the only
clean alternative for older Perl versions is to manually restore the dbh’s values:

 my @attrs = qw(LongReadLen PrintError);
 my %orig = ();

 my $dbh = DBI->connect(...) ...
 # store the values away
 $orig{$_} = $dbh->{$_} for @attrs;
 # do local modifications
 $dbh->{LongReadLen} = 40;
 $dbh->{PrintError} = 1;
 # do something with the filehandle
 # ...
 # now restore the values
 $dbh->{$_} = $orig{$_} for @attrs;

Another thing to remember is that with some database servers it’s possible to access more than one
database using the same database connection. MySQL is one of those servers. It allows you to use a fully
qualified table specification notation. So if there is a database foo with a table test and database bar with
its own table test, you can always use:

15 Feb 20146

1.3.7 Troubleshooting

 SELECT from foo.test ...

or:

 SELECT from bar.test ...

So no matter what database you have used in the database name string in the connect() call (e.g.:
DBI:mysql:foo:localhost) you can still access both tables by using a fully qualified syntax.

Alternatively you can switch databases with USE foo and USE bar, but this approach seems less
convenient, and therefore error-prone.

1.3.7.3 Cannot find the DBI handler

You must use DBI::connect() as in normal DBI usage to get your $dbh database handler. Using the
Apache::DBI does not eliminate the need to write proper DBI code. As the Apache::DBI man page
states, you should program as if you are not using Apache::DBI at all. Apache::DBI will override
the DBI methods where necessary and return your cached connection. Any disconnect() call will be
just ignored.

1.3.7.4 Apache:DBI does not work

Make sure you have it installed.

Make sure you configured mod_perl with either:

 PERL_CHILD_INIT=1 PERL_STACKED_HANDLERS=1

or

 EVERYTHING=1

Use the example script eg/startup.pl (in the mod_perl distribution). Remove the comment from the line.

 # use Apache::DebugDBI;

and adapt the connect string. Do not change anything in your scripts for use with Apache::DBI.

1.3.7.5 Skipping connection cache during server startup

Does your error_log look like this?

 10169 Apache::DBI PerlChildInitHandler
 10169 Apache::DBI skipping connection cache during server startup
 Database handle destroyed without explicit disconnect at
 /usr/lib/perl5/site_perl/5.005/Apache/DBI.pm line 29.

If so you are trying to open a database connection in the parent httpd process. If you do, children will each
get a copy of this handle, causing clashes when the handle is used by two processes at the same time. Each
child must have its own, unique, connection handle.

715 Feb 2014

1.3.7 Troubleshootingmod_perl and Relational Databases

To avoid this problem, Apache::DBI checks whether it is called during server startup. If so the module
skips the connection cache and returns immediately without a database handle.

You must use the Apache::DBI->connect_on_init() method in the startup file.

1.3.7.6 Debugging code which deploys DBI

To log a trace of DBI statement execution, you must set the DBI_TRACE environment variable. The
PerlSetEnv DBI_TRACE directive must appear before you load Apache::DBI and DBI.

For example if you use Apache::DBI, modify your httpd.conf with:

 PerlSetEnv DBI_TRACE "3=/tmp/dbitrace.log"
 PerlModule Apache::DBI

Replace 3 with the TRACE level you want. The traces from each request will be appended to
/tmp/dbitrace.log. Note that the logs might interleave if requests are processed concurrently.

Within your code you can control trace generation with the trace() method:

 DBI->trace($trace_level)
 DBI->trace($trace_level, $trace_filename)

DBI trace information can be enabled for all handles using this DBI class method. To enable trace infor-
mation for a specific handle use the similar $h->trace method.

Using the handle trace option with a $dbh or $sth is handy for limiting the trace info to the specific bit
of code that you are interested in.

Trace Levels:

0 - trace disabled.
1 - trace DBI method calls returning with results.
2 - trace method entry with parameters and exit with results.
3 - as above, adding some high-level information from the driver and also adding some internal
information from the DBI.
4 - as above, adding more detailed information from the driver and also including DBI mutex
information when using threaded perl.
5 and above - as above but with more and more obscure information.

1.4 mysql_use_result vs. mysql_store_result.
Since many mod_perl developers use mysql as their preferred SQL engine, these notes explain the differ-
ence between mysql_use_result() and mysql_store_result(). The two influence the speed
and size of the processes.

15 Feb 20148

1.4 mysql_use_result vs. mysql_store_result.

The DBD::mysql (version 2.0217) documentation includes the following snippet:

 mysql_use_result attribute: This forces the driver to use
 mysql_use_result rather than mysql_store_result. The former is
 faster and less memory consuming, but tends to block other
 processes. (That’s why mysql_store_result is the default.)

Think about it in client/server terms. When you ask the server to spoon-feed you the data as you use it, the
server process must buffer the data, tie up that thread, and possibly keep any database locks open for a
long time. So if you read a row of data and ponder it for a while, the tables you have locked are still
locked, and the server is busy talking to you every so often. That is mysql_use_result().

If you just suck down the whole dataset to the client, then the server is free to go about its business serving
other requests. This results in parallelism since the server and client are doing work at the same time,
rather than blocking on each other doing frequent I/O. That is mysql_store_result().

As the mysql manual suggests: you should not use mysql_use_result() if you are doing a lot of
processing for each row on the client side. This can tie up the server and prevent other threads from updat-
ing the tables.

1.5 Transactions Not Committed with MySQL InnoDB
Tables
Sometimes, when using MySQL’s InnoDB table type, you may notice that changes you committed in one
process don’t seem to be visible to other processes. You may not be aware that InnoDB tables use a
default approach to transactions that is actually more cautious than PostgreSQL or Oracle’s default. It’s
called "repeatable read", and the gist of it is that you don’t see updates made in other processes since your
last commit. There is an explanation of this here: http://dev.mysql.com/doc/mysql/en/InnoDB_Consis-
tent_read_example.html

This is actually not directly related to mod_perl, but you wouldn’t notice this issue when using CGI
because reconecting to the database on each request resets things just as doing a commit does. It is the
persistent connections used with mod_perl that make this issue visible.

If you suspect this is causing you problems, the simplest way to deal with it is to change the isolation level
to "read committed" -- which is more like what PostgreSQL and Oracle do by default -- with the "set
transaction" command, described here: http://dev.mysql.com/doc/mysql/en/InnoDB_transaction_isola-
tion.html

1.6 Optimize: Run Two SQL Engine Servers
Sometimes you end up running many databases on the same machine. These might have very varying
database needs (such as one db with sessions, very frequently updated but tiny amounts of data, and
another with large sets of data that’s hardly ever updated) you might be able to gain a lot by running two
differently configured databases on one server. One would benefit from lots of caching, the other would
probably reduce the efficiency of the cache but would gain from fast disk access. Different usage profiles
require vastly different performance needs.

915 Feb 2014

1.5 Transactions Not Committed with MySQL InnoDB Tablesmod_perl and Relational Databases

http://dev.mysql.com/doc/mysql/en/InnoDB_Consistent_read_example.html
http://dev.mysql.com/doc/mysql/en/InnoDB_Consistent_read_example.html
http://dev.mysql.com/doc/mysql/en/InnoDB_transaction_isolation.html
http://dev.mysql.com/doc/mysql/en/InnoDB_transaction_isolation.html

This is basically a similar idea to having two Apache servers, each optimized for its specific requirements.

1.7 Some useful code snippets to be used with relational
Databases
In this section you will find scripts, modules and code snippets to help you get started using relational
Databases with mod_perl scripts. Note that I work with mysql (http://www.mysql.com), so the code you
find here will work out of box with mysql. If you use some other SQL engine, it might work for you or it
might need some changes. YMMV.

1.7.1 Turning SQL query writing into a short and simple task

Having to write many queries in my CGI scripts, persuaded me to write a stand alone module that saves
me a lot of time in coding and debugging my code. It also makes my scripts much smaller and easier to
read. I will present the module here, with examples following:

Notice the DESTROY block at the end of the module, which makes various cleanups and allows this
module to be used under mod_perl and mod_cgi as well. Note that you will not get the benefit of persis-
tent database handles with mod_cgi.

1.7.2 The My::DB module

The code/My-DB.pm:

package My::DB;

use strict;
use 5.004;

use DBI;

use vars qw(%c);
use constant DEBUG => 0;

%c =
 (
 db => {
 DB_NAME => ’foo’,
 SERVER => ’localhost’,
 USER => ’put_username_here’,
 USER_PASSWD => ’put_passwd_here’,
 },

);

use Carp qw(croak verbose);
#local $SIG{__WARN__} = \&Carp::cluck;

untaint the path by explicit setting
local $ENV{PATH} = ’/bin:/usr/bin’;

15 Feb 201410

1.7 Some useful code snippets to be used with relational Databases

http://www.mysql.com/

#######
sub new {
 my $proto = shift;
 my $class = ref($proto) || $proto;
 my $self = {};

 # connect to the DB, Apache::DBI takes care of caching the connections
 # save into a dbh - Database handle object
 $self->{dbh} = DBI->connect("DBI:mysql:$c{db}{DB_NAME}::$c{db}{SERVER}",
 $c{db}{USER},
 $c{db}{USER_PASSWD},
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
)
 or die "Cannot connect to database: $DBI::errstr";

 # we want to die on errors if in debug mode
 $self->{dbh}->{RaiseError} = 1 if DEBUG;

 # init the sth - Statement handle object
 $self->{sth} = ’’;

 bless ($self, $class);

 $self;

} # end of sub new

##
 ###################################
 ### ###
 ### SQL Functions ###
 ### ###
 ###################################
##

print debug messages
sub d{
 # we want to print the trace in debug mode
 print "".join("", @_)."\n" if DEBUG;

} # end of sub d

##
return a count of matched rows, by conditions
#
$count = sql_count_matched($table_name,\@conditions,\@restrictions);
#
conditions must be an array so we can pass more than one column with
the same name.
#
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],

1115 Feb 2014

1.7.2 The My::DB modulemod_perl and Relational Databases

foo => [’<’,30],
);
#
The sub knows automatically to detect and quote strings
#
Restrictions are the list of restrictions like (’order by email’)
#
##########################
sub sql_count_matched{
 my $self = shift;
 my $table = shift || ’’;
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print the trace in debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT COUNT(*) FROM $table ";
 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= "WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
 $self->{sth} = $self->{dbh}->prepare($do_sql);
 $self->{sth}->execute();
 my ($count) = $self->{sth}->fetchrow_array;

 d("Result: $count") if DEBUG;

 $self->{sth}->finish;

 return $count;

} # end of sub sql_count_matched

##
return a count of matched distinct rows, by conditions
#
$count = sql_count_matched_distinct($table_name,\@conditions,\@restrictions);
#
conditions must be an array so we can path more than one column with
the same name.
#
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],

15 Feb 201412

1.7.2 The My::DB module

);
#
The sub knows automatically to detect and quote strings
#
Restrictions are the list of restrictions like (’order by email’)
#
This a slow implementation - because it cannot use select(*), but
brings all the records in first and then counts them. In the next
version of mysql there will be an operator ’select (distinct *)’
which will make things much faster, so we will just change the
internals of this sub, without changing the code itself.
#
##############################
sub sql_count_matched_distinct{
 my $self = shift;
 my $table = shift || ’’;
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print the trace in debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT DISTINCT * FROM $table ";
 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= "WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
$self->{sth} = $self->{dbh}->prepare($do_sql);
$self->{sth}->execute();

 my $count = @{$self->{dbh}->selectall_arrayref($do_sql)};

my ($count) = $self->{sth}->fetchrow_array;

 d("Result: $count") if DEBUG;

$self->{sth}->finish;

 return $count;

} # end of sub sql_count_matched_distinct

##
return a single (first) matched value or undef, by conditions and

1315 Feb 2014

1.7.2 The My::DB modulemod_perl and Relational Databases

restrictions
#
sql_get_matched_value($table_name,$column,\@conditions,\@restrictions);
#
column is a name of the column
#
conditions must be an array so we can path more than one column with
the same name.
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
The sub knows automatically to detect and quote strings
#
restrictions is a list of restrictions like (’order by email’)
#
##########################
sub sql_get_matched_value{
 my $self = shift;
 my $table = shift || ’’;
 my $column = shift || ’’;
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT $column FROM $table ";

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
 return $self->{dbh}->selectrow_array($do_sql);

} # end of sub sql_get_matched_value

##
return a single row of first matched rows, by conditions and
restrictions. The row is being inserted into @results_row array
(value1,value2,...) or empty () if none matched
#
sql_get_matched_row(\@results_row,$table_name,\@columns,\@conditions,\@restrictions);

15 Feb 201414

1.7.2 The My::DB module

#
columns is a list of columns to be returned (username, fname,...)
#
conditions must be an array so we can path more than one column with
the same name.
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
The sub knows automatically to detect and quote strings
#
restrictions is a list of restrictions like (’order by email’)
#
##########################
sub sql_get_matched_row{
 my $self = shift;
 my $r_row = shift || {};
 my $table = shift || ’’;
 my $r_cols = shift || [];
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT ";
 $do_sql .= join ",", @{$r_cols} if @{$r_cols};
 $do_sql .= " FROM $table ";

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
 @{$r_row} = $self->{dbh}->selectrow_array($do_sql);

} # end of sub sql_get_matched_row

##
return a ref to hash of single matched row, by conditions
and restrictions. return undef if nothing matched.
(column1 => value1, column2 => value2) or empty () if non matched
#
sql_get_hash_ref($table_name,\@columns,\@conditions,\@restrictions);
#

1515 Feb 2014

1.7.2 The My::DB modulemod_perl and Relational Databases

columns is a list of columns to be returned (username, fname,...)
#
conditions must be an array so we can path more than one column with
the same name.
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
The sub knows automatically to detect and quote strings
#
restrictions is a list of restrictions like (’order by email’)
#
##########################
sub sql_get_hash_ref{
 my $self = shift;
 my $table = shift || ’’;
 my $r_cols = shift || [];
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT ";
 $do_sql .= join ",", @{$r_cols} if @{$r_cols};
 $do_sql .= " FROM $table ";

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
 $self->{sth} = $self->{dbh}->prepare($do_sql);
 $self->{sth}->execute();

 return $self->{sth}->fetchrow_hashref;

} # end of sub sql_get_hash_ref

##
returns a reference to an array, matched by conditions and
restrictions, which contains one reference to array per row. If
there are no rows to return, returns a reference to an empty array:

15 Feb 201416

1.7.2 The My::DB module

[
[array1],
......
[arrayN],
];
#
$ref = sql_get_matched_rows_ary_ref($table_name,\@columns,\@conditions,\@restrictions);
#
columns is a list of columns to be returned (username, fname,...)
#
conditions must be an array so we can path more than one column with
the same name. @conditions are being cancatenated with AND
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
results in
WHERE foo > 15 AND foo < 30
#
to make an OR logic use (then ANDed)
@conditions = (column => [’comp_sign’,[’value1’,’value2’]],
foo => [’=’,[15,24]],
bar => [’=’,[16,21]],
);
results in
WHERE (foo = 15 OR foo = 24) AND (bar = 16 OR bar = 21)
#
The sub knows automatically to detect and quote strings
#
restrictions is a list of restrictions like (’order by email’)
#
##########################
sub sql_get_matched_rows_ary_ref{
 my $self = shift;
 my $table = shift || ’’;
 my $r_cols = shift || [];
 my $r_conds = shift || [];
 my $r_restr = shift || [];

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "SELECT ";
 $do_sql .= join ",", @{$r_cols} if @{$r_cols};
 $do_sql .= " FROM $table ";

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {

 if (ref $$r_conds[$i+1][1] eq ’ARRAY’) {
 # multi condition for the same field/comparator to be ORed
 push @where, map {"($_)"} join " OR ",
 map { join " ",
 $r_conds->[$i],
 $r_conds->[$i+1][0],
 sql_quote(sql_escape($_));
 } @{$r_conds->[$i+1][1]};
 } else {

1715 Feb 2014

1.7.2 The My::DB modulemod_perl and Relational Databases

 # single condition for the same field/comparator
 push @where, join " ",
 $r_conds->[$i],
 $r_conds->[$i+1][0],
 sql_quote(sql_escape($r_conds->[$i+1][1]));
 }
 } # end of for(my $i=0;$i<@{$r_conds};$i=$i+2

 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where if @where;

 # restrictions (DONT put commas!)
 $do_sql .= " ". join " ", @{$r_restr} if @{$r_restr};

 d("SQL: $do_sql") if DEBUG;

 # do query
 return $self->{dbh}->selectall_arrayref($do_sql);

} # end of sub sql_get_matched_rows_ary_ref

##
insert a single row into a DB
#
sql_insert_row($table_name,\%data,$delayed);
#
data is hash of type (column1 => value1 ,column2 => value2 ,)
#
$delayed: 1 => do delayed insert, 0 or none passed => immediate
#
* The sub knows automatically to detect and quote strings
#
* The insert id delayed, so the user will not wait untill the insert
will be completed, if many select queries are running
#
##########################
sub sql_insert_row{
 my $self = shift;
 my $table = shift || ’’;
 my $r_data = shift || {};
 my $delayed = (shift) ? ’DELAYED’ : ’’;

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "INSERT $delayed INTO $table ";
 $do_sql .= "(".join(",",keys %{$r_data}).")";
 $do_sql .= " VALUES (";
 $do_sql .= join ",", sql_quote(sql_escape(values %{$r_data}));
 $do_sql .= ")";

 d("SQL: $do_sql") if DEBUG;

 # do query
 $self->{sth} = $self->{dbh}->prepare($do_sql);

15 Feb 201418

1.7.2 The My::DB module

 $self->{sth}->execute();

} # end of sub sql_insert_row

##
update rows in a DB by condition
#
sql_update_rows($table_name,\%data,\@conditions,$delayed);
#
data is hash of type (column1 => value1 ,column2 => value2 ,)
#
conditions must be an array so we can path more than one column with
the same name.
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
#
$delayed: 1 => do delayed insert, 0 or none passed => immediate
#
* The sub knows automatically to detect and quote strings
#
#
##########################
sub sql_update_rows{
 my $self = shift;
 my $table = shift || ’’;
 my $r_data = shift || {};
 my $r_conds = shift || [];
 my $delayed = (shift) ? ’LOW_PRIORITY’ : ’’;

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "UPDATE $delayed $table SET ";
 $do_sql .= join ",",
 map { "$_=".join "",sql_quote(sql_escape($$r_data{$_})) } keys %{$r_data};

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }
 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where if @where;

 d("SQL: $do_sql") if DEBUG;

 # do query
 $self->{sth} = $self->{dbh}->prepare($do_sql);

 $self->{sth}->execute();

my ($count) = $self->{sth}->fetchrow_array;

1915 Feb 2014

1.7.2 The My::DB modulemod_perl and Relational Databases

#
d("Result: $count") if DEBUG;

} # end of sub sql_update_rows

##
delete rows from DB by condition
#
sql_delete_rows($table_name,\@conditions);
#
conditions must be an array so we can path more than one column with
the same name.
@conditions = (column => [’comp_sign’,’value’],
foo => [’>’,15],
foo => [’<’,30],
);
#
* The sub knows automatically to detect and quote strings
#
#
##########################
sub sql_delete_rows{
 my $self = shift;
 my $table = shift || ’’;
 my $r_conds = shift || [];

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 # build the query
 my $do_sql = "DELETE FROM $table ";

 my @where = ();
 for(my $i=0;$i<@{$r_conds};$i=$i+2) {
 push @where, join " ",
 $$r_conds[$i],
 $$r_conds[$i+1][0],
 sql_quote(sql_escape($$r_conds[$i+1][1]));
 }

 # Must be very careful with deletes, imagine somehow @where is
 # not getting set, "DELETE FROM NAME" deletes the contents of the table
 warn("Attempt to delete a whole table $table from DB\n!!!"),return unless @where;

 # Add the where clause if we have one
 $do_sql .= " WHERE ". join " AND ", @where;

 d("SQL: $do_sql") if DEBUG;

 # do query
 $self->{sth} = $self->{dbh}->prepare($do_sql);
 $self->{sth}->execute();

} # end of sub sql_delete_rows

##
executes the passed query and returns a reference to an array which

15 Feb 201420

1.7.2 The My::DB module

contains one reference per row. If there are no rows to return,
returns a reference to an empty array.
#
$r_array = sql_execute_and_get_r_array($query);
#
#
##########################
sub sql_execute_and_get_r_array{
 my $self = shift;
 my $do_sql = shift || ’’;

 # we want to print in the trace debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 d("SQL: $do_sql") if DEBUG;

 $self->{dbh}->selectall_arrayref($do_sql);

} # end of sub sql_execute_and_get_r_array

##
lock the passed tables in the requested mode (READ|WRITE) and set
internal flag to handle possible user abortions, so the tables will
be unlocked thru the END{} block
#
sql_lock_tables(’table1’,’lockmode’,..,’tableN’,’lockmode’
lockmode = (READ | WRITE)
#
_side_effect_ $self->{lock} = ’On’;
#
##########################
sub sql_lock_tables{
 my $self = shift;
 my %modes = @_;

 return unless %modes;

 my $do_sql = ’LOCK TABLES ’;
 $do_sql .= join ",", map {"$_ $modes{$_}"} keys %modes;

 # we want to print the trace in debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 d("SQL: $do_sql") if DEBUG;

 $self->{sth} = $self->{dbh}->prepare($do_sql);
 $self->{sth}->execute();

 # Enough to set only one lock, unlock will remove them all
 $self->{lock} = ’On’;

} # end of sub sql_lock_tables

##
unlock all tables, unset internal flag to handle possible user
abortions, so the tables will be unlocked thru the END{} block

2115 Feb 2014

1.7.2 The My::DB modulemod_perl and Relational Databases

#
sql_unlock_tables()
#
_side_effect_: delete $self->{lock}
#
##########################
sub sql_unlock_tables{
 my $self = shift;

 # we want to print the trace in debug mode
 d("[".(caller(2))[3]." - ".(caller(1))[3]." - ". (caller(0))[3]."]") if DEBUG;

 $self->{dbh}->do("UNLOCK TABLES");

 # Enough to set only one lock, unlock will remove them all
 delete $self->{lock};

} # end of sub sql_unlock_tables

#
#
return current date formatted for a DATE field type
YYYYMMDD
#
Note: since this function actually doesn’t need an object it’s being
called without parameter as well as procedural call
############
sub sql_date{
 my $self = shift;

 my ($mday,$mon,$year) = (localtime)[3..5];
 return sprintf "%0.4d%0.2d%0.2d",1900+$year,++$mon,$mday;

} # end of sub sql_date

#
#
return current date formatted for a DATE field type
YYYYMMDDHHMMSS
#
Note: since this function actually doesn’t need an object it’s being
called without parameter as well as procedural call
############
sub sql_datetime{
 my $self = shift;

 my ($sec,$min,$hour,$mday,$mon,$year) = localtime();
 return sprintf "%0.4d%0.2d%0.2d%0.2d%0.2d%0.2d",1900+$year,++$mon,$mday,$hour,$min,$sec;

} # end of sub sql_datetime

Quote the list of parameters. Parameters consisting entirely of
digits (i.e. integers) are unquoted.
print sql_quote("one",2,"three"); => ’one’, 2, ’three’
#############
sub sql_quote{ map{ /^(\d+|NULL)$/ ? $_ : "\’$_\’" } @_ }

Escape the list of parameters (all unsafe chars like ",’ are escaped)

15 Feb 201422

1.7.2 The My::DB module

We make a copy of @_ since we might try to change the passed values,
producing an error when modification of a read-only value is attempted
##############
sub sql_escape{ my @a = @_; map { s/([\’\\])/\\$1/g;$_} @a }

DESTROY makes all kinds of cleanups if the fuctions were interuppted
before their completion and haven’t had a chance to make a clean up.
###########
sub DESTROY{
 my $self = shift;

 $self->sql_unlock_tables() if $self->{lock};
 $self->{sth}->finish if $self->{sth};
 $self->{dbh}->disconnect if $self->{dbh};

} # end of sub DESTROY

Don’t remove
1;

module

(Note that you will not find this on CPAN. at least not yet :)

1.7.3 My::DB Module’s Usage Examples

To use My::DB in your script, you first have to create a My::DB object:

 use vars qw($db_obj);
 my $db_obj = new My::DB or croak "Can’t initialize My::DB object: $!\n";

Now you can use any of My::DB’s methods. Assume that we have a table called tracker where we store
the names of the users and what they are doing at each and every moment (think about an online commu-
nity program).

I will start with a very simple query--I want to know where the users are and produce statistics. tracker
is the name of the table.

 # fetch the statistics of where users are
 my $r_ary = $db_obj->sql_get_matched_rows_ary_ref
 ("tracker",
 [qw(where_user_are)],
);

 my %stats = ();
 my $total = 0;
 foreach my $r_row (@$r_ary){
 $stats{$r_row->[0]}++;
 $total++;
 }

2315 Feb 2014

1.7.3 My::DB Module’s Usage Examplesmod_perl and Relational Databases

Now let’s count how many users we have (in table users):

 my $count = $db_obj->sql_count_matched("users");

Check whether a user exists:

 my $username = ’stas’;
 my $exists = $db_obj->sql_count_matched
 ("users",
 [username => ["=",$username]]
);

Check whether a user is online, and get the time since she went online (since is a column in the
tracker table, it tells us when a user went online):

 my @row = ();
 $db_obj->sql_get_matched_row
 (\@row,
 "tracker",
 [’UNIX_TIMESTAMP(since)’],
 [username => ["=",$username]]
);

 if (@row) {
 my $idle = int((time() - $row[0]) / 60);
 return "Current status: Is Online and idle for $idle minutes.";
 }

A complex query. I join two tables, and I want a reference to an array which will store a slice of the
matched query (LIMIT $offset,$hits) sorted by username. Each row in the array is to include
the fields from the users table, but only those listed in @verbose_cols. Then we print it out.

 my $r_ary = $db_obj->sql_get_matched_rows_ary_ref
 (
 "tracker STRAIGHT_JOIN users",
 [map {"users.$_"} @verbose_cols],
 [],
 ["WHERE tracker.username=users.username",
 "ORDER BY users.username",
 "LIMIT $offset,$hits"],
);

 foreach my $r_row (@$r_ary){
 print ...
 }

Another complex query. The user checks checkboxes to be queried by, selects from lists and types in
match strings, we process input and build the @where array. Then we want to get the number of matches
and the matched rows as well.

 my @search_keys = qw(choice1 choice2);
 my @where = ();
 # Process the checkboxes - we turn them into a regular expression
 foreach (@search_keys) {
 next unless defined $q->param($_) and $q->param($_);

15 Feb 201424

1.7.3 My::DB Module’s Usage Examples

 my $regexp = "[".join("",$q->param($_))."]";
 push @where, ($_ => [’REGEXP’,$regexp]);
 }

 # Add the items selected by the user from our lists
 # selected => exact match
 push @where,(country => [’=’,$q->param(’country’)]) if $q->param(’country’);

 # Add the parameters typed by the user
 foreach (qw(city state)) {
 push @where,($_ => [’LIKE’,$q->param($_)]) if $q->param($_);
 }

 # Count all that matched the query
 my $total_matched_users = $db_obj->sql_count_matched
 (
 "users",
 \@where,
);

 # Now process the orderby
 my $orderby = $q->param(’orderby’) || ’username’;

 # Do the query and fetch the data
 my $r_ary = $db_obj->sql_get_matched_rows_ary_ref
 (
 "users",
 \@display_columns,
 \@where,
 ["ORDER BY $orderby",
 "LIMIT $offset,$hits"],
);

sql_get_matched_rows_ary_ref knows to handle both ORed and ANDed params. This example
shows how to use OR on parameters:

This snippet is an implementation of a watchdog. Our users want to know when their colleagues go online.
They register the usernames of the people they want to know about. We have to make two queries: one to
get a list of usernames, the second to find out whether any of these users is online. In the second query we
use the OR keyword.

 # check who we are looking for
 $r_ary = $db_obj->sql_get_matched_rows_ary_ref
 ("watchdog",
 [qw(watched)],
 [username => [’=’,$username)],
],
);

 # put them into an array
 my @watched = map {$_->[0]} @{$r_ary};

 my %matched = ();
 # Does the user have some registered usernames?
 if (@watched) {

2515 Feb 2014

1.7.3 My::DB Module’s Usage Examplesmod_perl and Relational Databases

 # Try to fetch all the users who match the usernames exactly.
 # Put it into an array and compare it with a hash!
 $r_ary = $db_obj->sql_get_matched_rows_ary_ref
 ("tracker",
 [qw(username)],
 [username => [’=’,\@watched],
]
);

 map {$matched{$_->[0]} = 1} @{$r_ary};
 }

 # Now %matched includes the usernames of the users who are being
 # watched by $username and currently are online.

1.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

1.9 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201426

1.8 Maintainers

http://stason.org/
http://stason.org/

Table of Contents:
.............. 11 mod_perl and Relational Databases
................... 21.1 Description
.............. 21.2 Why Relational (SQL) Databases
......... 21.3 Apache::DBI - Initiate a persistent database connection
................. 21.3.1 Introduction
...... 31.3.2 When should this module be used and when shouldn’t it be used?
................. 31.3.3 Configuration
.............. 31.3.4 Preopening DBI connections
............... 41.3.5 Debugging Apache::DBI
............... 41.3.6 Database Locking Risks
................ 51.3.7 Troubleshooting
............... 51.3.7.1 The Morning Bug
........ 51.3.7.2 Opening Connections With Different Parameters
............. 71.3.7.3 Cannot find the DBI handler
............. 71.3.7.4 Apache:DBI does not work
........ 71.3.7.5 Skipping connection cache during server startup
........... 81.3.7.6 Debugging code which deploys DBI
............ 81.4 mysql_use_result vs. mysql_store_result.
........ 91.5 Transactions Not Committed with MySQL InnoDB Tables
............ 91.6 Optimize: Run Two SQL Engine Servers
....... 101.7 Some useful code snippets to be used with relational Databases
........ 101.7.1 Turning SQL query writing into a short and simple task
............... 101.7.2 The My::DB module
............ 231.7.3 My::DB Module’s Usage Examples
.................. 261.8 Maintainers
................... 261.9 Authors

i15 Feb 2014

Table of Contents:mod_perl and Relational Databases

	1€€mod_perl and Relational Databases
	1.1€€Description
	1.2€€Why Relational (SQL) Databases
	1.3€€Apache::DBI - Initiate a persistent database connection
	1.3.1€€Introduction
	1.3.2€€When should this module be used and when shouldn't it be used?
	1.3.3€€Configuration
	1.3.4€€Preopening DBI connections
	1.3.5€€Debugging Apache::DBI
	1.3.6€€Database Locking Risks
	1.3.7€€Troubleshooting
	1.3.7.1€€The Morning Bug
	1.3.7.2€€Opening Connections With Different Parameters
	1.3.7.3€€Cannot find the DBI handler
	1.3.7.4€€Apache:DBI does not work
	1.3.7.5€€Skipping connection cache during server startup
	1.3.7.6€€Debugging code which deploys DBI

	1.4€€mysql_use_result vs. mysql_store_result.
	1.5€€Transactions Not Committed with MySQL InnoDB Tables
	1.6€€Optimize: Run Two SQL Engine Servers
	1.7€€Some useful code snippets to be used with relational Databases
	1.7.1€€Turning SQL query writing into a short and simple task
	1.7.2€€The My::DB module
	1.7.3€€My::DB Module's Usage Examples

	1.8€€Maintainers
	1.9€€Authors

