

1 Web Content Compression FAQ

115 Feb 2014

1 Web Content Compression FAQWeb Content Compression FAQ

1.1 Description
Everything you wanted to know about web content compression

1.2 Basics of Content Compression
Compression of outbound Web server traffic provides benefits both for Web clients who see shorter
response times, as well as for content providers, who experience lower consumption of bandwidth.

Most recently, content compression for web servers has been provided mainly through use of the gzip
encoding. Other (non perl) modules are available that provide so-called deflate compression. Both
approaches are very similar recently and use the LZ77 algorithm combined with Huffman coding. Luckily
for us, to make use of them, there is no real need for most of us to understand all the details of the obscure
underlying mathematics of these techniques. Apache handlers available from CPAN can usually do the
dirty work. Apache addresses content compression through handlers configured in its configuration file.

Compression is, by its nature, a content filter: It always takes its input as plain ASCII data that it converts
to another binary form, and outputs the result to some destination. That is why every content compres-
sion handler usually belongs to a particular chain of handlers within the content generation phase of the
request-processing flow.

A chain of handlers is one more common term that is good to know about when you plan to
compress data. There are two of them recently developed for Apache 1.3: Apache::OutputChain and
Apache::Filter. We have to keep in mind that the compression handler developed for one chain
usually fails inside another.

Another important point deals with the order of execution of handlers in a particular chain. It’s pretty
straightforward in Apache::Filter. For example, when you configure...

 PerlModule Apache::Filter
 <Files ~ "*\.blah">
 SetHandler perl-script
 PerlSetVar Filter On
 PerlHandler Filter1 Filter2 Filter3
 </Files>

...the content will go through Filter1 first, then the result will be filtered by Filter2, and finally
Filter3 will be invoked to make the final changes in outbound data.

However, when you configure Apache::OutputChain like...

 PerlModule Apache::OutputChain
 PerlModule Apache::GzipChain
 PerlModule Apache::SSIChain
 PerlModule Apache::PassHtml
 <Files *.html>
 SetHandler perl-script
 PerlHandler Apache::OutputChain Apache::GzipChain Apache::SSIChain Apache::PassHtml
 </Files>

15 Feb 20142

1.1 Description

...execution begins with Apache::PassHtml. Then the content will be processed with
Apache::SSIChain and finally with Apache::GzipChain. Apache::OutputChain will not
be involved in content processing at all. It is there only for the purpose of joining other handlers within the
chain.

It is important to remember that the content compression handler should always be the last executable
handler in any chain.

Another important problem of practical implementation of web content compression deals with the fact
that some buggy Web clients declare the ability to receive and decompress gzipped data in their HTTP
requests, but fail to keep their promises when an actual compressed response arrives. This problem is
addressed through the implementation of the Apache::CompressClientFixup handler. This
handler serves the fixup phase of the request-processing flow. It is compatible with all known compres-
sion handlers and is available from CPAN.

1.3 Why it is important to compress Web content?

1.3.1 Reduced equipment costs and the competitive advantage of
dramatically faster page loads.

Web content compression noticeably increases delivery speed to clients and may allow providers to serve
higher content volumes without increasing hardware expenditures. It visibly reduces actual content down-
load time, a benefit most apparent to users of dialup and high-traffic connections.

Industry leaders like Yahoo and Google are widely using content compression in their businesses.

1.4 How much improvement can I expect?

1.4.1 Effective compression can achieve increases in transmission effi-
ciency from 3 to 20 times.

The compression ratio is highly content-dependent. For example, if the compression algorithm is able to
detect repeated patterns of characters, compression will be greater than if no such patterns exist. You can
usually expect to realize an improvement between of 3 to 20 times on regular HTML, JavaScript, and
other ASCII content. I have seen peak HTML file compression improvements in excess of more than 200
times, but such occurrences are infrequent. On the other hand I have never seen ratios of less than 2.5
times on text/HTML files. Image files normally employ their own compression techniques that reduce the
advantage of further compression.

On May 21, 2002 Peter J. Cranstone wrote to the mod_gzip@lists.over.net mailing list:

"...With 98% of the world on a dial up modem, all they care about is how long it takes to download a
page. It doesn’t matter if it consumes a few more CPU cycles if the customer is happy. It’s cheaper to
buy a newer faster box, than it is to acquire new customers."

315 Feb 2014

1.3 Why it is important to compress Web content?Web Content Compression FAQ

1.5 How hard is it to implement content compression on an
existing site?

1.5.1 Implementing content compression on an existing site typically
involves no more than installing and configuring an appropriate
Apache handler on the Web server.

This approach works in most of the cases I have seen. In some special cases you will need to take extra
care with respect to the global architecture of your Web application, but such cases may generally be
readily addressed through various techniques. To date I have found no fundamental barriers to practical
implementation of Web content compression.

1.6 Does compression work with standard Web browsers?

1.6.1 Yes. No client side changes or settings are required.

All modern browser makers claim to be able to handle compressed content and are able to decompress it
on the fly, transparent to the user. There are some known bugs in some old browsers, but these can be
taken into account through appropriate configuration of the Web server.

I strongly recommend use of the Apache::CompressClientFixup handler in your server configu-
ration in order to prevent compression for known buggy clients.

1.7 Is it possible to combine the content compression with
data encryption?

1.7.1 Yes. Compressed content can be encrypted and securely transmit-
ted over SSL.

On the client side, the browser transparently unencrypts and uncompresses the content for the user. It is
important to maintain the correct order of operations on server side to keep the transaction secure. You
must compress the content first and then apply an encryption mechanism. This is the only order of opera-
tions current browsers support.

1.8 What software is required on the server side for content
compression?

15 Feb 20144

1.5 How hard is it to implement content compression on an existing site?

1.8.1 There are four known mod_perl modules/packages for Web
content compression available to date for Apache 1.3 (in alphabetical
order):

Apache::Compress

a mod_perl handler developed by Ken Williams (U.S.), Apache::Compress, can generate gzip
output through the Apache::Filter. This module accumulates all incoming data and compresses
the entire content body as a unit.

Apache::Dynagzip

a mod_perl handler developed by Slava Bizyayev, Apache::Dynagzip uses the gzip format to
compress output dynamically through the Apache::Filter or through the internal Unix pipe.

Apache::Dynagzip is most useful when one needs to compress dynamic outbound Web content
(generated on the fly from databases, XML, etc.) when content length is not known at the time of the
request.

Apache::Dynagzip’s features include:

Support for both HTTP/1.0 and HTTP/1.1.
Control over the chunk size on HTTP/1.1 for on-the-fly content compression.
Support for Perl, Java, or C/C++ CGI applications.
Advanced control over the proxy cache with the configurable Vary HTTP header.
Optional control over content lifetime in the client’s local cache with the configurable
Expires HTTP header.
Optional support for server-side caching of the dynamically generated (and compressed)
content.
Optional extra-light compression

removal of leading blank spaces and/or blank lines, which works for all browsers, including
older ones that cannot uncompress gzip format.

Apache::Gzip

an example of the mod_perl filter developed by Lincoln Stein and Doug MacEachern for their book
Writing Apache Modules with Perl and C (U.S.), which like Apache::Compress works through
Apache::Filter. Apache::Gzip is not available from CPAN. The source code may be found
on the book’s companion Web site at http://www.modperl.com/

Apache::GzipChain

a mod_perl handler developed by Andreas Koenig (Germany), which compresses output through
Apache::OutputChain using the gzip format.

515 Feb 2014

1.8.1 There are four known mod_perl modules/packages for Web content compression available to date for Apache 1.3 (in alphabetical order):Web Content Compression FAQ

http://www.modperl.com/

Apache::GzipChain currently provides in-memory compression only. Use of this module under
perl-5.8 or higher is appropriate for Unicode data. UTF-8 data passed to
Compress::Zlib::memGzip() are converted to raw UTF-8 before compression takes place.
Other data are simply passed through.

1.9 What is the typical overhead in terms of CPU use for the
content compression?

1.9.1 Typical CPU overhead that originates from content compression
is insignificant.

In my observations of data compression of files of up to 200K it takes less then 60 ms CPU on a P4 3 GHz
processor. I could not measure the lower boundary reliably for dynamic compression, because there are no
really measurable latency. From the perspective of global architecture and scalability planning, I would
suggest allowing some 10 ms per request on regular Web pages in order to roughly estimate/predict the
performance of the application server.

Estimation of connection times is an even less exact matter for of a variety of possible network-related
reasons. The worst-case scenario is pretty impressive: a slow dialup connection through an ISP with no
proxy/buffering holds the provider’s socket for a time interval proportionate to the size of the requested
file. At present, gzip reduces this connection time by a factor of approximately 3-20. If the ISP buffers its
traffic, however, the content provider might not feel a dramatic impact -- apart of the fact that they are
paying their telecom providers for the transmission of considerable unnecessary data.

1.10 Is it possible to compress the output from
Apache::Registry with Apache::Dynagzip?

1.10.1 Yes. This should be fairly easy to accomplish, as follows:

If your page/application is initially configured like this:

 <Directory /path/to/subdirectory>
 SetHandler perl-script
 PerlHandler Apache::Registry
 PerlSendHeader On
 Options +ExecCGI
 </Directory>

you might replace it with the following:

 PerlModule Apache::Filter
 PerlModule Apache::Dynagzip
 PerlModule Apache::CompressClientFixup
 <Directory /path/to/subdirectory>
 SetHandler perl-script
 PerlHandler Apache::RegistryFilter Apache::Dynagzip

15 Feb 20146

1.9 What is the typical overhead in terms of CPU use for the content compression?

 PerlSendHeader On
 Options +ExecCGI
 PerlSetVar Filter On
 PerlFixupHandler Apache::CompressClientFixup
 PerlSetVar LightCompression On
 </Directory>

You should usually be all set after that.

In more common cases, you will need to replace the line:

 PerlHandler Apache::Registry

in your initial configuration file with the following lines:

 PerlHandler Apache::RegistryFilter Apache::Dynagzip
 PerlSetVar Filter On
 PerlFixupHandler Apache::CompressClientFixup

Optionally, you might add:

 PerlSetVar LightCompression On

to reduce the size of the stream for clients unable to speak gzip (like Microsoft Internet Explorer over
HTTP/1.0).

Finally, make sure you have somewhere declared

 PerlModule Apache::Filter
 PerlModule Apache::Dynagzip
 PerlModule Apache::CompressClientFixup

This basic configuration uses many defaults. See Apache::Dynagzip POD for further fine tuning if
required.

Note, however, that Apache::RegistryFilter is not yet another Apache::Registry. You may
need to adjust your script in accordance with requirements of Apache::Filer first, especially when the
script generates any CGI/1.1-specific HTTP headers. You can test your compatibility with the
Apache::Filter chain using a temporary configuration like:

 PerlModule Apache::Filter
 <Directory /path/to/subdirectory>
 SetHandler perl-script
 PerlHandler Apache::RegistryFilter
 PerlSendHeader On
 Options +ExecCGI
 PerlSetVar Filter On
 </Directory>

with no Apache::Dynagzip involved. See Apache::Filter documentation if you have any prob-
lems.

715 Feb 2014

1.10.1 Yes. This should be fairly easy to accomplish, as follows:Web Content Compression FAQ

1.11 Is it possible to compress output from a Mason-driven
application with Apache::Dynagzip?

1.11.1 Yes. HTML::Mason::ApacheHandler is compatible with
the Apache::Filter chain.

If your application is initially configured like:

 PerlModule HTML::Mason::ApacheHandler
 <Directory /path/to/subdirectory>
 <FilesMatch "\.html$">
 SetHandler perl-script
 PerlHandler HTML::Mason::ApacheHandler
 </FilesMatch>
 </Directory>

you may wish to replace it with the following:

 PerlModule HTML::Mason::ApacheHandler
 PerlModule Apache::Dynagzip
 PerlModule Apache::CompressClientFixup
 <Directory /path/to/subdirectory>
 <FilesMatch "\.html$">
 SetHandler perl-script
 PerlHandler HTML::Mason::ApacheHandler Apache::Dynagzip
 PerlSetVar Filter On
 PerlFixupHandler Apache::CompressClientFixup
 PerlSetVar LightCompression On
 </FilesMatch>
 </Directory>

You should be all set safely after that.

In more common cases, you will need to replace the line:

 PerlHandler HTML::Mason::ApacheHandler

in your initial configuration file with the following lines:

 PerlHandler HTML::Mason::ApacheHandler Apache::Dynagzip
 PerlSetVar Filter On
 PerlFixupHandler Apache::CompressClientFixup

Optionally, you might add:

 PerlSetVar LightCompression On

to reduce the size of the stream for clients unable to speak gzip (like Microsoft Internet Explorer over
HTTP/1.0).

15 Feb 20148

1.11 Is it possible to compress output from a Mason-driven application with Apache::Dynagzip?

Finally, make sure you have somewhere declared

 PerlModule Apache::Dynagzip
 PerlModule Apache::CompressClientFixup

This basic configuration uses many defaults. See Apache::Dynagzip POD for further fine tuning.

1.12 Is commercial support available for
Apache::Dynagzip?

1.12.1 Yes. Slav Company, Ltd. provides commercial support for
Apache::Dynagzip worldwide.

Since the author of Apache::Dynagzip is employed by Slav Company, service is effective and consis-
tent.

1.13 Why is it important to maintain a control over the
chunk size?

1.13.1 It helps to reduce response latency.

Apache::Dynagzip is the only handler to date that begins transmission of compressed data as soon as
the initial uncompressed pieces of data arrive from their source, at a time when the source process may not
even have completed generating the full document it is sending. Transmission can therefore take place
concurrently with creation of later document content.

This feature is mainly beneficial for HTTP/1.1 requests, because HTTP/1.0 does not support chunks.

I would also mention that the internal buffer in Apache::Dynagzip always prevents Apache from the
creating too short chunks over HTTP/1.1, or from transmitting too short pieces of data over HTTP/1.0.

1.14 Is it worthwhile to strip leading blank spaces prior to
gzip compression?

1.14.1 Yes. It is usually worthwhile to do this.

The benefits of blank space stripping are mostly significant for non-gzipped data transmissions. One can
expect some 5-20% reduction in stream size on regular ’structured’ HTML, JavaScript, CSS, XML, etc.,
in this case at negligible cost in terms of CPU overhead and response delay.

915 Feb 2014

1.12 Is commercial support available for Apache::Dynagzip?Web Content Compression FAQ

After applying gzip compression, the benefits of previously applied blank space stripping are usually
reduced to some 0.5-1.0% of the resulting size, because gzip compresses blank spaces very effectively. It
is still worthwhile, however, to perform blank space stripping because:

chances are that your handler will ultimately have to send an uncompressed response back to a
known buggy client;
it really costs next-to-nothing, and every little bit helps to reduce the cost of data transmission,
especially considering the cumulative effect of frequent repetitions.

1.15 Are there any content compression solutions for vanilla
Apache 1.3?

1.15.1 Yes. There are two compression modules written in C that are
available for vanilla Apache 1.3:

mod_deflate

an Apache handler written in C by Igor Sysoev (Russia).

mod_gzip

an Apache handler written in C, originally by Kevin Kiley, Remote Communications, Inc. (U.S.)

See their respective documentation for further details.

1.16 Can I compress the output of my site at the application
level?

1.16.1 Yes, if your Web server is CGI/1.1 compatible and allows you to
create specific HTTP headers from your application, or when you use
an application framework that carries its own handler capable of
compressing outbound data.

For example, vanilla Apache 1.3 is CGI/1.1 compatible. It allows development of CGI scripts/programs
that can generate compressed outgoing streams accomplished with specific HTTP headers.

Alternatively, on mod_perl enabled Apache, some application environments carry their own compression
code that can be activated through appropriate configuration:

Apache::ASP does this with the CompressGzip setting;

15 Feb 201410

1.15 Are there any content compression solutions for vanilla Apache 1.3?

Apache::AxKit uses the AxGzipOutput setting to do this.

See the documentation for the particular packages for details.

1.17 Are there any content compression solutions for
Apache-2?

1.17.1 Yes. A core compression module written in C, mod_deflate,
is available for Apache-2.

mod_deflate for Apache-2 was written by Ian Holsman (USA).

Despite its name, mod_deflate for Apache-2 provides gzip-encoded content. In accordance with the
concept of output filters that was introduced in Apache-2, mod_deflate is capable of gzipping
outbound traffic from any content generator, including CGI, Java, mod_perl, etc.

This module supports flushing.
It is output filter-compatible.
It has its own set of configuration options to maintain control over buggy clients.

1.18 When is Apache::Dynagzip supposed to be ported
to Apache-2?

1.18.1 There are no current plans to port Apache::Dynagzip to
Apache-2:

mod_deflate for Apache-2 is capable of providing all basic functionality required for effective
dynamic content compression. The rest can be easily addressed through implementation of the accompa-
nying specific, tiny filters. For instance, Apache::Clean, which is already ported to Apache-2, can be
used to strip unnecessary blank spaces from outbound streams.

1.19 Where can I read the original descriptions of the gzip
and deflate formats?

1.19.1 gzip format is published as rfc1952, and deflate format is
published as rfc1951.

You can find many mirrors of RFC archives on the Internet. Try, for instance, my favorite at
http://www.ietf.org/rfc.html

1115 Feb 2014

1.17 Are there any content compression solutions for Apache-2?Web Content Compression FAQ

http://www.ietf.org/rfc.html

1.20 Are there any known compression problems with
specific browsers?

1.20.1 Yes. Netscape 4 has problems with compressed cascading style
sheets and JavaScript files.

You can use Apache::CompressClientFixup to disable compression for these files dynamically
on Apache-1.3. Apache::Dynagzip is capable of providing so-called light compression for
these files.

On Apache-2, mod_deflate can be configured to disable compression for these files dynamically, and
the Apache::Clean filter can be used to strip unnecessary blank spaces.

1.21 Where can I find more information about the compres-
sion features of modern browsers?

1.21.1 Michael Schroepl maintains a highly valuable site

See it at http://www.schroepl.net/projekte/mod_gzip/browser.htm

1.22 Acknowledgments
During this work, I received a great deal of real help from Kevin Kiley, Igor Sysoev, Michel Schroepl, and
Henrik Nordstrom. I’m thankful to all subscribers of mod_perl users mailing list, mod_gzip mailing list,
and squid users mailing list for the questions and discussions regarding the content compression. I’m espe-
cially thankful to Stas Bekman for the initiative to publish this FAQ on mod_perl Web site. I highly value
patient efforts of Dan Hansen in making this text better English...

1.23 Maintainers
The maintainer is the person you should contact with updates, corrections and patches.

Slava Bizyayev <slava (at) cpan.org>

1.24 Authors
Slava Bizyayev <slava (at) cpan.org>

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201412

1.20 Are there any known compression problems with specific browsers?

http://www.schroepl.net/projekte/mod_gzip/browser.htm

Table of Contents:
............... 11 Web Content Compression FAQ
................... 21.1 Description
.............. 21.2 Basics of Content Compression
........... 31.3 Why it is important to compress Web content?

31.3.1 Reduced equipment costs and the competitive advantage of dramatically faster page loads.
............ 31.4 How much improvement can I expect?

31.4.1 Effective compression can achieve increases in transmission efficiency from 3 to 20 times.
...... 41.5 How hard is it to implement content compression on an existing site?

1.5.1 Implementing content compression on an existing site typically involves no more than
.... 4installing and configuring an appropriate Apache handler on the Web server.
......... 41.6 Does compression work with standard Web browsers?
......... 41.6.1 Yes. No client side changes or settings are required.
..... 41.7 Is it possible to combine the content compression with data encryption?
... 41.7.1 Yes. Compressed content can be encrypted and securely transmitted over SSL.
...... 41.8 What software is required on the server side for content compression?

1.8.1 There are four known mod_perl modules/packages for Web content compression available
........... 5to date for Apache 1.3 (in alphabetical order):
.... 61.9 What is the typical overhead in terms of CPU use for the content compression?
.. 61.9.1 Typical CPU overhead that originates from content compression is insignificant.

1.10 Is it possible to compress the output from Apache::Registry with
................ 6Apache::Dynagzip?
....... 61.10.1 Yes. This should be fairly easy to accomplish, as follows:

1.11 Is it possible to compress output from a Mason-driven application with
................ 8Apache::Dynagzip?

1.11.1 Yes. HTML::Mason::ApacheHandler is compatible with the Apache::Filter
.................... 8chain.
....... 91.12 Is commercial support available for Apache::Dynagzip?

1.12.1 Yes. Slav Company, Ltd. provides commercial support for Apache::Dynagzip
................... 9worldwide.
....... 91.13 Why is it important to maintain a control over the chunk size?
............ 91.13.1 It helps to reduce response latency.
..... 91.14 Is it worthwhile to strip leading blank spaces prior to gzip compression?
........... 91.14.1 Yes. It is usually worthwhile to do this.
...... 101.15 Are there any content compression solutions for vanilla Apache 1.3?

1.15.1 Yes. There are two compression modules written in C that are available for vanilla
................... 10Apache 1.3:
....... 101.16 Can I compress the output of my site at the application level?

1.16.1 Yes, if your Web server is CGI/1.1 compatible and allows you to create specific HTTP
headers from your application, or when you use an application framework that carries its own

........... 10handler capable of compressing outbound data.

........ 111.17 Are there any content compression solutions for Apache-2?
1.17.1 Yes. A core compression module written in C, mod_deflate, is available for

................... 11Apache-2.

..... 111.18 When is Apache::Dynagzip supposed to be ported to Apache-2?

i15 Feb 2014

Table of Contents:Web Content Compression FAQ

..... 111.18.1 There are no current plans to port Apache::Dynagzip to Apache-2:

.... 111.19 Where can I read the original descriptions of the gzip and deflate formats?

.. 111.19.1 gzip format is published as rfc1952, and deflate format is published as rfc1951.

....... 121.20 Are there any known compression problems with specific browsers?

.121.20.1 Yes. Netscape 4 has problems with compressed cascading style sheets and JavaScript files.

.. 121.21 Where can I find more information about the compression features of modern browsers?

.......... 121.21.1 Michael Schroepl maintains a highly valuable site

.................. 121.22 Acknowledgments

................... 121.23 Maintainers

.................... 121.24 Authors

15 Feb 2014ii

Table of Contents:

	1€€Web Content Compression FAQ
	1.1€€Description
	1.2€€Basics of Content Compression
	1.3€€Why it is important to compress Web content?
	1.3.1€€Reduced equipment costs and the competitive advantage of dramatically faster page loads.

	1.4€€How much improvement can I expect?
	1.4.1€€Effective compression can achieve increases in transmission efficiency from 3 to 20 times.

	1.5€€How hard is it to implement content compression on an existing site?
	1.5.1€€Implementing content compression on an existing site typically involves no more than installing and configuring an appropriate Apache handler on the Web server.

	1.6€€Does compression work with standard Web browsers?
	1.6.1€€Yes. No client side changes or settings are required.

	1.7€€Is it possible to combine the content compression with data encryption?
	1.7.1€€Yes. Compressed content can be encrypted and securely transmitted over SSL.

	1.8€€What software is required on the server side for content compression?
	1.8.1€€There are four known mod_perl modules/packages for Web content compression available to date for Apache 1.3 (in alphabetical order):

	1.9€€What is the typical overhead in terms of CPU use for the content compression?
	1.9.1€€Typical CPU overhead that originates from content compression is insignificant.

	1.10€€Is it possible to compress the output from Apache::Registry with Apache::Dynagzip?
	1.10.1€€Yes. This should be fairly easy to accomplish, as follows:

	1.11€€Is it possible to compress output from a Mason-driven application with Apache::Dynagzip?
	1.11.1€€Yes. HTML::Mason::ApacheHandler is compatible with the Apache::Filter chain.

	1.12€€Is commercial support available for Apache::Dynagzip?
	1.12.1€€Yes. Slav Company, Ltd. provides commercial support for Apache::Dynagzip worldwide.

	1.13€€Why is it important to maintain a control over the chunk size?
	1.13.1€€It helps to reduce response latency.

	1.14€€Is it worthwhile to strip leading blank spaces prior to gzip compression?
	1.14.1€€Yes. It is usually worthwhile to do this.

	1.15€€Are there any content compression solutions for vanilla Apache 1.3?
	1.15.1€€Yes. There are two compression modules written in C that are available for vanilla Apache 1.3:

	1.16€€Can I compress the output of my site at the application level?
	1.16.1€€Yes, if your Web server is CGI/1.1 compatible and allows you to create specific HTTP headers from your application, or when you use an application framework that carries its own handler capabl...

	1.17€€Are there any content compression solutions for Apache-2?
	1.17.1€€Yes. A core compression module written in C, mod_deflate, is available for Apache-2.

	1.18€€When is Apache::Dynagzip supposed to be ported to Apache-2?
	1.18.1€€There are no current plans to port Apache::Dynagzip to Apache-2:

	1.19€€Where can I read the original descriptions of the gzip and deflate formats?
	1.19.1€€gzip format is published as rfc1952, and deflate format is published as rfc1951.

	1.20€€Are there any known compression problems with specific browsers?
	1.20.1€€Yes. Netscape 4 has problems with compressed cascading style sheets and JavaScript files.

	1.21€€Where can I find more information about the compression features of modern browsers?
	1.21.1€€Michael Schroepl maintains a highly valuable site

	1.22€€Acknowledgments
	1.23€€Maintainers
	1.24€€Authors

