Running and Developing Tests with the Apache::Test Framework 1 Running and Developing Tests with the Apache::Test Framework

1 Running and Developing Tests with the
Apache::Test Framework

15 Feb 2014 1

1.1 Description

1.1 Description
The title is self-explanatory :)

TheApache::Test framework was designed for creating test suites for products running on the Apache
httpd webserver (not necessarily mod_perl). Originally designed for the mod_perl Apache module, it was
extended to be used for any Apache module.

This chapter discusses tApache-Test framework, and in particular explains how to:

1. run existing tests
2. setup a testing environment for a new project
3. develop new tests

For otherApache::Test resources, see the Referehces section at the end of this document.

1.2 Basics of Perl Module Testing

The tests themselves are written in Perl. The framework provides extensive functionality which makes
writing tests a simple and therefore enjoyable process.

If you have ever written or looked at the tests that come with most Perl modules, you'll recognize that
Apache::Test uses the same concepts. The sdfifESTexecutes all the files ending withthat it
finds in thet/ directory. When executed, a typical test prints the following:

1..3 #going to run 3 tests

ok 1 #the first test has passed
ok 2 # the second test has passed
not ok 3 # the third test has failed

Everyok ornot ok is followed by a number that identifies which sub-test has passed or failed.

t/TESTuses thd est::Harness module, which intercepts tf&TDOUTstream, parses it and at the end
of the tests, prints the results of the tests: how many tests and sub-tests were run and how many passed,
failed, or were skipped.

Some tests may be skipped by printing:
1..0 # all tests in this file are going to be skipped.

Usually a test may be skipped when some feature is optional and/or prerequisites are not installed on the
system, but this is not critical for the usefulness of the test. Once you determine that you cannot proceed
with the tests, and it is not a requirement that the tests pass, you can just skip them.

By default,print statements in the test script are filtered ouTegt::Harness . If you want the test
to print what it does (for example, to debug a test) usevdtbose option. So for example if your test
does this:

2 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.3 Prerequisites

print "# testing : feature foo\n";
print "# expected: $expected\n”;
print "# received: $received\n";
ok $expected eq $received;

in the normal mode, you won't see any of these prints. But if you run the testMa®iT -verbose ,
you will see something like this:

testing : feature foo

expected: 2

received: 2
ok 2

When you develop the test you should always insert the debug statements, and once the test works for you,
do not comment out or delete these debug statements. It's a good idea to leave them in because if some
user reports a failure in some test, you can ask him to run the failing test in the verbose mode and send you
the report. It'll be much easier to understand the problem if you get these debug printings from the user.

A simpler approach is to use tAest::More module in your test scripts. This module offers many
useful test functions, includingiag , a function that automatically escapes and passes stripgsto
to bypassTest:.:Harness

use Test::More;

diag "testing : feature foo\n";
diag "expected: $expected\n”;
diag "received: $received\n";
ok $expected eq $received;

In fact, for an example such as this, you can just use Test::Merefsinction, which will output the
necessary diagnostics in the event of a test failure:

is $received, $expected;
For which the output for a test failure would be something like:
not ok 1 # Failed test (-e at line 1) # got: "1’ # expected: '2’
The[Writing Tests section documents several helper functions that make simplify the writing of tests.

For more details about tHeest::Harness module please refer to its manpage. Also sed ¢is¢ and
Test::More manpages for documentation of Perl’s test suite.

1.3 Prerequisites

In order to usépache::Test it has to be installed first.

Install Apache::Test using the familiar procedure:

15 Feb 2014 3

1.4 Running Tests

% cd Apache-Test
% perl Makefile.PL
% make && make test && make install

If you install mod_perl 2.0Apache::Test will be installed with it.

1.4 Running Tests

It's much easier to copy existing examples than to create something from scratch. It's also simpler to
develop tests when you have some existing system to test, so that you can see how it works and build your
own testing environment in a similar fashion. So let’s first look at how the existing test enviroments work.

You can look at the modperl-2.0’s or httpd-tesper(-frameworl testing environments, both of which
useApache::Test for their test suites.

1.4.1 Testing Options
Run:
% tYTEST -help

to get a list of options you can use during testing. Most options are covered further in this document.

1.4.2 Basic Testing

Running tests is just like for any CPAN Perl module; first we generateldkefile file and build every-
thing with make:

% perl Makefile.PL [options]
% make

Now we can do the testing. You can run the tests in two ways. The first one is the usual:
% make test

But this approach adds quite an overhead, since it has to check that everything is up to date (the usual
make source change control). Therefore, you have to run it only oncearadtes; for re-running the tests,
it's faster to run them directly via:

% t/TEST

Whenmake test ort/TEST s run, all tests found in thedirectory (files ending witht are recognized
as tests) will be run.

4 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.4.3 Individual Testing

1.4.3 Individual Testing

To run a single test, simply specify it at the command line. For example, to run the té&girdie-
col/echo.t execute:

% t/TEST protocol/echo

Notice that the/ prefix and thet extension for the test filenames are optional when you specify them
explicitly. Therefore the following are all valid commands:

% t/TEST protocol/echo.t

% t/TEST t/protocol/echo
% t/TEST t/protocol/echo.t

The server will be stopped if it was already running and a new one will be started before running the
t/protocol/echo.test. At the end of the test the server will be shut down.

When you run specific tests you may want to run them in the verbose mode and, depending on how the
tests were written, you may get more debugging information under this mode. Verbose mode is turned on
with -verboseoption:

% t/TEST -verbose protocol/echo
You can run groups of tests at once, too. This command:

% .//TEST modules protocol/echo

will run all the tests it/modulesdirectory, followed by/protocol/echo.test.

1.4.4 Repetitive Testing

By default, when you run tests without tiran-testsoption, the server will be started before the testing
and stopped at the end. If during a debugging process you need to re-run tests without the need to restart
the server, you can start it once:

% t/TEST -start-httpd

and then run the test(s) withun-testsoption many times:
% t/TEST -run-tests

without waiting for the server to restart.

When you are done with tests, stop the server with:
% t/TEST -stop-httpd

When the server is running, you can modifyiles and rerun the tests without restarting it. But if you
modify response handlers, you must restart the server for changes to take an effect. However, if the
changes are only to perl code, it's possible to arrange for Apache::Test to handle the code reload without

15 Feb 2014 5

1.4.5 Parallel Testing

[restarting the server.

The-start-httpdoption always stops the server first if any is running.

Normally, whent/TESTis run without specifying the tests to run, the tests will be sorted alphabetically. If
tests are explicitly passed as argumentsTeSTthey will be run in the specified order.

1.4.5 Parallel Testing

Sometimes you need to run more than Apache-Test framework instance at the same time. In this
case you have to use different ports for each instance. You can specify explicitly which port to use using
the-port configuration option. For example, to run the server on port 34343, do this:

% t/TEST -start-httpd -port=34343

You can also affect the port by setting thRBACHE_TEST_ POR@E&vironment variable to the desired
value before starting the server.

Specifying the port explicitly may not be the most convenient option if you happen to run many instances
of the Apache-Test framework. The-port=selectoption helps such situations. This option will auto-
matically select the next available port. For example if you run:

% t/TEST -start-httpd -port=select

and there is already one server from a different test suite which uses the default port 8529, the new server
will try to use a higher port.

There is one problem that remains to be resolved, though. It's possible that two or more servers running
-port=selectwill still decide to use the same port, because when the server is configured it only tests
whether the port is available but doesn’t call bind() immediately. This race condition needs to be resolved.
Currently the workaround is to start the instances ofAjb@che-Test framework with a slight delay

between them. Depending on the speed of your machine, 4-5 seconds can be a good choice, as this is the
approximate the time it takes to configure and start the server on a quite slow machine.

1.4.6 Verbose Mode

In case something goes wrong you should run the tests in verbose mode:

% t/TEST -verbose

In verbose mode, the test may print useful information, like what values it expects and what values it
receives, given that the test is written to report these. In silent mode (wikdubse), these printouts

are filtered out byl'est::Harness . When running irverbose mode usually it's a good idea to run only
problematic tests in order to minimize the size of the generated output.

When debugging tests, it often helps to keepetiner_log file open in another console, and see the debug
output in the real time via tail(1):

6 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.4.7 Colored Trace Mode

% tall -f t/logs/error_log

Of course this file gets created only when the server starts, so you cannot run tail(1) on it before the server
starts. Every tim&/TEST -clean is run,t/logs/error_loggets deleted; therefore, you'll have to run the
tail(1) command again once the server starts.

1.4.7 Colored Trace Mode

If your terminal supports colored text you may want to set the environment variable
APACHE_TEST_COLOIR 1 to enable any colored tracing when running in the non-batch mode. Colored
tracing mode can make it easier to discriminate errors and warnings from other notifications.

1.4.8 Controlling the Apache::Test's Signal to Noise Ratio

In addition to controlling the verbosity of the test scripts, you can control the amount of information
printed by theApache::Test framework itself. Similar to Apache’s log levelspache::Test uses
these levels for controlling its signal to noise ratio:

emerg alert crit error warning notice info debug
whereemergis the for the most important messagesd@etuligis for the least important ones.

Currently, the default level imfo; therefore, any messages which fall into i@ category and above
(notice warning etc) will be output. This tracing level is unrelated to ApacheglLevel mechanism,
which Apache-Test sets tiebug in t/conf/httpd.conind which you can overridéeonf/extra.conf.in

Let's assume you have the following code snippet:
use Apache::TestTrace;
warning "careful, perl on the premises";
debug "that’s just silly";
If you want to get onlyvarningmessages and above, use:
% t/TEST -trace=warning ...
now only the warning message

careful, perl on the premises

will be printed. If you want to sedebugmessages, you can change the default level usiage
option:

% t/TEST -trace=debug ...

now the last example will print both messages.

15 Feb 2014 7

1.4.9 Stress Testing

By default the messages are printed to STDERR, but can be redirected to a file. Refer to the
Apache::TestTrace manpage for more information.

Finally, you can use themerg() ,alert() ,crit() ,error() ,warning() ,notice() ,info()

anddebug() methods in your client and server side code. These methods are useful when, for example,
you have some debug tracing that you don’'t want to be printed during the noakeltest or

.Build test . However, if some users have a problem you can ask them to run the test suite with the
trace level set to 'debug’ and, voila, they can send you the extra debug output. Moreover, all of these func-
tions useData::Dumper to dump arguments that are references to perl structures. So for example your
code may look like:

use Apache::TestTrace;

my $data = { foo => bar };
debug "my data", $data;

and only when run wititrace=debug it'll output:

my data
$VAR1 = {
foo’ => ’bar’

I3

Normally it will print nothing.

1.4.9 Stress Testing
1.4.9.1 The Problem

When we try to test a stateless machine (i.e. all tests are independent), running all tests once ensures that
all tested things properly work. However when a state machine is tested (i.e. where a run of one test may
influence another test) it's not enough to run all the tests once to know that the tested features actually
work. It's quite possible that if the same tests are run in a different order and/or repeated a few times, some
tests may fail. This usually happens when some tests don't restore the system under test to its pristine state
at the end of the run, which may influence other tests which rely on the fact that they start on pristine state,
when in fact it's not true anymore. In fact it's possible that a single test may fail when run twice or three
times in a sequence.

1.4.9.2 The Solution

To reduce the possibility of such dependency errors, it's important to run random testing repeated many
times with many different pseudo-random engine initialization seeds. Of course if no failures get spotted
that doesn’t mean that there are no tests inter-dependencies, unless all possible combinations were run
(exhaustive approach). Therefore it's possible that some problems may still be seen in production, but this
testing greatly minimizes such a possibility.

TheApache-Test framework provides a few options useful for stress testing.

8 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.4.9 Stress Testing

-times

You can run the tests N times by using thimesoption. For example to run all the tests 3 times
specify:

% t/TEST -times=3

-order

It's possible that certain tests aren’t cleaning up after themselves and modify the state of the server,
which may influence other tests. But since normally all the tests are run in the same order, the poten-
tial problem may not be discovered until the code is used in production, where the real world testing
hits the problem. Therefore in order to try to detect as many problems as possible during the testing
process, it's may be useful to run tests in different orders.

This is of course mostly useful in conjunction witimes=Noption.
Assuming that we have tests a, b and c:
O -order=rotate
rotate the tests: a, b, c, a, b, ¢
O -order=repeat
repeat the tests: a, a, b, b, ¢, ¢
O -order=random
run in the random order, e.g.: a,c,c, b, a, b

In this mode the seed picked by srand() is printeéeiDOUT so it then can be used to rerun the
tests in exactly the same order (remember to log the output).

O -order=SEED

used to initialize the pseudo-random algorithm, which allows to reproduce the same sequence of
tests. For example if we run:

% t/TEST -order=random -times=5
and the seed 234559 is used, we can repeat the same order of tests, by running:

% t/TEST -order=234559 -times=5

Alternatively, the environment variabbPACHE_TEST_ SEEDan be set to the value of a seed
when-order=randomis used. e.g. under bash(1):

15 Feb 2014 9

1.4.9 Stress Testing

% APACHE_TEST_SEED=234559 t/TEST -order=random -times=5

or with any shell program if you have teev(1) utility:

$ env APACHE_TEST_SEED=234559 t/TEST -order=random -times=5

1.4.9.3 Resolving Sequence Problems
When this kind of testing is used and a failure is detected there are two problems:

1. First is to be able to reproduce the problem so if we think we fixed it, we could verify the fix. This
one is easy, just remember the sequence of tests run till the failed test and rerun the same sequence
once again after the problem has been fixed.

2. Second is to be able to understand the cause of the problem. If during the random test the failure has
happened after running 400 tests, how can we possibly know which previously running tests has
caused to the failure of the test 401. Chances are that most of the tests were clean and don't have
inter-dependency problem. Therefore it'd be very helpful if we could reduce the long sequence to a
minimum. Preferably 1 or 2 tests. That's when we can try to understand the cause of the detected
problem.

1.4.9.4 Apache: : Test Snoke Solution

Apache:: TestSmoke attempts to solve both problems. When it's run, at the end of each iteration it
reports the minimal sequence of tests causing a failure. This doesn’t always succeed, but works in many
cases.

You should create a small script to drid@ache::TestSmoke , usuallyt/SMOKE.PL If you don't
have it already, create it:

#file:t/ SMOKE.PL

use strict;
use warnings FATAL =>"all’;

use FindBin;
use lib "$FindBin::Bin/../Apache-Test/lib";
use lib "$FindBin::Bin/../lib";

use Apache::TestSmoke ();

Apache::TestSmoke->new(@ARGV)->run;

Usually Makefile.PLconverts it intd/SMOKEwhile adjusting the perl path, but you can cre&&OKE
in first place as well.

t/'SMOKEperforms the following operations:

10 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.4.9 Stress Testing

1. Runs the tests randomly until the first failure is detected. Or non-randomly if the apti@nis set
to repeator rotate

2. Then it tries to reduce that sequence of tests to a minimum, and this sequence still causes to the same
failure.

3. It reports all the successful reductions as it goes to STDOUT and report file of the format:
smoke-report-<date>.txt.

In addition the systems build parameters are logged into the report file, so the detected problems
could be reproduced.

4. Goto 1 and run again using a new random seed, which potentially should detect different failures.
Currently for each reduction path, the following reduction algorithms are applied:
1. Binary search: first try the upper half then the lower.

2. Random window: randomize the left item, then the right item and return the items between these two
points.

You can get the usage information by executing:
% t/SMOKE -help
By default you don’t need to supply any arguments to run it, simply execute:
% t/SMOKE
If you want to work on certain tests you can specify them in the same way you dowSit

% t/SMOKE foo/bar foo/tar

If you already have a sequence of tests that you want to reduce (perhaps because a previous run of the
smoke testing didn’t reduce the sequence enough to be able to diagnose the problem), you can request to
do just that:

% t/SMOKE -order=rotate -times=1 foo/bar foo/tar

-order=rotate is used just to override the defawdrder=random since in this case we want to preserve
the order. We also speciftimes=1for the same reason (override the default which is 50).

You can override the number of srand() iterations to perform (read: how many times to randomize the
sequence), the number of times to repeat the tests (the default is 10) and the path to the file to use for
reports:

% t/SMOKE -times=5 -iterations=20 -report=../myreport.txt

15 Feb 2014 11

1.4.10 RunTime Configuration Overriding

Finally, any other options passed will be forwardetd T&ST as is.

1.4.10 RunTime Configuration Overriding

After the server is configured durimgake test or witht/TEST -config , it's possible to explicitly
override certain configuration parameters. The override-able parameters are listed when executing:

% t/TEST -help

Probably the most useful parameters are:

12

-preamble

configuration directives to add at the beginninditypd.conf For example to turn the tracing on:
% t/TEST -preamble "PerlTrace all"

-postamble

configuration directives to add at the endhtipd.conf For example to load a certain Perl module:
% t/TEST -postamble "PerIModule MyDebugMode"

-user

run as usenobody
% t/TEST -user nobody

-port

run on a different port:
% t/TEST -port 8799

-servername

run on a different server:
% t/TEST -servername test.example.com

-httpd

configure an httpd other than the default (that apxs figures out):
% YTEST -httpd ~/httpd-2.0/httpd

-apxs

switch to another apxs:

15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.4.11 Request Generation and Response Options

% t/TEST -apxs ~/httpd-2.0-prefork/bin/apxs

For a complete list of override-able configuration parameters see the outfflEST -help

1.4.11 Request Generation and Response Options

We have mentioned already the most useful run-time options. Here are some other options that you may
find useful during testing.

® -ping
Ping the server to see whether it runs
% t/TEST -ping
Ping the server and wait until the server starts, report waiting time.
% t/TEST -ping=block

This can be useful in conjunction wittun-testsoption during debugging:

% t/TEST -ping=block -run-tests

normally, -run-testswill immediately quit if it detects that the server is not running, but with
-ping=blockin effect, it'll wait indefinitely for the server to start up.

® -head

Issue eHEADrequest. For example to requisrver-info
% t/TEST -head /server-info
® -get
Request the body of a certain URL G&T.
% t/TEST -get /server-info
If no URL is specified is used.

ALso you can issue GETrequest but to get only headers as a response (e.g. useful to just check
Content-length)

% t/TEST -head -get /server-info

GETURL with authentication credentials:

% t/TEST -get /server-info -username dougm -password domination

15 Feb 2014 13

1.4.11 Request Generation and Response Options

(please keep the password secret!)
® -post
Generate #O0STrequest.
Read content tBOSTfrom string:
% t/TEST -post /TestApache__post -content 'name=dougmé&company=covalent’
Read content tBOSTfrom STDIN:
% t/TEST -post /TestApache__post -content - < foo.txt
Generate a content body of 1024 bytes in length:
% t/TEST -post /TestApache__post -content x1024
The same but print only the response headers, e.g. useful to jusCdmekt-length
% t/TEST -post -head /TestApache__post -content x1024
® -header
Add headers to (-get|-post|-head) request:
% t/TEST -get -header X-Test=10 -header X-Host=example.com /server-info
® -ss|
Run all tests through mod_ssl:
% t/TEST -ssl
e -httpll
Run all tests with HTTP/1.KgepAlive) requests:
% t/TEST -http11
® -proxy
Run all tests through mod_proxy:

% t/TEST -proxy

The debugging optionslebugand-breakpointare covered in tje Debugging Tgsts section.

For a complete list of available switches see the outpit BST -help

14

15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.5 Setting Up Testing Environment

1.4.12 Batch Mode

When running in the batch mode and redirec&T@POUT this state is automagically detected andnibe

color mode is turned on, under which the program generates a minimal output to make the log files useful.
If this doesn't work and you still get all the mess printed during the interactive run, set the
APACHE_TEST_NO_COLOR=hvironment variable.

1.5 Setting Up Testing Environment

We will assume that you have setup your testing environment even before you have started coding the
project, which is a very smart thing to do. Of course it'll take you more time upfront, but it'll will save you

a lot of time during the project developing and debugging stageg. The extreme programming methodology
says that tests should be written before starting the code development.

1.5.1 Know Your Target Environment

In the following demonstration and mostly through the whole document we assume that the test suite is
written for a module running under mod_perl 2.0. You may need to adjust the code and the configuration
files to the mod_perl 1.0 syntax, if you work with that generation of mod_perl. If your test suite needs to
work with both mod_perl generations refer to the porting to mod_perl 2.0 chapter. Of course it's quite
possible that what you test doesn’'t have mod_perl at all, in which case, again, you will need to make
adjustments to work in the given environment.

1.5.2 Basic Testing Environment

So the first thing is to create a package and all the helper files, so later we can distribute it on CPAN. We
are going to develop alpache::Amazing module as an example.

% h2xs -AXn Apache::Amazing
Writing Apache/Amazing/Amazing.pm
Writing Apache/Amazing/Makefile.PL
Writing Apache/Amazing/README
Writing Apache/Amazing/test.pl
Writing Apache/Amazing/Changes
Writing Apache/Amazing/MANIFEST

h2xs is a nifty utility that gets installed together with Perl and helps us to create some of the files we will
need later.

However, we are going to use a slightly different file layout; therefore we are going to move things around
a bit.

We want our module to live in thpache-Amazindirectory, so we do:

% mv Apache/Amazing Apache-Amazing
% rmdir Apache

15 Feb 2014 15

1.5.2 Basic Testing Environment

From now on thé\pache-Amazindirectory is our working directory.

% cd Apache-Amazing

We don’t need théest.p| as we are going to create a whole testing environment:

% rm test.pl

We want our package to reside underlihalirectory, so later we will be able to do live testing, without
rerunningmake every time we change the code:

% mkdir lib
% mkdir lib/Apache
% mv Amazing.pm lib/Apache

Now we adjustib/Apache/Amazing.pno look like this:

#file:lib/Apache/Amazing.pm
#

H

package Apache::Amazing;

use strict;
use warnings;

use Apache2::RequestRec ();
use Apache2::RequestlO ();

$Apache::Amazing::VERSION ='0.01";
use Apache2::Const -compile =>'OK’;

sub handler {
my $r = shift;
$r->content_type(‘text/plain’);
$r->print("Amazing!");
return Apache::OK;

}

1

__END__

... pod documentation goes here...

The only thing our modules does is setti/plainheader and respond witAmazing!".

Next, you have a choice to make. Perl modules typically use one of two build sy§ietids:
tils::MakeMaker or Module::Build

ExtUtils::MakeMaker is the traditional Perl module build system, and comes preinstalled with Perl.
It generates a tradiationslakefileto handle the build process. The code to generatiltefileresides
in Makefile.PL

Module::Build is a new build system, available from CPAN, and scheduled to be added to the core

Perl distribution in version 5.10, with the goal of eventually repladixgJtils::MakeMaker
Module::Build uses pure Perl code to manage the build process, making it much easier to override its

16 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.5.2 Basic Testing Environment

behavior to perform special build tasks. It is also more portable, since it relies on Perl itself, rather than the
make utility.

So the decision you need to make is which system to use. Most modules on CPANXtUse
tils::MakeMaker , and for most simple modules it is more than adequate. But more and more modules
are moving toModule::Build so as to take advantage of its new featuvesdule::Build is the

future of Perl build systems, bEktUtils::MakeMaker is likely to be around for some time to come.

Fortunately Apache::Test makes it easy to use either build system.
® ExtUtils:: MakeMaker

If you decide to useExtUtils::MakeMaker , adjust or create th&lakefile.PL file to use
Apache::TestMM

#file:Makefile.PL

require 5.6.1;

use ExtUtils::MakeMaker;

use lib gw(../blib/lib lib);

use Apache::TestMM qw(test clean); #enable 'make test’

prerequisites
my %require =

(
"Apache::Test" =>"", # any version will do
)
my @scripts = qw(t/TEST);

accept the configs from command line
Apache:: TestMM::filter_args();
Apache:: TestMM::generate_script('t/TEST');

WriteMakefile(
NAME =>'Apache::Amazing’,
VERSION_FROM =>lib/Apache/Amazing.pn’,
PREREQ_PM =>\%require,
clean =>{
FILES => "@{ clean_files() }",
h
($] >=5.005 ?
(ABSTRACT_FROM =>'lib/Apache/Amazing.pm’,
AUTHOR =>'Stas Bekman <stas (at) stason.org>’,
)0
)
)i

sub clean_files {
return [@scripts];
}

15 Feb 2014 17

1.5.2 Basic Testing Environment

Apache::-TestMM does a lot of thing for us, such as building a comp\éaefile with proper
‘test’ and’clean’ targets, automatically convertingL andconf/*.in files and more.

As you can see, we specify a prerequisites hash that inchpiehe::Test , so if the package
gets distributed on CPAN, tHePAN.pmand CPANPLUSshells will know to fetch and install this
required package.

® NMbdule::Build

If you decide to us&lodule::Build , the process is even simpler. Just deletdviakefile.PLfile
and creat®uild.PL instead. It should look somethiing like this:

use Module::Build:

my $build_pkg = eval { require Apache::TestMB }
? 'Apache::TestMB’ : 'Module::Build’;

my $build = $build_pkg->new(
module_name =>'Apache::Amazing’,
license => 'perl,
build_requires =>{ Apache::Test =>'1.12"},
create_makefile_pl => 'passthrough’,

)i

$build->create_build_script;

Note that the first thing this script does is check to be suré\fiwthe:: TestMB s installed. If it

is not, and your module is installed with tB&®AN.pm or CPANPLUSshells, it will be installed

before continuing. This is because we've specified Aptche::Test 1.12 (the first version of
Apache::Test to include Apache::TestMB) is required to build the module (in this case,
because its tests require it). We've also specified what license the module is distributed under, and
that a passthroughakefile.PLshould be generated. This last parameter helps those who don't have
Module::Build installed, as it allows them to use BRrtUtils::MakeMaker -style Make-

file.PL script to build, test, and install the module (although what the passthrough script actually does
is install Module::Build from CPAN and pass build commands through to Build.PL

script).

Next we create the test suite, which will reside intttiieectory:
% mkdir t

First we create/TEST.PLwhich will be automatically converted intdTEST during perl Make-
file.PL stage:

#file:t/TEST.PL

use strict;
use warnings FATAL =>"all’;

use lib gw(lib);

18 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.5.2 Basic Testing Environment

use Apache::TestRunPerl ();

Apache::TestRunPerl->new->run(@ARGV);

This script assumes thApache::Test s already installed on your system and that Perl can find it. If
not, you should tell Perl where to find it. For example you could add:

use lib gw(Apache-Test/lib);
tot/TEST.PL.if Apache::Test s located in a parallel directory.

As you can see we didn’t write the real path to the Perl executablé!peut . Whent/TESTis created
the correct path will be placed there automatically.

Note: If you useApache::TestMB in aBuild.PL script, the creation of tHéTEST.PLscript is optional.
You only need to create it if you need it to do something special that the above example does not.

Next we need to prepare extra Apache configuration bits, which will resifmirt

% mkdir t/conf

We create th&/conf/extra.conf.irfile, which will be automatically converted inticonf/extra.conbefore

the server starts. If the file has any placeholders@documentroot@ , these will be replaced with the

real values specific for the Apache server used for the tests. In our case, we put the following configura-
tion bits into this file:

#file:t/conf/extra.conf.in
+H

this file will be Include-d by @ServerRoot@/conf/httpd.conf

where Apache::Amazing can be found
PerlSwitches -|@ServerRoot@!/../lib
preload the module
PerlIModule Apache::Amazing
<Location /test/amazing>
SetHandler modperl
PerlResponseHandler Apache::Amazing
</Location>

As you can see, we just add a simple <Location> container and tell Apache that the namespace
ltest/amazingshould be handled by th&pache::Amazing module running as a mod_perl handler.
Notice that:

SetHandler modperl

is mod_perl 2.0 configuration, if you are running under mod_perl 1.0 use:

SetHandler perl-script

15 Feb 2014 19

1.5.2 Basic Testing Environment

which also works for mod_perl 2.0.

Now we can create a simple test:
#file:t/basic.t

use strict;
use warnings FATAL =>"all’;

use Apache::Amazing;

use Apache::Test;

use Apache::TestUtil;

use Apache::TestRequest 'GET_BODY’;

plan tests => 2;
ok 1; # simple load test

my $url = '/test/amazing’;
my $data = GET_BODY $url;

ok t_cmp(
$data,
"Amazing!",
"basic test",

);
Now create th&READMEfile.

% touch README

Don't forget to put in the relevant information about your module, or arrandgextaltils::Make-
Maker::WriteMakefile() to do this for you with:

#file:Makefile.PL

WriteMakefile(
#...
dist => {
PREOP =>'pod2text lib/Apache/Amazing.pm > $(DISTVNAME)/README’,
3
#...
)i

Or for Module::Build to generate thREADMEwith:
#file:Build.PL
my $build = $build_pkg->new(
#...

create_readme => 1,
#...

);

20 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.5.2 Basic Testing Environment

In these caseKEADMEwill be created from the documenation POD section®iApache/Amazing.pm
but the file must exist fanake disor ./Build.PL dist to succeed.

And finally, we adjust or create thMANIFESTfile, so we can prepare a complete distribution. Therefore
we list all the files that should enter the distribution includingMANIFESTfile itself:

#file:MANIFEST

lib/Apache/Amazing.pm
t/TEST.PL

t/basic.t

t/conf/extra.conf.in
Makefile.PL # and/or Build.PL
Changes

README

MANIFEST

You can automate the creation or updating of M#ENIFESTfile usingmake manifest with Make-
file.PL or ./Build manifest with Build.PL

That's it. Now we can build the package. But we need to know the location apxke utility from the
installed httpd server. We pass its path as an optidatefile.PLor Build.PL To build, test, and install
the module withMlakefile.PL, do this:

% perl Makefile.PL -apxs ~/httpd/prefork/bin/apxs
% make
% make test

All tests successful.
Files=1, Tests=2, 1 wallclock secs (0.52 cusr + 0.02 csys = 0.54 CPU)

To install the package run:
% make install
Now we are ready to distribute the package on CPAN:

% make dist

This build command will create the package which can be immediately uploaded to CPAN. In this
example, the generated source package with all the required files will be called:
Apache-Amazing-0.01.tar.gz

The same process can be accomplished Buithd.PL like so:

15 Feb 2014 21

1.5.3 Extending Configuration Setup

perl Build.PL -apxs ~/httpd/prefork/bin/apxs
% ./Build
% ./Build test

All tests successful.
Files=1, Tests=2, 1 wallclock secs (0.52 cusr + 0.02 csys = 0.54 CPU)

% ./Build install
% ./Build dist

The only thing that we haven’t done and hope that you will do is to write the POD sections for the
Apache::Amazing module, explaining how amazingly it works and how amazingly it can be deployed
by other users.

1.5.3 Extending Configuration Setup

Sometimes you need to add exitgpd.confconfiguration and perl startup-specific code to your project
that used\pache::Test . This can be accomplished by creating the desired files with an extdansion
thet/conf/directory and running:

panic% t/TEST -config

which for each file with the extensiom will create a new file, without this extension, convert any
template placeholders into real values and link it from the mi#od.conf The latter happens only if the
file have the following extensions:

® .conf.in

will add tot/conf/httpd.conf
Include foo.conf
® plin
will add tot/conf/httpd.conf
PerlRequire foo.pl
e other
other files with.in extension will be processed as well, but not linked finttpd.conf
Files whose name matches the following pattern:
N.last\.(conf|pl).in$/

will be included very last imttpd.conf This is especially useful if you want to include Apache directives
that would need a running Perl interpreter (see When Does perl Start To Run) without conflicting with
Apache::Test's use ¢ferlSwitches

22 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.5.4 Special Configuration Files

Make sure that you don't try to credtépd.conf.in it is not going to work, sinchttpd.confis already
generated by Apache-Test.

As mentioned before the converted files are created, any special tokens in them are getting replaced with
the appropriate values. For example the tagEBerverRoot@ will be replaced with the value defined by
theServerRoot directive, so you can write a file that does the following:

#file:my-extra.conf.in

PerlSwitches -|@ServerRoot@!/../lib

and assuming that tt&erverRoots ~/modperl-2.0/t/whenmy-extra.confvill be created, it'll look like:
#file:my-extra.conf

PerlSwitches -I~/modperl-2.0/t/../lib

The valid tokens are defined WApache::TestConfig::Usage and also can be seen in the output
of y'TEST -help ’s configuration optionsection. The tokens are case insensitive.

For a complete list see tAgache:: TestConfig manpage.

1.5.4 Special Configuration Files

Some of the files in thE#confdirectory have a special meaning, sinceApache-Test framework uses
them for the minimal configuration setup. But they can be overriden:

e if the file t/conf/httpd.conf.irexists, it will be used instead of the default templateAfilache/Test-
Config.pm).

e if the file t/conf/extra.conf.irexists, it will be used to generdfeonf/extra.confvith @variable @
substitutions.

e if the file t/conf/extra.last.conf.inexists, it will be used to generaticonf/extra.last.confwith
@variable@ substitutions.

e if the file t/conf/extra.congxists, it will be included biattpd.conf
e if the file t/conf/extra.last.conéxists, it will be included biattpd.confafter thet/conf/extra.confile.

e if the file t/conf/modperl_extra.péxists, it will be included bittpd.confas a mod_perl file (PerlRe-
quire).

1.5.5 Inheriting from System-wide httpd.conf

Apache::Test tries to find a globahttpd.conffile and inherit its configuration when autogenerating
t/conf/httpd.confFor example it pickkoadModule directives.

15 Feb 2014 23

1.6 Apache::Test Framework’s Architecture

It's possible to explicitly specify which file to inherit from using thétpd_conf option. For example
during the build:

% perl Makefile.PL -httpd_conf /path/to/httpd.conf

or with Build.PL:

% perl Build.PL -httpd_conf /path/to/httpd.conf

or during the configuration:

% t/TEST -conf -httpd_conf /path/to/httpd.conf

Certain projects need to have a control of what gets inherited. For example if your tgtpbdatonf
includes a directive:

LoadModule apreq_module "/home/joe/apache2/modules/mod_apreq.so"

And you want to run the test suite fapache::Request 2.0, inheriting the above directive will load
the pre-installeanod_apreq.s@and not the newly built one, which is wrong. In such cases it's possible to
tell the test suite which modules shouldn’t be inherited. In our exakpdehe-Request has the
following code int/ TEST.PL

use base 'Apache::TestRun’;
$Apache::TestTrace::Level = 'debug’;
main;:->new->run(@ARGV);

sub pre_configure {
my $self = shift;
Don't load an installed mod_apreq
Apache:: TestConfig::autoconfig_skip_module_add(’'mod_apreq.c’);

}

it subclasse#\pache::TestRun and overrides thpre_configuremethod, which excludes the module
mod_apreq.drom the list of inherited modules (notice that the extensiar).is

1.6 Apache::Test Framework’s Architecture

In the previous section we have written a basic test, which doesn’'t do much. In the following sections we
will explain how to write more elaborate tests.

When you write the test for Apache, unless you want to test some static resource, like fetching a file,
usually you have to write a response handler and the corresponding test that will generate a request which
will exercise this response handler and verify that the response is as expected. From now we may call
these two parts as client and server parts of the test, or request and response parts of the test.

In some cases the response part of the test runs the test inside itself, so all it requires from the request part
of the test, is to generate the request and print out a complete response without doing anything else. In
such casefpache::Test can auto-generate the client part of the test for you.

24 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.6.1 Developing Response-only Part of a Test

1.6.1 Developing Response-only Part of a Test

If you write only a response part of the tégbache::Test will automatically generate the correspond-

ing test part that will generated the response. In this case your test shoulukptininot ok 2’ responses

as usual tests do. The autogenerated request part will receive the response and print them out automatically
completing thelest::Harness expectations.

The corresponding request part of the test is named just like the response part, using the following transla-
tion:

(my $tmp = $path) =~ s{t/[V]+/(.*).pmH{$1.t};
my $client_file = catfile 't’,
map { s/test/fi; Ic $_} split =", $tmp;

Notice that the leadinijtest/ part is removed. Here are some examples of that translation:

t/response/MyApache/write.pm => t/myapache/write.t
t/response/TestApache/write.pm => t/apache/write.t
t/response/TestApache/Mar/write.pm => t/apache/mar/write.t

If we look at the autogenerated téstpache/write,twe can see that it starts with the warning that it has

been autogenerated, so you won't attempt to change it. Then you can see the trace of the calls that gener-
ated this test, in case you want to figure out how the test was generated. And finally the test loads the
Apache::TestRequest module, imports th&ET shortcut and prints the response’s body if it was
successful. Otherwise it dies to flag the problem with the server side. The latter is done because there is
nothing on the client side, that tells the testing framework that things went wrong. Without it the test will

be skipped, and that’'s not what we want.

use Apache::TestRequest 'GET_BODY_ASSERT’;
print GET_BODY_ASSERT "/TestApache__write";

As you can see the request URI is autogenerated from the response test name:
$response_test =~ s|.*/([M]+)/(.*).pm$|/$1__$2|;
Sot/response/TestApache/write.ffiecomesiTestApache__ write

Now a simple response test may look like this:

#file:t/response/TestApache/write.pm
#H.

H

package TestApache::write;

use strict;
use warnings FATAL =>"all’;

use constant BUFSIZ => 512; #small for testing
use Apache2::Const -compile => 'OK’;

use Apache2::RequestlO;

use Apache2::RequestRec;

sub handler {

15 Feb 2014 25

1.6.2 Developing Response and Request Parts of a Test

my $r = shift;
$r->content_type(‘text/plain’);

$r->write("1..2\n");
$r->write("ok 1\n")
$r->write("not ok 2\n")
Apache2::Const::OK;
}
3
[F] Apache2::Const is mod_perl 2.0's package, if you test under 1.0, use the
Apache::Constants module instead [/F].

The configuration part for this test will be autogenerated byAgsehe-Test framework and added to
the autogenerated fikkconf/httpd.conivhenmake test or ./Build test or t/‘TEST -config-
ure is run. In our case the following configuration section will be added:

<Location /TestApache__write>
SetHandler modperl
PerlResponseHandler TestApache::write
</Location>

You should remember to run:

% t/TEST -configure
so the configuration file will be re-generated when new tests are added.

Also notice that if you manually add configuration #iecation> path can’t includé’ characters in
the first segment, due to Apache security protection on WinFU platforms. So please make sure that you
don’t create entries like:

<Location /Foo::bar/>

You can include:” characters in the further segments, so this is OK:

<Location /tests/Foo::bar/>

Of course if your code is not intended to run on WinFU you can ignore this detail.

1.6.2 Developing Response and Request Parts of a Test

But in most cases you want to write a two parts test where the client (request) parts generates various
requests and tests the responses.

It's possible that the client part tests a static file or some other feature that doesn’t require a dynamic
response. In this case, only the request part of the test should be written.

26 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.6.2 Developing Response and Request Parts of a Test

If you need to write the complete test, with two parts, you proceed just like in the previous section, but
now you write the client part of the test by yourself. It's quite easy, all you have to do is to generate
requests and check the response. So a typical test will look like this:

#file:t/apache/cool.t

use strict;
use warnings FATAL =>"all’;

use Apache::Test;
use Apache::TestUtil;
use Apache::TestRequest 'GET_BODY’;

plan tests => 1; # plan one test.
Apache::TestRequest::module('default’);

my $config = Apache::Test::config();
my $hostport = Apache::TestRequest::hostport($config) || ”;
t_debug("connecting to $hostport");

my $received = GET_BODY "/TestApache__cool";
my $expected = "COOL";

ok t_cmp(
$received,
$expected,
"testing TestApache::cool",

);

See theApache:: TestUtil manpage for more info on the t_cmp() function (e.g. it works with regexs
as well).

And the corresponding response part:

#file:t/response/TestApache/cool.pm
#.

es

package TestApache::cool;

use strict;
use warnings FATAL =>"all’;

use Apache2::Const -compile =>'OK’;
sub handler {
my $r = shift;
$r->content_type('text/plain’);

$r->write("COOL");

Apache2::Const::OK;

=

15 Feb 2014 27

1.6.3 Developing Test Response Handlers in C

Again, remember to rudiTEST -clearbefore running the new test so the configuration will be created for
it.

As you can see the test generates a requésestApache__cophnd expects it to retufCOOL". If we
run the test:

% .Jt/TEST t/apache/cool

We see:

apache/cool....ok
All tests successful.
Files=1, Tests=1, 1 wallclock secs (0.52 cusr + 0.02 csys = 0.54 CPU)

But if we run it in the debug (verbose) mode, we can actually see what we are testing, what was expected
and what was received:

apache/cool....1..1

connecting to localhost:8529

testing : testing TestApache::cool

expected: COOL

received: COOL

ok 1

ok

All tests successful.

Files=1, Tests=1, 1 wallclock secs (0.49 cusr + 0.03 csys = 0.52 CPU)

So in case in our simple test we have received something differenCi@@i or nothing at all, we can
immediately see what's the problem.

The name of the request part of the test is very importafspd€he::Test cannot find the correspond-

ing test for the response part it'll automatically generate one and in this case it's probably not what you
want. Therefore when you choose the filename for the test, make sure to pick thepsaime:Test

will pick. So if the response part is namebtesponse/TestApache/cool.ghe request part should be
named/apache/cool.tSee the regular expression that does that in the previous section.

1.6.3 Developing Test Response Handlers in C

If you need to exercise some C APl and you don't have a Perl glue for it, you can still use
Apache::Test for the testing. It allows you to write response handlers in C and makes it easy to inte-
grate these with other Perl tests and use Perl for request part which will exercise the C module.

The C modules look just like standard Apache C modules, with a couple of differences to:
® a
help them fit into the test suite

e b

28 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.6.3 Developing Test Response Handlers in C

allow them to compile nicely with Apache 1.x or 2.x.

The httpd-test ASF project is a good example to look at. The C modules are located under:
httpd-test/perl-framework/c-modulesiook at c-modules/echo_post/echo_posfar a nice simple
examplemod_echo_post simply echos data thatOSed to it.

The differences between vairous tests may be summarized as follows:

o |[f the first line is:
#define HTTPD_TEST_REQUIRE_APACHE 1
or

#define HTTPD_TEST_REQUIRE_APACHE 2

then the test will be skipped unless the version matches. If a module is compatible with the version of
Apache used then it will be automatically compiled/ESTwith -DAPACHElor -DAPACHE2s0
you can conditionally compile it to suit different httpd versions.

In additon to the single-digit form,
#define HTTPD_TEST_REQUIRE_APACHE 2.0.48
and

#define HTTPD_TEST_REQUIRE_APACHE 2.1

are also supported, allowing for conditional compilation based on criteria similar to
have_min_apache_version()

e |f there is a section bounded by:
#if CONFIG_FOR_HTTPD_TEST
#endif
in the.c file then that section will be inserted verbatim ititmnf/httpd.conby t/ TEST

There is a certain amount of magic which hopefully allows most modules to be compiled for Apache 1.3
or Apache 2.0 without any conditional stuff. Replace XXX with the module name, for example echo_post
or random_chunk:

® You should:

#include "apache_httpd_test.h"

which should be preceded by an:

15 Feb 2014 29

1.6.4 Request and Response Methods

#define APACHE_HTTPD_TEST_HANDLER XXX_handler

apache_httpd_testpulls in a lot of required includes and defines some constants and types that are
not defined for Apache 1.3.

® The handler function should be:

static int XXX_handler(request_rec *r);

o At the end of the file should be an:

APACHE_HTTPD_TEST_MODULE(XXX)

where XXX is the same as thatAPACHE_HTTPD_TEST_HANDLERhis will generate the hooks
and stuff.

1.6.4 Request and Response Methods

If you have LWP (libwww-perl) installed itsWP::UserAgent serves as an user agent in tests, other-
wise Apache::TestClient tries to emulate partial LWP functionality. So most of the LWP documen-
tation applies here, but thgpache-Test framework provides shortcuts that hide many details, making
the test writing a simple and swift task. Before using these shoApatshe:: TestRequest should

be loaded, and its import() method will fetch the shortcuts into the caller namespace:

use Apache::TestRequest;

Request generation methods issue a request and return a responséldijecResponse if LWP is
available). They are documented in tH€TP::Request::Common manpage. The following methods
are available:

e GET
Issues th&ETrequest. For example, issue a request and retrieve the response content:
$url = "$location?foo=1&bar=2";
$res = GET $url;
$str = $res->content;
To set request headers, supply them aftestik , e.g.:
$res = GET $url, 'Content-type’ => "text/html’;

e HEAD

Issues theHEADrequest. For example issue a request and check that the res@orge’st-typds
text/plain

$url = "$location?foo=1&bar=2";

$res = HEAD $url;
ok $res->content_type() eq 'text/plain’;

30 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.6.4 Request and Response Methods

e POST

Issues th&OSTrequest. For example:

$content = 'PARAM=%33’;
$res = POST $location, content => $content;

The second argument ©OST can be a reference to an array or a hash with key/value pairs to
emulate HTML <form>P0OSTing.

e PUT
Issues théUTrequest.
e OPTIONS
META: ??7?
These are two special methods added bypheche-Test framework:
e UPLOAD

This special method allows to upload a file or a string which will look as an uploaded file to the
server. To upload a file use:

UPLOAD $location, filename => $filename;
You can add extra request headers as well:

UPLOAD $location, filename => $filename, 'X-Header-Test’ => 'Test’;
This function sends the form data in a POST response.

To insert additional parameters, append them as ’'key’ => ’'value’ elements as in the following
example (notice that an additional file upload was made via the my_file_name parameter):

UPLOAD $location, filename => $filename, my_file_name => [Test.txt'],
username => 'Captain Kirk’, password =>'beam me up’;

To upload a string as a file, use:
UPLOAD $location, content => 'some data’;

e UPLOAD_BODY

Retrieves the content from the response resulted from tdth@ADIt's equal to:

my $body = UPLOAD(@_)->content;

15 Feb 2014 31

1.6.4 Request and Response Methods

For example, this code retrieves the content of the response resulted from file upload request:

my $str = UPLOAD_BODY $location, filename => $filename;

Once the response object is returned, various response object methods can be applied to it. Probably the
most useful ones are:

$content = $res->content;
to retrieve the content fo the respose and:
$content_type = $res->header(’Content-type’);
to retrieve specific headers.
Refer to theHTTP::Response manpage for a complete reference of these and other methods.

A few response retrieval shortcuts can be used to retrieve the wanted parts of the response. To apply these
simply add the shortcut name to one of the request shortcuts listed earlier. For example instead of retriev-
ing the content part of the response via:

$res = GET $url;
$str = $res->content;

simply use:
$str = GET_BODY $url;
e RC
returns theesponse codesquivalent to:
$res->code;
For example to test whether some URL is bogus:

use Apache::Const 'NOT_FOUND’;
ok GET_RC(/bogus_url) == NOT_FOUND;

You usually need to import and uspache::Const constants for the response code comparisons,
rather then using codes’ corresponding numerical values directly. You can import groups of code as
well. For example:

use Apache::Const :common’;

Refer to theApache::Const manpage for a complete reference. Also you may need tARRe
and mod_perl constants, which resideAiRR::Const and ModPerl::Const modules respec-
tively.

e OK

32 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.6.4 Request and Response Methods

tests whether the response was successful, equivalent to:
$res->is_success;

For example:
ok GET_OK ’ffoo’;

e STR

returns the response (both, headers and body) as a string and is equivalent to:
$res->as_string;

Mostly useful for debugging, for example:

use Apache::TestUtil;
t_debug POST_STR '/test.pl’, content => 'foo’;

e HEAD
returns the headers part of the response as a multi-line string.

For example, this code dumps all the response headers:

use Apache::TestUtil;
t debug GET_HEAD '/index.html’;

e BODY
returns the response body and is equivalent to:
$res->content;
For example, this code validates that the response’s body is the one that was expected:

use Apache::TestUtil;
ok GET_BODY('/index.html') eq $expect;

e BODY_ASSERT

Same as thBODYshortcut, but will assert if the request has failed. So for example if the test’s output
is generated on the server side, the client side may only need to print out what the server has sent and
we want it to report that the test has failed if the request has failed:

use Apache::TestUtil;
print GET_BODY_ASSERT "/foo"

15 Feb 2014 33

1.6.5 Other Request Generation helpers

1.6.5 Other Request Generation helpers
META: these methods need documentation

Request part:
Apache::TestRequest::scheme(’http’); #force http for t/ TEST -ssl
Apache::TestRequest::module($module);

my $config = Apache::Test::config();
my $hostport = Apache::TestRequest::hostport($config);

Getting the request object? Apache::TestRequest::user_agent()

1.6.6 Starting Multiple Servers
By default theApache-Test framework sets up only a single server to test against.

In some cases you need to have more than one server. If this is the situation, you have to override the
maxclientsconfiguration directive, whose default is 1. Usually this is don&FBST.PL by subclassing

the parent test run class and overriding the new_test config() method. For example if the parent class is
Apache::TestRunPerl , you can change yotfTEST.PL to be:

use strict;
use warnings FATAL =>"all’;

use lib "../lib"; # test against the source lib for easier dev
use lib map {("../blib/$_", "../../blib/$_")} qw(lib arch);

use Apache::TestRunPerl ();
package MyTest;
our @ISA = gw(Apache:: TestRunPerl);
subclass new_test_config to add some config vars which will be
replaced in generated httpd.conf
sub new_test_config {
my $self = shift;

$self->{conf_opts}->{maxclients} = 2;

return $self->SUPER::new_test_config;

}

MyTest->new->run(@ARGV);

1.6.7 Multiple User Agents

By default theApache-Test framework uses a single user agent which talks to the server (this is the
LWPuser agent, if you havyeWPinstalled). You almost never use this agent directly in the tests, but via
various wrappers. However if you need a second user agent you can clone these. For example:

34 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.6.8 Hitting the Same Interpreter (Server Thread/Process Instance)

my $ua2 = Apache::TestRequest::user_agent()->clone;

1.6.8 Hitting the Same Interpreter (Server Thread/Process Instance)

When a single instance of the server thread/process is running, all the tests go through the same server.
However if theApache::Test framework was configured to to run a few instances, two subsequent
sub-tests may not hit the same server instance. In certain tests (e.g. testing the closure efREGINthe

blocks) it's important to make sure that a sequence of sub-tests are run against the same server instance.
TheApache-Test framework supports this internally.

Here is an example froddodPerl::Registry closure tests. Using the counter closure problem under
ModPerl::Registry

#file:cgi-bin/closure.pl
#H

#lperl -w
print "Content-type: text/plain\r\n\rin";

this is a closure (when compiled inside handler()):
my $counter = 0;
counter();

sub counter {
#warn "$$";
print ++$counter;

}

If this script get invoked twice in a row and we make sure that it gets executed by the same server
instance, the first time it'll return 1 and the second time 2. So here is the gist of the request part that makes
sure that its two subsequent requests hit the same server instance:

#file:closure.t

my $url = "/same_interp/cgi-bin/closure.pl";
my $same_interp = Apache::TestRequest::same_interp_tie($url);

should be no closure effect, always returns 1
my $first = req($same_interp, $url);
my $second = req($same_interp, $url);
ok t_cmp(
$first && $second && ($second - $first),
1,
"the closure problem is there",
)i
sub req {
my ($same_interp, $url) = @_;
my $res = Apache::TestRequest::same_interp_do($same_interp,
\&GET, $url);
return $res ? $res->content : undef;

}

15 Feb 2014 35

1.7 Writing Tests

In this test we generate two requestggebin/closure.pland expect the returned value to increment for
each new request, because of the closure problem generdimtiBerl::Registry . Since we don't

know whether some other test has called this script already, we simply check whether the substraction of
the two subsequent requests’ outputs gives a value of 1.

The test starts by requesting the server to tie a single instance to all requests made with a certain identifier.
This is done using the same_interp_tie() function which returns a unique server instance’s indentifier.
From now on any requests made through same_interp_do() and supplying this indentifier as the first argu-
ment will be served by the same server instance. The second argument to same_interp_do() is the method
to use for generating the request and the third is the URL to use. Extra arguments can be supplied if
needed by the request generation method (e.g. headers).

This technique works for testing purposes where we know that we have just a few server instances. What
happens internally is when same_interp_tie() is called the server instance that served it returns its unique
UUID, so when we want to hit the same server instance in subsequent requests we generate the same
request until we learn that we are being served by the server instance that we want. This magic is done by
using a fixup handler which retur@Konly if it sees that its unique id matches. As you understand this
technique would be very inefficient in production with many server instances.

1.7 Writing Tests

All the communications between tests drabt::Harness which executes them is done via STDOUT.

l.e. whatever tests want to report they do by printing something to STDOUT. If a test wants to print some
debug comment it should do it starting on a separate line, and each debug line should starThéth
t_debug() function from th&pache:: TestUtil package should be used for that purpose.

1.7.1 Defining How Many Sub-Tests Are to Be Run

Before sub-tests of a certain test can be run it has to declare how many sub-tests it is going to run. In some
cases the test may decide to skip some of its sub-tests or not to run any at all. Therefore the first thing the
test has to print is:

1..M\n

where M is a positive integer. So if the test plans to run 5 sub-tests it should do:
print "1..5\n";

In Apache::Test this is done as follows:

use Apache::Test;
plan tests => 5;

36 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.7.2 Skipping a Whole Test

1.7.2 Skipping a Whole Test

Sometimes when the test cannot be run, because certain prerequisites are missing. To tell
Test::Harness that the whole test is to be skipped do:

print "1..0 # skipped because of foo is missing\n";

The optional comment afte# skipped will be used as a reason for test's skipping. Under
Apache::Test the optional last argument to the plan() function can be used to define prerequisites and
skip the test:

use Apache::Test;
plan tests => 5, $test_skipping_prerequisites;

This last argument can be:
® aSCALAR
the test is skipped if the scalar has a false value. For example:
plan tests => 5, 0;
But this won't hint the reason for skipping therefore it's better tdhase() :

plan tests => 5,
have 'LWP’,
{ "not Win32" => sub { $"O eq 'MSWin32'} };

® an ARRAY reference

have_module() is called for each value in this array. The test is skipped if have_module() returns
false (which happens when at least one C or Perl module from the list cannot be found). For example:

plan tests => 5, [qw(mod_index mod_mime)];
® a CODE reference

the tests will be skipped if the function returns a false value. For example:

plan tests => 5, \&have_Iwp;
the test will be skipped if LWP is not available
There is a number of useful functions whose return value can be used as a last argument for plan():
® have_module()

have_module() tests for presense of Perl modules or C maodatest It accepts a list of modules or
a reference to the list. If at least one of the modules is not found it returns a false value, otherwise it
returns a true value. For example:

15 Feb 2014 37

1.7.2 Skipping a Whole Test

plan tests => 5, have_module gw(Chatbot::Eliza CGI mod_proxy);

will skip the whole test unless both Perl modul#satbot::Eliza andCGI and the C module
mod_proxy.@re available.

® have_min_module_version()
Used to require a minimum version of a module

For example:

plan tests => 5, have_min_module_version(CGI => 2.81);
requiresCGl.pm version 2.81 or higher.
Currently works only for perl modules.
® have()
have() called as a last argument of plan() can impose multiple requirements at once.

have()’'s arguments can include scalars, which are passed to have_module(), and hash references. If
hash references are used, the keys, are strings, containing a reason for a failure to satisfy this particu-
lar entry, the valuees are the condition, which are satisfaction if they return true. If the value is a
scalar it's used as is. If the value is a code reference, it gets executed at the time of check and its
return value is used to check the condition. If the condition check fails, the provided (in a key) reason
is used to tell user why the test was skipped.

For example:

plan tests => 5,
have 'LWP’,
{"perl >=5.8.0 is required" => ($] >= 5.008) 1
{ "not Win32" => sub { $"O eq 'MSWin32' },
"foo is disabled" =>\&is_foo_enabled,
}

gid’;

In this example, we require the presense oLiWPPerl modulemod_cgid , that we run under perl
>= 5.8.0 on Win32, and th&d_foo_enabled returns true. If any of the requirements from this
list fail, the test will be skipped and each failed requiremnt will print a reason for its failure.

® have_perl()

have_perl(*foo’) checks whether the value$@onfig{foo} or $Config{usefoo} is equal to
‘define’. For example:

plan tests => 2, have_perl 'ithreads’;

38 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.7.2 Skipping a Whole Test

if Perl wasn't compiled with-Duseithreads the condition will be false and the test will be
skipped.

Also it checks for Perl extensions. For example:

plan tests => 5, have_perl 'iolayers’;
tests whethePerllO is available.
® have_min_perl_version()
Used to require a minimum version of Perl.

For example:

plan tests => 5, have_min_perl_version("5.008001");
requires Perl 5.8.1 or higher.
® have_threads()

have_threads checks whether whether threads are supported by both Apache and Perl.
plan tests => 2, have_threads;

® under_construction()

this is just a shortcut to skip the test while printing:

"skipped: this test is under construction";

For example:
plan tests => 2, under_construction;

e have_lwp()
Tests whether the Perl module LWP is installed.
® have_ httpll()

Tries to tell LWP that sub-tests need to be run under HTTP 1.1 protocol. Fails if the installed version
of LWP is not capable of doing that.

® have_cqgi()
tests whether mod_cgi or mod_cgid is available.

® have_apache()

15 Feb 2014 39

1.7.3 Skipping Numerous Tests

tests for a specific generation of httpd. For example:

plan tests => 2, have_apache 2;

will skip the test if not run under the 2nd Apache generation (httpd-2.x.xx).

plan tests => 2, have_apache 1,
will skip the test if not run under the 1st Apache generation (apache-1.3.xx).
® have_min_apache_version
Used to require a minimum version of Apache. For example:
plan tests => 5, have_min_apache_version("2.0.40");
requires Apache 2.0.40 or higher.
® have_apache_version
Used to require a specific version of Apache.

For example:

plan tests => 5, have_apache_version("2.0.40");

requires Apache 2.0.40.

1.7.3 Skipping Numerous Tests
Just like you can telApache::Test to run only specific tests, you can tell it to run all but a few tests.

If all files in a directoryt/foo should be skipped, create:
#file:t/foo/all.t

print "1..0\n";

Alternatively you can specify which tests should be skipped from a singtléSiéP. This file includes a
list of tests to be skipped. You can include comments startingt#atind you can use thiewildcharacter
for multiply files matching.

For example if in mod_perl 2.0 test suite we create the following file:

40 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.7.4 Reporting a Success or a Failure of Sub-tests

#file:t/SKIP

skip all files in protocol
protocol

skip basic cgi test
modules/cgi.t

skip all filter/input_* files
filter/input*.t

In our example the first pattern specifies the directory namicol since we want to skip all tests in it.

But since the skipping is done based on matching the skip patterns from t/SKIP against a list of potential
tests to be run, some other tests may be skipped as well if they match the pattern. Therefore it's safer to
use a pattern like this:

protocol/*.t

The second pattern skips a single testiules/cgi.tNote that you shouldn’t specify the leadihgAnd the
.t extension is optional, SO you can say:

skip basic cgi test
modules/cgi

The last pattern tell8pache::Test to skip all the tests starting wifitter/input.

1.7.4 Reporting a Success or a Failure of Sub-tests

After printing the number of planned sub-tests, and assuming that the test is not skipped, the test runs its
sub-tests and each sub-test is expected to report its success or failure by gkiatingt okrespectively
followed by its sequential number and a new line. For example:

print "ok 1\n";
print "not ok 2\n";
print "ok 3\n";

In Apache::Test this is done using the ok() function which priotsif its argument is a true value,
otherwise it printsot ok In addition it keeps track of how many times it was called, and every time it
prints an incremental number, therefore you can move sub-tests around without needing to remember to
adjust sub-test’s sequential number, since now you don’t need them at all. For example this test snippet:

use Apache::Test;

use Apache::TestUtil;

plan tests => 3;

ok "success";

t_debug("expecting to fail next test");
ok "™

ok 0;

will print:

15 Feb 2014 41

1.7.5 Skipping Sub-tests

1.3

ok 1

expecting to fail next test
not ok 2

not ok 3

Most of the sub-tests perform one of the following things:

® test whether some variable is defined:

ok defined $object;
o test whether some variable is a true value:

ok $value;

or a false value:
ok !$value;
e test whether a received from somewhere value is equal to an expected value:
$expected = "a good value";

$received = get_value();
ok defined $received && $received eq $expected;

1.7.5 Skipping Sub-tests

If the standard output line contains the substfir&kip(with variations in spacing and case) afikior ok
NUMBER it is counted as a skipped tebest::Harness reports the text after the pattefrskip\S*\s+
as a reason for skipping. So you can count a sub-test as a skipped as follows:

print "ok 3 # Skip for some reason\n";

or using theApache::Test ’s skip() function which works similarly to ok():
skip $should_skip, $test_me;

so if $should_skip s true, the test will be reported as skipped. The second argument is the one that’s
sent to ok(), so i$should_skip s true, a normal ok() sub-test is run. The following example represent
four possible outcomes of using the skip() function:

skip_subtest_1.t

use Apache::Test;
plan tests => 4;

my $ok =1;
my $not_ok = 0;

my $should_skip = "foo is missing";

skip $should_skip, $ok;
skip $should_skip, $not_ok;

42 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.7.5 Skipping Sub-tests

$should_skip =;
skip $should_skip, $ok;
skip $should_skip, $not_ok;

now we run the test:

% .JUTEST -run-tests -verbose skip_subtest_1

skip_subtest_1....1..4

ok 1 # skip foo is missing

ok 2 # skip foo is missing

ok 3

not ok 4

Failed test 4 in skip_subtest_1.t at line 13

Failed 1/1 test scripts, 0.00% okay. 1/4 subtests failed, 75.00% okay.

As you can see sinckshould_skip had a true value, the first two sub-tests were explicitly skipped
(using $should_skip as a reason), so the second argument to skip didn’'t matter. In the last two
sub-testsbshould_skip had a false value therefore the second argument was passed to the ok() func-
tion. Basically the following code:

$should_skip =";
skip $should_skip, $ok;
skip $should_skip, $not_ok;

is equivalent to:

ok $ok;
ok $not_ok;

However if you want to use cmp() or some other function call in the argument®k@ that won't
quite work since the function will be always called no matter whether the first argument will evaluate to a
true or a false value. For example, if you had a function:

ok t_cmp($received, $expected, Scomment);

and now you want to run this sub-test if moddlETP::Date is available, changing it to:

my $should_skip = eval { require HTTP::Date } ? ™ : "missing HTTP::Date";
skip $should_skip, t_cmp($received, $expected, $comment);

will still runt_cmp() even ifHTTP::Date is not available. Therefore it's probably better to code it in
this way:

if (eval {require HTTP::Date}) {
ok t_cmp($received, $expected, Scomment);

}
else {
skip "Skip HTTP::Date not found";

}

15 Feb 2014 43

1.7.6 Running only Selected Sub-tests

1.7.6 Running only Selected Sub-tests

Apache::Test also allows to write tests in such a way that only selected sub-tests will be run. The test
simply needs to switch from using ok() to sok(). Where the argument to sok() is a CODE reference or a
BLOCK whose return value will be passed to ok(). If sub-tests are specified on the command line only
those will be run/passed to ok(), the rest will be skipped. If no sub-tests are specified, sok() works just like
ok(). For example, you can write this test:

#file:skip_subtest_2.t

use Apache::Test;
plan tests => 4;
sok {1},

sok {0};

sok sub {’true’};
sok sub {"};

and then ask to run only sub-tests 1 and 3 and to skip the rest.

% .JMTEST -verbose skip_subtest 21 3
skip_subtest_2....1..4

ok 1

ok 2 # skip skipping this subtest

ok 3

ok 4 # skip skipping this subtest

ok, 2/4 skipped: skipping this subtest
All tests successful, 2 subtests skipped.

Only the sub-tests 1 and 3 get executed.

A range of sub-tests to run can be given using the Perl’s range operand:

% .MTEST -verbose skip_subtest_2 2..4

skip_subtest_2....1..4

ok 1 # skip askipping this subtest

not ok 2

Failed test 2

ok 3

not ok 4

Failed test 4

Failed 1/1 test scripts, 0.00% okay. 2/4 subtests failed, 50.00% okay.

In this run, only the first sub-test gets executed.

1.7.7 Todo Sub-tests

In a safe fashion to skipping specific sub-tests, it's possible to declare some subttekisTdss distinc-

tion is useful when we know that some sub-test is failing but for some reason we want to flag it as a todo
sub-test and not as a broken td@sst::Harness recognizegodo sub-tests if the standard output line
contains the substring TODOafternot okor not ok NUMBERand is counted as a todo sub-test. The text
afterwards is the explanation of the thing that has to be done before this sub-test will succeed. For
example:

44 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.7.8 Making it Easy to Debug

print "not ok 42 # TODO not implemented\n";

In Apache::Test this can be done with passing a reference to a list of sub-tests numbers that should be
marked asodosub-test:

plan tests => 7, todo => [3, 6];

In this example sub-tests 3 and 6 will be marketds sub-tests.

1.7.8 Making it Easy to Debug

Ideally we want all the tests to pass, reporting minimum noise or none at all. But when some sub-tests fail
we want to know the reason for their failure. If you are a developer you can dive into the code and easily
find out what's the problem, but when you have a user who has a problem with the test suite it’ll make his
and your life much easier if you make it easy for the user to report you the exact problem.

Usually this is done by printing the comment of what the sub-test does, what is the expected value and
what'’s the received value. This is a good example of debug friendly sub-test:

#file:debug_comments.t

use Apache::Test;
use Apache::TestUtil;
plan tests => 1;

t_debug("testing feature foo");

$expected = "a good value";

$received = "a bad value";

t_debug("expected: $expected");
t_debug("received: $received");

ok defined $received && $received eq $expected;

If in this examplebreceived gets assigned bad valuestring, the test will print the following:

% t/TEST debug_comments
debug_comments....FAILED test 1

No debug help here, since in a hon-verbose mode the debug comments aren’t printed. If we run the same
test using the verbose mode, enabled wighbose

% t/TEST -verbose debug_comments
debug_comments....1..1

testing feature foo

expected: a good value

received: a bad value

not ok 1

we can see exactly what's the problem, by visual examinination of the expected and received values.

It's true that adding a few print statements for each sub tests is cumbersome, and adds a lot of noise, when
you could just tell:

15 Feb 2014 45

1.7.9 Tie-ing STDOUT to a Response Handler Object

ok "a good value" eq "a bad value";
but no fearApache::TestUtil comes to help. The function t_cmp() does all the work for you:

use Apache::Test;
use Apache::TestUtil;
ok t_cmp(
"a good value",
"a bad value",
"testing feature foo");

t_cmp() will handleundef ’ined values as well, so you can do:

my $expected;
ok t_cmp(undef, $expected, "should be undef");

Finally you can use t_cmp() for regex comparisons. This feature is mostly useful when there may be more
than one valid expected value, which can be described with regex. For example this can be useful to
inspect the value gi@when eval() is expected to fail:

eval {foo();}

if ($@) {

ok t_cmp($@, gr/"expecting foo/, "func eval");

}
which is the same as:

eval {foo();}
if $@) {

t_debug(“func eval);

ok $@ =~ /"expecting foo/ ? 1 : 0;
}

1.7.9 Tie-ing STDOUT to a Response Handler Object

It's possible to run the sub-tests in the response handler, and simply return them as a response to the client
which in turn will print them out. Unfortunately in this case you cannot use ok() and other functions, since
they print and don’t return the results, therefore you have to do it manually. For example:

sub handler {
my $r = shift;

$r->print("1..2\n");
$r->print("ok 1\n");
$r->print("not ok 2\n");

return Apache2::Const::OK;
}

now the client should print the response to STDOUTTf&st::Harness processing.

46 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.7.9 Tie-ing STDOUT to a Response Handler Object

If the response handler is configured as:

SetHandler perl-script

STDOUTis already tied to the request objgct Therefore you can now rewrite the handler as:

use Apache::Test;
sub handler {
my $r = shift;

Apache::Test::test_pm_refresh();
plan tests => 2;

ok "true";

ok ™;

return Apache2::Const::OK;
}

However to be on the safe side you also have to call Apache::Test::test pm_refresh() allowing plan() and
friends to be called more than once per-process.

Under different setting§STDOUTis not tied to the request object. If the first argument to plan() is an
object, such as afpache::RequestRec object,STDOUTwiIll be tied to it. TheTest.pm global state
will also be refreshed by callingpache::Test::test pm_refresh . For example:
use Apache::Test;
sub handler {
my $r = shift;
plan $r, tests => 2;
ok "true";
ok "";

return Apache2::Const::OK;
}

Yet another alternative to handling the test framework printing inside response handler is to use
Apache::TestToString class.

TheApache::TestToString class is used to captufest.pom output into a string. Example:
use Apache::Test;
sub handler {
my $r = shift;
Apache::TestToString->start;
plan tests => 2;
ok "true";

ok "

my $output = Apache::TestToString->finish;

15 Feb 2014 47

1.7.10 Helper Functions

$r->print($output);

return Apache2::Const::OK;
}

In this exampleApache::TestToString intercepts and buffers all the output frdmast.pom and

can be retrieved with its finish() method. Which then can be printed to the client in one shot. Internally it
calls Apache::Test::test pm_refresh() to make sure plan(), ok() and other functions() will work correctly
more than one test is running under the same interpreter.

1.7.10 Helper Functions

Apache::TestUtil provides other helper functions, useful for writing tests, not mentioned in this
tutorial:

t_cmp()

t_debug()

t_append_file()

t_write_file()

t_open_file()

t_mkdir()

t_rmtree()

t_is_equal()

t_write_perl_script()
t_write_shell_script()

t_chown()
t_server_log_error_is_expected()
t_server_log_warn_is_expected()
t_client_log_error_is_expected()>
t_client_log_warn_is_expected()>

See théApache:: TestUtil manpage for more information.

1.7.11 Auto Configuration

If the test is comprised only from the request part, you have to manually configure the targets you are
going to use. This is usually donetioonf/extra.conf.in

If your tests are comprised from the request and responseAgeaitd)e::Test automatically adds the
configuration section for each response handler it finds. For example for the response handler:

package TestResponse::nice;
... some code
1

it will put into t/conf/httpd.conf

<Location /TestResponse__ nice>
SetHandler modperl
PerlResponseHandler TestResponse::nice
</Location>

48 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.7.11 Auto Configuration

If you want to add some extra configuration directives, use tBATA__ section, as in this example:

package TestResponse::nice;
... Some code

1

__DATA__

PerlSetVar Foo Bar

These directives will be wrapped into tiieocation> section and placed intéconf/httpd.conf

<Location /TestResponse__nice>
SetHandler modperl
PerlResponseHandler TestResponse::nice
PerlSetVar Foo Bar

</Location>

This autoconfiguration feature was added to:

simplify (less lines) test configuration.
® ensure unique namespace for <Location ...>’s.
e force <Location ...> names to be consistent.

® prevent clashes within main configuration.

1.7.11.1 Forcing Configuration Sections into the Top Level

If some directives are supposed to go to the base configuration, i.e. not to be automatically wrapped into
<Location> block, you should use a speci@ase>..</Base> block:

__DATA__
<Base>

PerlSetVar Config ServerConfig
<Base>
PerlSetVar Config LocalConfig

Now the autogenerated section will ook like this:

PerlSetVar Config ServerConfig

<Location /TestResponse__nice>
SetHandler modperl
PerlResponseHandler TestResponse::nice
PerlSetVar Config LocalConfig

</Location>

As you can see theBase>..</Base> block has gone. As you can imagine this block was added to
support our virtue of laziness, since most tests don’'t need to add directives to the base configuration and
we want to keep the configuration sections in tests to a minimum and let Perl do the rest of the job for us.

15 Feb 2014 49

1.7.11 Auto Configuration

1.7.11.2 Bypassing Auto-Configuration

In more complicated cases, usually when virtual hosts containers are involved, the auto-configuration
might stand in a way and you will simply want to bypass it. If that's the case, put the configuration inside
the<NoAutoConfig> ..</NoAutoConfig> container. For example:

<NoAutoConfig>
<VirtualHost TestPreConnection::note>
PerlPreConnectionHandler TestPreConnection::note

<Location /TestPreConnection__note>
SetHandler modperl
PerlResponseHandler TestPreConnection::note::response
</Location>
</VirtualHost>
</NoAutoConfig>

Notice, that the internal sections will be still parsed, tokenvar@will be substituted an®irtual-
Host sections will be rewritten with an automatically assigned port numbeBenverName .

1.7.11.3 Virtual Hosts

Apache::Test automatically assigns an unused port for the virtual host configuration. Just make sure
that you use the package name in the place where you usually spec#fhame:portalue. For example
for the following package:

#file:MyApacheTest/Foo.pm

#.

package MyApacheTest::Foo;

1

__END__

<VirtualHost MyApacheTest::Foo>
<Location /test_foo>

</Location>
</VirtualHost>

After running:

% t/TEST -conf

Check the auto-generatédonf/httpd.confand you will find what port was assigned. Of course it can
change when more tests which require a special virtual host are used.

Now in the request script, you can figure out what port that virtual host was assigned, using the package
name. For example:

50 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.7.11 Auto Configuration

#file:test_foo.t

use Apache::TestRequest;

my $module = "MyApacheTest::Foo;";

my $config = Apache::Test::config();
Apache::TestRequest::module($module);

my $hostport = Apache::TestRequest::hostport($config);

print GET_BODY_ASSERT "http://$hostport/test_foo";

1.7.11.4 Running Pre-Configuration Code

Sometimes you need to setup things for the test. This usually includes creating directories and files, and
populating the latter with some data, which will be used at request time. Instead of performing that opera-
tion in the client script every time a test is run, it's usually better to do it once when the server is config-
ured. If you wish to run such a code, all you have to do is to add a special subroutine
APACHE_TEST_CONFIGURIE the response package (assuming that that response package exists).
When server is configuretd TEST -conf) it scans all the response packages for that subroutine and if
found runs it.

APACHE_TEST_ CONFIGURé&ccepts two arguments: the package name of the file this subroutine is
defined in and thé&pache::TestConfig configuration object.

Here is an example of a package that uses such a subroutine:
package TestDirective::perimodule;

use strict;
use warnings FATAL =>"all’;

use Apache::Test ();

use Apache2::RequestRec ();

use Apache2::RequestlO ();

use File::Spec::Functions qw(catfile);

use Apache2::Const -compile =>'OK’;

sub handler {
my $r = shift;

$r->content_type(‘text/plain’);
$r->puts($ApacheTest::PerlModuleTest::MAGIC || ”);

Apache2::Const::OK;
}

sub APACHE_TEST_CONFIGURE {
my ($class, $self) = @_;

my $vars = $self->{vars};
my $target_dir = catfile $vars->{documentroot}, 'testdirective’;

15 Feb 2014 51

1.7.11 Auto Configuration

my $magic = _ PACKAGE__;

my $content = <<EOF;
package ApacheTest::PerIModuleTest;
\$ApacheTest::PerIModuleTest::MAGIC = '$magic’;
1
EOF

my $file = catfile $target_dir,

‘perlmodule-vh’, 'ApacheTest', 'PerIModuleTest.pm’;
$self->writefile($file, $content, 1);

}
3
In this example’s function a directory is created. Then a file with some perl code as a content is created.

1.7.11.5 Controlling the Configuration Order

Sometimes it's important in which order the configuration section of each response package is inserted.
Apache::Test controls the insertion order using a special toR@RACHE_TEST CONFIG_ORDER

To decide on the configuration insertion ord®pache::Test scans all response packages and tries to
match the following pattern:

/APACHE_TEST_CONFIG_ORDER\s+([+-]?\d+)/

So you can assign any integer number (positive or negative). If the match fails, it's assumed that the
token’s value is 0. Next a simple numerical search is performed and those configuration sections with
lower token value are inserted first.

It's not specified how sections with the same token value are ordered. This usually depends on the order
the files were read from the disk, which may vary from machine to machine and shouldn’t be relied upon.

As already mentioned by default all configuration sections have a token whose value is 0, meaning that
their ordering is unimportant. Now if you want to make sure that some section is inserted first, assign to it
a negative number, e.g.:

APACHE_TEST_CONFIG_ORDER -150

Now if a new test is added and it has to be the first, add to this new test a token with a negative value
whose absolute value is higher thab0 , e.g.:

APACHE_TEST_CONFIG_ORDER -151
or

APACHE_TEST_CONFIG_ORDER -500

Decide how big the gaps should be by thinking ahead. This is similar to the Basic language line numbering
;) In any case, you can always adjust other tests’ token if you need to squeeze a number between two
consequent integers.

52 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.7.12 Threaded versus Non-threaded Perl Test's Compatibility

If on the other hand you want to ensure that some test is configured last, use the highest positive number,
e.g.:

APACHE_TEST_CONFIG_ORDER 100

If some other test needs to be configured just before the one we just inserted, assign a token with a lower
value, e.g.:

APACHE_TEST_CONFIG_ORDER 99

1.7.12 Threaded versus Non-threaded Perl Test’'s Compatibility

Since the tests are supposed to run properly under non-threaded and threaded perl, you have to worry to
enclose the threaded perl specific configuration bits in:

<IfDefine PERL_USEITHREADS>

... configuration bits
</IfDefine>

Apache::Test will start the server with -DPERL_USEITHREADS if the Perl is ithreaded.

For exampleéPerlOptions +Parent is valid only for the threaded perl, therefore you have to write:
<IfDefine PERL_USEITHREADS>
a new interpreter pool

PerlOptions +Parent
</IfDefine>

Just like the configuration, the test's code has to work for both versions as well. Therefore you should
wrap the code specific to the threaded perl into:

if (have_perl ‘ithreads’){
ithread specific code

}

which is essentially does a lookup in $Config{useithreads}.

1.7.13 Retrieving the Server Configuration Data

The server configuration data can be retrieved and used in the tests via the configuration object:

use Apache::Test;
my $cfg = Apache::Test::config();

1.7.13.1 Module Magic Number

The following code retrieves the major and minor MMN numbers.

15 Feb 2014 53

1.8 Debugging Tests

my $cfg = Apache::Test::config();
my $info = $cfg->{httpd_info};

my $major = $info->{MODULE_MAGIC_NUMBER_MAJORY};
my $minor = $info->{MODULE_MAGIC_NUMBER_MINORY};

print "major=$major, minor=$minor\n";
For example for MMN20011218:0 , this code prints:

major=20011218, minor=0

1.8 Debugging Tests

Sometimes your tests won't run properly or even worse will segfault. There are cases where it's possible
to debug broken tests with simple print statements but usually it's very time consuming and ineffective.

Therefore it's a good idea to get yourself familiar with Perl and C debuggers, and this knowledge will save

you a lot of time and grief in a long run.

1.8.1 Under C debugger

mod_perl-2.0 provides built in 'make test’ debug facility. So in case you get a core dump during make
test, or just for fun, run in one shell:

% t/TEST -debug

in another shell:

% t/TEST -run-tests

then the-debugshell will have ggdb) prompt, typevhere for stacktrace:

(gdb) where

You can change the default debugger by supplying the name of the debugger as an arguisieng to
E.g. to run the server undedd :

% .JUTEST -debug=ddd
META: list supported debuggers

If you debug mod_perl internals you can set the breakpoints usingréakpointoption, which can be
repeated as many times as needed. When you set at least one breakpoint, the server will start running till it
meets theap_run_pre_confidoreakpoint. At this point we can set the breakpoint for the mod_perl code,
something we cannot do earlier if mod_perl was built as DSO. For example:

% .Jt/TEST -debug -breakpoint=modperl_cmd_switches \
-breakpoint=modperl_cmd_options

54 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.8.2 Under Perl debugger

will set themodperl_cmd_switchesxdmodperl_cmd_optionsreakpoints and run the debugger.
If you want to tell the debugger to jump to the start of the mod_perl code you may run:
% .Jt/ITEST -debug -breakpoint=modperl|_hook_init

In fact-breakpointautomatically turns on the debug mode, so you can run:

% .MTEST -breakpoint=modperl_hook_init

1.8.2 Under Perl debugger

When the Perl code misbehaves it’s the best to run it under the Perl debugger. Normally started as:
% perl -debug program.pl

the flow control gets passed to the Perl debugger, which allows you to run the program in single steps and
examine its states and variables after every executed statement. Of course you can set up breakpoints and
watches to skip irrelevant code sections and watch after certain variablgeeridebugand theperldeb-

tut manpages are covering the Perl debugger in fine detalils.

The Apache-Test framework extends the Perl debugger and plugshi’s debug features, so you can
debug the requests. Let’s take tgsache/readrom mod_perl 2.0 and present the features as we go:

META: to be completed

run .t test under the perl debugger
% t/TEST -debug perl t/modules/access.t

run .t test under the perl debugger (nonstop mode, output to t/logs/perldb.out)
% t/TEST -debug perl=nostop t/modules/access.t

turn on -v and LWP trace (1 is the default) mode in Apache::TestRequest
% t/TEST -debug Iwp t/modules/access.t

turn on -v and LWP trace mode (level 2) in Apache:: TestRequest

% tTEST -debug lwp=2 t/modules/access.t

1.8.3 Tracing

To get Start the server under strace(1):

% t/TEST -debug strace

15 Feb 2014 55

1.9 Using Apache::Test to Speed up Project Development

The output goes tiflogs/strace.log

Now in a second terminal run:

% t/TEST -run-tests
Beware that/logs/strace.logs going to be very big.

META: can we provide strace(1) opts if we want to see only certain syscalls?

1.9 Using Apache::Test to Speed up Project Development

When developing a project, as the code is written or modified it is desirable to test it at the same time. If
you write tests as you code, or even before you code, Apache::Test can speed up the modify-test code
development cycle. The idea is to start the server once and then run the tests without restarting it, and
make the server reload the modified modules behind the scenes. This of course works only if you modify
plain perl modules. If you develop XS/C components, you have no choice but to restart the server before
you want to test the modified code.

First of all, your Perl modules need to reside undelfilthdirectory, the same way they resideblib/lib.

In the sectiop Basic Testing Environnient, we've already arranged for tahating.pnresides in the
top-level directory, it's not possible to performequire Apache::Amazing’ . Only after running

make or ./Build wil the file be moved tdlib/lib/Apache/Amazing.pnwhich is when we can load it.

But you don't want to rurmake or ./Build every time you change the file. It's both annoying and
error-prone, since at times you'd make a change, try to verify it, and it will appear to be wrong for no
obvious reason. What will really have happend is that you just forgot tmake or ./Build and the
server was testing against the old unmodified versiohlibilib. Of course, if you always rumake

test or ./Build test , i'll always do the right thing, but it's not the most effecient approach to
undertake when you want to test a specific test and you do it every few seconds.

The following scenario will make you a much happier Perl developer.

First, we need to instruct Apache::Test to mod@NG which we could do itVconf/modper|_extra.pbr
t/conf/extra.conf.inbut the problem is that you may not want to keep that change in the released package.
There is a better way, if the environment variahRRACHE_TEST_LIVE_DEMs set to a true value,
Apache::Test will automatically add théb/ directory if it exists. Executing:

% APACHE_TEST_LIVE_DEV=1 t/TEST -configure

will add code to addpath/to/Apache-Amazing/lib @INCin t/conf/modperl_inc.pl This technique is
convenient since you don't need to modify your code to include that directory.

Second, we need to configure mod_perl to Agache::Reload --to automatically reload the module
when it's changed--by adding following configuration directivedonf/extra.conf.in

PerlIModule Apache2::Reload

PerlinitHandler Apache2::Reload

PerlSetVar ReloadAll Off

PerlSetVar ReloadModules "Apache::Amazing"

56 15 Feb 2014

Running and Developing Tests with the Apache::Test Framework 1.10 Writing Tests Methodology

(For more information abouApache::Reload , depending on the mod_perl generation, refer to the
mod_perl 1.0 documentation or thApache2::Reload manpage for mod_perl 2.0.)

now we execute:

% APACHE_TEST_LIVE_DEV=1 t/TEST -configure

which will generatd/conf/extra.confind start the server:

% t/TEST -start

from now on, we can modifpache/Amazing.pmind repeatedly run:

% t/TEST -run basic

without restarting the server.

1.10 Writing Tests Methodology

META: to be completed

1.10.1 When Tests Should Be Written
® A New feature is Added
Every time a new feature is added new tests should be added to cover the new feature.
® A Bug is Reported

Every time a bug gets reported, before you even attempt to fix the bug, write a test that exposes the
bug. This will make much easier for you to test whether your fix actually fixes the bug.

Now fix the bug and make sure that test passes ok.

It's possible that a few tests can be written to expose the same bug. Write them all -- the more tests
you have the less chances are that there is a bug in your code.

If the person reporting the bug is a programmer you may try to ask her to write the test for you. But

usually if the report includes a simple code that reproduces the bug, it should probably be easy to
convert this code into a test.

1.11 Other Webserver Regression Testing Frameworks

e Puffin

Puffin is a web application regression testing system. It allows you to test any web application from
end to end based application as if it were a "black box" accepting inputs and returning outputs.

15 Feb 2014 57

1.12 Got a question?

It's available from http://puffin.sourceforge.net/

1.12 Got a question?

Post it to the Apache-Test dev list. The list is moderated, so unless you are subscribed to it it may take
some time for your post to make it to the list.

For more information seg: http://perl.apache.org/ApachejTest/

For list archives and subscribing information, please see: Apache-Test dev list

1.13 References

® more Apache-Test documentation

Testing mod_perl 2)0 http://www.perl.com/pub/a/2003/05/22/testing.html

Apache::Test manpage
Apache-Test README

® Skeletons for use as a starting point

mod_perl 2} http://people.apache.org/~geoff/Apache-Test-skeleton-mp?.tar.gz

mod_perl 1} http://people.apache.org/~geoff/Apache-Test-skeleton-mp].tar.gz

® Bug reporting skeletons

Apache| http://people.apache.org/~geoff/bug-reporting-skeleton-apachg.tar.gz

mod_perl 1} http://people.apache.org/~geoff/bug-reporting-skeleton-mp1.tar.gz

mod_perl 2} http://people.apache.org/~geoff/bug-reporting-skeleton-mp32.tar.gz

® extreme programming methodology

Extreme Programming: A Gentle Introductipn: http://www.extremeprogramming.org/.

Extreme Programming: http://www.xprogramming.com/.

See also other sites linked from these URLSs.

58 15 Feb 2014

http://puffin.sourceforge.net/
http://perl.apache.org/Apache-Test/
http://www.perl.com/pub/a/2003/05/22/testing.html
http://people.apache.org/~geoff/Apache-Test-skeleton-mp2.tar.gz
http://people.apache.org/~geoff/Apache-Test-skeleton-mp1.tar.gz
http://people.apache.org/~geoff/bug-reporting-skeleton-apache.tar.gz
http://people.apache.org/~geoff/bug-reporting-skeleton-mp1.tar.gz
http://people.apache.org/~geoff/bug-reporting-skeleton-mp2.tar.gz
http://www.extremeprogramming.org/
http://www.xprogramming.com/

Running and Developing Tests with the Apache::Test Framework 1.14 Maintainers

1.14 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar [http://stason.qrg/]

1.15 Authors

e Stas Bekmar) [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 59

http://stason.org/
http://stason.org/

Running and Developing Tests with the Apache::Test Framework

Table of Contents:

1| Running and Developing Tests with the Apache::Test Framgwark .
1.1 [Descriptio]

1.2 | Basics of PerI Module Testlng

13 es .

1.4 S.
1.4.1| Testing Options
1.4.2[Basic Testing .
1.4.3|Individual Testing .
1.4.4| Repetitive Testing .
1.4.5[Parallel Testing

1.4.6 Verbose Modle.
1.4.7| Colored Trace Mo[e

1.4.8| Controlling the Apache::Test's Slgnal to N0|se Ratlo
1.4.9[Stress Testihg.
1.4.9.1| The Problgm

1.4.9.2| The Solutign
1.4.9.3[Resolving Sequence Problbms

1.4.9.4[Apache::TestSmoke Solution
1.4.10[RunTime Configuration Overrid|ng
1.4.11| Request Generation and Response Options
1.4.12 e . .
1.5|Setting Up Testing Enwronmlent
1.5.1| Know Your Target Environment
1.5.2| Basic Testing Environmént.
1.5.3| Extending Configuration Sefup.
1.5.4| Special Configuration Files.
1.5.5] Inheriting from System-wide httpd. clonf
1.6 |Apache::Test Framework’s Architecfure
1.6.1| Developing Response-only Part of a|Test .
1.6.2| Developing Response and Request Parts of|a Test.
1.6.3| Developing Test Response Handlersin.C .
1.6.4| Request and Response Methods
1.6.5| Other Request Generation helpers.
1.6.6| Starting Multiple Servers
1.6.7| Multiple User Agenits
1.6. 8| H|tt|ng the Same Interpreter (Server Thread/Process In$tance)
1.7 [Writing Tests . :
1.7.1| Defining How Many Sub Tests Are to Be Run
1.7.2| Skipping a Whole Test.
1.7.3| Skipping Numerous Telsts .)
1.7.4| Reporting a Success or a Failure of SubI tests)
1.7.5| Skipping Sub-tests.
1.7.6| Running only Selected Sub tlests

1.7.7| Todo Sub-tests

15 Feb 2014

Table of Contents:

OO N~NOOOOUITOABRDMNWDNNLE

Table of Contents:

1.7.8[Making it Easy to Deblg

1.7.9[Tie-ing STDOUT to a Response Handler Object.

1.7.10[Helper Functiops .
1.7.11{ Auto Conf@urat@n

1.7.11.1
1.7.11.2]
1.7.11.3]
1.7.11.4
1.7.11.5

Forcing Configuration Sectlons mto the To;:_) uevel
Bypassing Auto-Configurat tflon

Virtual Hosts . .
Running Pre- Conflguratlon dee .

Controllmﬁ the Conf@uratlon Orher

1.7.12| Threaded versus Non-threaded Perl Test's Comgg{tlblllty
1.7.13 Retnevmﬁ the Server Conf@uratlon ﬂ)ata . .
1.7.13. 1| Module Magic NumHer .
1.8[Debugging Tedts . . .
1.8.1[Under C debuggder .
1.8.2[Under Perl debugder
1.8.3[Tracinp

1.9 Usmg Apache: Test to Sgeed U|:_) Pr0|ect Develoﬂ)ment .

1.10[Writing Tests Methodolopy . . . :
1.10.1[When Tests Should Be Wriften . .

1.11 mmrks

1.12[Got a questioh?

1.13[References
1.14[Maintainets
1.15[Authork

45
46
48
48
49
50
50
51
52
53
53
53
54
54
95
95
56
57
57
57
58
58
59
59

15 Feb 2014

	1€€Running and Developing Tests with the Apache::Test Framework
	1.1€€Description
	1.2€€Basics of Perl Module Testing
	1.3€€Prerequisites
	1.4€€Running Tests
	1.4.1€€Testing Options
	1.4.2€€Basic Testing
	1.4.3€€Individual Testing
	1.4.4€€Repetitive Testing
	1.4.5€€Parallel Testing
	1.4.6€€Verbose Mode
	1.4.7€€Colored Trace Mode
	1.4.8€€Controlling the Apache::Test's Signal to Noise Ratio
	1.4.9€€Stress Testing
	1.4.9.1€€The Problem
	1.4.9.2€€The Solution
	1.4.9.3€€Resolving Sequence Problems
	1.4.9.4€€Apache::TestSmoke Solution

	1.4.10€€RunTime Configuration Overriding
	1.4.11€€Request Generation and Response Options
	1.4.12€€Batch Mode

	1.5€€Setting Up Testing Environment
	1.5.1€€Know Your Target Environment
	1.5.2€€Basic Testing Environment
	1.5.3€€Extending Configuration Setup
	1.5.4€€Special Configuration Files
	1.5.5€€Inheriting from System-wide httpd.conf

	1.6€€Apache::Test Framework's Architecture
	1.6.1€€Developing Response-only Part of a Test
	1.6.2€€Developing Response and Request Parts of a Test
	1.6.3€€Developing Test Response Handlers in C
	1.6.4€€Request and Response Methods
	1.6.5€€Other Request Generation helpers
	1.6.6€€Starting Multiple Servers
	1.6.7€€Multiple User Agents
	1.6.8€€Hitting the Same Interpreter (Server Thread/Process Instance)

	1.7€€Writing Tests
	1.7.1€€Defining How Many Sub-Tests Are to Be Run
	1.7.2€€Skipping a Whole Test
	1.7.3€€Skipping Numerous Tests
	1.7.4€€Reporting a Success or a Failure of Sub-tests
	1.7.5€€Skipping Sub-tests
	1.7.6€€Running only Selected Sub-tests
	1.7.7€€Todo Sub-tests
	1.7.8€€Making it Easy to Debug
	1.7.9€€Tie-ing STDOUT to a Response Handler Object
	1.7.10€€Helper Functions
	1.7.11€€Auto Configuration
	1.7.11.1€€Forcing Configuration Sections into the Top Level
	1.7.11.2€€Bypassing Auto-Configuration
	1.7.11.3€€Virtual Hosts
	1.7.11.4€€Running Pre-Configuration Code
	1.7.11.5€€Controlling the Configuration Order

	1.7.12€€Threaded versus Non-threaded Perl Test's Compatibility
	1.7.13€€Retrieving the Server Configuration Data
	1.7.13.1€€Module Magic Number

	1.8€€Debugging Tests
	1.8.1€€Under C debugger
	1.8.2€€Under Perl debugger
	1.8.3€€Tracing

	1.9€€Using Apache::Test to Speed up Project Development
	1.10€€Writing Tests Methodology
	1.10.1€€When Tests Should Be Written

	1.11€€Other Webserver Regression Testing Frameworks
	1.12€€Got a question?
	1.13€€References
	1.14€€Maintainers
	1.15€€Authors

