mod_perl Configuration 1 mod_perl Configuration

1 mod_perl Configuration

15 Feb 2014 1

1.1 Description

1.1 Description

This section documents the various configuration options available for Apache and mod_perl, as well as
the Perl startup files, and more esoteric possibilites such as configuring Apache with Perl.

1.2 Server Configuration

The next step after building and installing your new mod_perl enabled Apache server is to configure the
server. There are two separate parts to configure: Apache and mod_perl. Each has its own set of directives.

To configure your mod_perl enabled Apache server, the only file that you should need thtgmifcEnf.

By default,httpd.conf is put into theconf directory under the server root directory. The default server root
is /usr/local/apache/ on many UNIX platforms, but within reason it can be any directory you choose. If
you are new to Apache and mod_perl, you will probably find it helpful to keep to the directory layouts we
use in this Guide if you can.

Apache versions 1.3.4 and later are distributed with the configuration directives in a single file --
httpd.conf. This Guide uses the same approach in its examples. Prior to version 1.3.4, the default Apache
installation used three configuration fileshttpd.conf, srm.conf, andaccess.conf. If you wish you can still

use all three files, by setting the AccessConfig and ResourceConfig directhtgxliconf. You will also

see later on that we use other files, for exarppteconf andstartup.pl. This is just for our convenience,

you could still do everything ihttpd.conf if you wished.

1.3 Apache Configuration

Apache configuration can be confusing. To minimize the number of things that can go wrong, it can be a
good idea first to configure Apache itself without mod_perl. This will give you the confidence that it
works and maybe that you have some idea how to configure it.

There is a warning in thiettpd.conf distributed with Apache about simply editihtipd.conf and running
the server, without understanding all the implications. This is another warning. Modifying the configura-
tion file and adding new directives can introduce security problems, and have performance implications.

The Apache distribution comes with an extensive configuration manual, and in addition each section of the
distributed configuration file includes helpful comments explaining how every directive should be config-
ured and what the defaults values are.

If you haven't moved Apache’s directories around, the installation program will have configured every-
thing for you. You can just start the server and test it. To start the server ugeathectl utility

which comes bundled with the Apache distribution. It resides in the same direchitydas, the Apache
server itself. Execute:

/usr/local/apache/bin/apachectl start

2 15 Feb 2014

mod_perl Configuration 1.3.1 Configuration Directives

Now you can test the server, for example by accefgsing http://lo¢alhost from a browser running on the same
host.

1.3.1 Configuration Directives

For a basic setup there are just a few things to configure. If you have moved any directories you have to
update them ittpd.conf. There are many of them, here are just a couple of examples:

ServerRoot "/usr/local/apache"
DocumentRoot "/home/httpd/docs”

If you want to run it on a port other than port 80 editRbet directive:

Port 8080

You might want to change the user and group names the server will run under. Note that if started as the
root user (which is generally the case), the parent process will continue tonaot, dsit its children will
run as the user and group you have specified. For example:

User httpd
Group httpd

There are many other directives that you might need to configure as well. In addition to directives which
take a single value there are whole sections of the configuration (such a®ithetory> and
<Location> sections) which apply only to certain areas of your Web space. As mentioned earlier you
will find them all inhttpd.conf.

1.3.2 .htaccess files

If there is a file with the namétaccess in any directory, Apache scans it for further configuration direc-
tives which it then applies only to that directory (and its subdirectories). The.h&teess is confusing
because it can contain any configuration directives, not just those related to access to resources. You will
not be surprised to find that a configuration directive can change the names of the files used in this way.

Note that if there is a
<Directory />
AllowOverride None
</Directory>

directive inhttpd.conf, Apache will not try to look forhtaccess at all.

1.3.3 <Directory>, <Location> and <Files> Sections

I'll explain just the basics of theDirectory> , <Location> and<Files> sections. Remember that
there is more to know and the rest of the information is available in the Apache documentation. The infor-
mation I'll present here is just what is important for understanding the mod_perl configuration sections.

15 Feb 2014 3

http://localhost/

1.3.3 <Directory>, <Location> and <Files> Sections

Apache considers directories and files on your machine all to be resources. For each resource you can
determine a particular behaviour which will apply to every request for information from that particular
resource.

Obviously the directives irDirectory> sections apply to specific directories on your host machine,

and those irkFiles> sections apply only to specific files (actually groups of files with names which
have something in common). In addition to these sections, Apache has the concepbcéhtoon> |

which is also just a resourcelLocation> sections apply to specific URIs. Locations are based at the
document root, directories are based at the filesystem root. For example, if you have the default server
directory layout where the server root itusr/local/apache and the document root is
{usr/local/apache/htdocs then static files in the directovusr/local/apache/htdocs/pub are in the location

/pub.

It is up to you to decide which directories on your host machine are mapped to which locations. You
should be careful how you do it, because the security of your server may be at stake.

Locations do not necessarily have to refer to existing physical directories, but may refer to virtual
resources which the server creates for the duration of a single browser request. As you will see, this is
often the case for a mod_perl server.

When a browser asks for a resource from your server, Apache determines from its configuration whether
or not to serve the request, whether to pass the request to another server, what (if any) authorization is
required for access to the resource, and how to reply. For any given resource, the various sections in your
configuration may provide conflicting information. For example you may haui@ctory> section

which tells Apache that authorization is required for access to the resource but you mayFites>a

section which says that it is not. It is not always obvious which directive takes precedence in these cases.
This can be a trap for the unwary.

® <Directory directoryPath> ... </Directory>
Can appear in server and virtual host configurations.

<Directory> and </Directory> are used to enclose a group of directives which will apply
only to the named directory and sub-directories of that directory. Any directive which is allowed in a
directory context (see the Apache documentation) may be used.

The path given in theDirectory> directive is either the full path to a directory, or a wild-card
string. In a wild-card string? matches any single charactermatches any sequence of characters,
and[] matches character ranges. (This is similar to the shell’s file globs.) None of the wildcards will
match & character. For example:

<Directory /home/httpd/docs>

Options Indexes
</Directory>

If you want to use a regular expression to match then you should use the dyirotory-
Match regex> ...</DirectoryMatch>

4 15 Feb 2014

mod_perl Configuration 1.3.3 <Directory>, <Location> and <Files> Sections

If multiple (non-regular expression) directory sections match the directory (or its parents) containing
a document, then the directives are applied in the order of shortest match first, interspersed with the
directives from anyhtaccess files. For example, with

<Directory />
AllowOverride None
</Directory>

<Directory /home/httpd/docs/*>
AllowOverride Filelnfo
</Directory>

for access to the documéhome/httpd/docs/index.html the steps are:

O Apply directive Al | owOverri de None (disabling .htaccesdiles).
O Apply directive Al | owOverri de Fil el nf o for directory /home/httpd/docs(which now
enables.htaccessn /home/httpd/docsand its sub-directories).
O Apply any Fi | el nf o directives in/home/httpd/docs/.htaccess
® <Files filenanme>..</Files>

Can appear in server and virtual host configurations,fdactess files as well.

The <Files> directive provides for access control by filename. It is comparable toQilnec-

tory> and<Location> directives. It should be closed with tké-iles> directive. The direc-

tives given within this section will be applied to any object with a basename (last component of file-
name) matching the specified filename.

<Files> sections are processed in the order they appear in the configuration file, after the
<Directory> sections andhtaccess files are read, but beford.ocation> sections. Note that
<Files> can be nested insididirectory> sections to restrict the portion of the filesystem they
apply to.<Files> cannot be nested insigkocation> sections however.

The filename argument should include a filename, or a wild-card string, ®heegches any single
character, ani matches any sequence of characters. Extended regular expressions can also be used,
simply place a tilde characterbetween the directive and the regular expression. The regular expres-
sion should be in quotes. The dollar symbol refers to the end of the string. The pipe character indi-
cates alternatives. Special characters in extended regular expressions must escaped with a backslash.
For example:

<Files ~ "\.(gif|jpe?g|png)$">

would match most common Internet graphics formats. Alternatively you can usEildsMatch
regex> ...</FilesMatch> syntax.

® <l|ocation URL> ... </Location>

Can appear in server and virtual host configurations.

15 Feb 2014 5

1.3.4 How Directory, Location and Files Sections are Merged

The<Location> directive provides for access control by URL. It is similar totB&ectory>
directive, and starts a section which is terminated witkthecation> directive.

<Location> sections are processed in the order they appear in the configuration file, after the
<Directory> sections,htaccess files and<Files> sections are read.

The<Location> section is the directive that is used most often with mod_perl.

URLs do not have to refer to real directories or files within the filesystem athtication> oper-
ates completely outside the filesystem. Indeed it may sometimes be wise to ensdteotihat
tion> s do not match real paths to avoid confusion.

The URL may use wildcards. In a wild-card strifgmatches any single character, @andhatches
any sequences of charactdis, groups characters to match. For regular expression matches use the
<LocationMatch regex> ... </LocationMatch> syntax.

The<Location> functionality is especially useful when combined with 8&tHandler direc-
tive. For example to enable status requests, but allow them only from browseae.com, you
might use:

<Location /status>
SetHandler server-status
order deny,allow
deny from all
allow from .example.com
</Location>

1.3.4 How Directory, Location and Files Sections are Merged

When configuring the server, it's important to understand the order in which the rules of each section
apply to requests. The order of merging is:

1. <Di rect ory> (except regular expressions) andhtaccessare processed simultaneously, with
.htaccesoverriding <Di r ect ory>

2. <Di rect oryMat ch>, and<Di r ect or y> with regular expressions

3. <Fi | es>and<Fi | esMat ch> are processed simultaneously

4. <Locati on> and<Locat i oniMat ch> are processed simultaneously

Apart from<Directory> , each group is processed in the order that it appears in the configuration files.
<Directory> (group 1 above) is processed in the order shortest directory component to longest. If
multiple <Directory> sections apply to the same directory then they are processed in the configuration
file order.

Sections inside<VirtualHost> sections are applied as if you were running several independent
servers. The directives insideVirtualHost> sections do not interact with each other. They are
applied after first processing any sections outside the virtual host definition. This allows virtual host
configurations to override the main server configuration.

6 15 Feb 2014

mod_perl Configuration 1.3.5 Sub-Grouping of <Location>, <Directory> and <Files> Sections

Later sections override earlier ones.

1.3.5 Sub-Grouping of <Location>, <Directory> and <Files> Sections

Let's say that you want all files, except for a few of the files in a specific directory and below, to be
handled in the same way. For example if you want all the filésoime/http/docs to be served as plain
files, but any files with endinghtml and .txt to be processed by the content handler of your
Apache::MyFilter module.

<Directory /home/httpd/docs>
<FilesMatch "\.(html|txt)$">
SetHandler perl-script
PerlHandler Apache::MyFilter
</FilesMatch>
</Directory>

Thus it is possible to embed sections inside sections to create subgroups which have their own distinct
behavior. Alternatively you could use<&iles> section inside arhtaccess file.

Note that you can't putFiles> or <FilesMatch> sections inside gLocation> section, but you
can put them inside<Directory> section.

1.3.6 Options Directive

Normally, if multiple Options directives apply to a directory, then the most specific one is taken
complete; the options are not merged.

However if all the options on th@ptions directive are preceded by+aor - symbol, the options are
merged. Any options preceded Byare added to the options currently in force, and any options preceded
by - are removed.

For example, without any and- symbols:

<Directory /home/httpd/docs>
Options Indexes FollowSymLinks

</Directory>

<Directory /home/httpd/docs/shtm|>
Options Includes

</Directory>

then only Includes will be set for the/home/httpd/docs/shtml directory. However if the second
Options directive uses the and- symbols:

<Directory /home/httpd/docs>
Options Indexes FollowSymLinks

</Directory>

<Directory /home/httpd/docs/shtml|>
Options +Includes -Indexes

</Directory>

15 Feb 2014 7

1.4 mod_perl Configuration

then the optionsollowSymLinks andincludes are set for théhome/httpd/docs/shtml directory.

1.4 mod_perl Configuration

When you have tested that the Apache server works on your machine, it's time to configure mod_perl.
Some of the configuration directives are already familiar to you, but mod_perl introduces a few new ones.

It can be a good idea to keep all the mod_perl related configuration at the end of the configuration file,
after the native Apache configuration directives.

To ease maintenance and to simplify multiple server installations, the Apache/mod_perl configuration
system allows you several alternative ways to keep your configuration directives in separate places. The
Include directive inhttpd.conf allow you to include the contents of other files, just as if the information
were all contained imnttpd.conf. This is a feature of Apache itself. For example if you want all your
mod_perl configuration to be placed in a separate ritel perl.conf you can do that by adding to
httpd.conf this directive:

Include conf/mod_perl.conf

If you want to include this configuration conditionally, depending on whether your apache has been
compiled with mod_perl, you can use tRdodule directive:

<IfModule mod_perl.c>
Include conf/mod_perl.conf
</IfModule>

mod_perl adds two further directivesPerl> sections allow you to execute Perl code from within any
configuration file at server startup time, and as you will see later, a file containing any Perl program can be
executed (also at server startup time) simply by mentioning its namedrnRequire or PerIMod-

ule directive.

1.4.1 Alias Configurations

The ScriptAlias andAlias directives provide a mapping of a URI to a file system directory. The
directive:

Alias /foo /home/httpd/foo

will map all requests starting witlfoo onto the files starting witthome/httpd/foo/. So when Apache gets
a request http://www.example.com/foo/test.pl the server will map this into thesfijg in the directory
/home/httpd/fool.

In additionScriptAlias assigns all the requests that match the URI/@ge-bin) to be executed under
mod_cgi.

ScriptAlias /cgi-bin /home/httpd/cgi-bin

8 15 Feb 2014

http://www.example.com/foo/test.pl

mod_perl Configuration 1.4.1 Alias Configurations

is actually the same as:

Alias /cgi-bin /home/httpd/cgi-bin
<Location /cgi-bin>

SetHandler cgi-script

Options +ExecCGl
</Location>

where latter directive invokes mod_cgi. You shouldn’'t useSttréptAlias directive unless you want
the request to be processed under mod_cgi. Therefore when you configure mod_perl sectias use
instead.

Under mod_perl theAlias directive will be followed by two further directives. The first is the
SetHandler perl-script directive, which tells Apache to invoke mod_perl to run the script. The second
directive (for exampld®erlHandler) tells mod_perl which handler (Perl module) the script should be

run under, and hence for which phase of the request. Refer to the section Perl*Handlers for more informa-
tion about handlers for the various request phases.

When you have decided which methods to use to run your scripts and where you will keep them, you can
add the configuration directive(s) hitpd.conf. They will look like those below, but they will of course
reflect the locations of your scripts in your file-system and the decisions you have made about how to run
the scripts:

ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/
Alias Iperl/ /home/httpd/perl/

In the examples above all the requests issued for URIs startingcgiibin will be served from the direc-
tory /home/httpd/cgi-bin/, and starting wittiperl from the directoryhome/httpd/perl/.

1.4.1.1 Running CGlI, PerlRun, and Registry Scripts Located in the Same Directory

Typical for plain cgi scripts:
ScriptAlias /cgi-bin/ /home/httpd/perl/

Typical for Apache::Registry scripts:
Alias Iperl/ /home/httpd/perl/

Typical for Apache::PerlRun scripts:
Alias [cgi-perl/ /home/httpd/perl/

In the examples above we have mapped the three different [GRIS/Nww.example.comVperl/test.pl]

[http: 7/www.example.convcgi-bin/test.pl] and|http: //www.example.convcgi-perl/test.pl) all to the same file
/home/httpd/perl/test.pl. This means that we can have all our CGI scripts located at the same place in the
file-system, and call the script in any of three ways simply by changing one component of the URI

(cgi-bin|perl|cgi-perl).

This technique makes it easy to migrate your scripts to mod_perl. If your script does not seem to be
working while running under mod_perl, then in most cases you can easily call the script in straight
mod_cgi mode or undekpache::PerlRun without making any script changes. Simply change the
URL you use to invoke it.

15 Feb 2014 9

http://www.example.com/perl/test.pl
http://www.example.com/cgi-bin/test.pl
http://www.example.com/cgi-perl/test.pl

1.4.2 <Location> Configuration

Although in the configuration above we have configured all tiAtésses to point to the same directory
within our file system, you can of course have them point to different directories if you prefer.

You should remember that it is undesirable to run scripts in plain mod_cgi mode from a mod_perl-enabled
server--the resource consumption is too high. It is better to run these on a plain Apache server. See Stan-
dalone mod_perl Enabled Apache Server.

1.4.2 <Location> Configuration

The<Location> section assigns a number of rules which the server should follow when the request’s
URI matches thé.ocation. Just as it is the widely accepted convention to/egiebin for your mod_cgi
scripts, it is conventional to ugperl as the base URI of the perl scripts which you are running under
mod_perl. Let's review the following very widely usedocation> section:

Alias /perl/ /home/httpd/perl/
PerIModule Apache::Registry
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
allow from all
PerlSendHeader On
</Location>

This configuration causes all requests for URIs starting Apét to be handled by the mod_perl Apache
module with the handler from thApache::Registry Perl module. Let’s review the directives inside
the<Location> section in the example:

<Location /perl>

Remember theAlias from the above section? We use the sdtias here; if you were to use a
<Location> that does not have the samias , the server would fail to locate the script in the file
system. You need thalias setting only if the code that should be executed is located in the file. So
Alias just provides the URI to filepath translation rule.

Sometimes there is no script to be executed. Instead there is some module whose method is being
executed, similar tdperl-status, where the code is stored in an Apache module. In such cases we don't
needAlias settings for thoseLocation> s.

SetHandler perl-script
This assigns the mod_perl Apache module to handle the content generation phase.
PerlHandler Apache::Registry

Here we tell Apache to use tApache::Registry Perl module for the actual content generation.

Options ExecCGl

10 15 Feb 2014

mod_perl Configuration 1.4.2 <Location> Configuration

The Options directive accepts various parameters (options), one of whigkesCGI . This tells the

server that the file is a program and should be executed, instead of just being displayed like a static file
(like HTML file). If you omit this option then the script will either be rendered as plain text or else it will
trigger aSave-As dialog, depending on the client’s configuration.

allow from all

This directive is used to set access control based on domain. The above settings allow clients from any
domain to run the script.

PerlSendHeader On

PerlSendHeader On tells the server to send an HTTP headers to the browser on every script invoca-
tion. You will want to turn this off for nph (non-parsed-headers) scripts.

The PerlSendHeader On setting invokes the Apache&p_send_http _header() method after
parsing the headers generated by the script. It is only meant for emulation of mod_cgi behavior with
regard to headers.

To send the HTTP headers it's always better either to uskrthsgend_http_header method using
the Apache Perl API or to use thg->header method from th&€€Gl.pm module.

</Location>
Closes thecLocation> section definition.

Note that sometimes you will have to preload the module before using itsthdication> section. In
the case oApache::Registry the configuration will look like this:

PerlModule Apache::Registry
<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGlI
allow from all
PerlSendHeader On
</Location>

PerlModule is equivalent to Perl’s natiugsse() function call.
No changes are required to tlegi-bin location (mod_cgi), since it has nothing to do with mod_perl.

Here is another very similar example, this time ushpgiche::PerlRun (For more information see
Apache::PerlRun):

<Location /cgi-perl>
SetHandler perl-script
PerlHandler Apache::PerlRun
Options ExecCGl
allow from all
PerlSendHeader On
</Location>

15 Feb 2014 11

1.4.3 Overriding <Location> Setting in "Sub-Location"

The only difference from thépache::Registry configuration is the argument of thierlHan-
dler directive, wheré\pache::Registry has been replaced wikpache::PerlRun

1.4.3 Overriding <Location> Setting in "Sub-Location"

So if you have:
<Location /foo>
SetHandler perl-script

PerlHandler My::Module
</Location>

If you want to remove a mod_perl handler setting from a location beneath a location where the handler
was set (i.elfoo/bar), all you have to do is to reset it, like this:

<Location /foo/bar>

SetHandler default-handler
</Location>

Now, all the requests starting witioo/bar would be served by Apache’s default handler.

1.4.4 PerIModule and PerlRequire Directives

As we saw earlier, a module should be loaded before it is Begliilodule andPerlRequire are

the two mod_perl directives which are used to load modules and code. They are almost equivalent to
Perl'suse() andrequire() functions respectively and called from the Apache configuration file. You
can pass one or more module names as argumepésiddodule

PerlIModule Apache::DBI CGI DBD::Mysq|

Generally the modules are preloaded from the startup script, which is usuallysaifleglpl. This is a
file containing plain Perl code which is executed througtPémdRequire directive. For example:

PerlRequire /home/httpd/perl/lib/startup.pl
A PerlRequire file name can be absolute or relativeServerRoot or a path ir@INC

As with any file with Perl code that getse() 'd or require() ’'d, it must return drue value. To
ensure that this happens don'’t forget to agdat the end ostartup.pl.

Notice that unless mod_perl is compiled as DSO and ujfled&reshRestart | is set toOn, one
needs to fully stop and start Apache for any changes to take affect, if the files and modules have been
modified.

1.4.5 Perl*Handlers

As you probably know Apache traverses a loop for each HTTP request it receives.

12 15 Feb 2014

mod_perl Configuration 1.4.5 Perl*Handlers

After you have compiled and installed mod_perl, your Apache mod_perl configuration directives tell
Apache to invoke the module mod_perl as the handler for some request which it receives. Although it
could in fact handle all the phases of the request loop, usually it does not. You tell mod_perl which phases
it is to handle (and so which to leave to other modules, or to the default Apache routines) by putting
Perl*Handler directives in the configuration files.

Because you need the Perl interpreter to be present for your Perl script to do any processing at all, there is
a slight difference between the way that you configure Perl and C handlers to handle parts of the request
loop. Ordinarily a C module is written, compiled and configured to hook into a specific phase of the
request loop. For a Perl handler you compile mod_perl itself to hook into the appropriate phases, as if it
were to handle the phases itself. Then youRmri*Handler directives in your configuration file to

tell mod_perl that it is to pass the responsibility for handling that part of the request phase to your Perl
module.

mod_perl is an Apache module written in C. As most programmers will only need to handle the response
phase, in the default compilation most of terl*Handler s are disabled. When you configure the
Makefile.PL file for its compilation, you must specify whether or not you will want to handle parts of the
request loop other than the usual content generation phase. If so you need to specify which parts. See the
"Callback Hooks" section for how to do this.

Apache specifies about eleven phases of the request loop, namely (and in order of processing):
Post-Read-Request, URI Translation, Header Parsing, Access Control, Authentication, Authorization,
MIME type checking, FixUp, Response (also known as the Content handling phase), Logging and finally
Cleanup. These are the stages of a request where the Apache API allows a module to step in and do some-
thing. There is a dedicatdterl*Handler for each of these stages plus a couple of others which don’t
correspond to parts of the request loop.

We call themPerl*Handler directives because the names of the many mod_perl handler directives for
the various phases of the request loop all follow the same format. ithBerl*Handler is a place-
holder to be replaced by something which identifies the phase to be handled. For &exthplgHan-

dler is a Perl Handler which (fairly obviously) handles the logging phase.

The slight exception iRerlHandler , which you can think of aBerlResponseHandler . It is the
content generation handler and so it is probably the one that you will use most frequently.

Note that it is mod_perl which recognizes these directives, and not Apache. They are mod_perl directives,
and an ordinary Apache does not recognize them. If you get error messages about these directives being
"perhaps mis-spelled” it is a sure sign that the appropriate part of mod_perl (or the entire mod_perl
module!) is not present in your copy of Apache executable.

The full list of Perl*Handler s follows. They are in the order that they are processed by Apache and
mod_perl:

PerlChildInitHandler
PerlPostReadRequestHandler
PerlInitHandler
PerlTransHandler
PerlHeaderParserHandler
PerlAccessHandler

15 Feb 2014 13

1.4.6 The handler subroutine

PerlAuthenHandler
PerlAuthzHandler
PerlTypeHandler
PerlFixupHandler
PerlHandler
PerlLogHandler
PerlCleanupHandler
PerlChildExitHandler
PerlDispatchHandler
PerlRestartHandler

PerlIChildInitHandler andPerlChildExitHandler do not refer to parts of the request loop,
they are to allow your modules to initialize data structures and to clean up at the child process start-up and
shutdown respectively, for example by allocating and deallocating memory.

All <Location> , <Directory> and<Files> sections contain a physical path specification. Like
PerIChildInitHandler and PerlChildExitHandler , the directives PerlPostRead-
RequestHandler andPerlTransHandler cannot be used in these sections, nahtiaccess files,
because it is not until the end of the Translation HandlerlTransHandler) phase that the path
translation is completed and a physical path is known.

PerlInitHandler changes its behaviour depending upon where it is used. In any case it is the first
handler to be invoked in serving a request. If found outside<dmgation> , <Directory> or
<Files> section (at the top level), it is an alias RerlPostReadRequestHandler . When inside

any such section it is an alias feerlHeaderParserHandler

Starting fromPerlHeaderParserHandler the requested URI has been mapped to a physical server
pathname, and thus it can be used to matchogation> , <Directory> or <Files> configuration
section, or to look in dhtaccess file if such a file exists in the specified directory in the translated path.

PerlDispatchHandler andPerlRestartHandler do not correspond to parts of the Apache API,
but allow you to fine-tune the mod_perl API.

The Apache documentation will tell you all about these stages and what your modules can do. By default,
most of these hooks are disabled at compile time, see the"Callback Hooks" section for information on
enabling them.

1.4.6 The handler subroutine

By default the mod_perl API expects a subroutine cdlatler() to handle the request in the regis-
tered Perl*Handler module. Thus if your module implements this subroutine, you can register the
handler with mod_perl like this:

Perl*Handler Apache::Foo

ReplacePerl*Handler with the name of a specific handler from the list given above. mod_perl will
preload the specified module for you. Please note that this approach will not preload the module at startup.
To make sure it gets loaded you have three options: you can explicitly preload it witbritedule

directive:

14 15 Feb 2014

mod_perl Configuration 1.4.7 Stacked Handlers

PerlIModule Apache::Foo

You can preload it at the startup file:
use Apache::Foo ();

Or you can use a nice shortcut that Bezl*Handler syntax provides:
Perl*Handler +Apache::Foo

Note the leading character. This directive is equivalent to:

PerlIModule Apache::Foo
Perl*Handler Apache::Foo

If you decide to give the handler routine a name other tiaawller , for examplemy_handler , you
must preload the module and explicitly give the name of the handler subroutine:

PerlIModule Apache::Foo
Perl*Handler Apache::Foo::my_handler

As you have seen, this will preload the module at server startup.

If a module needs to know which handler is currently being run, it can find out withrtteat_callback
method. This method is most usefulRer|DispatchHandlers which wish to take action for certain phases
only.

if ($r->current_callback eq "PerlLogHandler") {

$r->warn("Logging request");

}

1.4.7 Stacked Handlers

With the mod_perl stacked handlers mechanism, during any stage of a request it is possible for more than
onePerl*Handler to be defined and run.

Perl*Handler directives (in your configuration files) can define any number of subroutines. For
example:

PerlTransHandler OneTrans TwoTrans RedTrans BlueTrans

With the methodApache->push_handlers() , callbacks (handlers) can be added to a stick
runtime by mod_perl scripts.

Apache->push_handlers() takes the callback hook name as its first argument and a subroutine
name or reference as its second.

Here’s an example:

15 Feb 2014 15

1.4.7 Stacked Handlers

use Apache::Constants qw(:common);
sub my_logger {

#some code here

return OK;

}
Apache->push_handlers("PerlLogHandler", \&my_logger);

Here's another one;:

use Apache::Constants gw(:common);

$r->push_handlers("PerlLogHandler", sub {
print STDERR "__ANON___ called\n";
return OK;

i
After each request, this stack is erased.
All handlers will be called unless a handler returns a status otheD#@arDECLINED
Example uses:

CGl.pm maintains a global object for its plain function interface. Since the object is global, it does not go
out of scopeDESTROYSs never calledCGIl->new can call:

Apache->push_handlers("PerlCleanupHandler", \&CGl::_reset_globals);

This function will be called during the final stage of a request, refresb@igom’s globals before the
next request comes in.

Apache::DCELogin establishes a DCE login context which must exist for the lifetime of a request, so
the DCE::Login object is stored in a global variable. Without stacked handlers, users must set

PerlCleanupHandler Apache::DCELogin::purge

in the configuration files to destroy the context. This is not "user-friendly". Mamache::DCELo-
gin::handler can call:

Apache->push_handlers("PerlCleanupHandler", \&purge);

Persistent database connection modules suéipashe::DBI could push &erlCleanupHandler

handler that iterates ovésConnected , refreshing connections or just checking that connections have not
gone stale. Remember, by the time we gdee¢dCleanupHandler , the client has what it wants and

has gone away, so we can spend as much time as we want here without slowing down response time to the
client (although the process itself is unavailable for serving new requests before the operation is
completed).

PerlTransHandlers (e.g.Apache::MsqlProxy) may decide, based on the URI or some arbitrary
condition, whether or not to handle a request. Without stacked handlers, users must configure it them-
selves:

16 15 Feb 2014

mod_perl Configuration 1.4.7 Stacked Handlers

PerlTransHandler Apache::MsqlProxy::translate
PerlHandler Apache::MsqlProxy

PerlHandler is never actually invoked unleanslate() sees that the request is a proxy request
($r->proxyreq). If it is a proxy requestranslate() sets$r->handler("perl-script") :

and only then willPerlHandler handle the request. Now users do not have to speeiydandler
Apache::MsqlProxy , thetranslate() function can set it witpush_handlers()

Imagine that you want to include footers, headers, etc., piecing together a document, without using SSI.
The following example shows how to implement it. First we prepare the code as follows:

Test/Compose.pm
package Test::Compose;
use Apache::Constants gw(:common);

sub header {
my $r = shift;
$r->content_type("text/plain”);
$r->send_http_header;
$r->print("header text\n");
return OK;

}

sub body { shift->print("body text\n") ; return OK}
sub footer { shift->print("*footer text\n") ; return OK}
1

__END__

in httpd.conf or perl.conf
PerlIModule Test::Compose
<Location /foo>

SetHandler "perl-script”
PerlHandler Test::Compose::header Test::Compose::body Test::Compose::footer

</Location>

Parsing the output of another Perl[Handler? This is a little more tricky, but consider:

<Location /foo>

SetHandler "perl-script"”

PerlHandler OutputParser SomeApp
</Location>

<Location /bar>

SetHandler "perl-script"”

PerlHandler OutputParser AnotherApp
</Location>

Now, OutputParser goes first, but iuntie() ’'s *STDOUTand retie() 's it to its own package
like so:

package OutputParser;
sub handler {

my $r = shift;
untie *STDOUT;

15 Feb 2014 17

1.4.8 Perl Method Handlers

tie *STDOUT => 'OutputParser’, $r;
}
sub TIEHANDLE {

my ($class, $r) = @_;

bless { r => $r}, $class;

}

sub PRINT {
my $self = shift;
for (@) {

#do whatever you want to $_ for example:
$self->{r}->print($_ . "[insert stuff]");
}
}

1;
END__

To build in this feature, configure with:

% perl Makefile.PL PERL_STACKED HANDLERS=1]...]

If you want to test whether your running mod_perl Apache can stack handlers, the method
Apache->can_stack handlers will return TRUE if mod_perl was configured with
PERL_STACKED_HANDLERS=NdFALSE otherwise.

1.4.8 Perl Method Handlers

If a Perl*Handler is prototyped witl$$, this handler will be invoked as a method. For example:

package MyClass;
@ISA = gw(BaseClass);

sub handler ($$) {
my ($class, $r) = @_;

}
package BaseClass;

sub method ($$) {
my ($class, $r) = @_;

}
1
Configuration:

PerlHandler MyClass

18 15 Feb 2014

mod_perl Configuration 1.4.8 Perl Method Handlers

or

PerlHandler MyClass->handler

Since the handler is invoked as a method, it may inherit from other classes:

PerlHandler MyClass->method

In this case, thiMyClass class inherits this method froBaseClass . This means that any method of
MyClass or any of its parent classes can serve as a mod_perl handler, and that you can apply good OO
methodology within your mod_perl handlers.

For instance, you could have this base class:
package ServeContent;
use Apache::Constants qw(OK);

sub handler($$) {
my ($class, $r) = @_;

$r->send_http_header('text/plain’);
$r->print($class->get_content());

return OK;
}

sub get_content {
return 'Hello World’;

}
1,

And then use the same base class for different contents:
package HelloWorld;

use ServeContent;
@ISA = gw(ServeContent);

sub get_content {
return '"Hello, happy world!’;

}

package GoodbyeWorld;

use ServeContent;
@ISA = gw(ServeContent);

sub get_content {
return 'Goodbye, cruel world!’;

}

1

15 Feb 2014 19

1.4.9 PerlFreshRestart

Now you can keep the same handler subroutine for a group of modules which are similiar. The following
configuration will enable the handlers from the subclasses:
<Location /hello>
SetHandler perl-script
PerlHandler HelloWorld->handler
</Location>
<Location /bye>
SetHandler perl-script

PerlHandler GoodbyeWorld->handler
</Location>

To build in this feature, configure with:

% perl Makefile.PL PERL_METHOD_HANDLERS=1] ...]

1.4.9 PerlFreshRestart

To reload PerlRequire , PerlModule and other use() 'd modules, and to flush the
Apache::Registry cache on server restart, addtipd.conf:

PerlFreshRestart On
Make sure you read Evil things might happen when using PerlFreshRestart.

Starting from mod_perl version 1.2&rlFreshRestart is ignored when mod_perl is compiled as a
DSO. But it almost doesn’t matter, since mod_perl as a DSO will do a full tear-down (perl_destruct()). So
it's still a FreshRestart, just fresher than static (non-DSO) mod_perl :)

But note that even if you have
PerlFreshRestart Off

and mod_perl as a DSO you will still gefFeeshRestart.

1.4.10 PerlSetEnv and PerlPassEnv

PerlSetEnv key val
PerlPassEnv key

PerlPassenv passesPerlSetEnv sets and pass&\NVironment variables to your scripts. You can
access them in your scripts througENV(e.g. SENV{"key"}). These commands are useful to pass
information to your handlers or scripts, or to any modules you use that require some additional configura-
tion.

For example, the Oracle RDBMS requires a numb&RACLE_*environment variables to be set so that
you can connect to it throuddBl. So you might want to put this in yohttpd.conf:

20 15 Feb 2014

mod_perl Configuration 1.4.11 PerlSetVar and PerlAddVar

PerlSetEnv ORACLE_BASE /oracle
PerlSetEnv ORACLE_HOME /oracle

You can then usBBI to access your oracle server without having to set the environment variables in your
handlers.

PerlPassénv proposes another approach: you might want to set the corresponding environment vari-
ables in your shell, and not reproduce the information in kttpd.conf. For example, you might have this
in your .bash_profile:

ORACLE_BASE-=/oracle
ORACLE_HOME=/oracle
export ORACLE_BASE ORACLE_HOME

However, Apache (or mod_perl) don’t pass on environment variables from the shell by default; you'll
have to specify these using either the stanBastEnv or mod_perl'sPerlPassénv directives.

PerlPassEnv ORACLE_BASE ORACLE_HOME

One thing to be aware of is that when you start Apache under a shell different than the one you are logged
in from, the environment variables could be totally different, so don’t be surprised if you get a different
value when using?assenv /PerlPassénv or none at all. Check the environment Apache is started
from. Often it's started from a special account Egache, or nobody, and can be anything else. Check the
value ofUser variable inhttpd.conf to find out the right answer. Once you figure that out, make sure that
the shell Apache starts from has the desired environment variables right. And may be it's a better idea not
to rely on the shell variables, but instead set those explicitly G&tenv /PerlSetEnv

Regarding the setting é¢ferlPassEnv PERLS5LIB in httpd.conf: if you turn on taint checksPérl-
TaintCheck On), $ENV{PERL5LIB} will be ignored (unset). See the 'Switches -w, -T’ section.

While the Apache’sSetEnv /PassEnv and mod_perl'sPerISetEnv /PerlPassEnv apparently do

the same thing, the former doesn’t happen until the fixup phase, the latter happens as soon as possible, so
those variables are available before then, e.BenPAuthenHandler for SENV{ORACLE_HOME(or

another environment variable that you need in these early request processing stages).

1.4.11 PerlSetVvar and PerlAddVar

PerlSetvar is very similar toPerlSetEnv ; however, variables set usimgriSetvVar are only
available through the mod_perl API, and is thus more suitable for configuration. For example, environ-
ment variables are available to all, and might show up on casual "print environment" scripts, which you
might not like.PerlSetvVar is well-suited for modules needing some configuration, but not wanting to
implement first-class configuration handlers just to get some information.

PerlSetVar foo bar

or

15 Feb 2014 21

1.4.11 PerlSetVar and PerlAddVar

<Perl>
push @{ $Location{"/"}->{PerlSetVar} }, [foo =>'bar’];
</Perl>

and in the code you read it with:

my $r = Apache->request;
print $r->dir_config('foo’);

The above prints:

bar

Note that you cannot do this:

push @{ $Location{"/"}->{PerlSetVar} }, [foo => \%bar |;

All values are treated as strings, so you will get a stringified reference to a hash as a value (something
which will look like "HASH(0x87a5108) "). This cannot be turned back into a reference and therefore
into the original hash upon retrieval.

However you can use thierlAddVar directive to push more values into the variable, emulating arrays.
For example:

PerlSetVar foo bar

PerlAddVar foo barl
PerlAddVar foo bar2

or the equivalent:
PerlAddVar foo bar

PerlAddVar foo barl
PerlAddVar foo bar2

To retrieve the values use the>dir_config->get() method:
my @foo = $r->dir_config->get('foo’);
or
my %foo = $r->dir_config->get('foo’);
Make sure that you use an even number of elements if you store the retrieved values in a hash, like this:

PerlAddVar foo keyl
PerlAddVar foo valuel
PerlAddVar foo key2
PerlAddVar foo value2

Then%foo will have a structure like this:

22 15 Feb 2014

mod_perl Configuration 1.4.12 PerlSetupEnv

%foo = (
keyl =>'valuel’,
key2 =>'value2’,

);

There are some things you should know about sub requests $erdir_config . For
$r->lookup_uri , everything works as expected, because all normal phases are run. You can then
retrieve variables set in the server scope of the configuraticrViftualHost> sections, irkLoca-

tion> sections, etc.

However, when using th#r->lookup_file method, you are effectively skipping the URI translation
phase. This means that the URI won't be known by Apache, only the file name to retrieve. As such,
<Location> sections won't be applied. This means that if you were using:

Alias /perl-subr/ /Thome/httpd/perl-subr/
<Location /perl-subr>

PerlSetVar foo bar

PerlSetVar foo2 bar2
</Location>

And issue a subrequest usiy->lookup_file and try to retrieve its directory configuration
(Apache::SubRequest class is just a subclassApache):

my $subr = $r->lookup_file(/home/httpd/perl-subr/script.pl’);
print $subr->dir_config('foo’);

You won't get the results you wanted.

As a side note: the issue we discussed here mearipatiedubr/script.pl won’t even run under mod_perl
if configured in the normal Apache::Registry way (usingLacation> section), because th& oca-
tion> blocks won't be applied. You'd have to usg@irectory> or<Files> section configuration
to achieve the desired effect. As to ferlSetvar discussion, usingDirectory> or <Files>
section would solve the problem.

1.4.12 PerlSetupEnv

PerlSetupEnv On will allow you to access the environment variables $iENV{REQUEST_URI}

which are available under CGI. However, when programming handlers, there are always better ways to
access these variables through the Apache API. Therefore, it is recommended t@thrmexcept for

scripts which absolutely require it. See PerlSetupEnv Off.

1.4.13 PerlWarn and PerlTaintCheck

For PerlWarn andPerlTaintCheck directives see the 'Switches -w, -T’ section.

15 Feb 2014 23

1.5 The Startup File

1.4.14 MinSpareServers MaxSpareServers StartServers MaxClients
MaxRequestsPerChild

MinSpareServers , MaxSpareServers , StartServers andMaxClients are standard Apache
configuration directives that control the number of servers that will be launched at server startup and kept
alive during the server’s operation.

MaxRequestsPerChild lets you specify the maximum number of requests which each child will be
allowed to serve. When a process has selaxiRequestsPerChild requests the parent kills it and
replaces it with a new one. There may also be other reasons why a child is killed, so it does not mean that
each child will in fact serve this many requests, only that it will not be allowed to serve more than that
number.

These five directives are very important for achieving the best performance from your server. The section
" Performance Tuning by Tweaking Apache Configuration’ provides all the details.

1.5 The Startup File

At server startup, before child processes are spawned to receive incoming requests, there is more that can
be done than just preloading files. You might want to register code that will initialize a database connec-
tion for each child when it is forked, tie read-only dbm files, etc.

The startup.pl file is an ideal place to put the code that should be executed when the server starts. Once
you have prepared the code, load ititpd.conf before the rest of the mod_perl configuration directives
like this:

PerlRequire /home/httpd/perl/lib/startup.pl

I must stress that all the code that is run at server initialization time is run with root privileges if you are
executing it as the root user (which you have to do unless you choose to run the server on an unprivileged
port, above 1024). This means that anyone who has write access to a script or module that is loaded by
PerlModule or PerlRequire effectively has root access to the system. You might want to take a
look at the new and experimenérlOpmask directive andPERL_OPMASK_DEFAULdompile time

option to try to disable some of the more dangerous operations.

Since the startup file is a file written in plain Perl, one can validate its syntax with:

% perl -c /home/httpd/perl/lib/startup.pl

1.5.1 The Sample Startup File

Let's look at a real world startup file:
startup.pl

use strict;

Extend @INC if needed

24 15 Feb 2014

mod_perl Configuration 1.5.1 The Sample Startup File

use lib gw(/dir/foo /dir/bar);

Make sure we are in a sane environment.
$ENV{MOD_PERL} or die "not running under mod_perl!";

For things in the "/perl" URL
use Apache::Registry;

Load Perl modules of your choice here

This code is interpreted *once* when the server starts
use LWP::UserAgent ();

use Apache::DBI ();

use DBI ();

Tell me more about warnings
use Carp ();
$SIG{__WARN__} =\&Carp::cluck;

Load CGl.pm and call its compile() method to precompile
(but not to import) its autoloaded methods.

use CGI ();

CGl->compile(’:all’);

Initialize the database connections for each child
Apache::DBI->connect_on_init
("DBl:mysql:database=test;host=localhost",
"user","password",

{

PrintError => 1, # warn() on errors

RaiseError => 0, # don't die on error

AutoCommit => 1, # commit executes immediately

}

)i

1
Now we’ll review the code explaining why each line is used.

use strict;

This pragma is worth using in every script longer than half a dozen lines. It will save a lot of time and
debugging later on.

use lib qw(/dir/foo /dir/bar);

The only chance to permanently mod@INCbefore the server is started is with this command. Later the
running code can modif@INCjust for the moment itequire() 's some file, and the@INCs value
gets reset to what it was originally.

$ENV{MOD_PERL} or die "not running under mod_perl!";

A sanity check, if Apache/mod_perl wasn'’t properly built, the above code will abort the server startup.

15 Feb 2014 25

1.5.1 The Sample Startup File

use Apache::Registry;
use LWP::UserAgent ();
use Apache::DBI ();
use DBI ();

Preload the modules that get used by our Perl code serving the requests. Unless you need the symbols
(variables and subroutines) exported by the modules you preload to accomplish something within the
startup file, don’t import them, since it's just a waste of startup time. Instead use the engptytdigell
theimport() function not to import anything.

use Carp ();
$SIG{__WARN__} =\&Carp::cluck;

This is a useful snippet to enable extended warnings logged in the error_log file. In addition to basic warn-
ings, a trace of calls is added. This makes the tracking of the potential problem a much easier task, since
you know who called whom. For example, with normal warnings you might see:

Use of uninitialized value at
lust/lib/perl5/site_perl/5.005/Apache/DBIl.pm line 110.

but you have no idea where it was called from. When we&ase as shown above we might see:

Use of uninitialized value at
lustrl/lib/perl5/site_perl/5.005/Apache/DBIl.pm line 110.
Apache::DBI::connect(undef, 'mydb::localhost’, 'user’,
‘passwd’, 'HASH(0x87a5108)’) called at
lustrl/lib/perl5/site_perl/5.005/i386-linux/DBl.pm line 382
DBI::connect('DBI’, 'DBI:mysql:mydb::localhost’, 'user’,
‘passwd’, 'HASH(0x8375e4c)’) called at
lustrl/lib/perl5/site_perl/5.005/Apache/DBl.pm line 36
Apache::DBIl::__ANON__('Apache=SCALAR(0x87a50c0)’) called at
PerlChildInitHandler subroutine
‘Apache::DBI::__ANON__'line 0
eval {...} called at PerIChildInitHandler subroutine
‘Apache::DBI::__ANON__'line O

we clearly see that the warning was triggered by eval()'uatind\paehe::DBI::__ ANON__ which
called DBI::connect (with the arguments that we see as well), which in turn called the
Apache::DBI::connect method. Now we know where to look for our problem.

use CGI ();

CGl->compile(:all’);

Some modules create their subroutines at run time to improve their load time. This helps when the module
includes many subroutines, but only a few are actually {@@&tlpm falls into this category. Since with
mod_perl the module is loaded only once, it might be a good idea to precompile all or a part of its
methods.

CGl.pm’s compile() method performs this task. Notice that this is a proprietary function of this
module, other modules can implement this feature or not and use this or some other name for this func-
tionality. As with all modules we preload in the startup file, we don’t import symbols from them as they
will be lost when they go out of the file's scope.

26 15 Feb 2014

mod_perl Configuration 1.5.2 What Modules You Should Add to the Startup File and Why

Note that starting withCGl.pm version 2.46, the recommended method to precompile the code in
CGl.pm is:

use CGI gw(-compile :all);
But the old method is still available for backward compatibility.
1

As startup.pl is run through Perl'sequire() , it has to return a true value so that Perl can make sure it
has been successfully loaded. Don't forget this (it's very easy to forget it).

See also the 'Apache::Status -- Embedded interpreter status information’ section.

1.5.2 What Modules You Should Add to the Startup File and Why

Every module loaded at server startup will be shared among the server children, saving a lot of RAM on
your machine. Usually | put most of the code | develop into modules and preload them.

You can even preload your CGI script wibache::RegistryLoader (See Preload Perl modules at
server startup) and you can get the children to preopen their database connectidpachith:DBI

1.5.3 The Confusion with use() in the Server Startup File

Some people wonder why you need to duplicateudey) clause in the startup file and in the script
itself. The confusion arises due to misunderstandingigke€®) function.use() normally performs two
operations, namelyequire() andimport() , called within aBEGIN block. See the section "use()"
for a detailed explanation of the use(), require() and import() functions.

In the startup file we don’t want to import any symbols since they will be lost when we leave the scope of
the startup file anyway, i.e. they won't be visible to any of the child processes which run our mod_perl

scripts. Instead we want to preload the module in the startup file and then import any symbols that we
actually need in each script individually.

Normally when we writaise MyModule; , use() will both load the module and import its symbols;
so for the startup file we writase MyModule (); and the empty parentheses will ensure that the
module is loaded but that no symbols are imported. Then in the actual mod_perl script weegyitein

the standard way, e.gse MyModule; . Since the module has already been preloaded, the only action
taken is to import the symbols. For example in the startup file you write:

use CGlI ();

since you probably don’'t need any symbols to be imported there. But in your code you would probably
write:

use CGI gw(:html);

15 Feb 2014 27

1.6 Apache Configuration in Perl

For example, if you havese() 'd Apache::Constants in the startup file, it does not mean you can
have the following handler:

package MyModule;

sub handler {
my $r = shift;
Cool stuff goes here
return OK;

}
1;
You would either need to add:

use Apache::Constants gw(OK);

Or use the fully qualified name:

return Apache::Constants::OK;

If you want to use the function interface without exporting the symbols, use fully qualified function
names, e.gCGl::;param . The same rule applies to variables, you can import variables and you can
access them by their full name. e$§ly::Module::bar . When you use the object oriented (method)
interface you don't need to export the method symbols.

Technically, you aren’t required to supply tiiee() statement in your (handler?) code if it was already
loaded during server startup (i.e. bipetlRequire startup.pl). When writing your code,

however, you should not assume the module code has been preloaded. In the future, you or someone else
will revisit this code and will not understand how it is possible to use a module’s methods without first
loading the module itself.

Read théexporter andperlmod manpages for more information abauport()

1.6 Apache Configuration in Perl

With <Perl> ..</Perl> sections, it is possible to configure your server entirely in Perl.

1.6.1 Usage

<Perl> sections can contaeny and as much Perl code as you wish. These sections are compiled into a
special package whose symbol table mod_perl can then walk and grind the names and values of Perl vari-
ables/structures through the Apache core configuration gears. Most of the configuration directives can be
represented as scalafis€alar) or lists @list). A @list inside these sections is simply converted

into a space delimited string for you. Here is an example:

httpd.conf

<Perl>
@PerlModule = gw(Mail::Send Devel::Peek);

#run the server as whoever starts it

28 15 Feb 2014

mod_perl Configuration 1.6.1 Usage

$User = getpwuid($>) || $>;
$Group = getgrgid($)) || $);

$ServerAdmin = $User;

</Perl>

Block sections such ad.ocation> ..</Location> are represented in%aLocation hash, e.g.:
<Perl>

$Location{"/~dougm/"} = {
AuthUserFile => "/tmp/htpasswd’,
AuthType => 'Basic’,
AuthName => 'test’,
Directorylndex => [qw(index.html index.htm)],
Limit => {
METHODS =>'GET POST’,
require => 'user dougm’,
h
h

</Perl>

If an Apache directive can take two or three arguments you may push strings (the lowest number of argu-
ments will be shifted off thélist) or use an array reference to handle any number greater than the
minimum for that directive:

push @Redirect, "/foo", "http://www.foo.com/";
push @Redirect, "/imdb", "http://www.imdb.com/";
push @Redirect, [qw(temp "/here" "http://www.there.com")];

Other section counterparts include/irtualHost , %Directory and%fFiles .

To pass all environment variables to the children with a single configuration directive, rather than listing
each one vi®assEnv or PerlPassEnv , a<Perl> section could read in a file and:

push @PerlPassEnv, [$key => $val];
or

Apache->httpd_conf("PerlPassEnv $key $val");

These are somewhat simple examples, but they should give you the basic idea. You can mix in any Perl
code you desire. Seg/httpd.conf.pl andeg/perl_sections.txt in the mod_perl distribution for more exam-
ples.

Assume that you have a cluster of machines with similar configurations and only small distinctions
between them: ideally you would want to maintain a single configuration file, but because the configura-
tions aren’texactly the same (e.g. tHgerverName directive) it's not quite that simple.

15 Feb 2014 29

1.6.2 Enabling

<Perl> sections come to rescue. Now you have a single configuration file and the full power of Perl to
tweak the local configuration. For example to solve the problem @dhgeerName directive you might
have this<Perl> section:

<Perl>
$ServerName = ‘hostname’;
</Perl>

For example if you want to allow personal directories on all machines except the ones whose names start
with secure:

<Perl>
$ServerName = ‘hostname’;
if ($ServerName !~ /*secure/) {
$UserDir = "public.html”;
}else {
$UserDir = "DISABLED";

}

</Perl>

Behind the scenes, mod_perl defines a package catladhe::ReadConfig . Here it keeps all the
variables that you define inside thBerl> sections. Therefore it's not necessarily to configure the server
within the<Perl> sections. Actually what you can do is to write the Perl code to configure the server just
like you'd do in the<Perl> sections, but instead place it into a separate file that should be called during
the configuration parsing with eith&@erlModule or PerlRequire directives, or from within the
startup file. All you have to do is to declare the packgache::ReadConfig within this file. Using

the last example:

apache_config.pl

package Apache::ReadConfig;

$ServerName = ‘hostname’;
if ($ServerName !~ /"secure/) {
$UserDir = "public.html”;
}else {
$UserDir = "DISABLED";

}
1
httpd.conf

PerlRequire /home/httpd/perl/lib/apache_config.pl

1.6.2 Enabling

To enable<Perl> sections you should build mod_perl with perl Make-
file.PL PERL_SECTIONS=1]...].

30 15 Feb 2014

mod_perl Configuration 1.6.3 Caveats

1.6.3 Caveats

Be careful when you declare package names insRerl> sections, for example this code has a
problem:

<Perl>
package My::Trans;
use Apache::Constants gw(:common);
sub handler{ OK }

$PerlTransHandler = "My::Trans";
</Perl>

When you put code inside<®Perl> section, by default it actually goes into thpache::ReadCon-

fig package, which is already declared for you. This means th&dat€&ransHandler we have
tried to define above is actually undefined. If you define a different package name witRierla
section you must make sure to close the scope of that package and retuskpactie=:ReadConfig
package when you want to define the configuration directives, like this:

<Perl>
package My::Trans;
use Apache::Constants qw(:common);
sub handler{ OK }

package Apache::ReadConfig;
$PerlTransHandler = "My::Trans";
</Perl>

1.6.4 Verifying

This section shows how to check and dump the configuration you have made with the 4iegplaf
sections irhttpd.conf.

To check the<Perl> section syntax outside of httpd, we make it look like a Perl script:

<Perl>

Iperl

... code here ...
__END__
</Perl>

Now you may run:

perl -cx httpd.conf

In a running httpd you can see how you have configured<therl> sections through the URI
Iperl-status, by choosirgerl Section Configuration from the menu. In order to make this item show up in
the menu you should s&Apache::Server::SaveConfig to a true value. When you do that the
Apache::ReadConfig namespace (in which the configuration data is stored) will not be flushed, making
configuration data available to Perl modules at request time.

15 Feb 2014 31

1.6.5 Strict <Perl> Sections

Example:

<Perl>
$Apache::Server::SaveConfig = 1;

$DocumentRoot = ...

</Perl>

At request time, the value ofDocumentRoot can be accessed with the fully qualified name
$Apache::ReadConfig::DocumentRoot

You can dump the configuration ePerl> sections like this:

<Perl>
use Apache::PerlSections();

Configuration Perl code here

print STDERR Apache::PerlSections->dump();
</Perl>

Alternatively you can store it in a file:
Apache::PerlSections->store("httpd_config.pl");

You can themequire() that file in some othetPerl> section.

1.6.5 Strict<Per | > Sections

If the Perl code doesn’t compile, the server won't start. If the generated Apache config is #Reilid,
sections have always just logged an error and carried on, since there might be globals in the section that
are not intended for the config.

The variable$Apache::Server::StrictPerlSections has been added in mod_perl version
1.22. If you set this variable to a true value, for example

$Apache::Server::StrictPerlSections = 1;

then mod_perl will not tolerate invalid Apache configuration syntax andcvalik (die) if this is the
case. At the time of writing the default valudis

1.6.6 Debugging

If you compile mod_perl witiPERL_TRACE=1and set the environment variable MOD_PERL_TRACE
then you should see some useful diagnostics when mod_perl is procd3sityg sections.

32 15 Feb 2014

mod_perl Configuration 1.7 Validating the Configuration Syntax

1.6.7 Perl Section Tricks

® The Perl%EN\s cleared during startup, but the C environment is left intact and so you can use it to
set@PassEnv.

1.6.8 References

For more info see Writing Apache Modules with Pel and C, Chapter 8:
|http://modperl.com:9000/book/chapters/ch8.html

1.7 Validating the Configuration Syntax

apachectl configtest tests the configuration file without starting the server. You can safely vali-
date the configuration file on your production server, if you run this test before you restart the server with
apachectl restart . Of course it is not 100% perfect, but it will reveal any syntax errors you might

have made while editing the file.

"apachectl configtest " is the same ashttpd -t ' and it doesn’t just parse the code in
startup.pl, it actually executes ikPerl> configuration has always started Perl during the configuration
read, andPerl{Require,Module} do so as well.

Of course we assume that the code that gets called during this test cannot cause any harm to your running
production environment. The following hint shows how to prevent the code in the startup script and
<Perl> from being executed during the syntax check, if that's what you want.

If you want your startup code to get control over the(configtest) server launch, start the server
configuration test with:

httpd -t -Dsyntax_check
and, if for example you want to prevent your startup code from being executed, at the top of the code add:

return if Apache->define('syntax_check’);

1.8 Enabling Remote Server Configuration Reports

The nifty mod_info module displays the complete server configuration in your browser. In order to use it
you have compile it in or, if the server was compiled with DSO mode enabled, load it as an object. Then
just uncomment the ready-prepared section irtipel.conf file:

<Location /server-info>
SetHandler server-info
Order deny,allow
Deny from all
Allow from www.example.com
</Location>

15 Feb 2014 33

http://modperl.com:9000/book/chapters/ch8.html

1.9 Publishing Port Numbers other than 80

Now restart the server and issue the request:

http://www.example.com/server-info

1.9 Publishing Port Numbers other than 80

If you are using a two-server setup, with a mod_perl server listening on a high port, it is advised that you
do not publish the number of the high port number in URLs. Rather use a proxying rewrite rule in the
non-mod_perl server:

RewriteEngine On

RewriteLogLevel 0

RewriteRule ~perl/(.*) http://localhost:8080/perl/$1 [P]
ProxyPassReverse / http://localhost/

| was told one problem with publishing high port numbers is that IE 4.x has a bug when re-posting data to
a non-port-80 URL. It drops the port designator, and uses port 80 anyway.

Another reason is that firewalls probably will have the high port closed, therefore users behind the fire-
walls will be unable to reach your service, running on the blocked port.

1.10 Configuring Apache + mod_perl with mod_macro

mod_macro is an Apache module written by Fabien Coelho that lets you define and use macros in the
Apache configuration file.

mod_macro can be really useful when you have many virtual hosts, and where each virtual host has a
number of scripts/modules, most of them with a moderately complex configuration setup.

First download the latest version of mod_macro from http://www.cri.ensmp.fr/~coelho/mod [macro/ , and
configure your Apache server to use this module.

Here are some useful macros for mod_perl users:

set up a registry script
<Macro registry>

SetHandler "perl-script"
PerlHandler Apache::Registry
Options +ExecCGl

</Macro>

example

Alias /stuff fusr/www/scripts/stuff
<Location /stuff>

Use registry

</Location>

If your registry scripts are all located in the same directory, and your aliasing rules consistent, you can use
this macro:

34 15 Feb 2014

http://www.cri.ensmp.fr/~coelho/mod_macro/

mod_perl Configuration 1.10 Configuring Apache + mod_perl with mod_macro

set up a registry script for a specific location
<Macro registry $location $script>

Alias /$location /home/httpd/perl/scripts/$script
<Location /$location>

SetHandler "perl-script"

Perl[Handler Apache::Registry

Options +ExecCGl

</Location>

</Macro>

example
Use registry stuff stuff.pl

If you're using content handlers packaged as modules, you can use the following macro:

set up a mod_perl content handler module
<Macro modperl $module>

SetHandler "perl-script"

Options +ExecCGl

PerlHandler $module

</Macro>

#examples

<Location /perl-status>
PerlSetVar StatusPeek On
PerlSetVar StatusGraph On
PerlSetVar StatusDumper On
Use modperl Apache::Status
</Location>

The following macro sets up a Location for use WML::Embperl . Here we define all ".html" files
to be processed liymbperl .

<Macro embperl>

SetHandler "perl-script"

Options +ExecCGl

Perl[Handler HTML::Embperl

PerlSetEnv EMBPERL_FILESMATCH \.html$
</Macro>

examples
<Location /mrtg>
Use embperl
</Location>

Macros are also very useful for things that tend to be verbose, such as setting up Basic Authentication:

Sets up Basic Authentication
<Macro BasicAuth $realm $group>
Order deny,allow

Satisfy any

AuthType Basic

AuthName $realm

AuthGroupFile /usr/www/auth/groups
AuthUserFile /usr/www/auth/users
Require group $group

15 Feb 2014 35

1.11 General Pitfalls

Deny from all
</Macro>

example of use

<Location /stats>

Use BasicAuth WebStats Admin
</Location>

Finally, here is a complete example that uses macros to set up simple virtual hosts. It Bsea$ the

cAuth macro defined previously (yes, macros can be nested!).

<Macro vhost $ip $domain $docroot $admingroup>
<VirtualHost $ip>

ServerAdmin webmaster@$domain
DocumentRoot /usr/iwww/htdocs/$docroot
ServerName www.$domain

<Location /stats>

Use BasicAuth Stats-$domain $admingroup
</Location>

</VirtualHost>

</Macro>

define some virtual hosts
Use vhost 10.1.1.1 example.com example example-admin
Use vhost 10.1.1.2 example.net examplenet examplenet-admin

mod_macro is also useful in a non vhost setting. Some sites for example have lots of scripts which people

use to view various statistics, email settings and etc. It is much easier to read things like:

use /forwards email/showforwards
use /webstats web/showstats

The actual macros for the last example are left as an exercise to reader. These can be easily constructed

based on the examples presented in this section.

1.11 General Pitfalls

1.11.1 My CGI/Perl Code Gets Returned as Plain Text Instead of

Being Executed by the Webserver

Check your configuration files and make sure thaBkecCGlI is turned on in your configurations.

<Location /perl>
SetHandler perl-script
PerlHandler Apache::Registry
Options ExecCGl
allow from all
PerlSendHeader On
</Location>

36

15 Feb 2014

mod_perl Configuration 1.11.2 My Script Works under mod_cgi, but when Called via mod_perl | Get a 'Save-As’ Prompt

1.11.2 My Script Works under mod_ cgi, but when Called via mod_ perl
| Get a 'Save-As’ Prompt

Did you putPerlSendHeader Onin the configuration part of thelLocation foo></Location>

1.11.3 Is There a Way to Provide a Different startup.pl File for Each
Individual Virtual Host

No. Any virtual host will be able to see the routines frostaetup.pl loaded for any other virtual host.

1.11.4 Is There a Way to Modify @INC on a Per-Virtual-Host or
Per-Location Basis.

You can usePerlSetEnv PERL5LIB ... or aPerlFixupHandler with thelib pragma (se
lib gqw(...)).

A better way is to use Apache::PerlVINC

1.11.5 A Script From One Virtual Host Calls a Script with the Same
Path From the Other Virtual Host

This has been a bug before, last fixed in 1.15 01, i.e. if you are running 1.15, that could be the problem.
You should set this variable in a startup file (which you load Ré&HRequire in httpd.conf):

$Apache::Registry::NameWithVirtualHost = 1;

But, as we know sometimes a bug turns out to be a feature. If the same script is running for more than one
Virtual host on the same machine, this can be a waste, right? Sétii t startup script if you want to

turn it off and have this bug as a feature. (Only makes sense if you are sure that there withee no
scripts with the same path/name). It also saves you some memory as well.

$Apache::Registry::NameWithVirtualHost = 0;

1.11.6 the Server no Longer Retrieves the Directorylndex Files for a
Directory

The problem was reported by users who declared mod_perl configuration irflileetory> section
for all files matching *.pl. The problem went away after placing the directiveskil@s> section.

The mod_alias and mod_rewrite are both Trans handlers in the normal case. So in the setup where both are
used, if mod_alias runs first and matches it will return OK and mod_rewrite won’t see the request.

15 Feb 2014 37

1.11.6 the Server no Longer Retrieves the Directorylndex Files for a Directory

The opposite can happen as well, where mod_rewrite rules apply Aliabe directives are completely
ignored.

The behavior is not random, but depends on the Apache modules loading order. Apache modules are being
executed irreverse order, i.e. module that waslded first will be executed last.

The solution is not to mix mod_rewrite and mod_alias. mod_rewrite does everything mod_alias
does--except foScriptAlias which is not really relevant to mod_perl anyway. Don't rely on the
module ordering, but use explicitly disjoint URL namespace#\lias andRewrite . In other words

any URL regex that can potentially matciRawrite rule should not be used in &lias , and vice
versa. Given that mod_rewrite can easily do what mod_alias does, it's no problem.

Here is one of the examples whekkas is replaced withRedirectMatch . This is a snippet of
configuration at the light non-mod_perl Apache server:

RewriteEngine on

RewriteLogLevel 0

RewriteRule MN(perl.*)$ http://127.0.0.1:8045/$1 [P,L]
RewriteRule AN(mail.*)$ http://127.0.0.1:8045/$1 [P,L]
NoCache *

ProxyPassReverse / http://www.example.com/

RedirectMatch permanent ~/$ /pages/index
RedirectMatch permanent ~/foo$ /pages/bar

This configuration works fine because any URI that matches one of the redirects will never match one of
the rewrite rules.

In the above setup we proxy requests starting ypighl or /mail to the mod_perl server, forbid proxy
requests to the external sites, and make sure that the proxied requests will use the
[http://mww.example.com/| as their URL on the way back to the client.

TheRedirectMatch settings work exactly like if you'd write:

Alias/ /pages/index
Alias /foo /pages/bar

But as we told before we don’t want to mix the two.

Here is another example where the redirect is done by a rewrite rule:

RewriteEngine on
RewriteLogLevel 0

RewriteMap lowercase int:tolower

RewriteRule MN(perl.*)$ http://127.0.0.1:8042/$1 [P,L]
RewriteRule NG /pages/welcome.htm [R=301,L]
RewriteRule NS ${lowercase:$1}

NoCache *

ProxyPassReverse / http://www.example.com/

38 15 Feb 2014

http://www.example.com/

mod_perl Configuration 1.12 Configuration Security Concerns

If we omit the rewrite rule that match®$, and instead use a redirect, it will never be called, because the
URL is still matched by the last rufé.*)$. This is a somewhat contrived example because that last
regex could be rewritten &¢.+)$ and all would be well.

1.11.7 Do Perl* Directives Affect Code Running under mod_cgi?
No, they don't.

So for example if you do:

PerlSetEnv foo bar

It'll be seen from mod_perl, but not mod_cgi or any other module.

1.12 Configuration Security Concerns
The more modules you have in your web server, the more complex the code.
The more complex the code in your web server, the more chances for bugs.

The more chances for bugs, the more chance that some of those bugs may involve security breaches.

1.12.1 Choosing User and Group

Because mod_perl runs within an httpd child process, it runs withstee ID andGroup ID specified in

the httpd.conf file. This User /Group should have the lowest possible privileges. It should only have
access to world readable files, even better only files that belongs to this user. Even so, careless scripts can
give away information. You would not want ydetc/passwd file to be readable over the net, for instance,

even if you use shadow passwords.

When a handler needs write permissions, make sure that only the user, the server is running under, has
write permissions to the files. Sometimes you need group write permissions, but be very careful, because a
buggy or malicious code run in the server may destroy files writable by the server.

1.12.2 Taint Checking

Make sure to run the server under:

PerlTaintCheck On

setting in thehttpd.conf file.|Taint checking doesn’t ensure that your code is completely safe from external
hacks, but it does forces you to improve your code to prevent many potential security problems.

15 Feb 2014 39

1.13 Apache Restarts Twice On Start

1.12.3 Exposing Information About the Server’'s Component

It is better not to expose the mod_perl server to the outside world, for it creates a potential security risk by
revealing which Apache modules used by the server and the OS the server is running on.

You can see what information is revealed by your server, by telneting to it and issuing some request. For
example:

% telnet localhost 8080
Trying 127.0.0.1
Connected to localhost
Escape character is "]
HEAD / HTTP1.0

HTTP/1.1 200 OK

Date: Sun, 16 Apr 2000 11:06:25 GMT

Server: Apache/1.3.12 (Unix) mod_perl/1.22 mod_ssl/2.6.2 OpenSSL/0.9.5
[more lines snipped]

So as you see that a lot of information is revealed dadla ServerTokens has been used.

We never were completely sure why the default ofSkeverTokens directive in Apache is-ull

rather thanMinimal . Seems like you would only make Rull if you are debugging. Probably the
reason for using th8erverTokens Full is for a show-off, so Netcratft (http://netcraft.qom) and other
similar survey services will count more Apache servers, which is good for all of us, but you really want to
reveal as little information as possible to the potential crackers.

Another approach is to modify httpd sources to reveal no unwanted information, so all responses will
return an empty or phorfyerver: field.

From the other point of view, security by obscurity is a lack of security. Any determined cracker will
eventually figure out what version of Apache run and what third party modules you have built in.

An even better approach is to completely hide the mod_perl server behind a front-end or a proxy server, so
the server cannot be accessed directly.

1.13 Apache Restarts Twice On Start

When the server is restarted, the configuration and module initialization phases are called twice in total
before the children are forked. The second restart is done in order to ensure that future restarts will work
correctly, by making sure that all modules can survive a reSEBHUP. This is very important if you

restart a production server.

You can control what code will be executed on the start or restart by checking the value of
$Apache::Server::Starting and $Apache::Server::ReStarting respectively. The
former variable idrue when the server is starting and the lattérds when it's restarting.

40 15 Feb 2014

http://netcraft.com/

mod_perl Configuration 1.14 Knowing the proxy_pass’ed Connection Type

For example:

<Perl>

print STDERR "Server is Starting\n" if $Apache::Server::Starting;
print STDERR "Server is ReStarting\n" if $Apache::Server::ReStarting;
</Perl>

The startup.pl file and similar loaded vi&erlModule or PerlRequire are compiled only once.
Because once the module is compiled it enters the sgéli#l hash. When Apache restarts--Perl checks
whether the module or script in question is already registef&dNIC and won't try to compile it again.

So the only code that you might need to protect from running on restart is the oneRethe sections.
But since one usually uses tk®erl> sections mainly for on the fly configuration creation, there
shouldn’t be a reason why it'd be undesirable to run the code more than once.

1.14 Knowing the proxy pass’ed Connection Type

Let's say that you have a frontend server running mod_ssl, mod_rewrite and mod_proxy. You want to
make sure that your user is using a secure connection for some specific actions like login information
submission. You don’'t want to let the user login unless the request was submitted through a secure port.

Since you have to proxy_pass the request between front and backend servers, you cannot know where the
connection has come from. Neither is using the HTTP headers reliable.

A possible solution for this problem is to have the mod_perl server listen on two different ports (e.g. 8000
and 8001) and have the mod_rewrite proxy rule in the regular server redirect to port 8000 and the
mod_rewrite proxy rule in the SSL virtual host redirect to port 8001. In the mod_perl server just check the
PORTvariable to tell if the connection is secure.

1.15 Adding Custom Configuration Directives

This is covered in the Eagle Book in a great detail. This is just a simple example, showing how to add your
own Configuration directives.

Makefile.PL

package Apache::TestDirective;
use ExtUtils::MakeMaker;

use Apache::ExtUtils qw(command_table);
use Apache::src ();

my @directives = ({
name => 'Directive4’,
errmsg => 'Anything’,
args_how => 'RAW_ARGS’,
reg_override=> 'OR_ALL’,

i

15 Feb 2014 41

1.15 Adding Custom Configuration Directives

command_table(\@directives);

WriteMakefile(

NAME =>'Apache::TestDirective’,
VERSION_FROM => 'TestDirective.pm’,
INC => Apache::src->new->inc,

);

TestDirective.pm

package Apache::TestDirective;

use strict;
use Apache::ModuleConfig ();
use DynalLoader ();

if (SENV{MOD_PERL}) {
no strict;
$VERSION ="0.01";
@ISA = gw(DynalLoader);
__PACKAGE__->bhootstrap($VERSION); #command table, etc.
}

sub Directive4 {

warn "Directive4 @_\n";

}

1;
END__

In the mod_perl source tree, add thi¢/tiocs/startup.pl:

use blib gw(/home/dougm/test/Apache/TestDirective);

and at the bottom difconf/httpd.conf:

PerlIModule Apache::TestDirective
Directive4 hi

Test it;

% make start_httpd
% make kill_httpd

You should see:

Directive4 Apache::TestDirective=HASH(0x83379d0)
Apache::CmdParms=SCALAR(0x862b80c) hi

And in the error log file:
% grep Directive4 t/logs/error_log

Directive4 Apache::TestDirective=HASH(0x83119dc)
Apache::CmdParms=SCALAR(0x8326878) hi

42 15 Feb 2014

mod_perl Configuration 1.16 Maintainers

If it didn’t work as expected try building mod_perl wRERL_TRACE=1then do:

setenv MOD_PERL_TRACE all

before starting the server. Now you should get some useful diagnostics.

1.16 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

1.17 Authors

e Stas Bekmarj [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 43

http://stason.org/
http://stason.org/

mod_perl Configuration Table of Contents:

Table of Contents:

1| mod perl Configuration 1
11 2
1.2 |Server Configuratipn 2
1.3 |Apache Configuratipn . 2

1.3.1] Configuration Directives 3
1.3.2[. : 3
1.3.3] <D|rectory> <Locat|on> and <F|Ies> Sectlons) 3
1.3.4| How Directory, Location and Files Sections are Mg¢rged. 6
1.3.5| Sub-Grouping of <Location>, <Directory> and <Files> Sedtions. 7
1.3.6]| Options Directiye . 7
1.4 |mod perl Configuratipn 8
1.4.1| Alias Configuratiops) 8
1.4.1.1[Running CGI, PerlRun, and Reglstry Scrlpts Located in the Same Dlrectory. 9
1.4.2| <Location> Configuratipn 10
1.4.3| Overriding <Location> Setting in "Sub Location" 4
1.4.4| PerIModule and PerlRequire Directlves. 12
1.4.5 £ 24
1.4.6| The handler subroutine 14
1.4.7| Stacked Handlgrs 15
1.4.8| Perl Method Handl¢rs 18
1.4.9| PerlFreshRestart20
1.4.10]| PerlSetEnv and PerIPassIEnv ..., 20
1.4.11] PerISetVar and PerlAddYar 21
1.4.12[PerlSetupEh 28
1.4. 13| PerlWarn and PerITalntChbck . 23
1.4.14| MinSpareServers MaxSpareServers StartServers MaxCIlents MaxRequeststPerChllm
1.5|The Startup File . . 2
1.5.1| The Sample Startup FFlle 24
1.5.2| What Modules You Should Add to the Startup F|Ie andI Why27
1.5.3| The Confusion with use() in the Server Startup File. 27
1.6 |Apache ConfiguratoninPerl 28
1.6.1| Usade. 28
1.6.2 < 0
1.6.331
1.6. 4 . <
1.6. 5| Strlct<PerI> Sectlonb N 4
1.6.6[Debuggiflg 3
1.6.7| Perl Section Tricks. 33
1.6.8 33
1.7 | Validating the Conflguratlon Syntax T X
1.8 |Enabling Remote Server Configuration Reports. 33
1.9|Publishing Port Numbers other thang80. 34
1.10(Configuring Apache + mod perl with mod macro. 34
1.11[GeneralPitfalls 36

15 Feb 2014 i

Table of Contents:

1.11.1[My CGIl/Perl Code Gets Returned as Plain Text Instead of Being Executedl by the
ebservar 36

1.11.2 Mv Scrrgt Works under mod cgr but When CaIIed via mod Qerl [Get a Save As P8@mpt
1.11.3[1s There a Way to Provide a Different startup.pl File for Each Individual Virtudl HosB7
1.11.4[1s There a Way to Modify @INC on a Per-Virtual-Host or Per-Location|Basis. . 37
1.11.5] A Script From One Virtual Host Calls a Script with the Same Path From the Other |V|rtual
: 37
1.11.6 he Server no Longer Retrleves the D|rectorvlndex F|Ies for a D]ectory .. 37
1.11.7| Do Perl* Directives Affect Code Running under mod | cg|’> . .. 39
1.12[Configuration Security Concens . . < 1Y)
1.12.1[Choosing Userand Grpup. 39
1.12.2[Taint Checking 39
1.12.3[Exposing Information About the Server S Compdnent 40
1.13 [Apache Restarts Twice On Start a0
1.14[Knowing the proxy passed ConmectonType 41
1.15[Adding Custom Configuration Directiyes 41
1.16[Maintainets 43
1.17[Authors 43

ii 15 Feb 2014

	1€€mod_perl Configuration
	1.1€€Description
	1.2€€Server Configuration
	1.3€€Apache Configuration
	1.3.1€€Configuration Directives
	1.3.2€€.htaccess files
	1.3.3€€<Directory>, <Location> and <Files> Sections
	1.3.4€€How Directory, Location and Files Sections are Merged
	1.3.5€€Sub-Grouping of <Location>, <Directory> and <Files> Sections
	1.3.6€€Options Directive

	1.4€€mod_perl Configuration
	1.4.1€€Alias Configurations
	1.4.1.1€€Running CGI, PerlRun, and Registry Scripts Located in the Same Directory

	1.4.2€€<Location> Configuration
	1.4.3€€Overriding <Location> Setting in "Sub-Location"
	1.4.4€€PerlModule and PerlRequire Directives
	1.4.5€€Perl*Handlers
	1.4.6€€The handler subroutine
	1.4.7€€Stacked Handlers
	1.4.8€€Perl Method Handlers
	1.4.9€€PerlFreshRestart
	1.4.10€€PerlSetEnv and PerlPassEnv
	1.4.11€€PerlSetVar and PerlAddVar
	1.4.12€€PerlSetupEnv
	1.4.13€€PerlWarn and PerlTaintCheck
	1.4.14€€MinSpareServers MaxSpareServers StartServers MaxClients MaxRequestsPerChild

	1.5€€The Startup File
	1.5.1€€The Sample Startup File
	1.5.2€€What Modules You Should Add to the Startup File and Why
	1.5.3€€The Confusion with use() in the Server Startup File

	1.6€€Apache Configuration in Perl
	1.6.1€€Usage
	1.6.2€€Enabling
	1.6.3€€Caveats
	1.6.4€€Verifying
	1.6.5€€Strict <Perl> Sections
	1.6.6€€Debugging
	1.6.7€€Perl Section Tricks
	1.6.8€€References

	1.7€€Validating the Configuration Syntax
	1.8€€Enabling Remote Server Configuration Reports
	1.9€€Publishing Port Numbers other than 80
	1.10€€Configuring Apache + mod_perl with mod_macro
	1.11€€General Pitfalls
	1.11.1€€My CGI/Perl Code Gets Returned as Plain Text Instead of Being Executed by the Webserver
	1.11.2€€My Script Works under mod_cgi, but when Called via mod_perl I Get a 'Save-As' Prompt
	1.11.3€€Is There a Way to Provide a Different startup.pl File for Each Individual Virtual Host
	1.11.4€€Is There a Way to Modify @INC on a Per-Virtual-Host or Per-Location Basis.
	1.11.5€€A Script From One Virtual Host Calls a Script with the Same Path From the Other Virtual Host
	1.11.6€€the Server no Longer Retrieves the DirectoryIndex Files for a Directory
	1.11.7€€Do Perl* Directives Affect Code Running under mod_cgi?

	1.12€€Configuration Security Concerns
	1.12.1€€Choosing User and Group
	1.12.2€€Taint Checking
	1.12.3€€Exposing Information About the Server's Component

	1.13€€Apache Restarts Twice On Start
	1.14€€Knowing the proxy_pass'ed Connection Type
	1.15€€Adding Custom Configuration Directives
	1.16€€Maintainers
	1.17€€Authors

