

General Documentation

Here you can find documentation concerning mod_perl in
general, but also not strictly mod_perl related information
that is still very useful for working with mod_perl. Most of
the information here applies to mod_perl 1.0 and 2.0.

Last modified Sun Feb 16 01:36:59 2014 GMT

115 Feb 2014

Table of Contents:General Documentation

Part I: Perl

- 1. Perl Reference
This document was born because some users are reluctant to learn Perl, prior to jumping into
mod_perl. I will try to cover some of the most frequent pure Perl questions being asked at the list.

Part II: Packaging and Testing

- 2. Preparing mod_perl modules for CPAN
This document provides information for CPAN modules developers whose modules require
mod_perl.

- 3. Running and Developing Tests with the Apache::Test Framework
The title is self-explanatory :)

Part III: HTTP

- 4. Issuing Correct HTTP Headers
To make caching of dynamic documents possible, which can give you a considerable performance
gain, setting a number of HTTP headers is of a vital importance. This document explains which
headers you need to pay attention to, and how to work with them.

Part IV: Server Administration

- 5. mod_perl for ISPs. mod_perl and Virtual Hosts
mod_perl hosting by ISPs: fantasy or reality? This section covers some topics that might be of inter-
est to users looking for ISPs to host their mod_perl-based website, and ISPs looking for a way to
provide such services.

- 6. Choosing an Operating System and Hardware
Before you use the techniques documented on this site to tune servers and write code you need to
consider the demands which will be placed on the hardware and the operating system. There is no
point in investing a lot of time and money in configuration and coding only to find that your server’s
performance is poor because you did not choose a suitable platform in the first place.

- 7. Controlling and Monitoring the Server
Covers techniques to restart mod_perl enabled Apache, SUID scripts, monitoring, and other mainte-
nance chores, as well as some specific setups.

Part V: mod_perl Advocacy

- 8. mod_perl Advocacy
Having a hard time getting mod_perl into your organization? We have collected some arguments you
can use to convince your boss why the organization wants mod_perl.

- 9. Popular Perl Complaints and Myths
This document tries to explain the myths about Perl and overturn the FUD certain bodies try to
spread.

15 Feb 20142

Table of Contents:

Part VI: OS Specific Decumentation

- 10. OS-specific Info
Documents concerning OS-specific issues.

315 Feb 2014

Table of Contents:General Documentation

1 Perl Reference

15 Feb 20144

1 Perl Reference

1.1 Description
This document was born because some users are reluctant to learn Perl, prior to jumping into mod_perl. I
will try to cover some of the most frequent pure Perl questions being asked at the list.

Before you decide to skip this chapter make sure you know all the information provided here. The rest of
the Guide assumes that you have read this chapter and understood it.

1.2 perldoc’s Rarely Known But Very Useful Options
First of all, I want to stress that you cannot become a Perl hacker without knowing how to read Perl docu-
mentation and search through it. Books are good, but an easily accessible and searchable Perl reference at
your fingertips is a great time saver. It always has the up-to-date information for the version of perl you’re
using.

Of course you can use online Perl documentation at the Web. The two major sites are
http://perldoc.perl.org and http://theoryx5.uwinnipeg.ca/CPAN/perl/.

The perldoc utility provides you with access to the documentation installed on your system. To find out
what Perl manpages are available execute:

 % perldoc perl

To find what functions perl has, execute:

 % perldoc perlfunc

To learn the syntax and to find examples of a specific function, you would execute (e.g. for open()):

 % perldoc -f open

Note: In perl5.005_03 and earlier, there is a bug in this and the -q options of perldoc . It won’t call
pod2man, but will display the section in POD format instead. Despite this bug it’s still readable and very
useful.

The Perl FAQ (perlfaq manpage) is in several sections. To search through the sections for open you
would execute:

 % perldoc -q open

This will show you all the matching Question and Answer sections, still in POD format.

To read the perldoc manpage you would execute:

 % perldoc perldoc

515 Feb 2014

1.1 DescriptionPerl Reference

http://perldoc.perl.org/
http://theoryx5.uwinnipeg.ca/CPAN/perl/

1.3 Tracing Warnings Reports
Sometimes it’s very hard to understand what a warning is complaining about. You see the source code, but
you cannot understand why some specific snippet produces that warning. The mystery often results from
the fact that the code can be called from different places if it’s located inside a subroutine.

Here is an example:

 warnings.pl

 #!/usr/bin/perl -w

 use strict;

 correct();
 incorrect();

 sub correct{
 print_value("Perl");
 }

 sub incorrect{
 print_value();
 }

 sub print_value{
 my $var = shift;
 print "My value is $var\n";
 }

In the code above, print_value() prints the passed value. Subroutine correct() passes the value to print, but
in subroutine incorrect() we forgot to pass it. When we run the script:

 % ./warnings.pl

we get the warning:

 Use of uninitialized value at ./warnings.pl line 16.

Perl complains about an undefined variable $var at the line that attempts to print its value:

 print "My value is $var\n";

But how do we know why it is undefined? The reason here obviously is that the calling function didn’t
pass the argument. But how do we know who was the caller? In our example there are two possible
callers, in the general case there can be many of them, perhaps located in other files.

We can use the caller() function, which tells who has called us, but even that might not be enough: it’s
possible to have a longer sequence of called subroutines, and not just two. For example, here it is sub
third() which is at fault, and putting sub caller() in sub second() would not help us very much:

15 Feb 20146

1.3 Tracing Warnings Reports

 sub third{
 second();
 }
 sub second{
 my $var = shift;
 first($var);
 }
 sub first{
 my $var = shift;
 print "Var = $var\n"
 }

The solution is quite simple. What we need is a full calls stack trace to the call that triggered the warning.

The Carp module comes to our aid with its cluck() function. Let’s modify the script by adding a couple of
lines. The rest of the script is unchanged.

 warnings2.pl

 #!/usr/bin/perl -w

 use strict;
 use Carp ();
 local $SIG{__WARN__} = \&Carp::cluck;

 correct();
 incorrect();

 sub correct{
 print_value("Perl");
 }

 sub incorrect{
 print_value();
 }

 sub print_value{
 my $var = shift;
 print "My value is $var\n";
 }

Now when we execute it, we see:

 Use of uninitialized value at ./warnings2.pl line 19.
 main::print_value() called at ./warnings2.pl line 14
 main::incorrect() called at ./warnings2.pl line 7

Take a moment to understand the calls stack trace. The deepest calls are printed first. So the second line
tells us that the warning was triggered in print_value(); the third, that print_value() was called by subrou-
tine, incorrect().

 script => incorrect() => print_value()

715 Feb 2014

1.3 Tracing Warnings ReportsPerl Reference

We go into incorrect() and indeed see that we forgot to pass the variable. Of course when you write a
subroutine like print_value it would be a good idea to check the passed arguments before starting
execution. We omitted that step to contrive an easily debugged example.

Sure, you say, I could find that problem by simple inspection of the code!

Well, you’re right. But I promise you that your task would be quite complicated and time consuming if
your code has some thousands of lines. In addition, under mod_perl, certain uses of the eval operator and
"here documents" are known to throw off Perl’s line numbering, so the messages reporting warnings and
errors can have incorrect line numbers. (See Finding the Line Which Triggered the Error or Warning for
more information).

Getting the trace helps a lot.

1.4 Variables Globally, Lexically Scoped And Fully Quali-
fied
META: this material is new and requires polishing so read with care.

You will hear a lot about namespaces, symbol tables and lexical scoping in Perl discussions, but little of it
will make any sense without a few key facts:

1.4.1 Symbols, Symbol Tables and Packages; Typeglobs

There are two important types of symbol: package global and lexical. We will talk about lexical symbols
later, for now we will talk only about package global symbols, which we will refer to simply as global
symbols.

The names of pieces of your code (subroutine names) and the names of your global variables are symbols.
Global symbols reside in one symbol table or another. The code itself and the data do not; the symbols are
the names of pointers which point (indirectly) to the memory areas which contain the code and data. (Note
for C/C++ programmers: we use the term ‘pointer’ in a general sense of one piece of data referring to
another piece of data not in a specific sense as used in C or C++.)

There is one symbol table for each package, (which is why global symbols are really package global
symbols).

You are always working in one package or another.

Like in C, where the first function you write must be called main(), the first statement of your first Perl
script is in package main:: which is the default package. Unless you say otherwise by using the
package statement, your symbols are all in package main:: . You should be aware straight away that
files and packages are not related. You can have any number of packages in a single file; and a single
package can be in one file or spread over many files. However it is very common to have a single package
in a single file. To declare a package you write:

15 Feb 20148

1.4 Variables Globally, Lexically Scoped And Fully Qualified

 package mypackagename;

From the following line you are in package mypackagename and any symbols you declare reside in that
package. When you create a symbol (variable, subroutine etc.) Perl uses the name of the package in which
you are currently working as a prefix to create the fully qualified name of the symbol.

When you create a symbol, Perl creates a symbol table entry for that symbol in the current package’s
symbol table (by default main::). Each symbol table entry is called a typeglob. Each typeglob can hold
information on a scalar, an array, a hash, a subroutine (code), a filehandle, a directory handle and a format,
each of which all have the same name. So you see now that there are two indirections for a global variable:
the symbol, (the thing’s name), points to its typeglob and the typeglob for the thing’s type (scalar, array,
etc.) points to the data. If we had a scalar and an array with the same name their name would point to the
same typeglob, but for each type of data the typeglob points to somewhere different and so the scalar’s
data and the array’s data are completely separate and independent, they just happen to have the same
name.

Most of the time, only one part of a typeglob is used (yes, it’s a bit wasteful). You will by now know that
you distinguish between them by using what the authors of the Camel book call a funny character. So if
we have a scalar called ‘line ’ we would refer to it in code as $line , and if we had an array of the same
name, that would be written, @line . Both would point to the same typeglob (which would be called
*line), but because of the funny character (also known as decoration) perl won’t confuse the two. Of
course we might confuse ourselves, so some programmers don’t ever use the same name for more than one
type of variable.

Every global symbol is in some package’s symbol table. To refer to a global symbol we could write the
fully qualified name, e.g. $main::line . If we are in the same package as the symbol we can omit the
package name, e.g. $line (unless you use the strict pragma and then you will have to predeclare the
variable using the vars pragma). We can also omit the package name if we have imported the symbol
into our current package’s namespace. If we want to refer to a symbol that is in another package and which
we haven’t imported we must use the fully qualified name, e.g. $otherpkg::box .

Most of the time you do not need to use the fully qualified symbol name because most of the time you will
refer to package variables from within the package. This is very like C++ class variables. You can work
entirely within package main:: and never even know you are using a package, nor that the symbols have
package names. In a way, this is a pity because you may fail to learn about packages and they are
extremely useful.

The exception is when you import the variable from another package. This creates an alias for the variable
in the current package, so that you can access it without using the fully qualified name.

Whilst global variables are useful for sharing data and are necessary in some contexts it is usually wisest
to minimize their use and use lexical variables, discussed next, instead.

Note that when you create a variable, the low-level business of allocating memory to store the information
is handled automatically by Perl. The intepreter keeps track of the chunks of memory to which the pointers
are pointing and takes care of undefining variables. When all references to a variable have ceased to exist
then the perl garbage collector is free to take back the memory used ready for recycling. However perl
almost never returns back memory it has already used to the operating system during the lifetime of the

915 Feb 2014

1.4.1 Symbols, Symbol Tables and Packages; TypeglobsPerl Reference

process.

1.4.1.1 Lexical Variables and Symbols

The symbols for lexical variables (i.e. those declared using the keyword my) are the only symbols which
do not live in a symbol table. Because of this, they are not available from outside the block in which they
are declared. There is no typeglob associated with a lexical variable and a lexical variable can refer only to
a scalar, an array, a hash or a code reference. (Since perl-5.6 it can also refer to a file glob).

If you need access to the data from outside the package then you can return it from a subroutine, or you
can create a global variable (i.e. one which has a package prefix) which points or refers to it and return
that. The pointer or reference must be global so that you can refer to it by a fully qualified name. But just
like in C try to avoid having global variables. Using OO methods generally solves this problem, by provid-
ing methods to get and set the desired value within the object that can be lexically scoped inside the
package and passed by reference.

The phrase "lexical variable" is a bit of a misnomer, we are really talking about "lexical symbols". The
data can be referenced by a global symbol too, and in such cases when the lexical symbol goes out of
scope the data will still be accessible through the global symbol. This is perfectly legitimate and cannot be
compared to the terrible mistake of taking a pointer to an automatic C variable and returning it from a
function--when the pointer is dereferenced there will be a segmentation fault. (Note for C/C++ program-
mers: having a function return a pointer to an auto variable is a disaster in C or C++; the perl equivalent,
returning a reference to a lexical variable created in a function is normal and useful.)

my () vs. use vars :

With use vars(), you are making an entry in the symbol table, and you are telling the compiler that
you are going to be referencing that entry without an explicit package name.

With my (), NO ENTRY IS PUT IN THE SYMBOL TABLE. The compiler figures out at
compile time which my () variables (i.e. lexical variables) are the same as each other, and once
you hit execute time you cannot go looking those variables up in the symbol table.

my () vs. local() :

local() creates a temporal-limited package-based scalar, array, hash, or glob -- when the scope of defi-
nition is exited at runtime, the previous value (if any) is restored. References to such a variable are
also global... only the value changes. (Aside: that is what causes variable suicide. :)

my () creates a lexically-limited non-package-based scalar, array, or hash -- when the scope of defini-
tion is exited at compile-time, the variable ceases to be accessible. Any references to such a variable
at runtime turn into unique anonymous variables on each scope exit.

15 Feb 201410

1.4.1 Symbols, Symbol Tables and Packages; Typeglobs

1.4.2 Additional reading references

For more information see: Using global variables and sharing them between modules/packages and an
article by Mark-Jason Dominus about how Perl handles variables and namespaces, and the difference
between use vars() and my () - http://www.plover.com/~mjd/perl/FAQs/Namespaces.html .

1.5 my () Scoped Variable in Nested Subroutines
Before we proceed let’s make the assumption that we want to develop the code under the strict
pragma. We will use lexically scoped variables (with help of the my () operator) whenever it’s possible.

1.5.1 The Poison

Let’s look at this code:

 nested.pl

 #!/usr/bin/perl

 use strict;

 sub print_power_of_2 {
 my $x = shift;

 sub power_of_2 {
 return $x ** 2;
 }

 my $result = power_of_2();
 print "$x^2 = $result\n";
 }

 print_power_of_2(5);
 print_power_of_2(6);

Don’t let the weird subroutine names fool you, the print_power_of_2() subroutine should print the square
of the number passed to it. Let’s run the code and see whether it works:

 % ./nested.pl

 5^2 = 25
 6^2 = 25

Ouch, something is wrong. May be there is a bug in Perl and it doesn’t work correctly with the number 6?
Let’s try again using 5 and 7:

 print_power_of_2(5);
 print_power_of_2(7);

1115 Feb 2014

1.5 my () Scoped Variable in Nested SubroutinesPerl Reference

http://www.plover.com/~mjd/perl/FAQs/Namespaces.html

And run it:

 % ./nested.pl

 5^2 = 25
 7^2 = 25

Wow, does it works only for 5? How about using 3 and 5:

 print_power_of_2(3);
 print_power_of_2(5);

and the result is:

 % ./nested.pl

 3^2 = 9
 5^2 = 9

Now we start to understand--only the first call to the print_power_of_2() function works correctly. Which
makes us think that our code has some kind of memory for the results of the first execution, or it ignores
the arguments in subsequent executions.

1.5.2 The Diagnosis

Let’s follow the guidelines and use the -w flag. Now execute the code:

 % ./nested.pl

 Variable "$x" will not stay shared at ./nested.pl line 9.
 5^2 = 25
 6^2 = 25

We have never seen such a warning message before and we don’t quite understand what it means. The
diagnostics pragma will certainly help us. Let’s prepend this pragma before the strict pragma in
our code:

 #!/usr/bin/perl -w

 use diagnostics;
 use strict;

And execute it:

 % ./nested.pl

 Variable "$x" will not stay shared at ./nested.pl line 10 (#1)

 (W) An inner (nested) named subroutine is referencing a lexical
 variable defined in an outer subroutine.

 When the inner subroutine is called, it will probably see the value of
 the outer subroutine’s variable as it was before and during the

15 Feb 201412

1.5.2 The Diagnosis

 first call to the outer subroutine; in this case, after the first
 call to the outer subroutine is complete, the inner and outer
 subroutines will no longer share a common value for the variable. In
 other words, the variable will no longer be shared.

 Furthermore, if the outer subroutine is anonymous and references a
 lexical variable outside itself, then the outer and inner subroutines
 will never share the given variable.

 This problem can usually be solved by making the inner subroutine
 anonymous, using the sub {} syntax. When inner anonymous subs that
 reference variables in outer subroutines are called or referenced,
 they are automatically rebound to the current values of such
 variables.

 5^2 = 25
 6^2 = 25

Well, now everything is clear. We have the inner subroutine power_of_2() and the outer subroutine
print_power_of_2() in our code.

When the inner power_of_2() subroutine is called for the first time, it sees the value of the outer
print_power_of_2() subroutine’s $x variable. On subsequent calls the inner subroutine’s $x variable
won’t be updated, no matter what new values are given to $x in the outer subroutine. There are two copies
of the $x variable, no longer a single one shared by the two routines.

1.5.3 The Remedy

The diagnostics pragma suggests that the problem can be solved by making the inner subroutine
anonymous.

An anonymous subroutine can act as a closure with respect to lexically scoped variables. Basically this
means that if you define a subroutine in a particular lexical context at a particular moment, then it will run
in that same context later, even if called from outside that context. The upshot of this is that when the
subroutine runs, you get the same copies of the lexically scoped variables which were visible when the
subroutine was defined. So you can pass arguments to a function when you define it, as well as when you
invoke it.

Let’s rewrite the code to use this technique:

 anonymous.pl

 #!/usr/bin/perl

 use strict;

 sub print_power_of_2 {
 my $x = shift;

 my $func_ref = sub {
 return $x ** 2;
 };

1315 Feb 2014

1.5.3 The RemedyPerl Reference

 my $result = &$func_ref();
 print "$x^2 = $result\n";
 }

 print_power_of_2(5);
 print_power_of_2(6);

Now $func_ref contains a reference to an anonymous subroutine, which we later use when we need to
get the power of two. Since it is anonymous, the subroutine will automatically be rebound to the new value
of the outer scoped variable $x , and the results will now be as expected.

Let’s verify:

 % ./anonymous.pl

 5^2 = 25
 6^2 = 36

So we can see that the problem is solved.

1.6 Understanding Closures -- the Easy Way
In Perl, a closure is just a subroutine that refers to one or more lexical variables declared outside the
subroutine itself and must therefore create a distinct clone of the environment on the way out.

And both named subroutines and anonymous subroutines can be closures.

Here’s how to tell if a subroutine is a closure or not:

 for (1..5) {
 push @a, sub { "hi there" };
 }
 for (1..5) {
 {
 my $b;
 push @b, sub { $b."hi there" };
 }
 }
 print "anon normal:\n", join "\t\n",@a,"\n";
 print "anon closure:\n",join "\t\n",@b,"\n";

which generates:

 anon normal:
 CODE(0x80568e4)
 CODE(0x80568e4)
 CODE(0x80568e4)
 CODE(0x80568e4)
 CODE(0x80568e4)

 anon closure:
 CODE(0x804b4c0)

15 Feb 201414

1.6 Understanding Closures -- the Easy Way

 CODE(0x8056b54)
 CODE(0x8056bb4)
 CODE(0x80594d8)
 CODE(0x8059538)

Note how each code reference from the non-closure is identical, but the closure form must generate
distinct coderefs to point at the distinct instances of the closure.

And now the same with named subroutines:

 for (1..5) {
 sub a { "hi there" };
 push @a, \&a;
 }
 for (1..5) {
 {
 my $b;
 sub b { $b."hi there" };
 push @b, \&b;
 }
 }
 print "normal:\n", join "\t\n",@a,"\n";
 print "closure:\n",join "\t\n",@b,"\n";

which generates:

 anon normal:
 CODE(0x80568c0)
 CODE(0x80568c0)
 CODE(0x80568c0)
 CODE(0x80568c0)
 CODE(0x80568c0)

 anon closure:
 CODE(0x8056998)
 CODE(0x8056998)
 CODE(0x8056998)
 CODE(0x8056998)
 CODE(0x8056998)

We can see that both versions has generated the same code reference. For the subroutine a it’s easy, since
it doesn’t include any lexical variables defined outside it in the same lexical scope.

As for the subroutine b, it’s indeed a closure, but Perl won’t recompile it since it’s a named subroutine (see
the perlsub manpage). It’s something that we don’t want to happen in our code unless we want it for this
special effect, similar to static variables in C.

This is the underpinnings of that famous "won’t stay shared" message. A my variable in a named subrou-
tine context is generating identical code references and therefore it ignores any future changes to the
lexical variables outside of it.

1515 Feb 2014

1.6 Understanding Closures -- the Easy WayPerl Reference

1.6.1 Mike Guy’s Explanation of the Inner Subroutine Behavior
 From: mjtg@cus.cam.ac.uk (M.J.T. Guy)
 Newsgroups: comp.lang.perl.misc
 Subject: Re: Lexical scope and embedded subroutines.
 Date: 6 Jan 1998 18:22:39 GMT
 Message-ID: <68tspf$9f0$1@lyra.csx.cam.ac.uk>

 In article <68sc4k$3p2$1@brokaw.wa.com>, Aaron Harsh <ajh@rtk.com>
 wrote:

 > Before I read this thread (and perlsub to get the details) I would
 > have assumed the original code was fine.
 >
 > This behavior brings up the following questions:
 > o Is Perl’s behavior some sort of speed optimization?

 No, but see below.

 > o Did the Perl gods just decide that scheme-like behavior was less
 > important than the pseduo-static variables described in perlsub?

 This subject has been kicked about at some length on perl5-porters.
 The current behaviour was chosen as the best of a bad job. In the
 context of Perl, it’s not obvious what "scheme-like behavior" means.
 So it isn’t an option. See below for details.

 > o Does anyone else find Perl’s behavior counter-intuitive?

 Everyone finds it counterintuitive. The fact that it only generates
 a warning rather than a hard error is part of the Perl Gods policy of
 hurling thunderbolts at those so irreverent as not to use -w.

 > o Did programming in scheme destroy my ability to judge a decent
 > language
 > feature?

 You’re still interested in Perl, so it can’t have rotted your brain
 completely.

 > o Have I misremembered how scheme handles these situations?

 Probably not.

 > o Do Perl programmers really care how much Perl acts like scheme?

 Some do.

 > o Should I have stopped this message two or three questions ago?

 Yes.

 The problem to be solved can be stated as

 "When a subroutine refers to a variable which is instantiated more
 than once (i.e. the variable is declared in a for loop, or in a

15 Feb 201416

1.6.1 Mike Guy’s Explanation of the Inner Subroutine Behavior

 subroutine), which instance of that variable should be used?"

 The basic problem is that Perl isn’t Scheme (or Pascal or any of the
 other comparators that have been used).

 In almost all lexically scoped languages (i.e. those in the Algol60
 tradition), named subroutines are also lexically scoped. So the scope
 of the subroutine is necessarily contained in the scope of any
 external variable referred to inside the subroutine. So there’s an
 obvious answer to the "which instance?" problem.

 But in Perl, named subroutines are globally scoped. (But in some
 future Perl, you’ll be able to write

 my sub lex { ... }

 to get lexical scoping.) So the solution adopted by other languages
 can’t be used.

 The next suggestion most people come up with is "Why not use the most
 recently instantiated variable?". This Does The Right Thing in many
 cases, but fails when recursion or other complications are involved.

 Consider:

 sub outer {

 inner();
 outer();
 my $trouble;
 inner();
 sub inner { $trouble };
 outer();
 inner();
 }

 Which instance of $trouble is to be used for each call of inner()?
 And why?

 The consensus was that an incomplete solution was unacceptable, so the
 simple rule "Use the first instance" was adopted instead.

 And it is more efficient than possible alternative rules. But that’s
 not why it was done.

 Mike Guy

1.7 When You Cannot Get Rid of The Inner Subroutine
First you might wonder, why in the world will someone need to define an inner subroutine? Well, for
example to reduce some of Perl’s script startup overhead you might decide to write a daemon that will
compile the scripts and modules only once, and cache the pre-compiled code in memory. When some
script is to be executed, you just tell the daemon the name of the script to run and it will do the rest and do
it much faster since compilation has already taken place.

1715 Feb 2014

1.7 When You Cannot Get Rid of The Inner SubroutinePerl Reference

Seems like an easy task, and it is. The only problem is once the script is compiled, how do you execute it?
Or let’s put it the other way: after it was executed for the first time and it stays compiled in the daemon’s
memory, how do you call it again? If you could get all developers to code their scripts so each has a
subroutine called run() that will actually execute the code in the script then we’ve solved half the problem.

But how does the daemon know to refer to some specific script if they all run in the main:: name space?
One solution might be to ask the developers to declare a package in each and every script, and for the
package name to be derived from the script name. However, since there is a chance that there will be more
than one script with the same name but residing in different directories, then in order to prevent namespace
collisions the directory has to be a part of the package name too. And don’t forget that the script may be
moved from one directory to another, so you will have to make sure that the package name is corrected
every time the script gets moved.

But why enforce these strange rules on developers, when we can arrange for our daemon to do this work?
For every script that the daemon is about to execute for the first time, the script should be wrapped inside
the package whose name is constructed from the mangled path to the script and a subroutine called run().
For example if the daemon is about to execute the script /tmp/hello.pl:

 hello.pl

 #!/usr/bin/perl
 print "Hello\n";

Prior to running it, the daemon will change the code to be:

 wrapped_hello.pl

 package cache::tmp::hello_2epl;

 sub run{
 #!/usr/bin/perl
 print "Hello\n";
 }

The package name is constructed from the prefix cache:: , each directory separation slash is replaced
with :: , and non alphanumeric characters are encoded so that for example . (a dot) becomes _2e (an
underscore followed by the ASCII code for a dot in hex representation).

 % perl -e ’printf "%x",ord(".")’

prints: 2e . The underscore is the same you see in URL encoding except the % character is used instead
(%2E), but since % has a special meaning in Perl (prefix of hash variable) it couldn’t be used.

Now when the daemon is requested to execute the script /tmp/hello.pl, all it has to do is to build the
package name as before based on the location of the script and call its run() subroutine:

 use cache::tmp::hello_2epl;
 cache::tmp::hello_2epl::run();

15 Feb 201418

1.7 When You Cannot Get Rid of The Inner Subroutine

We have just written a partial prototype of the daemon we wanted. The only outstanding problem is how
to pass the path to the script to the daemon. This detail is left as an exercise for the reader.

If you are familiar with the Apache::Registry module, you know that it works in almost the same
way. It uses a different package prefix and the generic function is called handler() and not run(). The
scripts to run are passed through the HTTP protocol’s headers.

Now you understand that there are cases where your normal subroutines can become inner, since if your
script was a simple:

 simple.pl

 #!/usr/bin/perl
 sub hello { print "Hello" }
 hello();

Wrapped into a run() subroutine it becomes:

 simple.pl

 package cache::simple_2epl;

 sub run{
 #!/usr/bin/perl
 sub hello { print "Hello" }
 hello();
 }

Therefore, hello() is an inner subroutine and if you have used my () scoped variables defined and altered
outside and used inside hello(), it won’t work as you expect starting from the second call, as was explained
in the previous section.

1.7.1 Remedies for Inner Subroutines

First of all there is nothing to worry about, as long as you don’t forget to turn the warnings On. If you do
happen to have the "my () Scoped Variable in Nested Subroutines" problem, Perl will always alert you.

Given that you have a script that has this problem, what are the ways to solve it? There have been many
suggested in the past, and we discuss some of them here.

We will use the following code to show the different solutions.

 multirun.pl

 #!/usr/bin/perl

 use strict;
 use warnings;

 for (1..3){
 print "run: [time $_]\n";
 run();

1915 Feb 2014

1.7.1 Remedies for Inner SubroutinesPerl Reference

 }

 sub run{

 my $counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 } # end of sub run

This code executes the run() subroutine three times, which in turn initializes the $counter variable to 0,
every time it is executed and then calls the inner subroutine increment_counter() twice. Sub incre-
ment_counter() prints $counter ’s value after incrementing it. One might expect to see the following
output:

 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 3]
 Counter is equal to 1 !
 Counter is equal to 2 !

But as we have already learned from the previous sections, this is not what we are going to see. Indeed,
when we run the script we see:

 % ./multirun.pl

 Variable "$counter" will not stay shared at ./nested.pl line 18.
 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 3 !
 Counter is equal to 4 !
 run: [time 3]
 Counter is equal to 5 !
 Counter is equal to 6 !

Apparently, the $counter variable is not reinitialized on each execution of run(), it retains its value from
the previous execution, and increment_counter() increments that. Actually that is not quite what happens.
On each execution of run() a new $counter variable is initialized to zero but increment_counter()
remains bound to the $counter variable from the first call to run().

15 Feb 201420

1.7.1 Remedies for Inner Subroutines

The simplest of the work-rounds is to use package-scoped variables. These can be declared using our or,
on older versions of Perl, the vars pragma. Note that whereas using my declaration also implicitly initial-
izes variables to undefined the our declaration does not, and so you will probably need to add explicit
initialisation for variables that lacked it.

 multirun1.pl

 #!/usr/bin/perl

 use strict;
 use warnings;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 our $counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 } # end of sub run

If you run this and the other solutions offered below, the expected output will be generated:

 % ./multirun1.pl

 run: [time 1]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 2]
 Counter is equal to 1 !
 Counter is equal to 2 !
 run: [time 3]
 Counter is equal to 1 !
 Counter is equal to 2 !

By the way, the warning we saw before has gone, and so has the problem, since there is no my () (lexi-
cally defined) variable used in the nested subroutine.

In the above example we know $counter is just a simple small scalar. In the general case variables
could reference external resource handles or large data structures. In that situation the fact that the variable
would not be released immediately when run() completes could be a problem. To avoid this you can put
local in front of the our declaration of all variables other than simple scalars. This has the effect of
restoring the variable to its previous value (usually undefined) upon exit from the current scope. As a
side-effect local also initializes the variables to undef . So, if you recall that thing I said about adding

2115 Feb 2014

1.7.1 Remedies for Inner SubroutinesPerl Reference

explicit initialization when you replace my by our , well, you can forget it again if you replace my with
local our .

Be warned that local will not release circular data structures. If the original CGI script relied upon
process termination to clean up after it then it will leak memory as a registry script.

A varient of the package variable approach is not to declare your variables, but instead to use explicit
package qualifiers. This has the advantage on old versions of Perl that there is no need to load the vars
module, but it adds a significant typing overhead. Another downside is that you become dependant on the
"used only once" warning to detect typos in variable names. The explicit package name approach is not
really suitable for registry scripts because it pollutes the main:: namespace rather than staying properly
within the namespace that has been allocated. Finally, note that the overhead of loading the vars module
only has to be paid once per Perl interpreter.

 multirun2.pl

 #!/usr/bin/perl -w

 use strict;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 $main::counter = 0;

 increment_counter();
 increment_counter();

 sub increment_counter{
 $main::counter++;
 print "Counter is equal to $main::counter !\n";
 }

 } # end of sub run

You can also pass the variable to the subroutine by value and make the subroutine return it after it was
updated. This adds time and memory overheads, so it may not be good idea if the variable can be very
large, or if speed of execution is an issue.

Don’t rely on the fact that the variable is small during the development of the application, it can grow
quite big in situations you don’t expect. For example, a very simple HTML form text entry field can return
a few megabytes of data if one of your users is bored and wants to test how good your code is. It’s not
uncommon to see users copy-and-paste 10Mb core dump files into a form’s text fields and then submit it
for your script to process.

 multirun3.pl

 #!/usr/bin/perl

15 Feb 201422

1.7.1 Remedies for Inner Subroutines

 use strict;
 use warnings;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 $counter = increment_counter($counter);
 $counter = increment_counter($counter);

 sub increment_counter{
 my $counter = shift;

 $counter++;
 print "Counter is equal to $counter !\n";

 return $counter;
 }

 } # end of sub run

Finally, you can use references to do the job. The version of increment_counter() below accepts a refer-
ence to the $counter variable and increments its value after first dereferencing it. When you use a refer-
ence, the variable you use inside the function is physically the same bit of memory as the one outside the
function. This technique is often used to enable a called function to modify variables in a calling function.

 multirun4.pl

 #!/usr/bin/perl

 use strict;
 use warnings;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 increment_counter(\$counter);
 increment_counter(\$counter);

 sub increment_counter{
 my $r_counter = shift;

 $$r_counter++;

2315 Feb 2014

1.7.1 Remedies for Inner SubroutinesPerl Reference

 print "Counter is equal to $$r_counter !\n";
 }

 } # end of sub run

Here is yet another and more obscure reference usage. We modify the value of $counter inside the
subroutine by using the fact that variables in @_ are aliases for the actual scalar parameters. Thus if you
called a function with two arguments, those would be stored in $_[0] and $_[1] . In particular, if an
element $_[0] is updated, the corresponding argument is updated (or an error occurs if it is not updatable
as would be the case of calling the function with a literal, e.g. increment_counter(5)).

 multirun5.pl

 #!/usr/bin/perl

 use strict;
 use warnings;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

 sub run {

 my $counter = 0;

 increment_counter($counter);
 increment_counter($counter);

 sub increment_counter{
 $_[0]++;
 print "Counter is equal to $_[0] !\n";
 }

 } # end of sub run

The approach given above should be properly documented of course.

Here is a solution that avoids the problem entirely by splitting the code into two files; the first is really just
a wrapper and loader, the second file contains the heart of the code. This second file must go into a direc-
tory in your @INC. Some people like to put the library in the same directory as the script but this assumes
that the current working directory will be equal to the directory where the script is located and also that
@INC will contain ’.’ , neither of which are assumptions you should expect to hold in all cases.

Note that the name chosen for the library must be unique throughout the entire server and indeed every
server on which you many ever install the script. This solution is probably more trouble than it is worth - it
is only oncluded because it was mentioned in previous versions of this guide.

 multirun6.pl

 #!/usr/bin/perl

 use strict;

15 Feb 201424

1.7.1 Remedies for Inner Subroutines

 use warnings;

 require ’multirun6-lib.pl’;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

Separate file:

 multirun6-lib.pl

 use strict;
 use warnings;

 my $counter;

 sub run {
 $counter = 0;

 increment_counter();
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 1 ;

An alternative verion of the above, that mitigates some of the disadvantages, is to use a Perl5-style
Exporter module rather than a Perl4-style library. The global uniqueness requirement still applies to the
module name, but at least this is a problem Perl programmers should already be familiar with when creat-
ing modules.

 multirun7.pl

 #!/usr/bin/perl

 use strict;
 use warnings;
 use My::Multirun7;

 for (1..3){
 print "run: [time $_]\n";
 run();
 }

Separate file:

2515 Feb 2014

1.7.1 Remedies for Inner SubroutinesPerl Reference

 My/Multirun7.pm

 package My::Multirun7;
 use strict;
 use warnings;
 use base qw(Exporter);
 our @EXPORT = qw(run);

 my $counter;

 sub run {
 $counter = 0;

 increment_counter();
 increment_counter();
 }

 sub increment_counter{
 $counter++;
 print "Counter is equal to $counter !\n";
 }

 1 ;

Now you have at least five workarounds to choose from (not counting numbers 2 and 6).

For more information please refer to perlref and perlsub manpages.

1.8 use(), require(), do(), %INC and @INC Explained

1.8.1 The @INC array

@INC is a special Perl variable which is the equivalent of the shell’s PATH variable. Whereas PATH
contains a list of directories to search for executables, @INC contains a list of directories from which Perl
modules and libraries can be loaded.

When you use(), require() or do() a filename or a module, Perl gets a list of directories from the @INC
variable and searches them for the file it was requested to load. If the file that you want to load is not
located in one of the listed directories, you have to tell Perl where to find the file. You can either provide a
path relative to one of the directories in @INC, or you can provide the full path to the file.

1.8.2 The %INC hash

%INC is another special Perl variable that is used to cache the names of the files and the modules that were
successfully loaded and compiled by use(), require() or do() statements. Before attempting to load a file or
a module with use() or require(), Perl checks whether it’s already in the %INC hash. If it’s there, the
loading and therefore the compilation are not performed at all. Otherwise the file is loaded into memory
and an attempt is made to compile it. do() does unconditional loading--no lookup in the %INC hash is
made.

15 Feb 201426

1.8 use(), require(), do(), %INC and @INC Explained

If the file is successfully loaded and compiled, a new key-value pair is added to %INC. The key is the
name of the file or module as it was passed to the one of the three functions we have just mentioned, and if
it was found in any of the @INC directories except "." the value is the full path to it in the file system.

The following examples will make it easier to understand the logic.

First, let’s see what are the contents of @INC on my system:

 % perl -e ’print join "\n", @INC’
 /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005
 .

Notice the . (current directory) is the last directory in the list.

Now let’s load the module strict.pm and see the contents of %INC:

 % perl -e ’use strict; print map {"$_ => $INC{$_}\n"} keys %INC’

 strict.pm => /usr/lib/perl5/5.00503/strict.pm

Since strict.pm was found in /usr/lib/perl5/5.00503/ directory and /usr/lib/perl5/5.00503/ is a part of
@INC, %INC includes the full path as the value for the key strict.pm .

Now let’s create the simplest module in /tmp/test.pm :

 test.pm

 1;

It does nothing, but returns a true value when loaded. Now let’s load it in different ways:

 % cd /tmp
 % perl -e ’use test; print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => test.pm

Since the file was found relative to . (the current directory), the relative path is inserted as the value. If we
alter @INC, by adding /tmp to the end:

 % cd /tmp
 % perl -e ’BEGIN{push @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => test.pm

Here we still get the relative path, since the module was found first relative to "." . The directory /tmp
was placed after . in the list. If we execute the same code from a different directory, the "." directory
won’t match,

2715 Feb 2014

1.8.2 The %INC hashPerl Reference

 % cd /
 % perl -e ’BEGIN{push @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => /tmp/test.pm

so we get the full path. We can also prepend the path with unshift(), so it will be used for matching before
"." and therefore we will get the full path as well:

 % cd /tmp
 % perl -e ’BEGIN{unshift @INC, "/tmp"} use test; \
 print map {"$_ => $INC{$_}\n"} keys %INC’

 test.pm => /tmp/test.pm

The code:

 BEGIN{unshift @INC, "/tmp"}

can be replaced with the more elegant:

 use lib "/tmp";

Which is almost equivalent to our BEGIN block and is the recommended approach.

These approaches to modifying @INC can be labor intensive, since if you want to move the script around
in the file-system you have to modify the path. This can be painful, for example, when you move your
scripts from development to a production server.

There is a module called FindBin which solves this problem in the plain Perl world, but unfortunately
up untill perl 5.9.1 it won’t work under mod_perl, since it’s a module and as any module it’s loaded only
once. So the first script using it will have all the settings correct, but the rest of the scripts will not if
located in a different directory from the first. Perl 5.9.1 provides a new function FindBin::again
which will do the right thing. Also the CPAN module FindBin::Real provides a working alternative
working under mod_perl.

For the sake of completeness, I’ll present the FindBin module anyway.

If you use this module, you don’t need to write a hard coded path. The following snippet does all the work
for you (the file is /tmp/load.pl):

 load.pl

 #!/usr/bin/perl

 use FindBin ();
 use lib "$FindBin::Bin";
 use test;
 print "test.pm => $INC{’test.pm’}\n";

15 Feb 201428

1.8.2 The %INC hash

In the above example $FindBin::Bin is equal to /tmp. If we move the script somewhere else... e.g.
/tmp/new_dir in the code above $FindBin::Bin equals /tmp/new_dir.

 % /tmp/load.pl

 test.pm => /tmp/test.pm

This is just like use lib except that no hard coded path is required.

You can use this workaround to make it work under mod_perl.

 do ’FindBin.pm’;
 unshift @INC, "$FindBin::Bin";
 require test;
 #maybe test::import(...) here if need to import stuff

This has a slight overhead because it will load from disk and recompile the FindBin module on each
request. So it may not be worth it.

1.8.3 Modules, Libraries and Program Files

Before we proceed, let’s define what we mean by module, library and program file.

Libraries

These are files which contain Perl subroutines and other code.

When these are used to break up a large program into manageable chunks they don’t generally
include a package declaration; when they are used as subroutine libraries they often do have a
package declaration.

Their last statement returns true, a simple 1; statement ensures that.

They can be named in any way desired, but generally their extension is .pl.

Examples:

 config.pl

 # No package so defaults to main::
 $dir = "/home/httpd/cgi-bin";
 $cgi = "/cgi-bin";
 1;

 mysubs.pl

 # No package so defaults to main::
 sub print_header{
 print "Content-type: text/plain\r\n\r\n";
 }
 1;

2915 Feb 2014

1.8.3 Modules, Libraries and Program FilesPerl Reference

 web.pl

 package web ;
 # Call like this: web::print_with_class(’loud’,"Don’t shout!");
 sub print_with_class{
 my ($class, $text) = @_ ;
 print qq{$text};
 }
 1;

Modules

A file which contains perl subroutines and other code.

It generally declares a package name at the beginning of it.

Modules are generally used either as function libraries (which .pl files are still but less commonly
used for), or as object libraries where a module is used to define a class and its methods.

Its last statement returns true.

The naming convention requires it to have a .pm extension.

Example:

 MyModule.pm

 package My::Module;
 $My::Module::VERSION = 0.01;

 sub new{ return bless {}, shift;}
 END { print "Quitting\n"}
 1;

Program Files

Many Perl programs exist as a single file. Under Linux and other Unix-like operating systems the file
often has no suffix since the operating system can determine that it is a perl script from the first line
(shebang line) or if it’s Apache that executes the code, there is a variety of ways to tell how and when
the file should be executed. Under Windows a suffix is normally used, for example .pl or .plx .

The program file will normally require() any libraries and use() any modules it requires for
execution.

It will contain Perl code but won’t usually have any package names.

Its last statement may return anything or nothing.

15 Feb 201430

1.8.3 Modules, Libraries and Program Files

1.8.4 require()

require() reads a file containing Perl code and compiles it. Before attempting to load the file it looks up the
argument in %INC to see whether it has already been loaded. If it has, require() just returns without doing
a thing. Otherwise an attempt will be made to load and compile the file.

require() has to find the file it has to load. If the argument is a full path to the file, it just tries to read it. For
example:

 require "/home/httpd/perl/mylibs.pl";

If the path is relative, require() will attempt to search for the file in all the directories listed in @INC. For
example:

 require "mylibs.pl";

If there is more than one occurrence of the file with the same name in the directories listed in @INC the
first occurrence will be used.

The file must return TRUE as the last statement to indicate successful execution of any initialization code.
Since you never know what changes the file will go through in the future, you cannot be sure that the last
statement will always return TRUE. That’s why the suggestion is to put "1; " at the end of file.

Although you should use the real filename for most files, if the file is a module, you may use the following
convention instead:

 require My::Module;

This is equal to:

 require "My/Module.pm";

If require() fails to load the file, either because it couldn’t find the file in question or the code failed to
compile, or it didn’t return TRUE, then the program would die(). To prevent this the require() statement
can be enclosed into an eval() exception-handling block, as in this example:

 require.pl

 #!/usr/bin/perl -w

 eval { require "/file/that/does/not/exists"};
 if ($@) {
 print "Failed to load, because : $@"
 }
 print "\nHello\n";

When we execute the program:

3115 Feb 2014

1.8.4 require()Perl Reference

 % ./require.pl

 Failed to load, because : Can’t locate /file/that/does/not/exists in
 @INC (@INC contains: /usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005 .) at require.pl line 3.

 Hello

We see that the program didn’t die(), because Hello was printed. This trick is useful when you want to
check whether a user has some module installed, but if she hasn’t it’s not critical, perhaps the program can
run without this module with reduced functionality.

If we remove the eval() part and try again:

 require.pl

 #!/usr/bin/perl -w

 require "/file/that/does/not/exists";
 print "\nHello\n";

 % ./require1.pl

 Can’t locate /file/that/does/not/exists in @INC (@INC contains:
 /usr/lib/perl5/5.00503/i386-linux /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux
 /usr/lib/perl5/site_perl/5.005 .) at require1.pl line 3.

The program just die()s in the last example, which is what you want in most cases.

For more information refer to the perlfunc manpage.

1.8.5 use()

use(), just like require(), loads and compiles files containing Perl code, but it works with modules only and
is executed at compile time.

The only way to pass a module to load is by its module name and not its filename. If the module is located
in MyCode.pm, the correct way to use() it is:

 use MyCode

and not:

 use "MyCode.pm"

use() translates the passed argument into a file name replacing :: with the operating system’s path separa-
tor (normally /) and appending .pm at the end. So My::Module becomes My/Module.pm.

15 Feb 201432

1.8.5 use()

use() is exactly equivalent to:

 BEGIN { require Module; Module->import(LIST); }

Internally it calls require() to do the loading and compilation chores. When require() finishes its job,
import() is called unless () is the second argument. The following pairs are equivalent:

 use MyModule;
 BEGIN {require MyModule; MyModule->import; }

 use MyModule qw(foo bar);
 BEGIN {require MyModule; MyModule->import("foo","bar"); }

 use MyModule ();
 BEGIN {require MyModule; }

The first pair exports the default tags. This happens if the module sets @EXPORT to a list of tags to be
exported by default. The module’s manpage normally describes what tags are exported by default.

The second pair exports only the tags passed as arguments.

The third pair describes the case where the caller does not want any symbols to be imported.

import() is not a builtin function, it’s just an ordinary static method call into the "MyModule " package
to tell the module to import the list of features back into the current package. See the Exporter manpage
for more information.

When you write your own modules, always remember that it’s better to use @EXPORT_OK instead of
@EXPORT, since the former doesn’t export symbols unless it was asked to. Exports pollute the namespace
of the module user. Also avoid short or common symbol names to reduce the risk of name clashes.

When functions and variables aren’t exported you can still access them using their full names, like
$My::Module::bar or $My::Module::foo() . By convention you can use a leading underscore
on names to informally indicate that they are internal and not for public use.

There’s a corresponding "no" command that un-imports symbols imported by use , i.e., it calls
Module->unimport(LIST) instead of import() .

1.8.6 do()

While do() behaves almost identically to require(), it reloads the file unconditionally. It doesn’t check
%INC to see whether the file was already loaded.

If do() cannot read the file, it returns undef and sets $! to report the error. If do() can read the file but
cannot compile it, it returns undef and puts an error message in $@. If the file is successfully compiled,
do() returns the value of the last expression evaluated.

3315 Feb 2014

1.8.6 do()Perl Reference

1.9 Using Global Variables and Sharing Them Between
Modules/Packages
It helps when you code your application in a structured way, using the perl packages, but as you probably
know once you start using packages it’s much harder to share the variables between the various packag-
ings. A configuration package comes to mind as a good example of the package that will want its variables
to be accessible from the other modules.

Of course using the Object Oriented (OO) programming is the best way to provide an access to variables
through the access methods. But if you are not yet ready for OO techniques you can still benefit from
using the techniques we are going to talk about.

1.9.1 Making Variables Global

When you first wrote $x in your code you created a (package) global variable. It is visible everywhere in
your program, although if used in a package other than the package in which it was declared (main:: by
default), it must be referred to with its fully qualified name, unless you have imported this variable with
import(). This will work only if you do not use strict pragma; but you have to use this pragma if you
want to run your scripts under mod_perl. Read The strict pragma to find out why.

1.9.2 Making Variables Global With strict Pragma On

First you use :

 use strict;

Then you use:

 use vars qw($scalar %hash @array);

This declares the named variables as package globals in the current package. They may be referred to
within the same file and package with their unqualified names; and in different files/packages with their
fully qualified names.

With perl5.6 you can use the our operator instead:

 our($scalar, %hash, @array);

If you want to share package global variables between packages, here is what you can do.

1.9.3 Using Exporter.pm to Share Global Variables

Assume that you want to share the CGI.pm object (I will use $q) between your modules. For example,
you create it in script.pl , but you want it to be visible in My::HTML . First, you make $q global.

15 Feb 201434

1.9 Using Global Variables and Sharing Them Between Modules/Packages

 script.pl:

 use vars qw($q);
 use CGI;
 use lib qw(.);
 use My::HTML qw($q); # My/HTML.pm is in the same dir as script.pl
 $q = CGI->new;

 My::HTML::printmyheader();

Note that we have imported $q from My::HTML . And My::HTML does the export of $q :

 My/HTML.pm

 package My::HTML;
 use strict;

 BEGIN {
 use Exporter ();

 @My::HTML::ISA = qw(Exporter);
 @My::HTML::EXPORT = qw();
 @My::HTML::EXPORT_OK = qw($q);

 }

 use vars qw($q);

 sub printmyheader{
 # Whatever you want to do with $q... e.g.
 print $q->header();
 }
 1;

So the $q is shared between the My::HTML package and script.pl . It will work vice versa as well, if
you create the object in My::HTML but use it in script.pl . You have true sharing, since if you change
$q in script.pl , it will be changed in My::HTML as well.

What if you need to share $q between more than two packages? For example you want My::Doc to share
$q as well.

You leave My::HTML untouched, and modify script.pl to include:

 use My::Doc qw($q);

Then you add the same Exporter code that we used in My::HTML , into My::Doc , so that it also
exports $q .

One possible pitfall is when you want to use My::Doc in both My::HTML and script.pl. Only if you add

 use My::Doc qw($q);

3515 Feb 2014

1.9.3 Using Exporter.pm to Share Global VariablesPerl Reference

into My::HTML will $q be shared. Otherwise My::Doc will not share $q any more. To make things
clear here is the code:

 script.pl:

 use vars qw($q);
 use CGI;
 use lib qw(.);
 use My::HTML qw($q); # My/HTML.pm is in the same dir as script.pl
 use My::Doc qw($q); # Ditto
 $q = new CGI;

 My::HTML::printmyheader();

 My/HTML.pm

 package My::HTML;
 use strict;

 BEGIN {
 use Exporter ();

 @My::HTML::ISA = qw(Exporter);
 @My::HTML::EXPORT = qw();
 @My::HTML::EXPORT_OK = qw($q);

 }

 use vars qw($q);
 use My::Doc qw($q);

 sub printmyheader{
 # Whatever you want to do with $q... e.g.
 print $q->header();

 My::Doc::printtitle(’Guide’);
 }
 1;

 My/Doc.pm

 package My::Doc;
 use strict;

 BEGIN {
 use Exporter ();

 @My::Doc::ISA = qw(Exporter);
 @My::Doc::EXPORT = qw();
 @My::Doc::EXPORT_OK = qw($q);

 }

 use vars qw($q);

 sub printtitle{

15 Feb 201436

1.9.3 Using Exporter.pm to Share Global Variables

 my $title = shift || ’None’;

 print $q->h1($title);
 }
 1;

1.9.4 Using the Perl Aliasing Feature to Share Global Variables

As the title says you can import a variable into a script or module without using Exporter.pm . I have
found it useful to keep all the configuration variables in one module My::Config . But then I have to
export all the variables in order to use them in other modules, which is bad for two reasons: polluting other
packages’ name spaces with extra tags which increases the memory requirements; and adding the over-
head of keeping track of what variables should be exported from the configuration module and what
imported, for some particular package. I solve this problem by keeping all the variables in one hash %c
and exporting that. Here is an example of My::Config :

 package My::Config;
 use strict;
 use vars qw(%c);
 %c = (
 # All the configs go here
 scalar_var => 5,

 array_var => [qw(foo bar)],

 hash_var => {
 foo => ’Foo’,
 bar => ’BARRR’,
 },
);
 1;

Now in packages that want to use the configuration variables I have either to use the fully qualified names
like $My::Config::test , which I dislike or import them as described in the previous section. But
hey, since we have only one variable to handle, we can make things even simpler and save the loading of
the Exporter.pm package. We will use the Perl aliasing feature for exporting and saving the
keystrokes:

 package My::HTML;
 use strict;
 use lib qw(.);
 # Global Configuration now aliased to global %c
 use My::Config (); # My/Config.pm in the same dir as script.pl
 use vars qw(%c);
 *c = \%My::Config::c;

 # Now you can access the variables from the My::Config
 print $c{scalar_var};
 print $c{array_var}[0];
 print $c{hash_var}{foo};

3715 Feb 2014

1.9.4 Using the Perl Aliasing Feature to Share Global VariablesPerl Reference

Of course $c is global everywhere you use it as described above, and if you change it somewhere it will
affect any other packages you have aliased $My::Config::c to.

Note that aliases work either with global or local() vars - you cannot write:

 my *c = \%My::Config::c; # ERROR!

Which is an error. But you can write:

 local *c = \%My::Config::c;

For more information about aliasing, refer to the Camel book, second edition, pages 51-52.

1.9.5 Using Non-Hardcoded Configuration Module Names

You have just seen how to use a configuration module for configuration centralization and an easy access
to the information stored in this module. However, there is somewhat of a chicken-and-egg problem--how
to let your other modules know the name of this file? Hardcoding the name is brittle--if you have only a
single project it should be fine, but if you have more projects which use different configurations and you
will want to reuse their code you will have to find all instances of the hardcoded name and replace it.

Another solution could be to have the same name for a configuration module, like My::Config but
putting a different copy of it into different locations. But this won’t work under mod_perl because of the
namespace collision. You cannot load different modules which uses the same name, only the first one will
be loaded.

Luckily, there is another solution which allows us to stay flexible. PerlSetVar comes to rescue. Just
like with environment variables, you can set server’s global Perl variables which can be retrieved from any
module and script. Those statements are placed into the httpd.conf file. For example

 PerlSetVar FooBaseDir /home/httpd/foo
 PerlSetVar FooConfigModule Foo::Config

Now we require() the file where the above configuration will be used.

 PerlRequire /home/httpd/perl/startup.pl

In the startup.pl we might have the following code:

 # retrieve the configuration module path
 use Apache;
 my $s = Apache->server;
 my $base_dir = $s->dir_config(’FooBaseDir’) || ’’;
 my $config_module = $s->dir_config(’FooConfigModule’) || ’’;
 die "FooBaseDir and FooConfigModule aren’t set in httpd.conf"
 unless $base_dir and $config_module;

 # build the real path to the config module
 my $path = "$base_dir/$config_module";
 $path =~ s|::|/|;
 $path .= ".pm";

15 Feb 201438

1.9.5 Using Non-Hardcoded Configuration Module Names

 # we have something like "/home/httpd/foo/Foo/Config.pm"

 # now we can pull in the configuration module
 require $path;

Now we know the module name and it’s loaded, so for example if we need to use some variables stored in
this module to open a database connection, we will do:

 Apache::DBI->connect_on_init
 ("DBI:mysql:${$config_module.’::DB_NAME’}::${$config_module.’::SERVER’}",
 ${$config_module.’::USER’},
 ${$config_module.’::USER_PASSWD’},
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
);

Where variable like:

 ${$config_module.’::USER’}

In our example are really:

 $Foo::Config::USER

If you want to access these variable from within your code at the run time, instead accessing to the server
object $c , use the request object $r :

 my $r = shift;
 my $base_dir = $r->dir_config(’FooBaseDir’) || ’’;
 my $config_module = $r->dir_config(’FooConfigModule’) || ’’;

1.10 The Scope of the Special Perl Variables
Special Perl variables like $| (buffering), $^T (script’s start time), $^W (warnings mode), $/ (input
record separator), $\ (output record separator) and many more are all true global variables; they do not
belong to any particular package (not even main::) and are universally available. This means that if you
change them, you change them anywhere across the entire program; furthermore you cannot scope them
with my (). However you can local()ise them which means that any changes you apply will only last until
the end of the enclosing scope. In the mod_perl situation where the child server doesn’t usually exit, if in
one of your scripts you modify a global variable it will be changed for the rest of the process’ life and will
affect all the scripts executed by the same process. Therefore localizing these variables is highly recom-
mended, I’d say mandatory.

We will demonstrate the case on the input record separator variable. If you undefine this variable, the
diamond operator (readline) will suck in the whole file at once if you have enough memory. Remembering
this you should never write code like the example below.

3915 Feb 2014

1.10 The Scope of the Special Perl VariablesPerl Reference

 $/ = undef; # BAD!
 open IN, "file"
 # slurp it all into a variable
 $all_the_file = <IN>;

The proper way is to have a local() keyword before the special variable is changed, like this:

 local $/ = undef;
 open IN, "file"
 # slurp it all inside a variable
 $all_the_file = <IN>;

But there is a catch. local() will propagate the changed value to the code below it. The modified value will
be in effect until the script terminates, unless it is changed again somewhere else in the script.

A cleaner approach is to enclose the whole of the code that is affected by the modified variable in a block,
like this:

 {
 local $/ = undef;
 open IN, "file"
 # slurp it all inside a variable
 $all_the_file = <IN>;
 }

That way when Perl leaves the block it restores the original value of the $/ variable, and you don’t need
to worry elsewhere in your program about its value being changed here.

Note that if you call a subroutine after you’ve set a global variable but within the enclosing block, the
global variable will be visible with its new value inside the subroutine.

1.11 Compiled Regular Expressions
When using a regular expression that contains an interpolated Perl variable, if it is known that the variable
(or variables) will not change during the execution of the program, a standard optimization technique is to
add the /o modifier to the regex pattern. This directs the compiler to build the internal table once, for the
entire lifetime of the script, rather than every time the pattern is executed. Consider:

 my $pat = ’^foo$’; # likely to be input from an HTML form field
 foreach(@list) {
 print if /$pat/o;
 }

This is usually a big win in loops over lists, or when using the grep() or map() operators.

In long-lived mod_perl scripts, however, the variable may change with each invocation and this can pose a
problem. The first invocation of a fresh httpd child will compile the regex and perform the search
correctly. However, all subsequent uses by that child will continue to match the original pattern, regardless
of the current contents of the Perl variables the pattern is supposed to depend on. Your script will appear to
be broken.

15 Feb 201440

1.11 Compiled Regular Expressions

There are two solutions to this problem:

The first is to use eval q// , to force the code to be evaluated each time. Just make sure that the eval
block covers the entire loop of processing, and not just the pattern match itself.

The above code fragment would be rewritten as:

 my $pat = ’^foo$’;
 eval q{
 foreach(@list) {
 print if /$pat/o;
 }
 }

Just saying:

 foreach(@list) {
 eval q{ print if /$pat/o; };
 }

means that we recompile the regex for every element in the list even though the regex doesn’t change.

You can use this approach if you require more than one pattern match operator in a given section of code.
If the section contains only one operator (be it an m// or s///), you can rely on the property of the null
pattern, that reuses the last pattern seen. This leads to the second solution, which also eliminates the use of
eval.

The above code fragment becomes:

 my $pat = ’^foo$’;
 "something" =~ /$pat/; # dummy match (MUST NOT FAIL!)
 foreach(@list) {
 print if //;
 }

The only gotcha is that the dummy match that boots the regular expression engine must absolutely, posi-
tively succeed, otherwise the pattern will not be cached, and the // will match everything. If you can’t
count on fixed text to ensure the match succeeds, you have two possibilities.

If you can guarantee that the pattern variable contains no meta-characters (things like *, +, ^, $...), you can
use the dummy match:

 $pat =~ /\Q$pat\E/; # guaranteed if no meta-characters present

If there is a possibility that the pattern can contain meta-characters, you should search for the pattern or the
non-searchable \377 character as follows:

 "\377" =~ /$pat|^\377$/; # guaranteed if meta-characters present

Another approach:

4115 Feb 2014

1.11 Compiled Regular ExpressionsPerl Reference

It depends on the complexity of the regex to which you apply this technique. One common usage where a
compiled regex is usually more efficient is to "match any one of a group of patterns" over and over again.

Maybe with a helper routine, it’s easier to remember. Here is one slightly modified from Jeffery Friedl’s
example in his book "Mastering Regular Expressions".

 ###
 # Build_MatchMany_Function
 # -- Input: list of patterns
 # -- Output: A code ref which matches its $_[0]
 # against ANY of the patterns given in the
 # "Input", efficiently.
 #
 sub Build_MatchMany_Function {
 my @R = @_;
 my $expr = join ’||’, map { "\$_[0] =~ m/\$R[$_]/o" } (0..$#R);
 my $matchsub = eval "sub { $expr }";
 die "Failed in building regex @R: $@" if $@;
 $matchsub;
 }

Example usage:

 @some_browsers = qw(Mozilla Lynx MSIE AmigaVoyager lwp libwww);
 $Known_Browser=Build_MatchMany_Function(@some_browsers);

 while (<ACCESS_LOG>) {
 # ...
 $browser = get_browser_field($_);
 if (! &$Known_Browser($browser)) {
 print STDERR "Unknown Browser: $browser\n";
 }
 # ...
 }

And of course you can use the qr() operator which makes the code even more efficient:

 my $pat = ’^foo$’;
 my $re = qr($pat);
 foreach(@list) {
 print if /$re/;
 }

The qr() operator compiles the pattern for each request and then use the compiled version in the actual
match.

1.12 Exception Handling for mod_perl
Here are some guidelines for clean(er) exception handling in mod_perl, although the technique presented
can be applied to all of your Perl programming.

15 Feb 201442

1.12 Exception Handling for mod_perl

The reasoning behind this document is the current broken status of $SIG{__DIE__} in the perl core -
see both the perl5-porters and the mod_perl mailing list archives for details on this discussion. (It’s broken
in at least Perl v5.6.0 and probably in later versions as well). In short summary, $SIG{__DIE__} is a little
bit too global, and catches exceptions even when you want to catch them yourself, using an eval{}
block.

1.12.1 Trapping Exceptions in Perl

To trap an exception in Perl we use the eval{} construct. Many people initially make the mistake that
this is the same as the eval EXPR construct, which compiles and executes code at run time, but that’s
not the case. eval{} compiles at compile time, just like the rest of your code, and has next to zero
run-time penalty. For the hardcore C programmers among you, it uses the setjmp/longjmp POSIX
routines internally, just like C++ exceptions.

When in an eval block, if the code being executed die()’s for any reason, an exception is thrown. This
exception can be caught by examining the $@ variable immediately after the eval block; if $@ is true then
an exception occurred and $@ contains the exception in the form of a string. The full construct looks like
this:

 eval {
 # Some code here
 }; # Note important semi-colon there
 if ($@) # $@ contains the exception that was thrown
 {
 # Do something with the exception
 }
 else # optional
 {
 # No exception was thrown
 }

Most of the time when you see these exception handlers there is no else block, because it tends to be OK if
the code didn’t throw an exception.

Perl’s exception handling is similar to that of other languages, though it may not seem so at first sight:

 Perl Other language
 ------------------------------- ------------------------------------
 eval { try {
 # execute here // execute here
 # raise our own exception: // raise our own exception:
 die "Oops" if /error/; if(error==1){throw Exception.Oops;}
 # execute more // execute more
 } ; }
 if($@) { catch {
 # handle exceptions switch(Exception.id) {
 if($@ =~ /Fail/) { Fail : fprintf(stderr, "Failed\n") ;
 print "Failed\n" ; break ;
 }
 elsif($@ =~ /Oops/) { Oops : throw Exception ;
 # Pass it up the chain
 die if $@ =~ /Oops/;

4315 Feb 2014

1.12.1 Trapping Exceptions in PerlPerl Reference

 }
 else { default :
 # handle all other }
 # exceptions here }
 } // If we got here all is OK or handled
 }
 else { # optional
 # all is well
 }
 # all is well or has been handled

1.12.2 Alternative Exception Handling Techniques

An often suggested method for handling global exceptions in mod_perl, and other perl programs in
general, is a __DIE__ handler, which can be set up by either assigning a function name as a string to
$SIG{__DIE__} (not particularly recommended, because of the possible namespace clashes) or assign-
ing a code reference to $SIG{__DIE__} . The usual way of doing so is to use an anonymous subroutine:

 $SIG{__DIE__} = sub { print "Eek - we died with:\n", $_[0]; };

The current problem with this is that $SIG{__DIE__} is a global setting in your script, so while you can
potentially hide away your exceptions in some external module, the execution of $SIG{__DIE__} is
fairly magical, and interferes not just with your code, but with all code in every module you import.
Beyond the magic involved, $SIG{__DIE__} actually interferes with perl’s normal exception handling
mechanism, the eval{} construct. Witness:

 $SIG{__DIE__} = sub { print "handler\n"; };

 eval {
 print "In eval\n";
 die "Failed for some reason\n";
 };
 if ($@) {
 print "Caught exception: $@";
 }

The code unfortunately prints out:

 In eval
 handler

Which isn’t quite what you would expect, especially if that $SIG{__DIE__} handler is hidden away
deep in some other module that you didn’t know about. There are work arounds however. One is to local-
ize $SIG{__DIE__} in every exception trap you write:

 eval {
 local $SIG{__DIE__};
 ...
 };

15 Feb 201444

1.12.2 Alternative Exception Handling Techniques

Obviously this just doesn’t scale - you don’t want to be doing that for every exception trap in your code,
and it’s a slow down. A second work around is to check in your handler if you are trying to catch this
exception:

 $SIG{__DIE__} = sub {
 die $_[0] if $^S;
 print "handler\n";
 };

However this won’t work under Apache::Registry - you’re always in an eval block there!

$^S isn’t totally reliable in certain Perl versions. e.g. 5.005_03 and 5.6.1 both do the wrong thing with it
in certain situations. Instead, you use can use the caller() function to figure out if we are called in the
eval() context:

 $SIG{__DIE__} = sub {
 my $in_eval = 0;
 for(my $stack = 1; my $sub = (CORE::caller($stack))[3]; $stack++) {
 $in_eval = 1 if $sub =~ /^\(eval\)/;
 }
 my_die_handler(@_) unless $in_eval;
 };

The other problem with $SIG{__DIE__} also relates to its global nature. Because you might have more
than one application running under mod_perl, you can’t be sure which has set a $SIG{__DIE__}
handler when and for what. This can become extremely confusing when you start scaling up from a set of
simple registry scripts that might rely on CGI::Carp for global exception handling (which uses
$SIG{__DIE__} to trap exceptions) to having many applications installed with a variety of exception
handling mechanisms in place.

You should warn people about this danger of $SIG{__DIE__} and inform them of better ways to code.
The following material is an attempt to do just that.

1.12.3 Better Exception Handling

The eval{} construct in itself is a fairly weak way to handle exceptions as strings. There’s no way to
pass more information in your exception, so you have to handle your exception in more than one place - at
the location the error occurred, in order to construct a sensible error message, and again in your exception
handler to de-construct that string into something meaningful (unless of course all you want your excep-
tion handler to do is dump the error to the browser). The other problem is that you have no way of auto-
matically detecting where the exception occurred using eval{} construct. In a $SIG{__DIE__} block
you always have the use of the caller() function to detect where the error occurred. But we can fix that...

A little known fact about exceptions in perl 5.005 is that you can call die with an object. The exception
handler receives that object in $@. This is how you are advised to handle exceptions now, as it provides an
extremely flexible and scalable exceptions solution, potentially providing almost all of the power Java
exceptions.

4515 Feb 2014

1.12.3 Better Exception HandlingPerl Reference

[As a footnote here, the only thing that is really missing here from Java exceptions is a guaranteed Finally
clause, although its possible to get about 98.62% of the way towards providing that using eval{} .]

1.12.3.1 A Little Housekeeping

First though, before we delve into the details, a little housekeeping is in order. Most, if not all, mod_perl
programs consist of a main routine that is entered, and then dispatches itself to a routine depending on the
parameters passed and/or the form values. In a normal C program this is your main() function, in a
mod_perl handler this is your handler() function/method. The exception to this rule seems to be
Apache::Registry scripts, although the techniques described here can be easily adapted.

In order for you to be able to use exception handling to its best advantage you need to change your script
to have some sort of global exception handling. This is much more trivial than it sounds. If you’re using
Apache::Registry to emulate CGI you might consider wrapping your entire script in one big eval
block, but I would discourage that. A better method would be to modularize your script into discrete func-
tion calls, one of which should be a dispatch routine:

 #!/usr/bin/perl -w
 # Apache::Registry script

 eval {
 dispatch();
 };
 if ($@) {
 # handle exception
 }

 sub dispatch {
 ...
 }

This is easier with an ordinary mod_perl handler as it is natural to have separate functions, rather than a
long run-on script:

 MyHandler.pm

 sub handler {
 my $r = shift;

 eval {
 dispatch($r);
 };
 if ($@) {
 # handle exception
 }
 }

 sub dispatch {
 my $r = shift;
 ...
 }

15 Feb 201446

1.12.3 Better Exception Handling

Now that the skeleton code is setup, let’s create an exception class, making use of Perl 5.005’s ability to
throw exception objects.

1.12.3.2 An Exception Class

This is a really simple exception class, that does nothing but contain information. A better implementation
would probably also handle its own exception conditions, but that would be more complex, requiring sepa-
rate packages for each exception type.

 My/Exception.pm

 package My::Exception;

 sub AUTOLOAD {
 no strict ’refs’, ’subs’;
 if ($AUTOLOAD =~ /.*::([A-Z]\w+)$/) {
 my $exception = $1;
 *{$AUTOLOAD} =
 sub {
 shift;
 my ($package, $filename, $line) = caller;
 push @_, caller => {
 package => $package,
 filename => $filename,
 line => $line,
 };
 bless { @_ }, "My::Exception::$exception";
 };
 goto &{$AUTOLOAD};
 }
 else {
 die "No such exception class: $AUTOLOAD\n";
 }
 }

 1;

OK, so this is all highly magical, but what does it do? It creates a simple package that we can import and
use as follows:

 use My::Exception;

 die My::Exception->SomeException(foo => "bar");

The exception class tracks exactly where we died from using the caller() mechanism, it also caches excep-
tion classes so that AUTOLOAD is only called the first time (in a given process) an exception of a particular
type is thrown (particularly relevant under mod_perl).

4715 Feb 2014

1.12.3 Better Exception HandlingPerl Reference

1.12.4 Catching Uncaught Exceptions

What about exceptions that are thrown outside of your control? We can fix this using one of two possible
methods. The first is to override die globally using the old magical $SIG{__DIE__} , and the second, is
the cleaner non-magical method of overriding the global die() method to your own die() method that
throws an exception that makes sense to your application.

1.12.4.1 Using $SIG{__DIE__}

Overloading using $SIG{__DIE__} in this case is rather simple, here’s some code:

 $SIG{__DIE__} = sub {
 if(!ref($_[0])) {
 $err = My::Exception->UnCaught(text => join(’’, @_));
 }
 die $err;
 };

All this does is catch your exception and re-throw it. It’s not as dangerous as we stated earlier that
$SIG{__DIE__} can be, because we’re actually re-throwing the exception, rather than catching it and
stopping there. Even though $SIG{__DIE__} is a global handler, because we are simply re-throwing the
exception we can let other applications outside of our control simply catch the exception and not worry
about it.

There’s only one slight buggette left, and that’s if some external code die()’ing catches the exception and
tries to do string comparisons on the exception, as in:

 eval {
 ... # some code
 die "FATAL ERROR!\n";
 };
 if ($@) {
 if ($@ =~ /^FATAL ERROR/) {
 die $@;
 }
 }

In order to deal with this, we can overload stringification for our My::Exception::UnCaught class:

 {
 package My::Exception::UnCaught;
 use overload ’""’ => \&str;

 sub str {
 shift->{text};
 }
 }

We can now let other code happily continue. Note that there is a bug in Perl 5.6 which may affect people
here: Stringification does not occur when an object is operated on by a regular expression (via the =~ oper-
ator). A work around is to explicitly stringify using qq double quotes, however that doesn’t help the poor
soul who is using other applications. This bug has been fixed in later versions of Perl.

15 Feb 201448

1.12.4 Catching Uncaught Exceptions

1.12.4.2 Overriding the Core die() Function

So what if we don’t want to touch $SIG{__DIE__} at all? We can overcome this by overriding the core
die function. This is slightly more complex than implementing a $SIG{__DIE__} handler, but is far less
magical, and is the right thing to do, according to the perl5-porters mailing list.

Overriding core functions has to be done from an external package/module. So we’re going to add that to
our My::Exception module. Here’s the relevant parts:

 use vars qw/@ISA @EXPORT/;
 use Exporter;

 @EXPORT = qw/die/;
 @ISA = ’Exporter’;

 sub die (@); # prototype to match CORE::die

 sub import {
 my $pkg = shift;
 $pkg->export(’CORE::GLOBAL’, ’die’);
 Exporter::import($pkg,@_);
 }

 sub die (@) {
 if (!ref($_[0])) {
 CORE::die My::Exception->UnCaught(text => join(’’, @_));
 }
 CORE::die $_[0]; # only use first element because its an object
 }

That wasn’t so bad, was it? We’re relying on Exporter’s export() function to do the hard work for us,
exporting the die() function into the CORE::GLOBAL namespace. If we don’t want to overload die()
everywhere this can still be an extremely useful technique. By just using Exporter’s default import()
method we can export our new die() method into any package of our choosing. This allows us to short-cut
the long calling convention and simply die() with a string, and let the system handle the actual construc-
tion into an object for us.

Along with the above overloaded stringification, we now have a complete exception system (well, mostly
complete. Exception die-hards would argue that there’s no "finally" clause, and no exception stack, but
that’s another topic for another time).

1.12.5 A Single UnCaught Exception Class

Until the Perl core gets its own base exception class (which will likely happen for Perl 6, but not sooner),
it is vitally important that you decide upon a single base exception class for all of the applications that you
install on your server, and a single exception handling technique. The problem comes when you have
multiple applications all doing exception handling and all expecting a certain type of "UnCaught" excep-
tion class. Witness the following application:

4915 Feb 2014

1.12.5 A Single UnCaught Exception ClassPerl Reference

 package Foo;

 eval {
 # do something
 }
 if ($@) {
 if ($@->isa(’Foo::Exception::Bar’)) {
 # handle "Bar" exception
 }
 elsif ($@->isa(’Foo::Exception::UnCaught’)) {
 # handle uncaught exceptions
 }
 }

All will work well until someone installs application "TrapMe" on the same machine, which installs its
own UnCaught exception handler, overloading CORE::GLOBAL::die or installing a $SIG{__DIE__}
handler. This is actually a case where using $SIG{__DIE__} might actually be preferable, because you
can change your handler() routine to look like this:

 sub handler {
 my $r = shift;

 local $SIG{__DIE__};
 Foo::Exception->Init(); # sets $SIG{__DIE__}

 eval {
 dispatch($r);
 };
 if ($@) {
 # handle exception
 }
 }

 sub dispatch {
 my $r = shift;
 ...
 }

In this case the very nature of $SIG{__DIE__} being a lexical variable has helped us, something we
couldn’t fix with overloading CORE::GLOBAL::die. However there is still a gotcha. If someone has over-
loaded die() in one of the applications installed on your mod_perl machine, you get the same problems
still. So in short: Watch out, and check the source code of anything you install to make sure it follows your
exception handling technique, or just uses die() with strings.

1.12.6 Some Uses

I’m going to come right out and say now: I abuse this system horribly! I throw exceptions all over my
code, not because I’ve hit an "exceptional" bit of code, but because I want to get straight back out of the
current call stack, without having to have every single level of function call check error codes. One way I
use this is to return Apache return codes:

15 Feb 201450

1.12.6 Some Uses

 # paranoid security check
 die My::Exception->RetCode(code => 204);

Returns a 204 error code (HTTP_NO_CONTENT), which is caught at my top level exception handler:

 if ($@->isa(’My::Exception::RetCode’)) {
 return $@->{code};
 }

That last return statement is in my handler() method, so that’s the return code that Apache actually sends. I
have other exception handlers in place for sending Basic Authentication headers and Redirect headers out.
I also have a generic My::Exception::OK class, which gives me a way to back out completely from
where I am, but register that as an OK thing to do.

Why do I go to these extents? After all, code like slashcode (the code behind http://slashdot.org) doesn’t
need this sort of thing, so why should my web site? Well it’s just a matter of scalability and programmer
style really. There’s a lot of literature out there about exception handling, so I suggest doing some
research.

1.12.7 Conclusions

Here I’ve demonstrated a simple and scalable (and useful) exception handling mechanism, that fits
perfectly with your current code, and provides the programmer with an excellent means to determine what
has happened in his code. Some users might be worried about the overhead of such code. However in use
I’ve found accessing the database to be a much more significant overhead, and this is used in some code
delivering to thousands of users.

For similar exception handling techniques, see the section "Other Implementations".

1.12.8 The My::Exception class in its entirety
 package My::Exception;

 use vars qw/@ISA @EXPORT $AUTOLOAD/;
 use Exporter;
 @ISA = ’Exporter’;
 @EXPORT = qw/die/;

 sub die (@);

 sub import {
 my $pkg = shift;
 # allow "use My::Exception ’die’;" to mean import locally only
 $pkg->export(’CORE::GLOBAL’, ’die’) unless @_;
 Exporter::import($pkg,@_);
 }

 sub die (@) {
 if (!ref($_[0])) {
 CORE::die My::Exception->UnCaught(text => join(’’, @_));
 }
 CORE::die $_[0];

5115 Feb 2014

1.12.7 ConclusionsPerl Reference

http://slashdot.org/

 }

 {
 package My::Exception::UnCaught;
 use overload ’""’ => sub { shift->{text} } ;
 }

 sub AUTOLOAD {
 no strict ’refs’, ’subs’;
 if ($AUTOLOAD =~ /.*::([A-Z]\w+)$/) {
 my $exception = $1;
 *{$AUTOLOAD} =
 sub {
 shift;
 my ($package, $filename, $line) = caller;
 push @_, caller => {
 package => $package,
 filename => $filename,
 line => $line,

 };
 bless { @_ }, "My::Exception::$exception";
 };
 goto &{$AUTOLOAD};
 }
 else {
 CORE::die "No such exception class: $AUTOLOAD\n";
 }
 }

 1;

1.12.9 Other Implementations

Some users might find it very useful to have the more C++/Java like interface of try/catch functions. These
are available in several forms that all work in slightly different ways. See the documentation for each
module for details:

Error.pm

Graham Barr’s excellent OO styled "try, throw, catch" module (from CPAN). This should be consid-
ered your best option for structured exception handling because it is well known and well supported
and used by a lot of other applications.

Exception::Class and Devel::StackTrace

by Dave Rolsky both available from CPAN of course.

Exception::Class is a bit cleaner than the AUTOLOAD method from above as it can catch typos
in exception class names, whereas the method above will automatically create a new class for you. In
addition, it lets you create actual class hierarchies for your exceptions, which can be useful if you
want to create exception classes that provide extra methods or data. For example, an exception class
for database errors could provide a method for returning the SQL and bound parameters in use at the

15 Feb 201452

1.12.9 Other Implementations

time of the error.

Try.pm

Tony Olekshy’s. Adds an unwind stack and some other interesting features. Not on the CPAN. Avail-
able at http://www.avrasoft.com/perl6/try6-ref5.txt

1.13 Customized __DIE__ handler
As we saw in the previous sections it’s a bad idea to do:

 require Carp;
 $SIG{__DIE__} = \&Carp::confess;

since it breaks the error propogations within eval {} blocks,. But starting from perl 5.6.x you can use
another solution to trace errors. For example you get an error:

 "exit" is not exported by the GLOB(0x88414cc) module at (eval 397) line 1

and you have no clue where it comes from, you can override the exit() function and plug the tracer inside:

 require Carp;
 use subs qw(CORE::GLOBAL::die);
 *CORE::GLOBAL::die = sub {
 if ($_[0] =~ /"exit" is not exported/){
 local *CORE::GLOBAL::die = sub { CORE::die(@_) };
 Carp::confess(@_); # Carp uses die() internally!
 } else {
 CORE::die(@_); # could write &CORE::die to forward @_
 }
 };

Now we can test that it works properly without breaking the eval {} blocks error propogation:

 eval { foo(); }; warn $@ if $@;
 print "\n";
 eval { poo(); }; warn $@ if $@;

 sub foo{ bar(); }
 sub bar{ die qq{"exit" is not exported}}

 sub poo{ tar(); }
 sub tar{ die "normal exit"}

prints:

5315 Feb 2014

1.13 Customized __DIE__ handlerPerl Reference

http://www.avrasoft.com/perl6/try6-ref5.txt

 $ perl -w test
 Subroutine die redefined at test line 5.
 "exit" is not exported at test line 6
 main::__ANON__(’"exit" is not exported’) called at test line 17
 main::bar() called at test line 16
 main::foo() called at test line 12
 eval {...} called at test line 12

 normal exit at test line 5.

the ’local’ in:

 local *CORE::GLOBAL::die = sub { CORE::die(@_) };

is important, so you won’t lose the overloaded CORE::GLOBAL::die .

1.14 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

1.15 Authors
Stas Bekman [http://stason.org/]

Matt Sergeant <matt (at) sergeant.org>

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201454

1.14 Maintainers

http://stason.org/
http://stason.org/

2 Preparing mod_perl modules for CPAN

5515 Feb 2014

2 Preparing mod_perl modules for CPANPreparing mod_perl modules for CPAN

2.1 Description
This document provides information for CPAN modules developers whose modules require mod_perl.

2.2 Defining Makefile.PL Prerequisites that Require
mod_perl
If there are any prerequisites that need to be defined in Makefile.PL, but require a mod_perl environment
to successfully get loaded, the following workaround can be used. The following example will specify two
prerequisites: CGI.pm and Apache::DBI , the latter can be loaded only under mod_perl whereas the
former can be loaded from the command line.

 file:Makefile.PL

 use ExtUtils::MakeMaker;

 # set prerequisites
 my %prereq = (
 ’CGI’ => 2.71,
);

 # Manually test whether Apache::DBI is installed and add it to the
 # PREREQ_PM if it’s not installed, so CPAN.pm will automatically fetch
 # it. If Apache::DBI is already installed it will fail to get loaded by
 # MakeMaker because it requires the mod_perl environment to load.
 eval { require Apache::DBI };
 if ($@ && $@ !~ /Can’t locate object method/) {
 $prereq{’Apache::DBI’} = 0.87;
 }

 WriteMakefile(
 NAME => ’Apache::SuperDuper’,
 VERSION_FROM => ’SuperDuper.pm’,
 PREREQ_PM => \%prereq,
 # ... the rest
);

Notice that Can’t locate object method is a part of the error generated when Apache::DBI is installed
but is attempted to be loaded outside of mod_perl, e.g. at the command line, which is the case with Make-
file.PL.

2.3 Writing the Test Suite
The Apache::Test framework provides an easy way to test modules which require mod_perl (or
Apache in general), be it 1.0 or 2.0 generation. Here is the complete guide to the Apache::Test frame-
work.

15 Feb 201456

2.1 Description

2.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

2.5 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

5715 Feb 2014

2.4 MaintainersPreparing mod_perl modules for CPAN

http://stason.org/
http://stason.org/

3 Running and Developing Tests with the
Apache::Test Framework

15 Feb 201458

3 Running and Developing Tests with the Apache::Test Framework

3.1 Description
The title is self-explanatory :)

The Apache::Test framework was designed for creating test suites for products running on the Apache
httpd webserver (not necessarily mod_perl). Originally designed for the mod_perl Apache module, it was
extended to be used for any Apache module.

This chapter discusses the Apache-Test framework, and in particular explains how to:

1. run existing tests
2. setup a testing environment for a new project
3. develop new tests

For other Apache::Test resources, see the References section at the end of this document.

3.2 Basics of Perl Module Testing
The tests themselves are written in Perl. The framework provides extensive functionality which makes
writing tests a simple and therefore enjoyable process.

If you have ever written or looked at the tests that come with most Perl modules, you’ll recognize that
Apache::Test uses the same concepts. The script t/TEST executes all the files ending with .t that it
finds in the t/ directory. When executed, a typical test prints the following:

 1..3 # going to run 3 tests
 ok 1 # the first test has passed
 ok 2 # the second test has passed
 not ok 3 # the third test has failed

Every ok or not ok is followed by a number that identifies which sub-test has passed or failed.

t/TEST uses the Test::Harness module, which intercepts the STDOUT stream, parses it and at the end
of the tests, prints the results of the tests: how many tests and sub-tests were run and how many passed,
failed, or were skipped.

Some tests may be skipped by printing:

 1..0 # all tests in this file are going to be skipped.

Usually a test may be skipped when some feature is optional and/or prerequisites are not installed on the
system, but this is not critical for the usefulness of the test. Once you determine that you cannot proceed
with the tests, and it is not a requirement that the tests pass, you can just skip them.

By default, print statements in the test script are filtered out by Test::Harness . If you want the test
to print what it does (for example, to debug a test) use the -verbose option. So for example if your test
does this:

5915 Feb 2014

3.1 DescriptionRunning and Developing Tests with the Apache::Test Framework

 print "# testing : feature foo\n";
 print "# expected: $expected\n";
 print "# received: $received\n";
 ok $expected eq $received;

in the normal mode, you won’t see any of these prints. But if you run the test with t/TEST -verbose ,
you will see something like this:

 # testing : feature foo
 # expected: 2
 # received: 2
 ok 2

When you develop the test you should always insert the debug statements, and once the test works for you,
do not comment out or delete these debug statements. It’s a good idea to leave them in because if some
user reports a failure in some test, you can ask him to run the failing test in the verbose mode and send you
the report. It’ll be much easier to understand the problem if you get these debug printings from the user.

A simpler approach is to use the Test::More module in your test scripts. This module offers many
useful test functions, including diag , a function that automatically escapes and passes strings to print
to bypass Test::Harness :

 use Test::More;
 diag "testing : feature foo\n";
 diag "expected: $expected\n";
 diag "received: $received\n";
 ok $expected eq $received;

In fact, for an example such as this, you can just use Test::More’s is function, which will output the
necessary diagnostics in the event of a test failure:

 is $received, $expected;

For which the output for a test failure would be something like:

not ok 1 # Failed test (-e at line 1) # got: ’1’ # expected: ’2’

The Writing Tests section documents several helper functions that make simplify the writing of tests.

For more details about the Test::Harness module please refer to its manpage. Also see the Test and
Test::More manpages for documentation of Perl’s test suite.

3.3 Prerequisites
In order to use Apache::Test it has to be installed first.

Install Apache::Test using the familiar procedure:

15 Feb 201460

3.3 Prerequisites

 % cd Apache-Test
 % perl Makefile.PL
 % make && make test && make install

If you install mod_perl 2.0, Apache::Test will be installed with it.

3.4 Running Tests
It’s much easier to copy existing examples than to create something from scratch. It’s also simpler to
develop tests when you have some existing system to test, so that you can see how it works and build your
own testing environment in a similar fashion. So let’s first look at how the existing test enviroments work.

You can look at the modperl-2.0’s or httpd-test’s (perl-framework) testing environments, both of which
use Apache::Test for their test suites.

3.4.1 Testing Options

Run:

 % t/TEST -help

to get a list of options you can use during testing. Most options are covered further in this document.

3.4.2 Basic Testing

Running tests is just like for any CPAN Perl module; first we generate the Makefile file and build every-
thing with make:

 % perl Makefile.PL [options]
 % make

Now we can do the testing. You can run the tests in two ways. The first one is the usual:

 % make test

But this approach adds quite an overhead, since it has to check that everything is up to date (the usual
make source change control). Therefore, you have to run it only once after make; for re-running the tests,
it’s faster to run them directly via:

 % t/TEST

When make test or t/TEST is run, all tests found in the t directory (files ending with .t are recognized
as tests) will be run.

6115 Feb 2014

3.4 Running TestsRunning and Developing Tests with the Apache::Test Framework

3.4.3 Individual Testing

To run a single test, simply specify it at the command line. For example, to run the test file t/proto-
col/echo.t, execute:

 % t/TEST protocol/echo

Notice that the t/ prefix and the .t extension for the test filenames are optional when you specify them
explicitly. Therefore the following are all valid commands:

 % t/TEST protocol/echo.t
 % t/TEST t/protocol/echo
 % t/TEST t/protocol/echo.t

The server will be stopped if it was already running and a new one will be started before running the
t/protocol/echo.t test. At the end of the test the server will be shut down.

When you run specific tests you may want to run them in the verbose mode and, depending on how the
tests were written, you may get more debugging information under this mode. Verbose mode is turned on
with -verbose option:

 % t/TEST -verbose protocol/echo

You can run groups of tests at once, too. This command:

 % ./t/TEST modules protocol/echo

will run all the tests in t/modules/ directory, followed by t/protocol/echo.t test.

3.4.4 Repetitive Testing

By default, when you run tests without the -run-tests option, the server will be started before the testing
and stopped at the end. If during a debugging process you need to re-run tests without the need to restart
the server, you can start it once:

 % t/TEST -start-httpd

and then run the test(s) with -run-tests option many times:

 % t/TEST -run-tests

without waiting for the server to restart.

When you are done with tests, stop the server with:

 % t/TEST -stop-httpd

When the server is running, you can modify .t files and rerun the tests without restarting it. But if you
modify response handlers, you must restart the server for changes to take an effect. However, if the
changes are only to perl code, it’s possible to arrange for Apache::Test to handle the code reload without

15 Feb 201462

3.4.3 Individual Testing

restarting the server.

The -start-httpd option always stops the server first if any is running.

Normally, when t/TEST is run without specifying the tests to run, the tests will be sorted alphabetically. If
tests are explicitly passed as arguments to t/TEST they will be run in the specified order.

3.4.5 Parallel Testing

Sometimes you need to run more than one Apache-Test framework instance at the same time. In this
case you have to use different ports for each instance. You can specify explicitly which port to use using
the -port configuration option. For example, to run the server on port 34343, do this:

 % t/TEST -start-httpd -port=34343

You can also affect the port by setting the APACHE_TEST_PORT evironment variable to the desired
value before starting the server.

Specifying the port explicitly may not be the most convenient option if you happen to run many instances
of the Apache-Test framework. The -port=select option helps such situations. This option will auto-
matically select the next available port. For example if you run:

 % t/TEST -start-httpd -port=select

and there is already one server from a different test suite which uses the default port 8529, the new server
will try to use a higher port.

There is one problem that remains to be resolved, though. It’s possible that two or more servers running
-port=select will still decide to use the same port, because when the server is configured it only tests
whether the port is available but doesn’t call bind() immediately. This race condition needs to be resolved.
Currently the workaround is to start the instances of the Apache-Test framework with a slight delay
between them. Depending on the speed of your machine, 4-5 seconds can be a good choice, as this is the
approximate the time it takes to configure and start the server on a quite slow machine.

3.4.6 Verbose Mode

In case something goes wrong you should run the tests in verbose mode:

 % t/TEST -verbose

In verbose mode, the test may print useful information, like what values it expects and what values it
receives, given that the test is written to report these. In silent mode (without -verbose), these printouts
are filtered out by Test::Harness . When running in verbose, mode usually it’s a good idea to run only
problematic tests in order to minimize the size of the generated output.

When debugging tests, it often helps to keep the error_log file open in another console, and see the debug
output in the real time via tail(1):

6315 Feb 2014

3.4.5 Parallel TestingRunning and Developing Tests with the Apache::Test Framework

 % tail -f t/logs/error_log

Of course this file gets created only when the server starts, so you cannot run tail(1) on it before the server
starts. Every time t/TEST -clean is run, t/logs/error_log gets deleted; therefore, you’ll have to run the
tail(1) command again once the server starts.

3.4.7 Colored Trace Mode

If your terminal supports colored text you may want to set the environment variable
APACHE_TEST_COLOR to 1 to enable any colored tracing when running in the non-batch mode. Colored
tracing mode can make it easier to discriminate errors and warnings from other notifications.

3.4.8 Controlling the Apache::Test’s Signal to Noise Ratio

In addition to controlling the verbosity of the test scripts, you can control the amount of information
printed by the Apache::Test framework itself. Similar to Apache’s log levels, Apache::Test uses
these levels for controlling its signal to noise ratio:

 emerg alert crit error warning notice info debug

where emerg is the for the most important messages and debug is for the least important ones.

Currently, the default level is info; therefore, any messages which fall into the info category and above
(notice, warning, etc) will be output. This tracing level is unrelated to Apache’s LogLevel mechanism,
which Apache-Test sets to debug in t/conf/httpd.conf and which you can override t/conf/extra.conf.in.

Let’s assume you have the following code snippet:

 use Apache::TestTrace;
 warning "careful, perl on the premises";
 debug "that’s just silly";

If you want to get only warning messages and above, use:

 % t/TEST -trace=warning ...

now only the warning message

 careful, perl on the premises

will be printed. If you want to see debug messages, you can change the default level using -trace
option:

 % t/TEST -trace=debug ...

now the last example will print both messages.

15 Feb 201464

3.4.7 Colored Trace Mode

By default the messages are printed to STDERR, but can be redirected to a file. Refer to the
Apache::TestTrace manpage for more information.

Finally, you can use the emerg() , alert() , crit() , error() , warning() , notice() , info()
and debug() methods in your client and server side code. These methods are useful when, for example,
you have some debug tracing that you don’t want to be printed during the normal make test or
.Build test . However, if some users have a problem you can ask them to run the test suite with the
trace level set to ’debug’ and, voila, they can send you the extra debug output. Moreover, all of these func-
tions use Data::Dumper to dump arguments that are references to perl structures. So for example your
code may look like:

 use Apache::TestTrace;
 ...
 my $data = { foo => bar };
 debug "my data", $data;

and only when run with -trace=debug it’ll output:

 my data
 $VAR1 = {
 ’foo’ => ’bar’
 };

Normally it will print nothing.

3.4.9 Stress Testing

3.4.9.1 The Problem

When we try to test a stateless machine (i.e. all tests are independent), running all tests once ensures that
all tested things properly work. However when a state machine is tested (i.e. where a run of one test may
influence another test) it’s not enough to run all the tests once to know that the tested features actually
work. It’s quite possible that if the same tests are run in a different order and/or repeated a few times, some
tests may fail. This usually happens when some tests don’t restore the system under test to its pristine state
at the end of the run, which may influence other tests which rely on the fact that they start on pristine state,
when in fact it’s not true anymore. In fact it’s possible that a single test may fail when run twice or three
times in a sequence.

3.4.9.2 The Solution

To reduce the possibility of such dependency errors, it’s important to run random testing repeated many
times with many different pseudo-random engine initialization seeds. Of course if no failures get spotted
that doesn’t mean that there are no tests inter-dependencies, unless all possible combinations were run
(exhaustive approach). Therefore it’s possible that some problems may still be seen in production, but this
testing greatly minimizes such a possibility.

The Apache-Test framework provides a few options useful for stress testing.

6515 Feb 2014

3.4.9 Stress TestingRunning and Developing Tests with the Apache::Test Framework

-times

You can run the tests N times by using the -times option. For example to run all the tests 3 times
specify:

 % t/TEST -times=3

-order

It’s possible that certain tests aren’t cleaning up after themselves and modify the state of the server,
which may influence other tests. But since normally all the tests are run in the same order, the poten-
tial problem may not be discovered until the code is used in production, where the real world testing
hits the problem. Therefore in order to try to detect as many problems as possible during the testing
process, it’s may be useful to run tests in different orders.

This is of course mostly useful in conjunction with -times=N option.

Assuming that we have tests a, b and c:

-order=rotate

rotate the tests: a, b, c, a, b, c

-order=repeat

repeat the tests: a, a, b, b, c, c

-order=random

run in the random order, e.g.: a, c, c, b, a, b

In this mode the seed picked by srand() is printed to STDOUT, so it then can be used to rerun the
tests in exactly the same order (remember to log the output).

-order=SEED

used to initialize the pseudo-random algorithm, which allows to reproduce the same sequence of
tests. For example if we run:

 % t/TEST -order=random -times=5

and the seed 234559 is used, we can repeat the same order of tests, by running:

 % t/TEST -order=234559 -times=5

Alternatively, the environment variable APACHE_TEST_SEED can be set to the value of a seed
when -order=random is used. e.g. under bash(1):

15 Feb 201466

3.4.9 Stress Testing

 % APACHE_TEST_SEED=234559 t/TEST -order=random -times=5

or with any shell program if you have the env(1) utility:

 $ env APACHE_TEST_SEED=234559 t/TEST -order=random -times=5

3.4.9.3 Resolving Sequence Problems

When this kind of testing is used and a failure is detected there are two problems:

1. First is to be able to reproduce the problem so if we think we fixed it, we could verify the fix. This
one is easy, just remember the sequence of tests run till the failed test and rerun the same sequence
once again after the problem has been fixed.

2. Second is to be able to understand the cause of the problem. If during the random test the failure has
happened after running 400 tests, how can we possibly know which previously running tests has
caused to the failure of the test 401. Chances are that most of the tests were clean and don’t have
inter-dependency problem. Therefore it’d be very helpful if we could reduce the long sequence to a
minimum. Preferably 1 or 2 tests. That’s when we can try to understand the cause of the detected
problem.

3.4.9.4 Apache::TestSmoke Solution

Apache::TestSmoke attempts to solve both problems. When it’s run, at the end of each iteration it
reports the minimal sequence of tests causing a failure. This doesn’t always succeed, but works in many
cases.

You should create a small script to drive Apache::TestSmoke , usually t/SMOKE.PL. If you don’t
have it already, create it:

 #file:t/SMOKE.PL
 #---------------
 #!perl

 use strict;
 use warnings FATAL => ’all’;

 use FindBin;
 use lib "$FindBin::Bin/../Apache-Test/lib";
 use lib "$FindBin::Bin/../lib";

 use Apache::TestSmoke ();

 Apache::TestSmoke->new(@ARGV)->run;

Usually Makefile.PL converts it into t/SMOKE while adjusting the perl path, but you can create t/SMOKE
in first place as well.

t/SMOKE performs the following operations:

6715 Feb 2014

3.4.9 Stress TestingRunning and Developing Tests with the Apache::Test Framework

1. Runs the tests randomly until the first failure is detected. Or non-randomly if the option -order is set
to repeat or rotate.

2. Then it tries to reduce that sequence of tests to a minimum, and this sequence still causes to the same
failure.

3. It reports all the successful reductions as it goes to STDOUT and report file of the format:
smoke-report-<date>.txt.

In addition the systems build parameters are logged into the report file, so the detected problems
could be reproduced.

4. Goto 1 and run again using a new random seed, which potentially should detect different failures.

Currently for each reduction path, the following reduction algorithms are applied:

1. Binary search: first try the upper half then the lower.

2. Random window: randomize the left item, then the right item and return the items between these two
points.

You can get the usage information by executing:

 % t/SMOKE -help

By default you don’t need to supply any arguments to run it, simply execute:

 % t/SMOKE

If you want to work on certain tests you can specify them in the same way you do with t/TEST:

 % t/SMOKE foo/bar foo/tar

If you already have a sequence of tests that you want to reduce (perhaps because a previous run of the
smoke testing didn’t reduce the sequence enough to be able to diagnose the problem), you can request to
do just that:

 % t/SMOKE -order=rotate -times=1 foo/bar foo/tar

-order=rotate is used just to override the default -order=random, since in this case we want to preserve
the order. We also specify -times=1 for the same reason (override the default which is 50).

You can override the number of srand() iterations to perform (read: how many times to randomize the
sequence), the number of times to repeat the tests (the default is 10) and the path to the file to use for
reports:

 % t/SMOKE -times=5 -iterations=20 -report=../myreport.txt

15 Feb 201468

3.4.9 Stress Testing

Finally, any other options passed will be forwarded to t/TEST as is.

3.4.10 RunTime Configuration Overriding

After the server is configured during make test or with t/TEST -config , it’s possible to explicitly
override certain configuration parameters. The override-able parameters are listed when executing:

 % t/TEST -help

Probably the most useful parameters are:

-preamble

configuration directives to add at the beginning of httpd.conf. For example to turn the tracing on:

 % t/TEST -preamble "PerlTrace all"

-postamble

configuration directives to add at the end of httpd.conf. For example to load a certain Perl module:

 % t/TEST -postamble "PerlModule MyDebugMode"

-user

run as user nobody:

 % t/TEST -user nobody

-port

run on a different port:

 % t/TEST -port 8799

-servername

run on a different server:

 % t/TEST -servername test.example.com

-httpd

configure an httpd other than the default (that apxs figures out):

 % t/TEST -httpd ~/httpd-2.0/httpd

-apxs

switch to another apxs:

6915 Feb 2014

3.4.10 RunTime Configuration OverridingRunning and Developing Tests with the Apache::Test Framework

 % t/TEST -apxs ~/httpd-2.0-prefork/bin/apxs

For a complete list of override-able configuration parameters see the output of t/TEST -help .

3.4.11 Request Generation and Response Options

We have mentioned already the most useful run-time options. Here are some other options that you may
find useful during testing.

-ping

Ping the server to see whether it runs

 % t/TEST -ping

Ping the server and wait until the server starts, report waiting time.

 % t/TEST -ping=block

This can be useful in conjunction with -run-tests option during debugging:

 % t/TEST -ping=block -run-tests

normally, -run-tests will immediately quit if it detects that the server is not running, but with
-ping=block in effect, it’ll wait indefinitely for the server to start up.

-head

Issue a HEAD request. For example to request /server-info:

 % t/TEST -head /server-info

-get

Request the body of a certain URL via GET.

 % t/TEST -get /server-info

If no URL is specified / is used.

ALso you can issue a GET request but to get only headers as a response (e.g. useful to just check
Content-length)

 % t/TEST -head -get /server-info

GET URL with authentication credentials:

 % t/TEST -get /server-info -username dougm -password domination

15 Feb 201470

3.4.11 Request Generation and Response Options

(please keep the password secret!)

-post

Generate a POST request.

Read content to POST from string:

 % t/TEST -post /TestApache__post -content ’name=dougm&company=covalent’

Read content to POST from STDIN:

 % t/TEST -post /TestApache__post -content - < foo.txt

Generate a content body of 1024 bytes in length:

 % t/TEST -post /TestApache__post -content x1024

The same but print only the response headers, e.g. useful to just check Content-length :

 % t/TEST -post -head /TestApache__post -content x1024

-header

Add headers to (-get|-post|-head) request:

 % t/TEST -get -header X-Test=10 -header X-Host=example.com /server-info

-ssl

Run all tests through mod_ssl:

 % t/TEST -ssl

-http11

Run all tests with HTTP/1.1 (KeepAlive) requests:

 % t/TEST -http11

-proxy

Run all tests through mod_proxy:

 % t/TEST -proxy

The debugging options -debug and -breakpoint are covered in the Debugging Tests section.

For a complete list of available switches see the output of t/TEST -help .

7115 Feb 2014

3.4.11 Request Generation and Response OptionsRunning and Developing Tests with the Apache::Test Framework

3.4.12 Batch Mode

When running in the batch mode and redirecting STDOUT, this state is automagically detected and the no
color mode is turned on, under which the program generates a minimal output to make the log files useful.
If this doesn’t work and you still get all the mess printed during the interactive run, set the
APACHE_TEST_NO_COLOR=1 environment variable.

3.5 Setting Up Testing Environment
We will assume that you have setup your testing environment even before you have started coding the
project, which is a very smart thing to do. Of course it’ll take you more time upfront, but it’ll will save you
a lot of time during the project developing and debugging stages. The extreme programming methodology
says that tests should be written before starting the code development.

3.5.1 Know Your Target Environment

In the following demonstration and mostly through the whole document we assume that the test suite is
written for a module running under mod_perl 2.0. You may need to adjust the code and the configuration
files to the mod_perl 1.0 syntax, if you work with that generation of mod_perl. If your test suite needs to
work with both mod_perl generations refer to the porting to mod_perl 2.0 chapter. Of course it’s quite
possible that what you test doesn’t have mod_perl at all, in which case, again, you will need to make
adjustments to work in the given environment.

3.5.2 Basic Testing Environment

So the first thing is to create a package and all the helper files, so later we can distribute it on CPAN. We
are going to develop an Apache::Amazing module as an example.

 % h2xs -AXn Apache::Amazing
 Writing Apache/Amazing/Amazing.pm
 Writing Apache/Amazing/Makefile.PL
 Writing Apache/Amazing/README
 Writing Apache/Amazing/test.pl
 Writing Apache/Amazing/Changes
 Writing Apache/Amazing/MANIFEST

h2xs is a nifty utility that gets installed together with Perl and helps us to create some of the files we will
need later.

However, we are going to use a slightly different file layout; therefore we are going to move things around
a bit.

We want our module to live in the Apache-Amazing directory, so we do:

 % mv Apache/Amazing Apache-Amazing
 % rmdir Apache

15 Feb 201472

3.5 Setting Up Testing Environment

From now on the Apache-Amazing directory is our working directory.

 % cd Apache-Amazing

We don’t need the test.pl, as we are going to create a whole testing environment:

 % rm test.pl

We want our package to reside under the lib directory, so later we will be able to do live testing, without
rerunning make every time we change the code:

 % mkdir lib
 % mkdir lib/Apache
 % mv Amazing.pm lib/Apache

Now we adjust lib/Apache/Amazing.pm to look like this:

 #file:lib/Apache/Amazing.pm
 #--------------------------
 package Apache::Amazing;

 use strict;
 use warnings;

 use Apache2::RequestRec ();
 use Apache2::RequestIO ();

 $Apache::Amazing::VERSION = ’0.01’;

 use Apache2::Const -compile => ’OK’;

 sub handler {
 my $r = shift;
 $r->content_type(’text/plain’);
 $r->print("Amazing!");
 return Apache::OK;
 }
 1;
 __END__
 ... pod documentation goes here...

The only thing our modules does is set the text/plain header and respond with "Amazing!".

Next, you have a choice to make. Perl modules typically use one of two build systems: ExtU-
tils::MakeMaker or Module::Build .

ExtUtils::MakeMaker is the traditional Perl module build system, and comes preinstalled with Perl.
It generates a tradiational Makefile to handle the build process. The code to generate the Makefile resides
in Makefile.PL.

Module::Build is a new build system, available from CPAN, and scheduled to be added to the core
Perl distribution in version 5.10, with the goal of eventually replacing ExtUtils::MakeMaker .
Module::Build uses pure Perl code to manage the build process, making it much easier to override its

7315 Feb 2014

3.5.2 Basic Testing EnvironmentRunning and Developing Tests with the Apache::Test Framework

behavior to perform special build tasks. It is also more portable, since it relies on Perl itself, rather than the
make utility.

So the decision you need to make is which system to use. Most modules on CPAN use ExtU-
tils::MakeMaker , and for most simple modules it is more than adequate. But more and more modules
are moving to Module::Build so as to take advantage of its new features. Module::Build is the
future of Perl build systems, but ExtUtils::MakeMaker is likely to be around for some time to come.

Fortunately, Apache::Test makes it easy to use either build system.

ExtUtils::MakeMaker

If you decide to use ExtUtils::MakeMaker , adjust or create the Makefile.PL file to use
Apache::TestMM :

 #file:Makefile.PL
 #----------------
 require 5.6.1;

 use ExtUtils::MakeMaker;

 use lib qw(../blib/lib lib);

 use Apache::TestMM qw(test clean); #enable ’make test’

 # prerequisites
 my %require =
 (
 "Apache::Test" => "", # any version will do
);
 my @scripts = qw(t/TEST);

 # accept the configs from command line
 Apache::TestMM::filter_args();
 Apache::TestMM::generate_script(’t/TEST’);

 WriteMakefile(
 NAME => ’Apache::Amazing’,
 VERSION_FROM => ’lib/Apache/Amazing.pm’,
 PREREQ_PM => \%require,
 clean => {
 FILES => "@{ clean_files() }",
 },
 ($] >= 5.005 ?
 (ABSTRACT_FROM => ’lib/Apache/Amazing.pm’,
 AUTHOR => ’Stas Bekman <stas (at) stason.org>’,
) : ()
),
);

 sub clean_files {
 return [@scripts];
 }

15 Feb 201474

3.5.2 Basic Testing Environment

Apache::TestMM does a lot of thing for us, such as building a complete Makefile with proper
’test’ and ’clean’ targets, automatically converting .PL and conf/*.in files and more.

As you can see, we specify a prerequisites hash that includes Apache::Test , so if the package
gets distributed on CPAN, the CPAN.pm and CPANPLUS shells will know to fetch and install this
required package.

Module::Build

If you decide to use Module::Build , the process is even simpler. Just delete the Makefile.PL file
and create Build.PL instead. It should look somethiing like this:

 use Module::Build:

 my $build_pkg = eval { require Apache::TestMB }
 ? ’Apache::TestMB’ : ’Module::Build’;

 my $build = $build_pkg->new(
 module_name => ’Apache::Amazing’,
 license => ’perl’,
 build_requires => { Apache::Test => ’1.12’ },
 create_makefile_pl => ’passthrough’,
);
 $build->create_build_script;

Note that the first thing this script does is check to be sure that Apache::TestMB is installed. If it
is not, and your module is installed with the CPAN.pm or CPANPLUS shells, it will be installed
before continuing. This is because we’ve specified that Apache::Test 1.12 (the first version of
Apache::Test to include Apache::TestMB) is required to build the module (in this case,
because its tests require it). We’ve also specified what license the module is distributed under, and
that a passthrough Makefile.PL should be generated. This last parameter helps those who don’t have
Module::Build installed, as it allows them to use an ExtUtils::MakeMaker -style Make-
file.PL script to build, test, and install the module (although what the passthrough script actually does
is install Module::Build from CPAN and pass build commands through to our Build.PL
script).

Next we create the test suite, which will reside in the t directory:

 % mkdir t

First we create t/TEST.PL which will be automatically converted into t/TEST during perl Make-
file.PL stage:

 #file:t/TEST.PL
 #--------------
 #!perl

 use strict;
 use warnings FATAL => ’all’;

 use lib qw(lib);

7515 Feb 2014

3.5.2 Basic Testing EnvironmentRunning and Developing Tests with the Apache::Test Framework

 use Apache::TestRunPerl ();

 Apache::TestRunPerl->new->run(@ARGV);

This script assumes that Apache::Test is already installed on your system and that Perl can find it. If
not, you should tell Perl where to find it. For example you could add:

 use lib qw(Apache-Test/lib);

to t/TEST.PL, if Apache::Test is located in a parallel directory.

As you can see we didn’t write the real path to the Perl executable, but #!perl . When t/TEST is created
the correct path will be placed there automatically.

Note: If you use Apache::TestMB in a Build.PL script, the creation of the t/TEST.PL script is optional.
You only need to create it if you need it to do something special that the above example does not.

Next we need to prepare extra Apache configuration bits, which will reside in t/conf:

 % mkdir t/conf

We create the t/conf/extra.conf.in file, which will be automatically converted into t/conf/extra.conf before
the server starts. If the file has any placeholders like @documentroot@ , these will be replaced with the
real values specific for the Apache server used for the tests. In our case, we put the following configura-
tion bits into this file:

 #file:t/conf/extra.conf.in
 #-------------------------
 # this file will be Include-d by @ServerRoot@/conf/httpd.conf

 # where Apache::Amazing can be found
 PerlSwitches -I@ServerRoot@/../lib
 # preload the module
 PerlModule Apache::Amazing
 <Location /test/amazing>
 SetHandler modperl
 PerlResponseHandler Apache::Amazing
 </Location>

As you can see, we just add a simple <Location> container and tell Apache that the namespace
/test/amazing should be handled by the Apache::Amazing module running as a mod_perl handler.
Notice that:

 SetHandler modperl

is mod_perl 2.0 configuration, if you are running under mod_perl 1.0 use:

 SetHandler perl-script

15 Feb 201476

3.5.2 Basic Testing Environment

which also works for mod_perl 2.0.

Now we can create a simple test:

 #file:t/basic.t
 #-----------
 use strict;
 use warnings FATAL => ’all’;

 use Apache::Amazing;
 use Apache::Test;
 use Apache::TestUtil;
 use Apache::TestRequest ’GET_BODY’;

 plan tests => 2;

 ok 1; # simple load test

 my $url = ’/test/amazing’;
 my $data = GET_BODY $url;

 ok t_cmp(
 $data,
 "Amazing!",
 "basic test",
);

Now create the README file.

 % touch README

Don’t forget to put in the relevant information about your module, or arrange for ExtUtils::Make-
Maker::WriteMakefile() to do this for you with:

 #file:Makefile.PL
 #----------------
 WriteMakefile(
 #...
 dist => {
 PREOP => ’pod2text lib/Apache/Amazing.pm > $(DISTVNAME)/README’,
 },
 #...
);

Or for Module::Build to generate the README with:

 #file:Build.PL
 #-------------
 my $build = $build_pkg->new(
 #...
 create_readme => 1,
 #...
);

7715 Feb 2014

3.5.2 Basic Testing EnvironmentRunning and Developing Tests with the Apache::Test Framework

In these cases, README will be created from the documenation POD sections in lib/Apache/Amazing.pm,
but the file must exist for make dist or ./Build.PL dist to succeed.

And finally, we adjust or create the MANIFEST file, so we can prepare a complete distribution. Therefore
we list all the files that should enter the distribution including the MANIFEST file itself:

 #file:MANIFEST
 #-------------
 lib/Apache/Amazing.pm
 t/TEST.PL
 t/basic.t
 t/conf/extra.conf.in
 Makefile.PL # and/or Build.PL
 Changes
 README
 MANIFEST

You can automate the creation or updating of the MANIFEST file using make manifest with Make-
file.PL or ./Build manifest with Build.PL.

That’s it. Now we can build the package. But we need to know the location of the apxs utility from the
installed httpd server. We pass its path as an option to Makefile.PL or Build.PL. To build, test, and install
the module with Makefile.PL, do this:

 % perl Makefile.PL -apxs ~/httpd/prefork/bin/apxs
 % make
 % make test

 basic...........ok
 All tests successful.
 Files=1, Tests=2, 1 wallclock secs (0.52 cusr + 0.02 csys = 0.54 CPU)

To install the package run:

 % make install

Now we are ready to distribute the package on CPAN:

 % make dist

This build command will create the package which can be immediately uploaded to CPAN. In this
example, the generated source package with all the required files will be called:
Apache-Amazing-0.01.tar.gz.

The same process can be accomplished with Buiild.PL like so:

15 Feb 201478

3.5.2 Basic Testing Environment

 # perl Build.PL -apxs ~/httpd/prefork/bin/apxs
 % ./Build
 % ./Build test

 basic...........ok
 All tests successful.
 Files=1, Tests=2, 1 wallclock secs (0.52 cusr + 0.02 csys = 0.54 CPU)

 % ./Build install
 % ./Build dist

The only thing that we haven’t done and hope that you will do is to write the POD sections for the
Apache::Amazing module, explaining how amazingly it works and how amazingly it can be deployed
by other users.

3.5.3 Extending Configuration Setup

Sometimes you need to add extra httpd.conf configuration and perl startup-specific code to your project
that uses Apache::Test . This can be accomplished by creating the desired files with an extension .in in
the t/conf/ directory and running:

 panic% t/TEST -config

which for each file with the extension .in will create a new file, without this extension, convert any
template placeholders into real values and link it from the main httpd.conf. The latter happens only if the
file have the following extensions:

.conf.in

will add to t/conf/httpd.conf:

 Include foo.conf

.pl.in

will add to t/conf/httpd.conf:

 PerlRequire foo.pl

other

other files with .in extension will be processed as well, but not linked from httpd.conf.

Files whose name matches the following pattern:

 /\.last\.(conf|pl).in$/

will be included very last in httpd.conf. This is especially useful if you want to include Apache directives
that would need a running Perl interpreter (see When Does perl Start To Run) without conflicting with
Apache::Test’s use of PerlSwitches .

7915 Feb 2014

3.5.3 Extending Configuration SetupRunning and Developing Tests with the Apache::Test Framework

Make sure that you don’t try to create httpd.conf.in, it is not going to work, since httpd.conf is already
generated by Apache-Test.

As mentioned before the converted files are created, any special tokens in them are getting replaced with
the appropriate values. For example the token @ServerRoot@ will be replaced with the value defined by
the ServerRoot directive, so you can write a file that does the following:

 #file:my-extra.conf.in
 #---------------------
 PerlSwitches -I@ServerRoot@/../lib

and assuming that the ServerRoot is ~/modperl-2.0/t/, when my-extra.conf will be created, it’ll look like:

 #file:my-extra.conf
 #------------------
 PerlSwitches -I~/modperl-2.0/t/../lib

The valid tokens are defined in %Apache::TestConfig::Usage and also can be seen in the output
of t/TEST -help ’s configuration options section. The tokens are case insensitive.

For a complete list see the Apache::TestConfig manpage.

3.5.4 Special Configuration Files

Some of the files in the t/conf directory have a special meaning, since the Apache-Test framework uses
them for the minimal configuration setup. But they can be overriden:

if the file t/conf/httpd.conf.in exists, it will be used instead of the default template (in Apache/Test-
Config.pm).

if the file t/conf/extra.conf.in exists, it will be used to generate t/conf/extra.conf with @variable@
substitutions.

if the file t/conf/extra.last.conf.in exists, it will be used to generate t/conf/extra.last.conf with
@variable@ substitutions.

if the file t/conf/extra.conf exists, it will be included by httpd.conf.

if the file t/conf/extra.last.conf exists, it will be included by httpd.conf after the t/conf/extra.conf file.

if the file t/conf/modperl_extra.pl exists, it will be included by httpd.conf as a mod_perl file (PerlRe-
quire).

3.5.5 Inheriting from System-wide httpd.conf

Apache::Test tries to find a global httpd.conf file and inherit its configuration when autogenerating
t/conf/httpd.conf. For example it picks LoadModule directives.

15 Feb 201480

3.5.4 Special Configuration Files

It’s possible to explicitly specify which file to inherit from using the -httpd_conf option. For example
during the build:

 % perl Makefile.PL -httpd_conf /path/to/httpd.conf

or with Build.PL:

 % perl Build.PL -httpd_conf /path/to/httpd.conf

or during the configuration:

 % t/TEST -conf -httpd_conf /path/to/httpd.conf

Certain projects need to have a control of what gets inherited. For example if your global httpd.conf
includes a directive:

 LoadModule apreq_module "/home/joe/apache2/modules/mod_apreq.so"

And you want to run the test suite for Apache::Request 2.0, inheriting the above directive will load
the pre-installed mod_apreq.so and not the newly built one, which is wrong. In such cases it’s possible to
tell the test suite which modules shouldn’t be inherited. In our example Apache-Request has the
following code in t/TEST.PL:

 use base ’Apache::TestRun’;
 $Apache::TestTrace::Level = ’debug’;
 main::->new->run(@ARGV);

 sub pre_configure {
 my $self = shift;
 # Don’t load an installed mod_apreq
 Apache::TestConfig::autoconfig_skip_module_add(’mod_apreq.c’);
 }

it subclasses Apache::TestRun and overrides the pre_configure method, which excludes the module
mod_apreq.c from the list of inherited modules (notice that the extension is .c).

3.6 Apache::Test Framework’s Architecture
In the previous section we have written a basic test, which doesn’t do much. In the following sections we
will explain how to write more elaborate tests.

When you write the test for Apache, unless you want to test some static resource, like fetching a file,
usually you have to write a response handler and the corresponding test that will generate a request which
will exercise this response handler and verify that the response is as expected. From now we may call
these two parts as client and server parts of the test, or request and response parts of the test.

In some cases the response part of the test runs the test inside itself, so all it requires from the request part
of the test, is to generate the request and print out a complete response without doing anything else. In
such cases Apache::Test can auto-generate the client part of the test for you.

8115 Feb 2014

3.6 Apache::Test Framework’s ArchitectureRunning and Developing Tests with the Apache::Test Framework

3.6.1 Developing Response-only Part of a Test

If you write only a response part of the test, Apache::Test will automatically generate the correspond-
ing test part that will generated the response. In this case your test should print ’ok 1’, ’not ok 2’ responses
as usual tests do. The autogenerated request part will receive the response and print them out automatically
completing the Test::Harness expectations.

The corresponding request part of the test is named just like the response part, using the following transla-
tion:

 (my $tmp = $path) =~ s{t/[^/]+/(.*).pm}{$1.t};
 my $client_file = catfile ’t’,
 map { s/^test//i; lc $_ } split ’::’, $tmp;

Notice that the leading /^test/ part is removed. Here are some examples of that translation:

 t/response/MyApache/write.pm => t/myapache/write.t
 t/response/TestApache/write.pm => t/apache/write.t
 t/response/TestApache/Mar/write.pm => t/apache/mar/write.t

If we look at the autogenerated test t/apache/write.t, we can see that it starts with the warning that it has
been autogenerated, so you won’t attempt to change it. Then you can see the trace of the calls that gener-
ated this test, in case you want to figure out how the test was generated. And finally the test loads the
Apache::TestRequest module, imports the GET shortcut and prints the response’s body if it was
successful. Otherwise it dies to flag the problem with the server side. The latter is done because there is
nothing on the client side, that tells the testing framework that things went wrong. Without it the test will
be skipped, and that’s not what we want.

 use Apache::TestRequest ’GET_BODY_ASSERT’;
 print GET_BODY_ASSERT "/TestApache__write";

As you can see the request URI is autogenerated from the response test name:

 $response_test =~ s|.*/([^/]+)/(.*).pm$|/$1__$2|;

So t/response/TestApache/write.pm becomes: /TestApache__write.

Now a simple response test may look like this:

 #file:t/response/TestApache/write.pm
 #-----------------------------------
 package TestApache::write;

 use strict;
 use warnings FATAL => ’all’;

 use constant BUFSIZ => 512; #small for testing
 use Apache2::Const -compile => ’OK’;
 use Apache2::RequestIO;
 use Apache2::RequestRec;

 sub handler {

15 Feb 201482

3.6.1 Developing Response-only Part of a Test

 my $r = shift;
 $r->content_type(’text/plain’);

 $r->write("1..2\n");
 $r->write("ok 1\n")
 $r->write("not ok 2\n")

 Apache2::Const::OK;
 }
 1;

[F] Apache2::Const is mod_perl 2.0’s package, if you test under 1.0, use the
Apache::Constants module instead [/F].

The configuration part for this test will be autogenerated by the Apache-Test framework and added to
the autogenerated file t/conf/httpd.conf when make test or ./Build test or t/TEST -config-
ure is run. In our case the following configuration section will be added:

 <Location /TestApache__write>
 SetHandler modperl
 PerlResponseHandler TestApache::write
 </Location>

You should remember to run:

 % t/TEST -configure

so the configuration file will be re-generated when new tests are added.

Also notice that if you manually add configuration the <Location> path can’t include ’:’ characters in
the first segment, due to Apache security protection on WinFU platforms. So please make sure that you
don’t create entries like:

 <Location /Foo::bar/>

You can include ’:’ characters in the further segments, so this is OK:

 <Location /tests/Foo::bar/>

Of course if your code is not intended to run on WinFU you can ignore this detail.

3.6.2 Developing Response and Request Parts of a Test

But in most cases you want to write a two parts test where the client (request) parts generates various
requests and tests the responses.

It’s possible that the client part tests a static file or some other feature that doesn’t require a dynamic
response. In this case, only the request part of the test should be written.

8315 Feb 2014

3.6.2 Developing Response and Request Parts of a TestRunning and Developing Tests with the Apache::Test Framework

If you need to write the complete test, with two parts, you proceed just like in the previous section, but
now you write the client part of the test by yourself. It’s quite easy, all you have to do is to generate
requests and check the response. So a typical test will look like this:

 #file:t/apache/cool.t
 #--------------------
 use strict;
 use warnings FATAL => ’all’;

 use Apache::Test;
 use Apache::TestUtil;
 use Apache::TestRequest ’GET_BODY’;

 plan tests => 1; # plan one test.

 Apache::TestRequest::module(’default’);

 my $config = Apache::Test::config();
 my $hostport = Apache::TestRequest::hostport($config) || ’’;
 t_debug("connecting to $hostport");

 my $received = GET_BODY "/TestApache__cool";
 my $expected = "COOL";

 ok t_cmp(
 $received,
 $expected,
 "testing TestApache::cool",
);

See the Apache::TestUtil manpage for more info on the t_cmp() function (e.g. it works with regexs
as well).

And the corresponding response part:

 #file:t/response/TestApache/cool.pm
 #----------------------------------
 package TestApache::cool;

 use strict;
 use warnings FATAL => ’all’;

 use Apache2::Const -compile => ’OK’;

 sub handler {
 my $r = shift;
 $r->content_type(’text/plain’);

 $r->write("COOL");

 Apache2::Const::OK;
 }
 1;

15 Feb 201484

3.6.2 Developing Response and Request Parts of a Test

Again, remember to run t/TEST -clean before running the new test so the configuration will be created for
it.

As you can see the test generates a request to /TestApache__cool, and expects it to return "COOL". If we
run the test:

 % ./t/TEST t/apache/cool

We see:

 apache/cool....ok
 All tests successful.
 Files=1, Tests=1, 1 wallclock secs (0.52 cusr + 0.02 csys = 0.54 CPU)

But if we run it in the debug (verbose) mode, we can actually see what we are testing, what was expected
and what was received:

 apache/cool....1..1
 # connecting to localhost:8529
 # testing : testing TestApache::cool
 # expected: COOL
 # received: COOL
 ok 1
 ok
 All tests successful.
 Files=1, Tests=1, 1 wallclock secs (0.49 cusr + 0.03 csys = 0.52 CPU)

So in case in our simple test we have received something different from COOL or nothing at all, we can
immediately see what’s the problem.

The name of the request part of the test is very important. If Apache::Test cannot find the correspond-
ing test for the response part it’ll automatically generate one and in this case it’s probably not what you
want. Therefore when you choose the filename for the test, make sure to pick the same Apache::Test
will pick. So if the response part is named: t/response/TestApache/cool.pm the request part should be
named t/apache/cool.t. See the regular expression that does that in the previous section.

3.6.3 Developing Test Response Handlers in C

If you need to exercise some C API and you don’t have a Perl glue for it, you can still use
Apache::Test for the testing. It allows you to write response handlers in C and makes it easy to inte-
grate these with other Perl tests and use Perl for request part which will exercise the C module.

The C modules look just like standard Apache C modules, with a couple of differences to:

a

help them fit into the test suite

b

8515 Feb 2014

3.6.3 Developing Test Response Handlers in CRunning and Developing Tests with the Apache::Test Framework

allow them to compile nicely with Apache 1.x or 2.x.

The httpd-test ASF project is a good example to look at. The C modules are located under:
httpd-test/perl-framework/c-modules/. Look at c-modules/echo_post/echo_post.c for a nice simple
example. mod_echo_post simply echos data that is POSTed to it.

The differences between vairous tests may be summarized as follows:

If the first line is:

 #define HTTPD_TEST_REQUIRE_APACHE 1

or

 #define HTTPD_TEST_REQUIRE_APACHE 2

then the test will be skipped unless the version matches. If a module is compatible with the version of
Apache used then it will be automatically compiled by t/TEST with -DAPACHE1 or -DAPACHE2 so
you can conditionally compile it to suit different httpd versions.

In additon to the single-digit form,

 #define HTTPD_TEST_REQUIRE_APACHE 2.0.48

and

 #define HTTPD_TEST_REQUIRE_APACHE 2.1

are also supported, allowing for conditional compilation based on criteria similar to
have_min_apache_version().

If there is a section bounded by:

 #if CONFIG_FOR_HTTPD_TEST
 ...
 #endif

in the .c file then that section will be inserted verbatim into t/conf/httpd.conf by t/TEST.

There is a certain amount of magic which hopefully allows most modules to be compiled for Apache 1.3
or Apache 2.0 without any conditional stuff. Replace XXX with the module name, for example echo_post
or random_chunk:

You should:

 #include "apache_httpd_test.h"

which should be preceded by an:

15 Feb 201486

3.6.3 Developing Test Response Handlers in C

 #define APACHE_HTTPD_TEST_HANDLER XXX_handler

apache_httpd_test.h pulls in a lot of required includes and defines some constants and types that are
not defined for Apache 1.3.

The handler function should be:

 static int XXX_handler(request_rec *r);

At the end of the file should be an:

 APACHE_HTTPD_TEST_MODULE(XXX)

where XXX is the same as that in APACHE_HTTPD_TEST_HANDLER. This will generate the hooks
and stuff.

3.6.4 Request and Response Methods

If you have LWP (libwww-perl) installed its LWP::UserAgent serves as an user agent in tests, other-
wise Apache::TestClient tries to emulate partial LWP functionality. So most of the LWP documen-
tation applies here, but the Apache-Test framework provides shortcuts that hide many details, making
the test writing a simple and swift task. Before using these shortcuts Apache::TestRequest should
be loaded, and its import() method will fetch the shortcuts into the caller namespace:

 use Apache::TestRequest;

Request generation methods issue a request and return a response object (HTTP::Response if LWP is
available). They are documented in the HTTP::Request::Common manpage. The following methods
are available:

GET

Issues the GET request. For example, issue a request and retrieve the response content:

 $url = "$location?foo=1&bar=2";
 $res = GET $url;
 $str = $res->content;

To set request headers, supply them after the $url , e.g.:

 $res = GET $url, ’Content-type’ => ’text/html’;

HEAD

Issues the HEAD request. For example issue a request and check that the response’s Content-type is
text/plain:

 $url = "$location?foo=1&bar=2";
 $res = HEAD $url;
 ok $res->content_type() eq ’text/plain’;

8715 Feb 2014

3.6.4 Request and Response MethodsRunning and Developing Tests with the Apache::Test Framework

POST

Issues the POST request. For example:

 $content = ’PARAM=%33’;
 $res = POST $location, content => $content;

The second argument to POST can be a reference to an array or a hash with key/value pairs to
emulate HTML <form> POSTing.

PUT

Issues the PUT request.

OPTIONS

META: ???

These are two special methods added by the Apache-Test framework:

UPLOAD

This special method allows to upload a file or a string which will look as an uploaded file to the
server. To upload a file use:

 UPLOAD $location, filename => $filename;

You can add extra request headers as well:

 UPLOAD $location, filename => $filename, ’X-Header-Test’ => ’Test’;

This function sends the form data in a POST response.

To insert additional parameters, append them as ’key’ => ’value’ elements as in the following
example (notice that an additional file upload was made via the my_file_name parameter):

 UPLOAD $location, filename => $filename, my_file_name => [’Test.txt’],
 username => ’Captain Kirk’, password => ’beam me up’;

To upload a string as a file, use:

 UPLOAD $location, content => ’some data’;

UPLOAD_BODY

Retrieves the content from the response resulted from doing UPLOAD. It’s equal to:

 my $body = UPLOAD(@_)->content;

15 Feb 201488

3.6.4 Request and Response Methods

For example, this code retrieves the content of the response resulted from file upload request:

 my $str = UPLOAD_BODY $location, filename => $filename;

Once the response object is returned, various response object methods can be applied to it. Probably the
most useful ones are:

 $content = $res->content;

to retrieve the content fo the respose and:

 $content_type = $res->header(’Content-type’);

to retrieve specific headers.

Refer to the HTTP::Response manpage for a complete reference of these and other methods.

A few response retrieval shortcuts can be used to retrieve the wanted parts of the response. To apply these
simply add the shortcut name to one of the request shortcuts listed earlier. For example instead of retriev-
ing the content part of the response via:

 $res = GET $url;
 $str = $res->content;

simply use:

 $str = GET_BODY $url;

RC

returns the response code, equivalent to:

 $res->code;

For example to test whether some URL is bogus:

 use Apache::Const ’NOT_FOUND’;
 ok GET_RC(’/bogus_url’) == NOT_FOUND;

You usually need to import and use Apache::Const constants for the response code comparisons,
rather then using codes’ corresponding numerical values directly. You can import groups of code as
well. For example:

 use Apache::Const ’:common’;

Refer to the Apache::Const manpage for a complete reference. Also you may need to use APR
and mod_perl constants, which reside in APR::Const and ModPerl::Const modules respec-
tively.

OK

8915 Feb 2014

3.6.4 Request and Response MethodsRunning and Developing Tests with the Apache::Test Framework

tests whether the response was successful, equivalent to:

 $res->is_success;

For example:

 ok GET_OK ’/foo’;

STR

returns the response (both, headers and body) as a string and is equivalent to:

 $res->as_string;

Mostly useful for debugging, for example:

 use Apache::TestUtil;
 t_debug POST_STR ’/test.pl’, content => ’foo’;

HEAD

returns the headers part of the response as a multi-line string.

For example, this code dumps all the response headers:

 use Apache::TestUtil;
 t_debug GET_HEAD ’/index.html’;

BODY

returns the response body and is equivalent to:

 $res->content;

For example, this code validates that the response’s body is the one that was expected:

 use Apache::TestUtil;
 ok GET_BODY(’/index.html’) eq $expect;

BODY_ASSERT

Same as the BODY shortcut, but will assert if the request has failed. So for example if the test’s output
is generated on the server side, the client side may only need to print out what the server has sent and
we want it to report that the test has failed if the request has failed:

 use Apache::TestUtil;
 print GET_BODY_ASSERT "/foo"

15 Feb 201490

3.6.4 Request and Response Methods

3.6.5 Other Request Generation helpers

META: these methods need documentation

Request part:

 Apache::TestRequest::scheme(’http’); #force http for t/TEST -ssl
 Apache::TestRequest::module($module);
 my $config = Apache::Test::config();
 my $hostport = Apache::TestRequest::hostport($config);

Getting the request object? Apache::TestRequest::user_agent()

3.6.6 Starting Multiple Servers

By default the Apache-Test framework sets up only a single server to test against.

In some cases you need to have more than one server. If this is the situation, you have to override the
maxclients configuration directive, whose default is 1. Usually this is done in t/TEST.PL by subclassing
the parent test run class and overriding the new_test_config() method. For example if the parent class is
Apache::TestRunPerl , you can change your t/TEST.PL to be:

 use strict;
 use warnings FATAL => ’all’;

 use lib "../lib"; # test against the source lib for easier dev
 use lib map {("../blib/$_", "../../blib/$_")} qw(lib arch);

 use Apache::TestRunPerl ();

 package MyTest;

 our @ISA = qw(Apache::TestRunPerl);

 # subclass new_test_config to add some config vars which will be
 # replaced in generated httpd.conf
 sub new_test_config {
 my $self = shift;

 $self->{conf_opts}->{maxclients} = 2;

 return $self->SUPER::new_test_config;
 }

 MyTest->new->run(@ARGV);

3.6.7 Multiple User Agents

By default the Apache-Test framework uses a single user agent which talks to the server (this is the
LWP user agent, if you have LWP installed). You almost never use this agent directly in the tests, but via
various wrappers. However if you need a second user agent you can clone these. For example:

9115 Feb 2014

3.6.5 Other Request Generation helpersRunning and Developing Tests with the Apache::Test Framework

 my $ua2 = Apache::TestRequest::user_agent()->clone;

3.6.8 Hitting the Same Interpreter (Server Thread/Process Instance)

When a single instance of the server thread/process is running, all the tests go through the same server.
However if the Apache::Test framework was configured to to run a few instances, two subsequent
sub-tests may not hit the same server instance. In certain tests (e.g. testing the closure effect or the BEGIN
blocks) it’s important to make sure that a sequence of sub-tests are run against the same server instance.
The Apache-Test framework supports this internally.

Here is an example from ModPerl::Registry closure tests. Using the counter closure problem under
ModPerl::Registry :

 #file:cgi-bin/closure.pl
 #-----------------------
 #!perl -w
 print "Content-type: text/plain\r\n\r\n";

 # this is a closure (when compiled inside handler()):
 my $counter = 0;
 counter();

 sub counter {
 #warn "$$";
 print ++$counter;
 }

If this script get invoked twice in a row and we make sure that it gets executed by the same server
instance, the first time it’ll return 1 and the second time 2. So here is the gist of the request part that makes
sure that its two subsequent requests hit the same server instance:

 #file:closure.t
 #--------------
 ...
 my $url = "/same_interp/cgi-bin/closure.pl";
 my $same_interp = Apache::TestRequest::same_interp_tie($url);

 # should be no closure effect, always returns 1
 my $first = req($same_interp, $url);
 my $second = req($same_interp, $url);
 ok t_cmp(
 $first && $second && ($second - $first),
 1,
 "the closure problem is there",
);
 sub req {
 my ($same_interp, $url) = @_;
 my $res = Apache::TestRequest::same_interp_do($same_interp,
 \&GET, $url);
 return $res ? $res->content : undef;
 }

15 Feb 201492

3.6.8 Hitting the Same Interpreter (Server Thread/Process Instance)

In this test we generate two requests to cgi-bin/closure.pl and expect the returned value to increment for
each new request, because of the closure problem generated by ModPerl::Registry . Since we don’t
know whether some other test has called this script already, we simply check whether the substraction of
the two subsequent requests’ outputs gives a value of 1.

The test starts by requesting the server to tie a single instance to all requests made with a certain identifier.
This is done using the same_interp_tie() function which returns a unique server instance’s indentifier.
From now on any requests made through same_interp_do() and supplying this indentifier as the first argu-
ment will be served by the same server instance. The second argument to same_interp_do() is the method
to use for generating the request and the third is the URL to use. Extra arguments can be supplied if
needed by the request generation method (e.g. headers).

This technique works for testing purposes where we know that we have just a few server instances. What
happens internally is when same_interp_tie() is called the server instance that served it returns its unique
UUID, so when we want to hit the same server instance in subsequent requests we generate the same
request until we learn that we are being served by the server instance that we want. This magic is done by
using a fixup handler which returns OK only if it sees that its unique id matches. As you understand this
technique would be very inefficient in production with many server instances.

3.7 Writing Tests
All the communications between tests and Test::Harness which executes them is done via STDOUT.
I.e. whatever tests want to report they do by printing something to STDOUT. If a test wants to print some
debug comment it should do it starting on a separate line, and each debug line should start with #. The
t_debug() function from the Apache::TestUtil package should be used for that purpose.

3.7.1 Defining How Many Sub-Tests Are to Be Run

Before sub-tests of a certain test can be run it has to declare how many sub-tests it is going to run. In some
cases the test may decide to skip some of its sub-tests or not to run any at all. Therefore the first thing the
test has to print is:

 1..M\n

where M is a positive integer. So if the test plans to run 5 sub-tests it should do:

 print "1..5\n";

In Apache::Test this is done as follows:

 use Apache::Test;
 plan tests => 5;

9315 Feb 2014

3.7 Writing TestsRunning and Developing Tests with the Apache::Test Framework

3.7.2 Skipping a Whole Test

Sometimes when the test cannot be run, because certain prerequisites are missing. To tell
Test::Harness that the whole test is to be skipped do:

 print "1..0 # skipped because of foo is missing\n";

The optional comment after # skipped will be used as a reason for test’s skipping. Under
Apache::Test the optional last argument to the plan() function can be used to define prerequisites and
skip the test:

 use Apache::Test;
 plan tests => 5, $test_skipping_prerequisites;

This last argument can be:

a SCALAR

the test is skipped if the scalar has a false value. For example:

 plan tests => 5, 0;

But this won’t hint the reason for skipping therefore it’s better to use have() :

 plan tests => 5,
 have ’LWP’,
 { "not Win32" => sub { $^O eq ’MSWin32’} };

an ARRAY reference

have_module() is called for each value in this array. The test is skipped if have_module() returns
false (which happens when at least one C or Perl module from the list cannot be found). For example:

 plan tests => 5, [qw(mod_index mod_mime)];

a CODE reference

the tests will be skipped if the function returns a false value. For example:

 plan tests => 5, \&have_lwp;

the test will be skipped if LWP is not available

There is a number of useful functions whose return value can be used as a last argument for plan():

have_module()

have_module() tests for presense of Perl modules or C modules mod_*. It accepts a list of modules or
a reference to the list. If at least one of the modules is not found it returns a false value, otherwise it
returns a true value. For example:

15 Feb 201494

3.7.2 Skipping a Whole Test

 plan tests => 5, have_module qw(Chatbot::Eliza CGI mod_proxy);

will skip the whole test unless both Perl modules Chatbot::Eliza and CGI and the C module
mod_proxy.c are available.

have_min_module_version()

Used to require a minimum version of a module

For example:

 plan tests => 5, have_min_module_version(CGI => 2.81);

requires CGI.pm version 2.81 or higher.

Currently works only for perl modules.

have()

have() called as a last argument of plan() can impose multiple requirements at once.

have()’s arguments can include scalars, which are passed to have_module(), and hash references. If
hash references are used, the keys, are strings, containing a reason for a failure to satisfy this particu-
lar entry, the valuees are the condition, which are satisfaction if they return true. If the value is a
scalar it’s used as is. If the value is a code reference, it gets executed at the time of check and its
return value is used to check the condition. If the condition check fails, the provided (in a key) reason
is used to tell user why the test was skipped.

For example:

 plan tests => 5,
 have ’LWP’,
 { "perl >= 5.8.0 is required" => ($] >= 5.008) },
 { "not Win32" => sub { $^O eq ’MSWin32’ },
 "foo is disabled" => \&is_foo_enabled,
 },
 ’cgid’;

In this example, we require the presense of the LWP Perl module, mod_cgid , that we run under perl
>= 5.8.0 on Win32, and that is_foo_enabled returns true. If any of the requirements from this
list fail, the test will be skipped and each failed requiremnt will print a reason for its failure.

have_perl()

have_perl(’foo’) checks whether the value of $Config{foo} or $Config{usefoo} is equal to
’define’. For example:

 plan tests => 2, have_perl ’ithreads’;

9515 Feb 2014

3.7.2 Skipping a Whole TestRunning and Developing Tests with the Apache::Test Framework

if Perl wasn’t compiled with -Duseithreads the condition will be false and the test will be
skipped.

Also it checks for Perl extensions. For example:

 plan tests => 5, have_perl ’iolayers’;

tests whether PerlIO is available.

have_min_perl_version()

Used to require a minimum version of Perl.

For example:

 plan tests => 5, have_min_perl_version("5.008001");

requires Perl 5.8.1 or higher.

have_threads()

have_threads checks whether whether threads are supported by both Apache and Perl.

 plan tests => 2, have_threads;

under_construction()

this is just a shortcut to skip the test while printing:

 "skipped: this test is under construction";

For example:

 plan tests => 2, under_construction;

have_lwp()

Tests whether the Perl module LWP is installed.

have_http11()

Tries to tell LWP that sub-tests need to be run under HTTP 1.1 protocol. Fails if the installed version
of LWP is not capable of doing that.

have_cgi()

tests whether mod_cgi or mod_cgid is available.

have_apache()

15 Feb 201496

3.7.2 Skipping a Whole Test

tests for a specific generation of httpd. For example:

 plan tests => 2, have_apache 2;

will skip the test if not run under the 2nd Apache generation (httpd-2.x.xx).

 plan tests => 2, have_apache 1;

will skip the test if not run under the 1st Apache generation (apache-1.3.xx).

have_min_apache_version

Used to require a minimum version of Apache. For example:

 plan tests => 5, have_min_apache_version("2.0.40");

requires Apache 2.0.40 or higher.

have_apache_version

Used to require a specific version of Apache.

For example:

 plan tests => 5, have_apache_version("2.0.40");

requires Apache 2.0.40.

3.7.3 Skipping Numerous Tests

Just like you can tell Apache::Test to run only specific tests, you can tell it to run all but a few tests.

If all files in a directory t/foo should be skipped, create:

 #file:t/foo/all.t
 #----------------
 print "1..0\n";

Alternatively you can specify which tests should be skipped from a single file t/SKIP. This file includes a
list of tests to be skipped. You can include comments starting with # and you can use the * wildcharacter
for multiply files matching.

For example if in mod_perl 2.0 test suite we create the following file:

9715 Feb 2014

3.7.3 Skipping Numerous TestsRunning and Developing Tests with the Apache::Test Framework

 #file:t/SKIP
 #-----------
 # skip all files in protocol
 protocol

 # skip basic cgi test
 modules/cgi.t

 # skip all filter/input_* files
 filter/input*.t

In our example the first pattern specifies the directory name protocol, since we want to skip all tests in it.
But since the skipping is done based on matching the skip patterns from t/SKIP against a list of potential
tests to be run, some other tests may be skipped as well if they match the pattern. Therefore it’s safer to
use a pattern like this:

 protocol/*.t

The second pattern skips a single test modules/cgi.t. Note that you shouldn’t specify the leading t/. And the
.t extension is optional, so you can say:

 # skip basic cgi test
 modules/cgi

The last pattern tells Apache::Test to skip all the tests starting with filter/input.

3.7.4 Reporting a Success or a Failure of Sub-tests

After printing the number of planned sub-tests, and assuming that the test is not skipped, the test runs its
sub-tests and each sub-test is expected to report its success or failure by printing ok or not ok respectively
followed by its sequential number and a new line. For example:

 print "ok 1\n";
 print "not ok 2\n";
 print "ok 3\n";

In Apache::Test this is done using the ok() function which prints ok if its argument is a true value,
otherwise it prints not ok. In addition it keeps track of how many times it was called, and every time it
prints an incremental number, therefore you can move sub-tests around without needing to remember to
adjust sub-test’s sequential number, since now you don’t need them at all. For example this test snippet:

 use Apache::Test;
 use Apache::TestUtil;
 plan tests => 3;
 ok "success";
 t_debug("expecting to fail next test");
 ok "";
 ok 0;

will print:

15 Feb 201498

3.7.4 Reporting a Success or a Failure of Sub-tests

 1..3
 ok 1
 # expecting to fail next test
 not ok 2
 not ok 3

Most of the sub-tests perform one of the following things:

test whether some variable is defined:

 ok defined $object;

test whether some variable is a true value:

 ok $value;

or a false value:

 ok !$value;

test whether a received from somewhere value is equal to an expected value:

 $expected = "a good value";
 $received = get_value();
 ok defined $received && $received eq $expected;

3.7.5 Skipping Sub-tests

If the standard output line contains the substring # Skip (with variations in spacing and case) after ok or ok
NUMBER, it is counted as a skipped test. Test::Harness reports the text after the pattern # Skip\S*\s+
as a reason for skipping. So you can count a sub-test as a skipped as follows:

 print "ok 3 # Skip for some reason\n";

or using the Apache::Test ’s skip() function which works similarly to ok():

 skip $should_skip, $test_me;

so if $should_skip is true, the test will be reported as skipped. The second argument is the one that’s
sent to ok(), so if $should_skip is true, a normal ok() sub-test is run. The following example represent
four possible outcomes of using the skip() function:

 skip_subtest_1.t

 use Apache::Test;
 plan tests => 4;

 my $ok = 1;
 my $not_ok = 0;

 my $should_skip = "foo is missing";
 skip $should_skip, $ok;
 skip $should_skip, $not_ok;

9915 Feb 2014

3.7.5 Skipping Sub-testsRunning and Developing Tests with the Apache::Test Framework

 $should_skip = ’’;
 skip $should_skip, $ok;
 skip $should_skip, $not_ok;

now we run the test:

 % ./t/TEST -run-tests -verbose skip_subtest_1
 skip_subtest_1....1..4
 ok 1 # skip foo is missing
 ok 2 # skip foo is missing
 ok 3
 not ok 4
 # Failed test 4 in skip_subtest_1.t at line 13
 Failed 1/1 test scripts, 0.00% okay. 1/4 subtests failed, 75.00% okay.

As you can see since $should_skip had a true value, the first two sub-tests were explicitly skipped
(using $should_skip as a reason), so the second argument to skip didn’t matter. In the last two
sub-tests $should_skip had a false value therefore the second argument was passed to the ok() func-
tion. Basically the following code:

 $should_skip = ’’;
 skip $should_skip, $ok;
 skip $should_skip, $not_ok;

is equivalent to:

 ok $ok;
 ok $not_ok;

However if you want to use t_cmp() or some other function call in the arguments to ok() that won’t
quite work since the function will be always called no matter whether the first argument will evaluate to a
true or a false value. For example, if you had a function:

 ok t_cmp($received, $expected, $comment);

and now you want to run this sub-test if module HTTP::Date is available, changing it to:

 my $should_skip = eval { require HTTP::Date } ? "" : "missing HTTP::Date";
 skip $should_skip, t_cmp($received, $expected, $comment);

will still run t_cmp() even if HTTP::Date is not available. Therefore it’s probably better to code it in
this way:

 if (eval {require HTTP::Date}) {
 ok t_cmp($received, $expected, $comment);
 }
 else {
 skip "Skip HTTP::Date not found";
 }

15 Feb 2014100

3.7.5 Skipping Sub-tests

3.7.6 Running only Selected Sub-tests

Apache::Test also allows to write tests in such a way that only selected sub-tests will be run. The test
simply needs to switch from using ok() to sok(). Where the argument to sok() is a CODE reference or a
BLOCK whose return value will be passed to ok(). If sub-tests are specified on the command line only
those will be run/passed to ok(), the rest will be skipped. If no sub-tests are specified, sok() works just like
ok(). For example, you can write this test:

 #file:skip_subtest_2.t
 #---------------------
 use Apache::Test;
 plan tests => 4;
 sok {1};
 sok {0};
 sok sub {’true’};
 sok sub {’’};

and then ask to run only sub-tests 1 and 3 and to skip the rest.

 % ./t/TEST -verbose skip_subtest_2 1 3
 skip_subtest_2....1..4
 ok 1
 ok 2 # skip skipping this subtest
 ok 3
 ok 4 # skip skipping this subtest
 ok, 2/4 skipped: skipping this subtest
 All tests successful, 2 subtests skipped.

Only the sub-tests 1 and 3 get executed.

A range of sub-tests to run can be given using the Perl’s range operand:

 % ./t/TEST -verbose skip_subtest_2 2..4
 skip_subtest_2....1..4
 ok 1 # skip askipping this subtest
 not ok 2
 # Failed test 2
 ok 3
 not ok 4
 # Failed test 4
 Failed 1/1 test scripts, 0.00% okay. 2/4 subtests failed, 50.00% okay.

In this run, only the first sub-test gets executed.

3.7.7 Todo Sub-tests

In a safe fashion to skipping specific sub-tests, it’s possible to declare some sub-tests as todo. This distinc-
tion is useful when we know that some sub-test is failing but for some reason we want to flag it as a todo
sub-test and not as a broken test. Test::Harness recognizes todo sub-tests if the standard output line
contains the substring # TODO after not ok or not ok NUMBER and is counted as a todo sub-test. The text
afterwards is the explanation of the thing that has to be done before this sub-test will succeed. For
example:

10115 Feb 2014

3.7.6 Running only Selected Sub-testsRunning and Developing Tests with the Apache::Test Framework

 print "not ok 42 # TODO not implemented\n";

In Apache::Test this can be done with passing a reference to a list of sub-tests numbers that should be
marked as todo sub-test:

 plan tests => 7, todo => [3, 6];

In this example sub-tests 3 and 6 will be marked as todo sub-tests.

3.7.8 Making it Easy to Debug

Ideally we want all the tests to pass, reporting minimum noise or none at all. But when some sub-tests fail
we want to know the reason for their failure. If you are a developer you can dive into the code and easily
find out what’s the problem, but when you have a user who has a problem with the test suite it’ll make his
and your life much easier if you make it easy for the user to report you the exact problem.

Usually this is done by printing the comment of what the sub-test does, what is the expected value and
what’s the received value. This is a good example of debug friendly sub-test:

 #file:debug_comments.t
 #---------------------
 use Apache::Test;
 use Apache::TestUtil;
 plan tests => 1;

 t_debug("testing feature foo");
 $expected = "a good value";
 $received = "a bad value";
 t_debug("expected: $expected");
 t_debug("received: $received");
 ok defined $received && $received eq $expected;

If in this example $received gets assigned a bad value string, the test will print the following:

 % t/TEST debug_comments
 debug_comments....FAILED test 1

No debug help here, since in a non-verbose mode the debug comments aren’t printed. If we run the same
test using the verbose mode, enabled with -verbose :

 % t/TEST -verbose debug_comments
 debug_comments....1..1
 # testing feature foo
 # expected: a good value
 # received: a bad value
 not ok 1

we can see exactly what’s the problem, by visual examinination of the expected and received values.

It’s true that adding a few print statements for each sub tests is cumbersome, and adds a lot of noise, when
you could just tell:

15 Feb 2014102

3.7.8 Making it Easy to Debug

 ok "a good value" eq "a bad value";

but no fear, Apache::TestUtil comes to help. The function t_cmp() does all the work for you:

 use Apache::Test;
 use Apache::TestUtil;
 ok t_cmp(
 "a good value",
 "a bad value",
 "testing feature foo");

t_cmp() will handle undef ’ined values as well, so you can do:

 my $expected;
 ok t_cmp(undef, $expected, "should be undef");

Finally you can use t_cmp() for regex comparisons. This feature is mostly useful when there may be more
than one valid expected value, which can be described with regex. For example this can be useful to
inspect the value of $@ when eval() is expected to fail:

 eval {foo();}
 if ($@) {
 ok t_cmp($@, qr/^expecting foo/, "func eval");
 }

which is the same as:

 eval {foo();}
 if ($@) {
 t_debug("func eval");
 ok $@ =~ /^expecting foo/ ? 1 : 0;
 }

3.7.9 Tie-ing STDOUT to a Response Handler Object

It’s possible to run the sub-tests in the response handler, and simply return them as a response to the client
which in turn will print them out. Unfortunately in this case you cannot use ok() and other functions, since
they print and don’t return the results, therefore you have to do it manually. For example:

 sub handler {
 my $r = shift;

 $r->print("1..2\n");
 $r->print("ok 1\n");
 $r->print("not ok 2\n");

 return Apache2::Const::OK;
 }

now the client should print the response to STDOUT for Test::Harness processing.

10315 Feb 2014

3.7.9 Tie-ing STDOUT to a Response Handler ObjectRunning and Developing Tests with the Apache::Test Framework

If the response handler is configured as:

 SetHandler perl-script

STDOUT is already tied to the request object $r . Therefore you can now rewrite the handler as:

 use Apache::Test;
 sub handler {
 my $r = shift;

 Apache::Test::test_pm_refresh();
 plan tests => 2;
 ok "true";
 ok "";

 return Apache2::Const::OK;
 }

However to be on the safe side you also have to call Apache::Test::test_pm_refresh() allowing plan() and
friends to be called more than once per-process.

Under different settings STDOUT is not tied to the request object. If the first argument to plan() is an
object, such as an Apache::RequestRec object, STDOUT will be tied to it. The Test.pm global state
will also be refreshed by calling Apache::Test::test_pm_refresh . For example:

 use Apache::Test;
 sub handler {
 my $r = shift;

 plan $r, tests => 2;
 ok "true";
 ok "";

 return Apache2::Const::OK;
 }

Yet another alternative to handling the test framework printing inside response handler is to use
Apache::TestToString class.

The Apache::TestToString class is used to capture Test.pm output into a string. Example:

 use Apache::Test;
 sub handler {
 my $r = shift;

 Apache::TestToString->start;

 plan tests => 2;
 ok "true";
 ok "";

 my $output = Apache::TestToString->finish;

15 Feb 2014104

3.7.9 Tie-ing STDOUT to a Response Handler Object

 $r->print($output);

 return Apache2::Const::OK;
 }

In this example Apache::TestToString intercepts and buffers all the output from Test.pm and
can be retrieved with its finish() method. Which then can be printed to the client in one shot. Internally it
calls Apache::Test::test_pm_refresh() to make sure plan(), ok() and other functions() will work correctly
more than one test is running under the same interpreter.

3.7.10 Helper Functions

Apache::TestUtil provides other helper functions, useful for writing tests, not mentioned in this
tutorial:

 t_cmp()
 t_debug()
 t_append_file()
 t_write_file()
 t_open_file()
 t_mkdir()
 t_rmtree()
 t_is_equal()
 t_write_perl_script()
 t_write_shell_script()
 t_chown()
 t_server_log_error_is_expected()
 t_server_log_warn_is_expected()
 t_client_log_error_is_expected()>
 t_client_log_warn_is_expected()>

See the Apache::TestUtil manpage for more information.

3.7.11 Auto Configuration

If the test is comprised only from the request part, you have to manually configure the targets you are
going to use. This is usually done in t/conf/extra.conf.in.

If your tests are comprised from the request and response parts, Apache::Test automatically adds the
configuration section for each response handler it finds. For example for the response handler:

 package TestResponse::nice;
 ... some code
 1;

it will put into t/conf/httpd.conf:

 <Location /TestResponse__nice>
 SetHandler modperl
 PerlResponseHandler TestResponse::nice
 </Location>

10515 Feb 2014

3.7.10 Helper FunctionsRunning and Developing Tests with the Apache::Test Framework

If you want to add some extra configuration directives, use the __DATA__ section, as in this example:

 package TestResponse::nice;
 ... some code
 1;
 __DATA__
 PerlSetVar Foo Bar

These directives will be wrapped into the <Location> section and placed into t/conf/httpd.conf:

 <Location /TestResponse__nice>
 SetHandler modperl
 PerlResponseHandler TestResponse::nice
 PerlSetVar Foo Bar
 </Location>

This autoconfiguration feature was added to:

simplify (less lines) test configuration.

ensure unique namespace for <Location ...>’s.

force <Location ...> names to be consistent.

prevent clashes within main configuration.

3.7.11.1 Forcing Configuration Sections into the Top Level

If some directives are supposed to go to the base configuration, i.e. not to be automatically wrapped into
<Location> block, you should use a special <Base> ..</Base> block:

 __DATA__
 <Base>
 PerlSetVar Config ServerConfig
 <Base>
 PerlSetVar Config LocalConfig

Now the autogenerated section will look like this:

 PerlSetVar Config ServerConfig
 <Location /TestResponse__nice>
 SetHandler modperl
 PerlResponseHandler TestResponse::nice
 PerlSetVar Config LocalConfig
 </Location>

As you can see the <Base> ..</Base> block has gone. As you can imagine this block was added to
support our virtue of laziness, since most tests don’t need to add directives to the base configuration and
we want to keep the configuration sections in tests to a minimum and let Perl do the rest of the job for us.

15 Feb 2014106

3.7.11 Auto Configuration

3.7.11.2 Bypassing Auto-Configuration

In more complicated cases, usually when virtual hosts containers are involved, the auto-configuration
might stand in a way and you will simply want to bypass it. If that’s the case, put the configuration inside
the <NoAutoConfig> ..</NoAutoConfig> container. For example:

 <NoAutoConfig>
 <VirtualHost TestPreConnection::note>
 PerlPreConnectionHandler TestPreConnection::note

 <Location /TestPreConnection__note>
 SetHandler modperl
 PerlResponseHandler TestPreConnection::note::response
 </Location>
 </VirtualHost>
 </NoAutoConfig>

Notice, that the internal sections will be still parsed, tokens @var@ will be substituted and Virtual-
Host sections will be rewritten with an automatically assigned port number and ServerName .

3.7.11.3 Virtual Hosts

Apache::Test automatically assigns an unused port for the virtual host configuration. Just make sure
that you use the package name in the place where you usually specify a hostname:port value. For example
for the following package:

 #file:MyApacheTest/Foo.pm
 #------------------------
 package MyApacheTest::Foo;
 ...
 1;
 __END__
 <VirtualHost MyApacheTest::Foo>
 <Location /test_foo>

 </Location>
 </VirtualHost>

After running:

 % t/TEST -conf

Check the auto-generated t/conf/httpd.conf and you will find what port was assigned. Of course it can
change when more tests which require a special virtual host are used.

Now in the request script, you can figure out what port that virtual host was assigned, using the package
name. For example:

10715 Feb 2014

3.7.11 Auto ConfigurationRunning and Developing Tests with the Apache::Test Framework

 #file:test_foo.t
 #---------------
 use Apache::TestRequest;

 my $module = "MyApacheTest::Foo;";
 my $config = Apache::Test::config();
 Apache::TestRequest::module($module);
 my $hostport = Apache::TestRequest::hostport($config);

 print GET_BODY_ASSERT "http://$hostport/test_foo";

3.7.11.4 Running Pre-Configuration Code

Sometimes you need to setup things for the test. This usually includes creating directories and files, and
populating the latter with some data, which will be used at request time. Instead of performing that opera-
tion in the client script every time a test is run, it’s usually better to do it once when the server is config-
ured. If you wish to run such a code, all you have to do is to add a special subroutine
APACHE_TEST_CONFIGURE in the response package (assuming that that response package exists).
When server is configured (t/TEST -conf) it scans all the response packages for that subroutine and if
found runs it.

APACHE_TEST_CONFIGURE accepts two arguments: the package name of the file this subroutine is
defined in and the Apache::TestConfig configuration object.

Here is an example of a package that uses such a subroutine:

 package TestDirective::perlmodule;

 use strict;
 use warnings FATAL => ’all’;

 use Apache::Test ();

 use Apache2::RequestRec ();
 use Apache2::RequestIO ();
 use File::Spec::Functions qw(catfile);

 use Apache2::Const -compile => ’OK’;

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 $r->puts($ApacheTest::PerlModuleTest::MAGIC || ’’);

 Apache2::Const::OK;
 }

 sub APACHE_TEST_CONFIGURE {
 my ($class, $self) = @_;

 my $vars = $self->{vars};
 my $target_dir = catfile $vars->{documentroot}, ’testdirective’;

15 Feb 2014108

3.7.11 Auto Configuration

 my $magic = __PACKAGE__;
 my $content = <<EOF;
 package ApacheTest::PerlModuleTest;
 \$ApacheTest::PerlModuleTest::MAGIC = ’$magic’;
 1;
 EOF
 my $file = catfile $target_dir,
 ’perlmodule-vh’, ’ApacheTest’, ’PerlModuleTest.pm’;
 $self->writefile($file, $content, 1);
 }
 1;

In this example’s function a directory is created. Then a file with some perl code as a content is created.

3.7.11.5 Controlling the Configuration Order

Sometimes it’s important in which order the configuration section of each response package is inserted.
Apache::Test controls the insertion order using a special token APACHE_TEST_CONFIG_ORDER.
To decide on the configuration insertion order, Apache::Test scans all response packages and tries to
match the following pattern:

 /APACHE_TEST_CONFIG_ORDER\s+([+-]?\d+)/

So you can assign any integer number (positive or negative). If the match fails, it’s assumed that the
token’s value is 0. Next a simple numerical search is performed and those configuration sections with
lower token value are inserted first.

It’s not specified how sections with the same token value are ordered. This usually depends on the order
the files were read from the disk, which may vary from machine to machine and shouldn’t be relied upon.

As already mentioned by default all configuration sections have a token whose value is 0, meaning that
their ordering is unimportant. Now if you want to make sure that some section is inserted first, assign to it
a negative number, e.g.:

 # APACHE_TEST_CONFIG_ORDER -150

Now if a new test is added and it has to be the first, add to this new test a token with a negative value
whose absolute value is higher than -150 , e.g.:

 # APACHE_TEST_CONFIG_ORDER -151

or

 # APACHE_TEST_CONFIG_ORDER -500

Decide how big the gaps should be by thinking ahead. This is similar to the Basic language line numbering
;) In any case, you can always adjust other tests’ token if you need to squeeze a number between two
consequent integers.

10915 Feb 2014

3.7.11 Auto ConfigurationRunning and Developing Tests with the Apache::Test Framework

If on the other hand you want to ensure that some test is configured last, use the highest positive number,
e.g.:

 # APACHE_TEST_CONFIG_ORDER 100

If some other test needs to be configured just before the one we just inserted, assign a token with a lower
value, e.g.:

 # APACHE_TEST_CONFIG_ORDER 99

3.7.12 Threaded versus Non-threaded Perl Test’s Compatibility

Since the tests are supposed to run properly under non-threaded and threaded perl, you have to worry to
enclose the threaded perl specific configuration bits in:

 <IfDefine PERL_USEITHREADS>
 ... configuration bits
 </IfDefine>

Apache::Test will start the server with -DPERL_USEITHREADS if the Perl is ithreaded.

For example PerlOptions +Parent is valid only for the threaded perl, therefore you have to write:

 <IfDefine PERL_USEITHREADS>
 # a new interpreter pool
 PerlOptions +Parent
 </IfDefine>

Just like the configuration, the test’s code has to work for both versions as well. Therefore you should
wrap the code specific to the threaded perl into:

 if (have_perl ’ithreads’){
 # ithread specific code
 }

which is essentially does a lookup in $Config{useithreads}.

3.7.13 Retrieving the Server Configuration Data

The server configuration data can be retrieved and used in the tests via the configuration object:

 use Apache::Test;
 my $cfg = Apache::Test::config();

3.7.13.1 Module Magic Number

The following code retrieves the major and minor MMN numbers.

15 Feb 2014110

3.7.12 Threaded versus Non-threaded Perl Test’s Compatibility

 my $cfg = Apache::Test::config();
 my $info = $cfg->{httpd_info};

 my $major = $info->{MODULE_MAGIC_NUMBER_MAJOR};
 my $minor = $info->{MODULE_MAGIC_NUMBER_MINOR};

 print "major=$major, minor=$minor\n";

For example for MMN 20011218:0 , this code prints:

 major=20011218, minor=0

3.8 Debugging Tests
Sometimes your tests won’t run properly or even worse will segfault. There are cases where it’s possible
to debug broken tests with simple print statements but usually it’s very time consuming and ineffective.
Therefore it’s a good idea to get yourself familiar with Perl and C debuggers, and this knowledge will save
you a lot of time and grief in a long run.

3.8.1 Under C debugger

mod_perl-2.0 provides built in ’make test’ debug facility. So in case you get a core dump during make
test, or just for fun, run in one shell:

 % t/TEST -debug

in another shell:

 % t/TEST -run-tests

then the -debug shell will have a (gdb) prompt, type where for stacktrace:

 (gdb) where

You can change the default debugger by supplying the name of the debugger as an argument to -debug.
E.g. to run the server under ddd :

 % ./t/TEST -debug=ddd

META: list supported debuggers

If you debug mod_perl internals you can set the breakpoints using the -breakpoint option, which can be
repeated as many times as needed. When you set at least one breakpoint, the server will start running till it
meets the ap_run_pre_config breakpoint. At this point we can set the breakpoint for the mod_perl code,
something we cannot do earlier if mod_perl was built as DSO. For example:

 % ./t/TEST -debug -breakpoint=modperl_cmd_switches \
 -breakpoint=modperl_cmd_options

11115 Feb 2014

3.8 Debugging TestsRunning and Developing Tests with the Apache::Test Framework

will set the modperl_cmd_switches and modperl_cmd_options breakpoints and run the debugger.

If you want to tell the debugger to jump to the start of the mod_perl code you may run:

 % ./t/TEST -debug -breakpoint=modperl_hook_init

In fact -breakpoint automatically turns on the debug mode, so you can run:

 % ./t/TEST -breakpoint=modperl_hook_init

3.8.2 Under Perl debugger

When the Perl code misbehaves it’s the best to run it under the Perl debugger. Normally started as:

 % perl -debug program.pl

the flow control gets passed to the Perl debugger, which allows you to run the program in single steps and
examine its states and variables after every executed statement. Of course you can set up breakpoints and
watches to skip irrelevant code sections and watch after certain variables. The perldebug and the perldeb-
tut manpages are covering the Perl debugger in fine details.

The Apache-Test framework extends the Perl debugger and plugs in LWP’s debug features, so you can
debug the requests. Let’s take test apache/read from mod_perl 2.0 and present the features as we go:

META: to be completed

run .t test under the perl debugger

 % t/TEST -debug perl t/modules/access.t

run .t test under the perl debugger (nonstop mode, output to t/logs/perldb.out)

 % t/TEST -debug perl=nostop t/modules/access.t

turn on -v and LWP trace (1 is the default) mode in Apache::TestRequest

 % t/TEST -debug lwp t/modules/access.t

turn on -v and LWP trace mode (level 2) in Apache::TestRequest

 % t/TEST -debug lwp=2 t/modules/access.t

3.8.3 Tracing

To get Start the server under strace(1):

 % t/TEST -debug strace

15 Feb 2014112

3.8.2 Under Perl debugger

The output goes to t/logs/strace.log.

Now in a second terminal run:

 % t/TEST -run-tests

Beware that t/logs/strace.log is going to be very big.

META: can we provide strace(1) opts if we want to see only certain syscalls?

3.9 Using Apache::Test to Speed up Project Development
When developing a project, as the code is written or modified it is desirable to test it at the same time. If
you write tests as you code, or even before you code, Apache::Test can speed up the modify-test code
development cycle. The idea is to start the server once and then run the tests without restarting it, and
make the server reload the modified modules behind the scenes. This of course works only if you modify
plain perl modules. If you develop XS/C components, you have no choice but to restart the server before
you want to test the modified code.

First of all, your Perl modules need to reside under the lib directory, the same way they reside in blib/lib.
In the section Basic Testing Environment, we’ve already arranged for that. If Amazing.pm resides in the
top-level directory, it’s not possible to perform ’require Apache::Amazing’ . Only after running
make or ./Build wil the file be moved to blib/lib/Apache/Amazing.pm, which is when we can load it.
But you don’t want to run make or ./Build every time you change the file. It’s both annoying and
error-prone, since at times you’d make a change, try to verify it, and it will appear to be wrong for no
obvious reason. What will really have happend is that you just forgot to run make or ./Build and the
server was testing against the old unmodified version in blib/lib. Of course, if you always run make
test or ./Build test , it’ll always do the right thing, but it’s not the most effecient approach to
undertake when you want to test a specific test and you do it every few seconds.

The following scenario will make you a much happier Perl developer.

First, we need to instruct Apache::Test to modify @INC, which we could do in t/conf/modperl_extra.pl or
t/conf/extra.conf.in, but the problem is that you may not want to keep that change in the released package.
There is a better way, if the environment variable APACHE_TEST_LIVE_DEV is set to a true value,
Apache::Test will automatically add the lib/ directory if it exists. Executing:

 % APACHE_TEST_LIVE_DEV=1 t/TEST -configure

will add code to add /path/to/Apache-Amazing/lib to @INC in t/conf/modperl_inc.pl. This technique is
convenient since you don’t need to modify your code to include that directory.

Second, we need to configure mod_perl to use Apache::Reload --to automatically reload the module
when it’s changed--by adding following configuration directives to t/conf/extra.conf.in:

 PerlModule Apache2::Reload
 PerlInitHandler Apache2::Reload
 PerlSetVar ReloadAll Off
 PerlSetVar ReloadModules "Apache::Amazing"

11315 Feb 2014

3.9 Using Apache::Test to Speed up Project DevelopmentRunning and Developing Tests with the Apache::Test Framework

(For more information about Apache::Reload , depending on the mod_perl generation, refer to the
mod_perl 1.0 documentation or the Apache2::Reload manpage for mod_perl 2.0.)

now we execute:

 % APACHE_TEST_LIVE_DEV=1 t/TEST -configure

which will generate t/conf/extra.conf and start the server:

 % t/TEST -start

from now on, we can modify Apache/Amazing.pm and repeatedly run:

 % t/TEST -run basic

without restarting the server.

3.10 Writing Tests Methodology
META: to be completed

3.10.1 When Tests Should Be Written

A New feature is Added

Every time a new feature is added new tests should be added to cover the new feature.

A Bug is Reported

Every time a bug gets reported, before you even attempt to fix the bug, write a test that exposes the
bug. This will make much easier for you to test whether your fix actually fixes the bug.

Now fix the bug and make sure that test passes ok.

It’s possible that a few tests can be written to expose the same bug. Write them all -- the more tests
you have the less chances are that there is a bug in your code.

If the person reporting the bug is a programmer you may try to ask her to write the test for you. But
usually if the report includes a simple code that reproduces the bug, it should probably be easy to
convert this code into a test.

3.11 Other Webserver Regression Testing Frameworks
Puffin

Puffin is a web application regression testing system. It allows you to test any web application from
end to end based application as if it were a "black box" accepting inputs and returning outputs.

15 Feb 2014114

3.10 Writing Tests Methodology

It’s available from http://puffin.sourceforge.net/

3.12 Got a question?
Post it to the Apache-Test dev list. The list is moderated, so unless you are subscribed to it it may take
some time for your post to make it to the list.

For more information see: http://perl.apache.org/Apache-Test/

For list archives and subscribing information, please see: Apache-Test dev list

3.13 References
more Apache-Test documentation

Testing mod_perl 2.0 http://www.perl.com/pub/a/2003/05/22/testing.html

Apache::Test manpage

Apache-Test README

Skeletons for use as a starting point

mod_perl 2: http://people.apache.org/~geoff/Apache-Test-skeleton-mp2.tar.gz

mod_perl 1: http://people.apache.org/~geoff/Apache-Test-skeleton-mp1.tar.gz

Bug reporting skeletons

Apache: http://people.apache.org/~geoff/bug-reporting-skeleton-apache.tar.gz

mod_perl 1: http://people.apache.org/~geoff/bug-reporting-skeleton-mp1.tar.gz

mod_perl 2: http://people.apache.org/~geoff/bug-reporting-skeleton-mp2.tar.gz

extreme programming methodology

Extreme Programming: A Gentle Introduction: http://www.extremeprogramming.org/.

Extreme Programming: http://www.xprogramming.com/.

See also other sites linked from these URLs.

11515 Feb 2014

3.12 Got a question?Running and Developing Tests with the Apache::Test Framework

http://puffin.sourceforge.net/
http://perl.apache.org/Apache-Test/
http://www.perl.com/pub/a/2003/05/22/testing.html
http://people.apache.org/~geoff/Apache-Test-skeleton-mp2.tar.gz
http://people.apache.org/~geoff/Apache-Test-skeleton-mp1.tar.gz
http://people.apache.org/~geoff/bug-reporting-skeleton-apache.tar.gz
http://people.apache.org/~geoff/bug-reporting-skeleton-mp1.tar.gz
http://people.apache.org/~geoff/bug-reporting-skeleton-mp2.tar.gz
http://www.extremeprogramming.org/
http://www.xprogramming.com/

3.14 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

3.15 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014116

3.14 Maintainers

http://stason.org/
http://stason.org/

4 Issuing Correct HTTP Headers

11715 Feb 2014

4 Issuing Correct HTTP HeadersIssuing Correct HTTP Headers

4.1 Description
To make caching of dynamic documents possible, which can give you a considerable performance gain,
setting a number of HTTP headers is of a vital importance. This document explains which headers you
need to pay attention to, and how to work with them.

As there is always more than one way to do it, I’m tempted to believe one must be the best. Hardly ever
am I right.

4.2 The Origin of this Chapter
This chapter has been contributed to the documentation by Andreas Koenig. You will find the references
and other related info at the bottom of this page. It was previously distributed from CPAN, but this docu-
mentation is now its official resting-place.

If you have any questions regarding this specific document only, please refer to Andreas, since he is the
guru on this subject. On any other matter please contact the mod_perl mailing list.

4.3 Why Headers
Dynamic Content is dynamic, after all, so why would anybody care about HTTP headers? Header compo-
sition is a task often neglected in the CGI world. Because pages are generated dynamically, you might
expect that pages without a Last-Modified header are fine, and that an If-Modified-Since
header in the browser’s request can be ignored. This laissez-faire principle gets in the way when you try to
establish a server that is entirely driven by dynamic components and the number of hits is significant.

If the number of hits is not significant, don’t bother to read this document.

If the number of hits is significant, you might want to consider what cache-friendliness means (you may
also want to read [4]) and how you can cooperate with caches to increase the performance of your site.
Especially if you use Squid in accelerator mode (helpful hints for Squid, see [1]), you will have a strong
motivation to cooperate with it. This document may help you to do it correctly.

4.4 Which Headers
The HTTP standard (v 1.1 is specified in [3], v 1.0 in [2]) describes lots of headers. In this document, we
only discuss those headers which are most relevant to caching.

I have grouped the headers into three groups: date headers, content headers, and the special Vary header.

15 Feb 2014118

4.1 Description

4.4.1 Date Related Headers

4.4.1.1 Date

Section 14.18 of the HTTP standard deals with the circumstances under which you must or must not send
a Date header. For almost everything a normal mod_perl user is doing, a Date header needs to be gener-
ated. But the mod_perl programmer doesn’t have to worry about this header since the Apache server guar-
antees that this header is sent.

In http_protocol.c the Date header is set according to $r->request_time . A mod_perl script
can read, but not change, $r->request_time .

4.4.1.2 Last-Modified

Section 14.29 of the HTTP standard deals with this. The Last-Modified header is mostly used as a
so-called weak validator. Here are two sentences from the HTTP specs:

 A validator that does not always change when the resource
 changes is a "weak validator."

 One can think of a strong validator as one that changes
 whenever the bits of an entity changes, while a weak value
 changes whenever the meaning of an entity changes.

This tells us that we should consider the semantics of the page we are generating and not the date when we
are running. The question is, when did the meaning of this page change last time? Let’s imagine the docu-
ment in question is a text-to-gif renderer that takes as input a font to use, background and foreground
colours, and a string to render. Although the actual image is created on-the-fly, the semantics of the page
are determined when the script was last changed, right?

Actually, a few more things are relevant: the semantics also change a little when you update one of the
fonts that may be used or when you update your ImageMagick or equivalent program. It’s something
you should consider, if you want to get it right.

If you have a page which comprises several components, you should ask all the components when they
changed their semantic behaviour last time. Then pick the oldest of those times.

mod_perl offers you two convenient methods to deal with this header: update_mtime() and set_last_modi-
fied(). These methods and several others are unavailable in the normal mod_perl environment but are
silently imported when you use Apache::File . Refer to the Apache::File manpage for more info.

update_mtime() takes a UNIX time as its argument and sets Apache’s request structure finfo.st_mtime to
this value. It does so only when the argument is greater than a previously stored finfo.st_mtime .

set_last_modified() sets the outgoing header Last-Modified to the string that corresponds to the stored
finfo.st_mtime. By passing a UNIX time to set_last_modified(), mod_perl calls update_mtime() with this
argument first.

11915 Feb 2014

4.4.1 Date Related HeadersIssuing Correct HTTP Headers

 use Apache::File;
 use Date::Parse;
 # Date::Parse parses RCS format, Apache::Util::parsedate doesn’t
 $Mtime ||=
 Date::Parse::str2time(substr q$Date: 2007-03-28 16:15:34 -0700 (Wed, 28 Mar 2007) $, 6);
 $r->set_last_modified($Mtime);

4.4.1.3 Expires and Cache-Control

Section 14.21 of the HTTP standard deals with the Expires header. The purpose of the Expires
header is to determine a point in time after which the document should be considered out of date (stale).
Don’t confuse this with the very different meaning of the Last-Modified header. The Expires
header is useful to avoid unnecessary validation from now on until the document expires and it helps the
recipients to clean up their stored documents. A sentence from the HTTP standard:

 The presence of an Expires field does not imply that the
 original resource will change or cease to exist at, before, or
 after that time.

So think before you set up a time when you believe a resource should be regarded as stale. Most of the
time I can determine an expected lifetime from "now", that is the time of the request. I would not recom-
mend hardcoding the date of Expiry, because when you forget that you did it, and the date arrives, you will
serve "already expired" documents that cannot be cached at all by anybody. If you believe a resource will
never expire, read this quote from the HTTP specs:

 To mark a response as "never expires," an origin server sends an
 Expires date approximately one year from the time the response is
 sent. HTTP/1.1 servers SHOULD NOT send Expires dates more than one
 year in the future.

Now the code for the mod_perl programmer who wants to expire a document half a year from now:

 $r->header_out(’Expires’,
 HTTP::Date::time2str(time + 180*24*60*60));

A very handy alternative to this computation is available in HTTP 1.1, the cache control mechanism.
Instead of setting the Expires header you can specify a delta value in a Cache-Control header. You
can do that by executing just:

 $r->header_out(’Cache-Control’, "max-age=" . 180*24*60*60);

which is, of course much cheaper than the first example because perl computes the value only once at
compile time and optimizes it into a constant.

As this alternative is only available in HTTP 1.1 and old cache servers may not understand this header, it
is advisable to send both headers. In this case the Cache-Control header takes precedence, so the
Expires header is ignored on HTTP 1.1 compliant servers. Or you could go with an if/else clause:

15 Feb 2014120

4.4.1 Date Related Headers

 if ($r->protocol =~ /(\d\.\d)/ && $1 >= 1.1){
 $r->header_out(’Cache-Control’, "max-age=" . 180*24*60*60);
 } else {
 $r->header_out(’Expires’,
 HTTP::Date::time2str(time + 180*24*60*60));
 }

If you restart your Apache server regularly, I’d save the Expires header in a global variable. Oh, well,
this is probably over-engineered now.

To avoid caching altogether call:

 $r->no_cache(1);

which sets the headers:

 Pragma: no-cache
 Cache-control: no-cache

which should work in major browsers.

Don’t set Expires with $r->header_out if you use $r->no_cache , because header_out() takes
precedence. The problem that remains is that there are broken browsers which ignore Expires headers.

4.4.2 Content Related Headers

4.4.2.1 Content-Type

You are most probably familiar with Content-Type . Sections 3.7, 7.2.1 and 14.17 of the HTTP specs
cover the details. mod_perl has the content_type() method to deal with this header, for example:

 $r->content_type("image/png");

Content-Type should be included in all messages according to the specs, and Apache will generate one
if you don’t. It will be whatever is specified in the relevant DefaultType configuration directive or
text/plain if none is active.

4.4.2.2 Content-Length

According to section 14.13 of the HTTP specifications, the Content-Length header is the number of
octets in the body of a message. If it can be determined prior to sending, it can be very useful for several
reasons to include it. The most important reason why it is good to include it is that keepalive requests only
work with responses that contain a Content-Length header. In mod_perl you can say

 $r->header_out(’Content-Length’, $length);

If you use Apache::File , you get the additional set_content_length() method for the Apache
class which is a bit more efficient than the above. You can then say:

12115 Feb 2014

4.4.2 Content Related HeadersIssuing Correct HTTP Headers

 $r->set_content_length($length);

The Content-Length header can have an important impact on caches by invalidating cache entries as
the following extract from the specification explains:

 The response to a HEAD request MAY be cacheable in the sense that
 the information contained in the response MAY be used to update a
 previously cached entity from that resource. If the new field values
 indicate that the cached entity differs from the current entity (as
 would be indicated by a change in Content-Length, Content-MD5, ETag
 or Last-Modified), then the cache MUST treat the cache entry as
 stale.

So be careful never to send a wrong Content-Length , either in a GET or in a HEAD request.

4.4.2.3 Entity Tags

An Entity Tag is a validator which can be used instead of, or in addition to, the Last-Modified
header. An entity tag is a quoted string which can be used to identify different versions of a particular
resource. An entity tag can be added to the response headers like so:

 $r->header_out("ETag","\"$VERSION\"");

Note: mod_perl offers the Apache::set_etag() method if you have loaded Apache::File . It is
strongly recommended that you do not use this method unless you know what you are doing.
set_etag() is expecting to be used in conjunction with a static request for a file on disk that has been
stat()ed in the course of the current request. It is inappropriate and "dangerous" to use it for dynamic
content.

By sending an entity tag you promise the recipient that you will not send the same ETag for the same
resource again unless the content is ’equal’ to what you are sending now (see below for what equality
means).

The pros and cons of using entity tags are discussed in section 13.3 of the HTTP specs. For us mod_perl
programmers that discussion can be summed up as follows:

There are strong and weak validators. Strong validators change whenever a single bit changes in the
response. Weak validators change when the meaning of the response changes. Strong validators are
needed for caches to allow for sub-range requests. Weak validators allow a more efficient caching of
equivalent objects. Algorithms like MD5 or SHA are good strong validators, but what we usually want,
when we want to take advantage of caching, is a good weak validator.

A Last-Modified time, when used as a validator in a request, can be strong or weak, depending on a
couple of rules. Please refer to section 13.3.3 of the HTTP standard to understand these rules. This is
mostly relevant for range requests as this citation of section 14.27 explains:

 If the client has no entity tag for an entity, but does have a
 Last-Modified date, it MAY use that date in a If-Range header.

15 Feb 2014122

4.4.2 Content Related Headers

But it is not limited to range requests. Section 13.3.1 succinctly states that:

 The Last-Modified entity-header field value is often used as a
 cache validator.

The fact that a Last-Modified date may be used as a strong validator can be pretty disturbing if we are
in fact changing our output slightly without changing the semantics of the output. To prevent these kinds
of misunderstanding between us and the cache servers in the response chain, we can send a weak validator
in an ETag header. This is possible because the specs say:

 If a client wishes to perform a sub-range retrieval on a value for
 which it has only a Last-Modified time and no opaque validator, it
 MAY do this only if the Last-Modified time is strong in the sense
 described here.

In other words: by sending them an ETag that is marked as weak we prevent them from using the
Last-Modified header as a strong validator.

An ETag value is marked as a weak validator by preceding the string W/ to the quoted string, otherwise it
is strong. In perl this would mean something like this:

 $r->header_out(’ETag’,"W/\"$VERSION\"");

Consider carefully which string you choose to act as a validator. You are on your own with this decision
because...

 ... only the service author knows the semantics of a resource
 well enough to select an appropriate cache validation
 mechanism, and the specification of any validator comparison
 function more complex than byte-equality would open up a can
 of worms. Thus, comparisons of any other headers (except
 Last-Modified, for compatibility with HTTP/1.0) are never used
 for purposes of validating a cache entry.

If you are composing a message from multiple components, it may be necessary to combine some kind of
version information for all these components into a single string.

If you are producing relatively large documents, or content that does not change frequently, you most
likely will prefer a strong entity tag, thus giving caches a chance to transfer the document in chunks.
(Anybody in the mood to add a chapter about ranges to this document?)

4.4.3 Content Negotiation

Content negotiation is a particularly wonderful feature that was introduced with HTTP 1.1. Unfortunately
it is not yet widely supported. Probably the most popular usage scenario of content negotiation is language
negotiation. A user specifies in the browser preferences the languages they understand and how well they
understand them. The browser includes these settings in an Accept-Language header when it sends
the request to the server and the server then chooses from several available representations of the docu-
ment the one that best fits the user’s preferences. Content negotiation is not limited to language. Citing the
specs:

12315 Feb 2014

4.4.3 Content NegotiationIssuing Correct HTTP Headers

 HTTP/1.1 includes the following request-header fields for enabling
 server-driven negotiation through description of user agent
 capabilities and user preferences: Accept (section 14.1), Accept-
 Charset (section 14.2), Accept-Encoding (section 14.3), Accept-
 Language (section 14.4), and User-Agent (section 14.43). However, an
 origin server is not limited to these dimensions and MAY vary the
 response based on any aspect of the request, including information
 outside the request-header fields or within extension header fields
 not defined by this specification.

4.4.3.1 Vary

In order to signal to the recipient that content negotiation has been used to determine the best available
representation for a given request, the server must include a Vary header. This tells the recipient which
request headers have been used to determine it. So an answer may be generated like this:

 $r->header_out(’Vary’, join ", ",
 qw(accept accept-language accept-encoding user-agent));

The header of a very cool page may greet the user with something like

 Hallo Kraut, Dein NutScrape versteht zwar PNG aber leider
 kein GZIP.

but it has the side effect of being expensive for a caching proxy. As of this writing, Squid (version
2.1PATCH2) does not cache resources that come with a Vary header at all. So unless you find a clever
workaround, you won’t enjoy your Squid accelerator for these documents :-(

4.5 Requests
Section 13.11 of the specifications states that the only two cacheable methods are GET and HEAD.

4.5.1 HEAD

Among the above recommended headers, the date-related ones (Date , Last-Modified , and
Expires /Cache-Control) are usually easy to produce and thus should be computed for HEAD
requests just the same as for GET requests.

The Content-Type and Content-Length headers should be exactly the same as would be supplied
to the corresponding GET request. But as it can be expensive to compute them, they can just as well be
omitted, since there is nothing in the specs that forces you to compute them.

What is important for the mod_perl programmer is that the response to a HEAD request must not contain a
message-body. The code in your mod_perl handler might look like this:

 # compute the headers that are easy to compute
 if ($r->header_only){ # currently equivalent to $r->method eq "HEAD"
 $r->send_http_header;
 return OK;
 }

15 Feb 2014124

4.5 Requests

If you are running a Squid accelerator, it will be able to handle the whole HEAD request for you, but under
some circumstances it may not be allowed to do so.

4.5.2 POST

The response to a POST request is not cacheable due to an underspecification in the HTTP standards.
Section 13.4 does not forbid caching of responses to POST requests but no other part of the HTTP stan-
dard explains how caching of POST requests could be implemented, so we are in a vacuum here and all
existing caching servers therefore refuse to implement caching of POST requests. This may change if
somebody does the groundwork of defining the semantics for cache operations on POST. Note that some
browsers with their more aggressive caching do implement caching of POST requests.

Note: If you are running a Squid accelerator, you should be aware that it accelerates outgoing traffic, but
does not bundle incoming traffic. If you have long POST requests, Squid doesn’t buy you anything. So
always consider using a GET instead of a POST if possible.

4.5.3 GET

A normal GET is what we usually write our mod_perl programs for. Nothing special about it. We send our
headers followed by the body.

But there is a certain case that needs a workaround to achieve better cacheability. We need to deal with the
"?" in the rel_path part of the requested URI. Section 13.9 specifies that

 ... caches MUST NOT treat responses to such URIs as fresh unless
 the server provides an explicit expiration time. This specifically
 means that responses from HTTP/1.0 servers for such URIs SHOULD NOT
 be taken from a cache.

You’re tempted to believe that if we are using HTTP 1.1 and send an explicit expiration time we’re on the
safe side? Unfortunately reality is a little bit different. It has been a bad habit for quite a long time to
misconfigure cache servers such that they treat all GET requests containing a question mark as
uncacheable. People even used to mark everything as uncacheable that contained the string cgi-bin .

To work around this bug in the HEAD requests, I have stopped calling my CGI directories cgi-bin and I
have written the following handler that lets me work with CGI-like query strings without rewriting the
software (such as Apache::Request and CGI.pm) that deals with them.

 sub handler {
 my ($r) = @_;
 my $uri = $r->uri;
 if (my ($u1,$u2) = $uri =~ / ^ ([^?]+?) ; ([^?]*) $ /x) {
 $r->uri($u1);
 $r->args($u2);
 } elsif (my ($u1,$u2) = $uri =~ m/^(.*?)%3[Bb](.*)$/) {
 # protect against old proxies that escape volens nolens
 # (see HTTP standard section 5.1.2)
 $r->uri($u1);
 $u2 =~ s/%3B/;/gi;
 $u2 =~ s/%26/;/gi; # &

12515 Feb 2014

4.5.2 POSTIssuing Correct HTTP Headers

 $u2 =~ s/%3D/=/gi;
 $r->args($u2);
 }
 DECLINED;
 }

This handler must be installed as a PerlPostReadRequestHandler .

The handler takes any request that contains one or more semicolons but no question mark such that the
first semicolon is interpreted as a question mark and everything after that as the query string. You can now
exchange the request:

 http://example.com/query?BGCOLOR=blue;FGCOLOR=red

with:

 http://example.com/query;BGCOLOR=blue;FGCOLOR=red

Thus it allows the co-existence of queries from ordinary forms that are being processed by a browser and
predefined requests for the same resource. It has one minor bug: Apache doesn’t allow percent-escaped
slashes in such a query string. So instead of:

 http://example.com/query;BGCOLOR=blue;FGCOLOR=red;FONT=%2Ffont%2Fbla

you have to use:

 http://example.com/query;BGCOLOR=blue;FGCOLOR=red;FONT=/font/bla

4.5.4 Conditional GET

A rather challenging request mod_perl programmers can get is the conditional GET, which typically means
a request with an If-Modified-Since header. The HTTP specifications have this to say:

 The semantics of the GET method change to a "conditional GET"
 if the request message includes an If-Modified-Since,
 If-Unmodified-Since, If-Match, If-None-Match, or If-Range
 header field. A conditional GET method requests that the
 entity be transferred only under the circumstances described
 by the conditional header field(s). The conditional GET method
 is intended to reduce unnecessary network usage by allowing
 cached entities to be refreshed without requiring multiple
 requests or transferring data already held by the client.

So how can we reduce the unnecessary network usage in such a case? mod_perl makes it easy for you by
offering Apache’s meets_conditions() . You have to set up your Last-Modified (and possibly
ETag) header before calling this method. If the return value of this method is anything other than OK, you
should return that value from your handler and you’re done. Apache handles the rest for you. The follow-
ing example is taken from [5]:

15 Feb 2014126

4.5.4 Conditional GET

 if((my $rc = $r->meets_conditions) != OK) {
 return $rc;
 }
 #else ... go and send the response body ...

If you have a Squid accelerator running, it will often handle the conditionals for you and you can enjoy its
extremely fast responses for such requests by reading the access.log. Just grep for TCP_IMS_HIT/304 .
But as with a HEAD request there are circumstances under which it may not be allowed to do so. That is
why the origin server (which is the server you’re programming) needs to handle conditional GETs as well
even if a Squid accelerator is running.

4.6 Avoiding Dealing with Headers
There is another approach to dynamic content that is possible with mod_perl. This approach is appropriate
if the content changes relatively infrequently, if you expect lots of requests to retrieve the same content
before it changes again and if it is much cheaper to test whether the content needs refreshing than it is to
refresh it.

In this case a PerlFixupHandler can be installed for the relevant location. It tests whether the content
is up to date. If so, it returns DECLINED and lets the Apache core serve the content from a file. Otherwise,
it regenerates the content into the file, updates the $r->finfo status and again returns DECLINED so
that Apache serves the updated file. Updating $r->finfo can be achieved by calling

 $r->filename($file); # force update of finfo

even if this seems redundant because the filename is already equal to $file . Setting the filename has the
side effect of doing a stat() on the file. This is important because otherwise Apache would use the out
of date finfo when generating the response header.

4.7 References

4.7.1 [1]

Stas Bekman: mod_perl Guide

4.7.2 [2]

T. Berners-Lee et al.: Hypertext Transfer Protocol -- HTTP/1.0, RFC 1945.

4.7.3 [3]

R. Fielding et al.: Hypertext Transfer Protocol -- HTTP/1.1, RFC 2616.

12715 Feb 2014

4.6 Avoiding Dealing with HeadersIssuing Correct HTTP Headers

4.7.4 [4]

Martin Hamilton: Cachebusting - cause and prevention, draft-hamilton-cachebusting-01. Also available
online at http://vancouver-webpages.com/CacheNow/

4.7.5 [5]

Lincoln Stein, Doug MacEachern: Writing Apache Modules with Perl and C, O’Reilly, 1-56592-567-X.
Selected chapters available online at http://www.modperl.com/ .

4.8 Other resources
Prevent the browser from Caching a page http://www.pacificnet.net/~johnr/meta.html

This page is an explanation of using the Meta tag to prevent caching, by browser or proxy, of an indi-
vidual page wherein the page in question has data that may be of a sensitive nature as in a "form page
for submittal" and the creator of the page wants to make sure that the page does not get submitted
twice. Please notice that some of the information on this page is a little bit outdated, but it’s still a
good resource for those who cannot generate their own HTTP headers.

Web Caching and Content Delivery Resources http://www.web-caching.com/

4.9 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

4.10 Authors
Andreas Koenig <andreas.koenig (at) anima.de>

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014128

4.8 Other resources

http://vancouver-webpages.com/CacheNow/
http://www.modperl.com/
http://www.pacificnet.net/~johnr/meta.html
http://www.web-caching.com/
http://stason.org/

5 mod_perl for ISPs. mod_perl and Virtual Hosts

12915 Feb 2014

5 mod_perl for ISPs. mod_perl and Virtual Hostsmod_perl for ISPs. mod_perl and Virtual Hosts

5.1 Description
mod_perl hosting by ISPs: fantasy or reality? This section covers some topics that might be of interest to
users looking for ISPs to host their mod_perl-based website, and ISPs looking for a way to provide such
services.

Today, it is a reality: there are a number of ISPs hosting mod_perl, although the number of these is not as
big as we would have liked it to be. To see a list of ISPs that can provide mod_perl hosting, see ISPs
supporting mod_perl.

Note: At this moment this document talks about mod_perl 1.0. mod_perl 2.0 coupled with the perchild
mpm (http://httpd.apache.org/docs-2.0/mod/perchild.html) will allow different users run mod_perl
handlers under different uid/gid. This solves the problem of secure co-existing of more than one mod_perl
user on the same httpd server.

5.2 ISPs providing mod_perl services - a fantasy or a reality
You installed mod_perl on your box at home, and you fell in love with it. So now you want to
convert your CGI scripts (which currently are running on your favorite ISPs machine) to run under
mod_perl. Then you discover that your ISP has never heard of mod_perl, or he refuses to install it for
you.

You are an old sailor in the ISP business, you have seen it all, you know how many ISPs are out there
and you know that the sales margins are too low to keep you happy. You are looking for some new
service almost no one else provides, to attract more clients to become your users and hopefully to
have a bigger slice of the action than your competitors.

If you are a user asking for a mod_perl service or an ISP considering to provide this service, this section
should make things clear for both of you.

An ISP has three choices:

1. ISPs probably cannot let users run scripts under mod_perl on the main server. There are many
reasons for this:

Scripts might leak memory, due to sloppy programming. There will not be enough memory to run as
many servers as required, and clients will be not satisfied with the service because it will be slower.

The question of file permissions is a very important issue: any user who is allowed to write and run a
CGI script can at least read (if not write) any other files that belong to the same user and/or group the
web server is running as. Note that it’s impossible to run suEXEC and cgiwrap extensions under
mod_perl 1.0.

Another issue is the security of the database connections. If you use Apache::DBI , by hacking the
Apache::DBI code you can pick a connection from the pool of cached connections even if it was
opened by someone else and your scripts are running on the same web server.

15 Feb 2014130

5.1 Description

http://httpd.apache.org/docs-2.0/mod/perchild.html

Yet another security issue is a potential compromise of the systems via user’s code running on the
webservers. One of the possible solutions here is to use chroot(1) or jail(8) mechanisms which allow
to run subsystems isolated from the main system. So if a subsystem gets compromised the whole
system is still safe.

There are many more things to be aware of so at this time you have to say No.

Of course as an ISP you can run mod_perl internally, without allowing your users to map their scripts
so that they will run under mod_perl. If as a part of your service you provide scripts such as guest books,
counters etc. which are not available for user modification, you can still can have these scripts
running very fast.

2. But, hey why can’t I let my users run their own servers, so I can wash my hands of them and don’t
have to worry about how dirty and sloppy their code is (assuming that the users are running their
servers under their own usernames, to prevent them from stealing code and data from each other).

This option is fine as long as you are not concerned about your new systems resource requirements. If
you have even very limited experience with mod_perl, you know that mod_perl enabled Apache
servers while freeing up your CPU and allowing you to run scripts very much faster, have huge
memory demands (5-20 times that of plain Apache).

The size depends on the code length, the sloppiness of the programming, possible memory leaks the
code might have and all that multiplied by the number of children each server spawns. A very simple
example: a server, serving an average number of scripts, demanding 10Mb of memory which spawns
10 children, already raises your memory requirements by 100Mb (the real requirement is actually
much smaller if your OS allows code sharing between processes and programmers exploit these
features in their code). Now multiply the average required size by the number of server users you
intend to have and you will get the total memory requirement.

Since ISPs never say No, you’d better take the inverse approach - think of the largest memory size
you can afford then divide it by one user’s requirements as I have shown in this example, and you
will know how many mod_perl users you can afford :)

But you cannot tell how much memory your users may use? Their requirements from a single server
can be very modest, but do you know how many servers they will run? After all, they have full control of
httpd.conf - and it has to be this way, since this is essential for the user running mod_perl.

All this rumbling about memory leads to a single question: is it possible to prevent users from using
more than X memory? Or another variation of the question: assuming you have as much memory as
you want, can you charge users for their average memory usage?

If the answer to either of the above questions is Yes, you are all set and your clients will prize your
name for letting them run mod_perl! There are tools to restrict resource usage (see for example the man
pages for ulimit(3) , getrlimit(2) , setrlimit(2) and sysconf(3) , the last three have
the corresponding Perl modules: BSD::Resource and Apache::Resource).

13115 Feb 2014

5.2 ISPs providing mod_perl services - a fantasy or a realitymod_perl for ISPs. mod_perl and Virtual Hosts

[ReaderMETA]: If you have experience with other resource limiting techniques please share it with
us. Thank you!

If you have chosen this option, you have to provide your client with:

Shutdown and startup scripts installed together with the rest of your daemon startup scripts (e.g
/etc/rc.d directory), so that when you reboot your machine the user’s server will be correctly
shutdown and will be back online the moment your system starts up. Also make sure to start
each server under the username the server belongs to, or you are going to be in big trouble!

Proxy services (in forward or httpd accelerator mode) for the user’s virtual host. Since the user
will have to run their server on an unprivileged port (>1024), you will have to forward all
requests from user.given.virtual.hostname:80 (which is
user.given.virtual.hostname without the default port 80) to
your.machine.ip:port_assigned_to_user . You will also have to tell the users to
code their scripts so that any self referencing URLs are of the form
user.given.virtual.hostname .

Letting the user run a mod_perl server immediately adds a requirement for the user to be able to
restart and configure their own server. Only root can bind to port 80, this is why your users have
to use port numbers greater than 1024.

Another solution would be to use a setuid startup script, but think twice before you go with it,
since if users can modify the scripts they will get a root access. For more information refer to the
section "SUID Start-up Scripts".

Another problem you will have to solve is how to assign ports between users. Since users can
pick any port above 1024 to run their server, you will have to lay down some rules here so that
multiple servers do not conflict.

A simple example will demonstrate the importance of this problem: I am a malicious user or I
am just a rival of some fellow who runs his server on your ISP. All I need to do is to find out
what port my rival’s server is listening to (e.g. using netstat(8)) and configure my own
server to listen on the same port. Although I am unable to bind to this port, imagine what will
happen when you reboot your system and my startup script happens to be run before my rival’s
one! I get the port first, now all requests will be redirected to my server. I’ll leave to your imagi-
nation what nasty things might happen then.

Of course the ugly things will quickly be revealed, but not before the damage has been done.

Luckily there are special tools that can ensure that users that aren’t authorized to bind to certain
ports (above 1024) won’t be able to do so. One such a tool is called cbs and its documentation
can be found at http://www.epita.fr/~flav/cbs/doc/html.

Basically you can preassign each user a port, without them having to worry about finding a free one,
as well as enforce MaxClients and similar values by implementing the following scenario:

15 Feb 2014132

5.2 ISPs providing mod_perl services - a fantasy or a reality

http://www.epita.fr/~flav/cbs/doc/html

For each user have two configuration files, the main file, httpd.conf (non-writable by user) and the
user’s file, username.httpd.conf where they can specify their own configuration parameters and over-
ride the ones defined in httpd.conf. Here is what the main configuration file looks like:

 httpd.conf

 # Global/default settings, the user may override some of these
 ...
 ...
 # Included so that user can set his own configuration
 Include username.httpd.conf

 # User-specific settings which will override any potentially
 # dangerous configuration directives in username.httpd.conf
 ...
 ...

 username.httpd.conf

 # Settings that your user would like to add/override,
 # like <Location> and PerlModule directives, etc.

Apache reads the global/default settings first. Then it reads the Include’d username.httpd.conf file
with whatever settings the user has chosen, and finally it reads the user-specific settings that we don’t
want the user to override, such as the port number. Even if the user changes the port number in his
username.httpd.conf file, Apache reads our settings last, so they take precedence. Note that you can
use Perl sections to make the configuration much easier.

3. A much better, but costly solution is co-location. Let the user hook his (or your) stand-alone machine
into your network, and forget about this user. Of course either the user or you will have to undertake
all the system administration chores and it will cost your client more money.

Who are the people who seek mod_perl support? They are people who run serious projects/busi-
nesses. Money is not usually an obstacle. They can afford a stand alone box, thus achieving their goal
of autonomy whilst keeping their ISP happy.

5.2.1 Virtual Servers Technologies

As we have just seen one of the obstacles of using mod_perl in ISP environments, is the problem of isolat-
ing customers using the same machine from each other. A number of virtual servers (don’t confuse with
virtual hosts) technologies (both commercial and Open Source) exist today. Here are some of them:

The User-mode Linux Kernel

http://user-mode-linux.sourceforge.net/

User-Mode Linux is a safe, secure way of running Linux versions and Linux processes. Run buggy
software, experiment with new Linux kernels or distributions, and poke around in the internals of
Linux, all without risking your main Linux setup.

13315 Feb 2014

5.2.1 Virtual Servers Technologiesmod_perl for ISPs. mod_perl and Virtual Hosts

http://user-mode-linux.sourceforge.net/

User-Mode Linux gives you a virtual machine that may have more hardware and software virtual
resources than your actual, physical computer. Disk storage for the virtual machine is entirely
contained inside a single file on your physical machine. You can assign your virtual machine only the
hardware access you want it to have. With properly limited access, nothing you do on the virtual
machine can change or damage your real computer, or its software.

So if you want to completely protect one user from another and yourself from your users this might
be yet another alternative to the solutions suggested at the beginning of this chapter.

VMWare Technology

Allows running a few instances of the same or different OSs on the same machine. This technology
comes in two flavors:

Open source: http://savannah.nongnu.org/projects/plex86/

Commercial: http://www.vmware.com/

So you may want to run a separate OS for each of your clients

freeVSD Technology

freeVSD (http://www.freevsd.org), an open source project sponsored by Idaya Ltd. The software
enables ISPs to securely partition their physical servers into many virtual servers, each capable of
running popular hosting applications such as Apache, Sendmail and MySQL.

S/390 IBM server

Quoting from: http://www.s390.ibm.com/linux/vif/

"The S/390 Virtual Image Facility enables you to run tens to hundreds of Linux server images on a
single S/390 server. It is ideally suited for those who want to move Linux and/or UNIX workloads
deployed on multiple servers onto a single S/390 server, while maintaining the same number of
distinct server images. This provides centralized management and operation of the multiple image
environment, reducing complexity, easing administration and lowering costs."

In two words, this a great solution to huge ISPs, as it allows you to run hundreds of mod_perl servers
while having only one box to maintain. The drawback is the price :)

Check out this scalable mailing list thread for more details from those who know:
http://archive.develooper.com/scalable@arctic.org/msg00235.html

5.3 Virtual Hosts in the guide
If you are about to use Virtual Hosts you might want to read these sections:

15 Feb 2014134

5.3 Virtual Hosts in the guide

http://savannah.nongnu.org/projects/plex86/
http://www.vmware.com/
http://www.freevsd.org/
http://www.s390.ibm.com/linux/vif/
http://archive.develooper.com/scalable@arctic.org/msg00235.html

Apache Configuration in Perl

Easing the Chores of Configuring Virtual Hosts with mod_macro

Is There a Way to Provide a Different startup.pl File for Each Individual Virtual Host

Is There a Way to Modify @INC on a Per-Virtual-Host or Per-Location Basis.

A Script From One Virtual Host Calls a Script with the Same Path From the Other Virtual Host

5.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

5.5 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

13515 Feb 2014

5.4 Maintainersmod_perl for ISPs. mod_perl and Virtual Hosts

http://stason.org/
http://stason.org/

6 Choosing an Operating System and Hardware

15 Feb 2014136

6 Choosing an Operating System and Hardware

6.1 Description
Before you use the techniques documented on this site to tune servers and write code you need to consider
the demands which will be placed on the hardware and the operating system. There is no point in investing
a lot of time and money in configuration and coding only to find that your server’s performance is poor
because you did not choose a suitable platform in the first place.

While the tips below could apply to many web servers, they are aimed primarily at administrators of
mod_perl enabled Apache server.

Because hardware platforms and operating systems are developing rapidly (even while you are reading
this document), this discussion must be in general terms.

6.2 Choosing an Operating System
First let’s talk about Operating Systems (OSs).

Most of the time I prefer to use Linux or something from the *BSD family. Although I am personally a
Linux devotee, I do not want to start yet another OS war.

I will try to talk about what characteristics and features you should be looking for to support an
Apache/mod_perl server, then when you know what you want from your OS, you can go out and find it.
Visit the Web sites of the operating systems you are interested in. You can gauge user’s opinions by
searching the relevant discussions in newsgroups and mailing list archives. Deja - http://deja.com and
eGroups - http://egroups.com are good examples. I will leave this fan research to the reader.

6.2.1 Stability and Robustness

Probably the most important features in an OS are stability and robustness. You are in an Internet busi-
ness. You do not keep normal 9am to 5pm working hours like many conventional businesses you know.
You are open 24 hours a day. You cannot afford to be off-line, for your customers will go shop at another
service like yours (unless you have a monopoly :). If the OS of your choice crashes every day, first do a
little investigation. There might be a simple reason which you can find and fix. There are OSs which won’t
work unless you reboot them twice a day. You don’t want to use the OS of this kind, no matter how good
the OS’ vendor sales department. Do not follow flushy advertisements, follow developers advices instead.

Generally, people who have used the OS for some time can tell you a lot about its stability. Ask them. Try
to find people who are doing similar things to what you are planning to do, they may even be using the
same software. There are often compatibility issues to resolve. You may need to become familiar with
patching and compiling your OS. It’s easy.

13715 Feb 2014

6.1 DescriptionChoosing an Operating System and Hardware

http://deja.com/
http://egroups.com/

6.2.2 Memory Management

You want an OS with a good memory management, some OSs are well known as memory hogs. The same
code can use twice as much memory on one OS compared to another. If the size of the mod_perl process
is 10Mb and you have tens of these running, it definitely adds up!

6.2.3 Memory Leaks

Some OSs and/or their libraries (e.g. C runtime libraries) suffer from memory leaks. A leak is when some
process requests a chunk of memory for temporary storage, but then does not subsequently release it. The
chunk of memory is not then available for any purpose until the process which requested it dies. We
cannot afford such leaks. A single mod_perl process sometimes serves thousands of requests before it
terminates. So if a leak occurs on every request, the memory demands could become huge. Of course our
code can be the cause of the memory leaks as well (check out the Apache::Leak module on CPAN).
Certainly, we can reduce the number of requests to be served over the process’ life, but that can degrade
performance.

6.2.4 Sharing Memory

We want an OS with good memory sharing capabilities. As we have seen, if we preload the modules and
scripts at server startup, they are shared between the spawned children (at least for a part of a process’ life
- memory pages can become "dirty" and cease to be shared). This feature can reduce memory consumption
a lot!

6.2.5 Cost and Support

If we are in a big business we probably do not mind paying another $1000 for some fancy OS with
bundled support. But if our resources are low, we will look for cheaper and free OSs. Free does not mean
bad, it can be quite the opposite. Free OSs can have the best support we can find. Some do. It is very easy
to understand - most of the people are not rich and will try to use a cheaper or free OS first if it does the
work for them. Since it really fits their needs, many people keep using it and eventually know it well
enough to be able to provide support for others in trouble. Why would they do this for free? One reason is
for the spirit of the first days of the Internet, when there was no commercial Internet and people helped
each other, because someone helped them in first place. I was there, I was touched by that spirit and I am
keen to keep that spirit alive.

But, let’s get back to our world. We are living in material world, and our bosses pay us to keep the systems
running. So if you feel that you cannot provide the support yourself and you do not trust the available free
resources, you must pay for an OS backed by a company, and blame them for any problem. Your boss
wants to be able to sue someone if the project has a problem caused by the external product that is being
used in the project. If you buy a product and the company selling it claims support, you have someone to
sue or at least to put the blame on.

15 Feb 2014138

6.2.2 Memory Management

If we go with Open Source and it fails we do not have someone to sue... wrong--in the last years many
companies have realized how good the Open Source products are and started to provide an official support
for these products. So your boss cannot just dismiss your suggestion of using an Open Source Operating
System. You can get a paid support just like with any other commercial OS vendor.

Also remember that the less money you spend on OS and Software, the more you will be able to spend on
faster and stronger hardware.

6.2.6 Discontinued Products

The OSs in this hazard group tend to be developed by a single company or organization.

You might find yourself in a position where you have invested a lot of time and money into developing
some proprietary software that is bundled with the OS you chose (say writing a mod_perl handler which
takes advantage of some proprietary features of the OS and which will not run on any other OS). Things
are under control, the performance is great and you sing with happiness on your way to work. Then, one
day, the company which supplies your beloved OS goes bankrupt (not unlikely nowadays), or they
produce a newer incompatible version and they will not support the old one (happens all the time). You
are stuck with their early masterpiece, no support and no source code! What are you going to do? Invest
more money into porting the software to another OS...

Everyone can be hit by this mini-disaster so it is better to check the background of the company when
making your choice. Even so you never know what will happen tomorrow - in 1980, a company called
Tektronix did something similar to one of the Guide reviewers with its microprocessor development
system. The guy just had to buy another system. He didn’t buy it from Tektronix, of course. The second
system never really worked very well and the firm he bought it from went bust before they ever got around
to fixing it. So in 1982 he wrote his own microprocessor development system software. It didn’t take long,
it works fine, and he’s still using it 18 years later.

Free and Open Source OSs are probably less susceptible to this kind of problem. Development is usually
distributed between many companies and developers, so if a person who developed a really important part
of the kernel lost interest in continuing, someone else will pick the falling flag and carry on. Of course if
tomorrow some better project shows up, developers might migrate there and finally drop the development:
but in practice people are often given support on older versions and helped to migrate to current versions.
Development tends to be more incremental than revolutionary, so upgrades are less traumatic, and there is
usually plenty of notice of the forthcoming changes so that you have time to plan for them.

Of course with the Open Source OSs you can have the source! So you can always have a go yourself, but
do not under-estimate the amounts of work involved. There are many, many man-years of work in an OS.

6.2.7 OS Releases

Actively developed OSs generally try to keep pace with the latest technology developments, and continu-
ally optimize the kernel and other parts of the OS to become better and faster. Nowadays, Internet and
networking in general are the hottest topics for system developers. Sometimes a simple OS upgrade to the
latest stable version can save you an expensive hardware upgrade. Also, remember that when you buy new
hardware, chances are that the latest software will make the most of it.

13915 Feb 2014

6.2.6 Discontinued ProductsChoosing an Operating System and Hardware

If a new product supports an old one by virtue of backwards compatibility with previous products of the
same family, you might not reap all the benefits of the new product’s features. Perhaps you get almost the
same functionality for much less money if you were to buy an older model of the same product.

6.3 Choosing Hardware
Sometimes the most expensive machine is not the one which provides the best performance. Your
demands on the platform hardware are based on many aspects and affect many components. Let’s discuss
some of them.

In the discussion we use terms that may be unfamiliar to some readers:

Cluster - a group of machines connected together to perform one big or many small computational
tasks in a reasonable time. Clustering can also be used to provide ’fail-over’ where if one machine
fails its processes are transferred to another without interruption of service. And you may be able to
take one of the machines down for maintenance (or an upgrade) and keep your service running - the
main server will simply not dispatch the requests to the machine that was taken down.

Load balancing - users are given the name of one of your machines but perhaps it cannot stand the
heavy load. You can use a clustering approach to distribute the load over a number of machines. The
central server, which users access initially when they type the name of your service, works as a
dispatcher. It just redirects requests to other machines. Sometimes the central server also collects the
results and returns them to the users. You can get the advantages of clustering too.

There are many load balancing techniques. (See High-Availability Linux Project for more info.)

NIC - Network Interface Card. A hardware component that allows to connect your machine to the
network. It performs packets sending and receiving, newer cards can encrypt and decrypt packets and
perform digital signing and verifying of the such. These are coming in different speeds categories
varying from 10Mbps to 10Gbps and faster. The most used type of the NIC card is the one that imple-
ments the Ethernet networking protocol.

RAM - Random Access Memory. It’s the memory that you have in your computer. (Comes in units
of 8Mb, 16Mb, 64Mb, 256Mb, etc.)

RAID - Redundant Array of Inexpensive Disks.

An array of physical disks, usually treated by the operating system as one single disk, and often
forced to appear that way by the hardware. The reason for using RAID is often simply to achieve a
high data transfer rate, but it may also be to get adequate disk capacity or high reliability. Redun-
dancy means that the system is capable of continued operation even if a disk fails. There are various
types of RAID array and several different approaches to implementing them. Some systems provide
protection against failure of more than one drive and some (‘hot-swappable’) systems allow a drive to
be replaced without even stopping the OS. See for example the Linux ‘HOWTO’ documents
Disk-HOWTO, Module-HOWTO and Parallel-Processing-HOWTO.

15 Feb 2014140

6.3 Choosing Hardware

6.3.1 Machine Strength Demands According to Expected Site Traffic

If you are building a fan site and you want to amaze your friends with a mod_perl guest book, any old 486
machine could do it. If you are in a serious business, it is very important to build a scalable server. If your
service is successful and becomes popular, the traffic could double every few days, and you should be
ready to add more resources to keep up with the demand. While we can define the webserver scalability
more precisely, the important thing is to make sure that you can add more power to your webserver(s)
without investing much additional money in software development (you will need a little software effort to
connect your servers, if you add more of them). This means that you should choose hardware and OSs that
can talk to other machines and become a part of a cluster.

On the other hand if you prepare for a lot of traffic and buy a monster to do the work for you, what
happens if your service doesn’t prove to be as successful as you thought it would be? Then you’ve spent
too much money, and meanwhile faster processors and other hardware components have been released, so
you lose.

Wisdom and prophecy, that’s all it takes :)

6.3.1.1 Single Strong Machine vs Many Weaker Machines

Let’s start with a claim that a four years old processor is still very powerful and can be put to a good use.
Now let’s say that for a given amount of money you can probably buy either one new very strong machine
or about ten older but very cheap machines. I claim that with ten old machines connected into a cluster and
by deploying load balancing you will be able to serve about five times more requests than with one single
new machine.

Why is that? Because generally the performance improvement on a new machine is marginal while the
price is much higher. Ten machines will do faster disk I/O than one single machine, even if the new disk is
quite a bit faster. Yes, you have more administration overhead, but there is a chance you will have it
anyway, for in a short time the new machine you have just bought might not stand the load. Then you will
have to purchase more equipment and think about how to implement load balancing and web server file
system distribution anyway.

Why I’m so convinced? Look at the busiest services on the Internet: search engines, web-email servers
and the like -- most of them use a clustering approach. You may not always notice it, because they hide the
real implementation behind proxy servers.

6.3.2 Internet Connection

You have the best hardware you can get, but the service is still crawling. Make sure you have a fast Inter-
net connection. Not as fast as your ISP claims it to be, but fast as it should be. The ISP might have a very
good connection to the Internet, but put many clients on the same line. If these are heavy clients, your
traffic will have to share the same line and your throughput will suffer. Think about a dedicated connec-
tion and make sure it is truly dedicated. Don’t trust the ISP, check it!

14115 Feb 2014

6.3.1 Machine Strength Demands According to Expected Site TrafficChoosing an Operating System and Hardware

The idea of having a connection to The Internet is a little misleading. Many Web hosting and co-location
companies have large amounts of bandwidth, but still have poor connectivity. The public exchanges, such
as MAE-East and MAE-West, frequently become overloaded, yet many ISPs depend on these exchanges.

Private peering means that providers can exchange traffic much quicker.

Also, if your Web site is of global interest, check that the ISP has good global connectivity. If the Web site
is going to be visited mostly by people in a certain country or region, your server should probably be
located there.

Bad connectivity can directly influence your machine’s performance. Here is a story one of the developers
told on the mod_perl mailing list:

 What relationship has 10% packet loss on one upstream provider got
 to do with machine memory ?

 Yes.. a lot. For a nightmare week, the box was located downstream of
 a provider who was struggling with some serious bandwidth problems
 of his own... people were connecting to the site via this link, and
 packet loss was such that retransmits and tcp stalls were keeping
 httpd heavies around for much longer than normal.. instead of
 blasting out the data at high or even modem speeds, they would be
 stuck at 1k/sec or stalled out... people would press stop and
 refresh, httpds would take 300 seconds to timeout on writes to
 no-one.. it was a nightmare. Those problems didn’t go away till I
 moved the box to a place closer to some decent backbones.

 Note that with a proxy, this only keeps a lightweight httpd tied up,
 assuming the page is small enough to fit in the buffers. If you are
 a busy internet site you always have some slow clients. This is a
 difficult thing to simulate in benchmark testing, though.

6.3.3 I/O Performance

If your service is I/O bound (does a lot of read/write operations to disk) you need a very fast disk, espe-
cially if the you need a relational database, which are the main I/O stream creators. So you should not
spend the money on Video card and monitor! A cheap card and a 14" monochrome monitor are perfectly
adequate for a Web server, you will probably access it by telnet or ssh most of the time. Look for
disks with the best price/performance ratio. Of course, ask around and avoid disks that have a reputation
for headcrashes and other disasters.

You must think about RAID or similar systems if you have an enormous data set to serve (what is an enor-
mous data set nowadays? Gigabytes, Terabytes?) or you expect a really big web traffic.

Ok, you have a fast disk, what’s next? You need a fast disk controller. There may be one embedded on
your computer’s motherboard. If the controller is not fast enough you should buy a faster one. Don’t forget
that it may be necessary to disable the original controller.

15 Feb 2014142

6.3.3 I/O Performance

6.3.4 Memory

Memory should be well tested. Many memory test programs are practically useless. Running a busy
system for a few weeks without ever shutting it down is a pretty good memory test. If you increase the
amount of RAM on a well-tested box, use well-tested RAM.

How much RAM do you need? Nowadays, the chances are that you will hear: "Memory is cheap, the more
you buy the better". But how much is enough? The answer is pretty straightforward: you do not want your
machine to swap. When the CPU needs to write something into memory, but memory is already full, it
takes the least frequently used memory pages and swaps them out to disk. This means you have to bear the
time penalty of writing the data to disk. If another process then references some of the data which happens
to be on one of the pages that has just been swapped out, the CPU swaps it back in again, probably swap-
ping out some other data that will be needed very shortly by some other process. Carried to the extreme,
the CPU and disk start to thrash hopelessly in circles, without getting any real work done. The less RAM
there is, the more often this scenario arises. Worse, you can exhaust swap space as well, and then your
troubles really start...

How do you make a decision? You know the highest rate at which your server expects to serve pages and
how long it takes on average to serve one. Now you can calculate how many server processes you need. If
you know the maximum size your servers can grow to, you know how much memory you need. If your
OS supports memory sharing, you can make best use of this feature by preloading the modules and scripts
at server startup, and so you will need less memory than you have calculated.

Do not forget that other essential system processes need memory as well, so you should plan not only for
the Web server, but also take into account the other players. Remember that requests can be queued, so
you can afford to let your client wait for a few moments until a server is available to serve it. Most of the
time your server will not have the maximum load, but you should be ready to bear the peaks. You need to
reserve at least 20% of free memory for peak situations. Many sites have crashed a few moments after a
big scoop about them was posted and an unexpected number of requests suddenly came in. (This is called
the Slashdot effect, which was born at http://slashdot.org). If you are about to announce something cool,
be aware of the possible consequences.

6.3.5 CPU

Make sure that the CPU is operating within its specifications. Many boxes are shipped with incorrect
settings for CPU clock speed, power supply voltage etc. Sometimes a cooling fan is not fitted. It may be
ineffective because a cable assembly fouls the fan blades. Like faulty RAM, an overheating processor can
cause all kinds of strange and unpredictable things to happen. Some CPUs are known to have bugs which
can be serious in certain circumstances. Try not to get one of them.

6.3.6 Bottlenecks

You might use the most expensive components, but still get bad performance. Why? Let me introduce an
annoying word: bottleneck.

14315 Feb 2014

6.3.4 MemoryChoosing an Operating System and Hardware

http://slashdot.org/

A machine is an aggregate of many components. Almost any one of them may become a bottleneck.

If you have a fast processor but a small amount of RAM, the RAM will probably be the bottleneck. The
processor will be under-utilized, usually it will be waiting for the kernel to swap the memory pages in and
out, because memory is too small to hold the busiest pages.

If you have a lot of memory, a fast processor, a fast disk, but a slow disk controller, the disk controller will
be the bottleneck. The performance will still be bad, and you will have wasted money.

Use a fast NIC that does not create a bottleneck. They are cheap. If the NIC is slow, the whole service is
slow. This is a most important component, since webservers are much more often network-bound than
they are disk-bound!

6.3.6.1 Solving Hardware Requirement Conflicts

It may happen that the combination of software components which you find yourself using gives rise to
conflicting requirements for the optimization of tuning parameters. If you can separate the components
onto different machines you may find that this approach (a kind of clustering) solves the problem, at much
less cost than buying faster hardware, because you can tune the machines individually to suit the tasks they
should perform.

For example if you need to run a relational database engine and mod_perl server, it can be wise to put the
two on different machines, since while RDBMS need a very fast disk, mod_perl processes need lots of
memory. So by placing the two on different machines it’s easy to optimize each machine at separate and
satisfy the each software components requirements in the best way.

6.3.7 Conclusion

To use your money optimally you have to understand the hardware very well, so you will know what to
pick. Otherwise, you should hire a knowledgeable hardware consultant and employ them on a regular
basis, since your needs will probably change as time goes by and your hardware will likewise be forced to
adapt as well.

6.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

6.5 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014144

6.4 Maintainers

http://stason.org/
http://stason.org/

7 Controlling and Monitoring the Server

14515 Feb 2014

7 Controlling and Monitoring the ServerControlling and Monitoring the Server

7.1 Description
Covers techniques to restart mod_perl enabled Apache, SUID scripts, monitoring, and other maintenance
chores, as well as some specific setups.

7.2 Restarting Techniques
All of these techniques require that you know the server process id (PID). The easiest way to find the PID
is to look it up in the httpd.pid file. It’s easy to discover where to look, by looking in the httpd.conf file.
Open the file and locate the entry PidFile . Here is the line from one of my own httpd.conf files:

 PidFile /usr/local/var/httpd_perl/run/httpd.pid

As you see, with my configuration the file is /usr/local/var/httpd_perl/run/httpd.pid.

Another way is to use the ps and grep utilities. Assuming that the binary is called httpd_perl, we would
do:

 % ps auxc | grep httpd_perl

or maybe:

 % ps -ef | grep httpd_perl

This will produce a list of all the httpd_perl (parent and children) processes. You are looking for the
parent process. If you run your server as root, you will easily locate it since it belongs to root. If you run
the server as some other user (when you don’t have root access, the processes will belong to that user
unless defined differently in httpd.conf. It’s still easy to find which is the parent--usually it’s the process
with the smallest PID.

You will see several httpd processes running on your system, but you should never need to send signals
to any of them except the parent, whose pid is in the PidFile. There are three signals that you can send to
the parent: SIGTERM, SIGHUP, and SIGUSR1.

Some folks prefer to specify signals using numerical values, rather than using symbols. If you are looking
for these, check out your kill(1) man page. My page points to /usr/include/linux/signal.h, the relevant
entries are:

 #define SIGHUP 1 /* hangup, generated when terminal disconnects */
 #define SIGKILL 9 /* last resort */
 #define SIGTERM 15 /* software termination signal */
 #define SIGUSR1 30 /* user defined signal 1 */

Note that to send these signals from the command line the SIG prefix must be omitted and under some
operating systems they will need to be preceded by a minus sign, e.g. kill -15 or kill -TERM
followed by the PID.

15 Feb 2014146

7.1 Description

7.3 Server Stopping and Restarting
We will concentrate here on the implications of sending TERM, HUP, and USR1 signals (as arguments to
kill(1)) to a mod_perl enabled server. See http://www.apache.org/docs/stopping.html for documentation on
the implications of sending these signals to a plain Apache server.

TERM Signal: Stop Now

Sending the TERM signal to the parent causes it to immediately attempt to kill off all its children. Any
requests in progress are terminated, and no further requests are served. This process may take quite a
few seconds to complete. To stop a child, the parent sends it a SIGHUP signal. If that fails it sends
another. If that fails it sends the SIGTERM signal, and as a last resort it sends the SIGKILL signal.
For each failed attempt to kill a child it makes an entry in the error_log.

When all the child processes were terminated, the parent itself exits and any open log files are closed.
This is when all the accumulated END blocks, apart from the ones located in scripts running under
Apache::Registry or Apache::PerlRun handlers. In the latter case, END blocks are
executed after each request is served.

HUP Signal: Restart Now

Sending the HUP signal to the parent causes it to kill off its children as if the TERM signal had been
sent, i.e. any requests in progress are terminated; but the parent does not exit. Instead, the parent
re-reads its configuration files, spawns a new set of child processes and continues to serve requests. It
is almost equivalent to stopping and then restarting the server.

If the configuration files contain errors when restart is signaled, the parent will exit, so it is important
to check the configuration files for errors before issuing a restart. How to perform the check will be
covered shortly;

Sometimes using this approach to restart mod_perl enabled Apache may cause the processes memory
incremental growth after each restart. This happens when Perl code loaded in memory is not
completely torn down, leading to a memory leak.

USR1 Signal: Gracefully Restart Now

The USR1 signal causes the parent process to advise the children to exit after serving their current
requests, or to exit immediately if they’re not serving a request. The parent re-reads its configuration
files and re-opens its log files. As each child dies off the parent replaces it with a child from the new
generation (the new children use the new configuration) and it begins serving new requests immedi-
ately.

The only difference between USR1 and HUP is that USR1 allows the children to complete any current
requests prior to killing them off and there is no interruption in the services compared to the killing
with HUP signal, where it might take a few seconds for a restart to get completed and there is no real
service at this time.

14715 Feb 2014

7.3 Server Stopping and RestartingControlling and Monitoring the Server

http://www.apache.org/docs/stopping.html

By default, if a server is restarted (using kill -USR1 ‘cat logs/httpd.pid‘ or with the HUP
signal), Perl scripts and modules are not reloaded. To reload PerlRequire s, PerlModule s, other
use() ’d modules and flush the Apache::Registry cache, use this directive in httpd.conf:

 PerlFreshRestart On

Make sure you read Evil things might happen when using PerlFreshRestart.

7.4 Speeding up the Apache Termination and Restart
We’ve already mentioned that restart or termination can sometimes take quite a long time, (e.g. tens of
seconds), for a mod_perl server. The reason for that is a call to the perl_destruct() Perl API func-
tion during the child exit phase. This will cause proper execution of END blocks found during server
startup and will invoke the DESTROY method on global objects which are still alive.

It is also possible that this operation may take a long time to finish, causing a long delay during a restart.
Sometimes this will be followed by a series of messages appearing in the server error_log file, warning
that certain child processes did not exit as expected. This happens when after a few attempts advising the
child process to quit, the child is still in the middle of perl_destruct(), and a lethal KILL signal is sent,
aborting any operation the child has happened to execute and brutally killing it.

If your code does not contain any END blocks or DESTROY methods which need to be run during child
server shutdown, or may have these, but it’s insignificant to execute them, this destruction can be avoided
by setting the PERL_DESTRUCT_LEVEL environment variable to -1 . For example add this setting to the
httpd.conf file:

 PerlSetEnv PERL_DESTRUCT_LEVEL -1

What constitutes a significant cleanup? Any change of state outside of the current process that would not
be handled by the operating system itself. So committing database transactions and removing the lock on
some resource are significant operations, but closing an ordinary file isn’t.

7.5 Using apachectl to Control the Server
The Apache distribution comes with a script to control the server. It’s called apachectl and it is
installed into the same location as the httpd executable. We will assume for the sake of our examples that
it’s in /usr/local/sbin/httpd_perl/apachectl :

To start httpd_perl:

 % /usr/local/sbin/httpd_perl/apachectl start

To stop httpd_perl:

 % /usr/local/sbin/httpd_perl/apachectl stop

15 Feb 2014148

7.4 Speeding up the Apache Termination and Restart

To restart httpd_perl (if it is running, send SIGHUP; if it is not already running just start it):

 % /usr/local/sbin/httpd_perl/apachectl restart

Do a graceful restart by sending a SIGUSR1, or start if not running:

 % /usr/local/sbin/httpd_perl/apachectl graceful

To do a configuration test:

 % /usr/local/sbin/httpd_perl/apachectl configtest

Replace httpd_perl with httpd_docs in the above calls to control the httpd_docs server.

There are other options for apachectl , use the help option to see them all.

It’s important to remember that apachectl uses the PID file, which is specified by the PIDFILE direc-
tive in httpd.conf. If you delete the PID file by hand while the server is running, apachectl will be
unable to stop or restart the server.

7.6 Safe Code Updates on a Live Production Server
You have prepared a new version of code, uploaded it into a production server, restarted it and it doesn’t
work. What could be worse than that? You also cannot go back, because you have overwritten the good
working code.

It’s quite easy to prevent it, just don’t overwrite the previous working files!

Personally I do all updates on the live server with the following sequence. Assume that the server root
directory is /home/httpd/perl/rel. When I’m about to update the files I create a new directory
/home/httpd/perl/beta, copy the old files from /home/httpd/perl/rel and update it with the new files. Then I
do some last sanity checks (check file permissions are [read+executable], and run perl -c on the new
modules to make sure there no errors in them). When I think I’m ready I do:

 % cd /home/httpd/perl
 % mv rel old && mv beta rel && stop && sleep 3 && restart && err

Let me explain what this does.

Firstly, note that I put all the commands on one line, separated by &&, and only then press the Enter key.
As I am working remotely, this ensures that if I suddenly lose my connection (sadly this happens some-
times) I won’t leave the server down if only the stop command squeezed in. && also ensures that if any
command fails, the rest won’t be executed. I am using aliases (which I have already defined) to make the
typing easier:

14915 Feb 2014

7.6 Safe Code Updates on a Live Production ServerControlling and Monitoring the Server

 % alias | grep apachectl
 graceful /usr/local/apache/bin/apachectl graceful
 rehup /usr/local/apache/sbin/apachectl restart
 restart /usr/local/apache/bin/apachectl restart
 start /usr/local/apache/bin/apachectl start
 stop /usr/local/apache/bin/apachectl stop

 % alias err
 tail -f /usr/local/apache/logs/error_log

Taking the line apart piece by piece:

 mv rel old &&

back up the working directory to old

 mv beta rel &&

put the new one in its place

 stop &&

stop the server

 sleep 3 &&

give it a few seconds to shut down (it might take even longer)

 restart &&

restart the server

 err

view of the tail of the error_log file in order to see that everything is OK

apachectl generates the status messages a little too early (e.g. when you issue apachectl stop it
says the server has been stopped, while in fact it’s still running) so don’t rely on it, rely on the
error_log file instead.

Also notice that I use restart and not just start . I do this because of Apache’s potentially long stop-
ping times (it depends on what you do with it of course!). If you use start and Apache hasn’t yet
released the port it’s listening to, the start would fail and error_log would tell you that the port is in
use, e.g.:

 Address already in use: make_sock: could not bind to port 8080

But if you use restart , it will wait for the server to quit and then will cleanly restart it.

Now what happens if the new modules are broken? First of all, I see immediately an indication of the
problems reported in the error_log file, which I tail -f immediately after a restart command. If
there’s a problem, I just put everything back as it was before:

15 Feb 2014150

7.6 Safe Code Updates on a Live Production Server

 % mv rel bad && mv old rel && stop && sleep 3 && restart && err

Usually everything will be fine, and I have had only about 10 seconds of downtime, which is pretty good!

7.7 An Intentional Disabling of Live Scripts
What happens if you really must take down the server or disable the scripts? This situation might happen
when you need to do some maintenance work on your database server. If you have to take your database
down then any scripts that use it will fail.

If you do nothing, the user will see either the grey An Error has happened message or perhaps a
customized error message if you have added code to trap and customize the errors. See Redirecting Errors
to the Client instead of to the error_log for the latter case.

A much friendlier approach is to confess to your users that you are doing some maintenance work and
plead for patience, promising (keep the promise!) that the service will become fully functional in X
minutes. There are a few ways to do this:

The first doesn’t require messing with the server. It works when you have to disable a script running under
Apache::Registry and relies on the fact that it checks whether the file was modified before using the
cached version. Obviously it won’t work under other handlers because these serve the compiled version of
the code and don’t check to see if there was a change in the code on the disk.

So if you want to disable an Apache::Registry script, prepare a little script like this:

 /home/http/perl/maintenance.pl

 #!/usr/bin/perl -Tw

 use strict;
 use CGI;
 my $q = new CGI;
 print $q->header, $q->p(
 "Sorry, the service is temporarily down for maintenance.
 It will be back in ten to fifteen minutes.
 Please, bear with us.
 Thank you!");

So if you now have to disable a script for example /home/http/perl/chat.pl , just do this:

 % mv /home/http/perl/chat.pl /home/http/perl/chat.pl.orig
 % ln -s /home/http/perl/maintenance.pl /home/http/perl/chat.pl

Of course you server configuration should allow symbolic links for this trick to work. Make sure you have
the directive

 Options FollowSymLinks

15115 Feb 2014

7.7 An Intentional Disabling of Live ScriptsControlling and Monitoring the Server

in the <Location> or <Directory> section of your httpd.conf.

When you’re done, it’s easy to restore the previous setup. Just do this:

 % mv /home/http/perl/chat.pl.orig /home/http/perl/chat.pl

which overwrites the symbolic link.

Now make sure that the script will have the current timestamp:

 % touch /home/http/perl/chat.pl

Apache will automatically detect the change and will use the moved script instead.

The second approach is to change the server configuration and configure a whole directory to be handled
by a My::Maintenance handler (which you must write). For example if you write something like this:

 My/Maintenance.pm

 package My::Maintenance;
 use strict;
 use Apache::Constants qw(:common);
 sub handler {
 my $r = shift;
 print $r->send_http_header("text/plain");
 print qq{
 We apologize, but this service is temporarily stopped for
 maintenance. It will be back in ten to fifteen minutes.
 Please, bear with us. Thank you!
 };
 return OK;
 }
 1;

and put it in a directory that is in the server’s @INC, to disable all the scripts in Location /perl you
would replace:

 <Location /perl>
 SetHandler perl-script
 PerlHandler My::Handler
 [snip]
 </Location>

with

 <Location /perl>
 SetHandler perl-script
 PerlHandler My::Maintenance
 [snip]
 </Location>

15 Feb 2014152

7.7 An Intentional Disabling of Live Scripts

Now restart the server. Your users will be happy to go and read http://slashdot.org for ten minutes,
knowing that you are working on a much better version of the service.

If you need to disable a location handled by some module, the second approach would work just as well.

7.8 SUID Start-up Scripts
If you want to allow a few people in your team to start and stop the server you will have to give them the
root password, which is not a good thing to do. The less people know the password, the less problems are
likely to be encountered. But there is an easy solution for this problem available on UNIX platforms. It’s
called a setuid executable.

7.8.1 Introduction to SUID Executables

The setuid executable has a setuid permissions bit set. This sets the process’s effective user ID to that of
the file upon execution. You perform this setting with the following command:

 % chmod u+s filename

You probably have used setuid executables before without even knowing about it. For example when you
change your password you execute the passwd utility, which among other things modifies the
/etc/passwd file. In order to change this file you need root permissions, the passwd utility has the setuid
bit set, therefore when you execute this utility, its effective ID is the same of the root user ID.

You should avoid using setuid executables as a general practice. The less setuid executables you have the
less likely that someone will find a way to break into your system, by exploiting some bug you didn’t
know about.

When the executable is setuid to root, you have to make sure that it doesn’t have the group and world read
and write permissions. If we take a look at the passwd utility we will see:

 % ls -l /usr/bin/passwd
 -r-s--x--x 1 root root 12244 Feb 8 00:20 /usr/bin/passwd

You achieve this with the following command:

 % chmod 4511 filename

The first digit (4) stands for setuid bit, the second digit (5) is a compound of read (4) and executable (1)
permissions for the user, and the third and the fourth digits are setting the executable permissions for the
group and the world.

7.8.2 Apache Startup SUID Script’s Security

In our case, we want to allow setuid access only to a specific group of users, who all belong to the same
group. For the sake of our example we will use the group named apache. It’s important that users who
aren’t root or who don’t belong to the apache group will not be able to execute this script. Therefore we
perform the following commands:

15315 Feb 2014

7.8 SUID Start-up ScriptsControlling and Monitoring the Server

http://slashdot.org/

 % chgrp apache apachectl
 % chmod 4510 apachectl

The execution order is important. If you swap the command execution order you will lose the setuid bit.

Now if we look at the file we see:

 % ls -l apachectl
 -r-s--x--- 1 root apache 32 May 13 21:52 apachectl

Now we are all set... Almost...

When you start Apache, Apache and Perl modules are being loaded, code can be executed. Since all this
happens with root effective ID, any code executed as if the root user was doing that. You should be very
careful because while you didn’t gave anyone the root password, all the users in the apache group have an
indirect root access. Which means that if Apache loads some module or executes some code that is
writable by some of these users, users can plant code that will allow them to gain a shell access to root
account and become a real root.

Of course if you don’t trust your team you shouldn’t use this solution in first place. You can try to check
that all the files Apache loads aren’t writable by anyone but root, but there are too many of them, espe-
cially in the mod_perl case, where many Perl modules are loaded at the server startup.

By the way, don’t let all this setuid stuff to confuse you -- when the parent process is loaded, the children
processes are spawned as non-root processes. This section has presented a way to allow non-root users to
start the server as root user, the rest is exactly the same as if you were executing the script as root in first
place.

7.8.3 Sample Apache Startup SUID Script

Now if you are still with us, here is an example of the setuid Apache startup script.

Note the line marked WORKAROUND, which fixes an obscure error when starting mod_perl enabled
Apache by setting the real UID to the effective UID. Without this workaround, a mismatch between the
real and the effective UID causes Perl to croak on the -e switch.

Note that you must be using a version of Perl that recognizes and emulates the suid bits in order for this to
work. This script will do different things depending on whether it is named start_httpd ,
stop_httpd or restart_httpd . You can use symbolic links for this purpose.

 suid_apache_ctl

 #!/usr/bin/perl -T

 # These constants will need to be adjusted.
 $PID_FILE = ’/home/www/logs/httpd.pid’;
 $HTTPD = ’/home/www/httpd -d /home/www’;

 # These prevent taint warnings while running suid
 $ENV{PATH}=’/bin:/usr/bin’;
 $ENV{IFS}=’’;

15 Feb 2014154

7.8.3 Sample Apache Startup SUID Script

 # This sets the real to the effective ID, and prevents
 # an obscure error when starting apache/mod_perl
 $< = $>; # WORKAROUND
 $(= $) = 0; # set the group to root too

 # Do different things depending on our name
 ($name) = $0 =~ m|([^/]+)$|;

 if ($name eq ’start_httpd’) {
 system $HTTPD and die "Unable to start HTTP";
 print "HTTP started.\n";
 exit 0;
 }

 # extract the process id and confirm that it is numeric
 $pid = ‘cat $PID_FILE‘;
 $pid =~ /(\d+)/ or die "PID $pid not numeric";
 $pid = $1;

 if ($name eq ’stop_httpd’) {
 kill ’TERM’,$pid or die "Unable to signal HTTP";
 print "HTTP stopped.\n";
 exit 0;
 }

 if ($name eq ’restart_httpd’) {
 kill ’HUP’,$pid or die "Unable to signal HTTP";
 print "HTTP restarted.\n";

 exit 0;
 }

 die "Script must be named start_httpd, stop_httpd, or restart_httpd.\n";

7.9 Preparing for Machine Reboot
When you run your own development box, it’s okay to start the webserver by hand when you need to. On
a production system it is possible that the machine the server is running on will have to be rebooted. When
the reboot is completed, who is going to remember to start the server? It’s easy to forget this task, and
what happens if you aren’t around when the machine is rebooted?

After the server installation is complete, it’s important not to forget that you need to put a script to perform
the server startup and shutdown into the standard system location, for example /etc/rc.d under RedHat
Linux, or /etc/init.d/apache under Debian Slink Linux.

This is the directory which contains scripts to start and stop all the other daemons. The directory and file
names vary from one Operating System (OS) to another, and even between different distributions of the
same OS.

15515 Feb 2014

7.9 Preparing for Machine RebootControlling and Monitoring the Server

Generally the simplest solution is to copy the apachectl script to your startup directory or create a
symbolic link from the startup directory to the apachectl script. You will find apachectl in the
same directory as the httpd executable after Apache installation. If you have more than one Apache server
you will need a separate script for each one, and of course you will have to rename them so that they can
co-exist in the same directories.

For example on a RedHat Linux machine with two servers, I have the following setup:

 /etc/rc.d/init.d/httpd_docs
 /etc/rc.d/init.d/httpd_perl
 /etc/rc.d/rc3.d/S91httpd_docs -> ../init.d/httpd_docs
 /etc/rc.d/rc3.d/S91httpd_perl -> ../init.d/httpd_perl
 /etc/rc.d/rc6.d/K16httpd_docs -> ../init.d/httpd_docs
 /etc/rc.d/rc6.d/K16httpd_perl -> ../init.d/httpd_perl

The scripts themselves reside in the /etc/rc.d/init.d directory. There are symbolic links to these scripts in
other directories. The names are the same as the script names but they have numerical prefixes, which are
used for executing the scripts in a particular order: the lower numbers are executed earlier.

When the system starts (level 3) we want the Apache to be started when almost all of the services are
running already, therefore I’ve used S91. For example if the mod_perl enabled Apache issues a
connect_on_init() the SQL server should be started before Apache.

When the system shuts down (level 6), Apache should be stopped as one of the first processes, therefore
I’ve used K16. Again if the server does some cleanup processing during the shutdown event and requires
third party services to be running (e.g. SQL server) it should be stopped before these services.

Notice that it’s normal for more than one symbolic link to have the same sequence number.

Under RedHat Linux and similar systems, when a machine is booted and its runlevel set to 3 (multiuser +
network), Linux goes into /etc/rc.d/rc3.d/ and executes the scripts the symbolic links point to with the
start argument. When it sees S91httpd_perl, it executes:

 /etc/rc.d/init.d/httpd_perl start

When the machine is shut down, the scripts are executed through links from the /etc/rc.d/rc6.d/ directory.
This time the scripts are called with the stop argument, like this:

 /etc/rc.d/init.d/httpd_perl stop

Most systems have GUI utilities to automate the creation of symbolic links. For example RedHat Linux
includes the control-panel utility, which amongst other things includes the RunLevel Manager .
(which can be invoked directly as either ntsysv(8) or tksysv(8)). This will help you to create the proper
symbolic links. Of course before you use it, you should put apachectl or similar scripts into the init.d
or equivalent directory. Or you can have a symbolic link to some other location instead.

The simplest approach is to use the chkconfig(8) utility which adds and removes the services for you. The
following example shows how to add an httpd_perl startup script to the system.

15 Feb 2014156

7.9 Preparing for Machine Reboot

First move or copy the file into the directory /etc/rc.d/init.d:

 % mv httpd_perl /etc/rc.d/init.d

Now open the script in your favorite editor and add the following lines after the main header of the script:

 # Comments to support chkconfig on RedHat Linux
 # chkconfig: 2345 91 16
 # description: mod_perl enabled Apache Server

So now the beginning of the script looks like:

 #!/bin/sh
 #
 # Apache control script designed to allow an easy command line
 # interface to controlling Apache. Written by Marc Slemko,
 # 1997/08/23

 # Comments to support chkconfig on RedHat Linux
 # chkconfig: 2345 91 16
 # description: mod_perl enabled Apache Server

 #
 # The exit codes returned are:
 # ...

Adjust the line:

 # chkconfig: 2345 91 16

to your needs. The above setting says to says that the script should be started in levels 2, 3, 4, and 5, that
its start priority should be 91, and that its stop priority should be 16.

Now all you have to do is to ask chkconfig to configure the startup scripts. Before we do that let’s look
at what we have:

 % find /etc/rc.d | grep httpd_perl

 /etc/rc.d/init.d/httpd_perl

Which means that we only have the startup script itself. Now we execute:

 % chkconfig --add httpd_perl

and see what has changed:

15715 Feb 2014

7.9 Preparing for Machine RebootControlling and Monitoring the Server

 % find /etc/rc.d | grep httpd_perl

 /etc/rc.d/init.d/httpd_perl
 /etc/rc.d/rc0.d/K16httpd_perl
 /etc/rc.d/rc1.d/K16httpd_perl
 /etc/rc.d/rc2.d/S91httpd_perl
 /etc/rc.d/rc3.d/S91httpd_perl
 /etc/rc.d/rc4.d/S91httpd_perl
 /etc/rc.d/rc5.d/S91httpd_perl
 /etc/rc.d/rc6.d/K16httpd_perl

As you can see chkconfig created all the symbolic links for us, using the startup and shutdown priori-
ties as specified in the line:

 # chkconfig: 2345 91 16

If for some reason you want to remove the service from the startup scripts, all you have to do is to tell
chkconfig to remove the links:

 % chkconfig --del httpd_perl

Now if we look at the files under the directory /etc/rc.d/ we see again only the script itself.

 % find /etc/rc.d | grep httpd_perl

 /etc/rc.d/init.d/httpd_perl

Of course you may keep the startup script in any other directory as long as you can link to it. For example
if you want to keep this file with all the Apache binaries in /usr/local/apache/bin, all you have to do is to
provide a symbolic link to this file:

 % ln -s /usr/local/apache/bin/apachectl /etc/rc.d/init.d/httpd_perl

and then:

 % chkconfig --add httpd_perl

Note that in case of using symlinks the link name in /etc/rc.d/init.d is what matters and not the name of the
script the link points to.

7.10 Monitoring the Server. A watchdog.
With mod_perl many things can happen to your server. It is possible that the server might die when you
are not around. As with any other critical service you need to run some kind of watchdog.

One simple solution is to use a slightly modified apachectl script, which I’ve named apache.watchdog.
Call it from the crontab every 30 minutes -- or even every minute -- to make sure the server is up all the
time.

15 Feb 2014158

7.10 Monitoring the Server. A watchdog.

The crontab entry for 30 minutes intervals:

 0,30 * * * * /path/to/the/apache.watchdog >/dev/null 2>&1

The script:

 #!/bin/sh

 # this script is a watchdog to see whether the server is online
 # It tries to restart the server, and if it’s
 # down it sends an email alert to admin

 # admin’s email
 EMAIL=webmaster@example.com

 # the path to your PID file
 PIDFILE=/usr/local/var/httpd_perl/run/httpd.pid

 # the path to your httpd binary, including options if necessary
 HTTPD=/usr/local/sbin/httpd_perl/httpd_perl

 # check for pidfile
 if [-f $PIDFILE] ; then
 PID=‘cat $PIDFILE‘

 if kill -0 $PID; then
 STATUS="httpd (pid $PID) running"
 RUNNING=1
 else
 STATUS="httpd (pid $PID?) not running"
 RUNNING=0
 fi
 else
 STATUS="httpd (no pid file) not running"
 RUNNING=0
 fi

 if [$RUNNING -eq 0]; then
 echo "$0 $ARG: httpd not running, trying to start"
 if $HTTPD ; then
 echo "$0 $ARG: httpd started"
 mail $EMAIL -s "$0 $ARG: httpd started" > /dev/null 2>&1
 else
 echo "$0 $ARG: httpd could not be started"
 mail $EMAIL -s \
 "$0 $ARG: httpd could not be started" > /dev/null 2>&1

 fi
 fi

Another approach, probably even more practical, is to use the cool LWP Perl package to test the server by
trying to fetch some document (script) served by the server. Why is it more practical? Because while the
server can be up as a process, it can be stuck and not working. Failing to get the document will trigger
restart, and "probably" the problem will go away.

15915 Feb 2014

7.10 Monitoring the Server. A watchdog.Controlling and Monitoring the Server

Like before we set a cronjob to call this script every few minutes to fetch some very light script. The best
thing of course is to call it every minute. Why so often? If your server starts to spin and trash your disk
space with multiple error messages filling the error_log, in five minutes you might run out of free disk
space which might bring your system to its knees. Chances are that no other child will be able to serve
requests, since the system will be too busy writing to the error_log file. Think big--if you are running a
heavy service (which is very fast since you are running under mod_perl) adding one more request every
minute will not be felt by the server at all.

So we end up with a crontab entry like this:

 * * * * * /path/to/the/watchdog.pl >/dev/null 2>&1

And the watchdog itself:

 #!/usr/bin/perl -wT

 # untaint
 $ENV{’PATH’} = ’/bin:/usr/bin’;
 delete @ENV{’IFS’, ’CDPATH’, ’ENV’, ’BASH_ENV’};

 use strict;
 use diagnostics;
 use URI::URL;
 use LWP::MediaTypes qw(media_suffix);

 my $VERSION = ’0.01’;
 use vars qw($ua $proxy);
 $proxy = ’’;

 require LWP::UserAgent;
 use HTTP::Status;

 ###### Config ########
 my $test_script_url = ’http://www.example.com:81/perl/test.pl’;
 my $monitor_email = ’root@localhost’;
 my $restart_command = ’/usr/local/sbin/httpd_perl/apachectl restart’;
 my $mail_program = ’/usr/lib/sendmail -t -n’;
 ######################

 $ua = new LWP::UserAgent;
 $ua->agent("$0/watchdog " . $ua->agent);
 # Uncomment the proxy if you access a machine from behind a firewall
 # $proxy = "http://www-proxy.com";
 $ua->proxy(’http’, $proxy) if $proxy;

 # If it returns ’1’ it means we are alive
 exit 1 if checkurl($test_script_url);

 # Houston, we have a problem.
 # The server seems to be down, try to restart it.
 my $status = system $restart_command;

 my $message = ($status == 0)
 ? "Server was down and successfully restarted!"

15 Feb 2014160

7.10 Monitoring the Server. A watchdog.

 : "Server is down. Can’t restart.";

 my $subject = ($status == 0)
 ? "Attention! Webserver restarted"
 : "Attention! Webserver is down. can’t restart";

 # email the monitoring person
 my $to = $monitor_email;
 my $from = $monitor_email;
 send_mail($from,$to,$subject,$message);

 # input: URL to check
 # output: 1 for success, 0 for failure
 #######################
 sub checkurl{
 my ($url) = @_;

 # Fetch document
 my $res = $ua->request(HTTP::Request->new(GET => $url));

 # Check the result status
 return 1 if is_success($res->code);

 # failed
 return 0;
 } # end of sub checkurl

 # send email about the problem
 #######################
 sub send_mail{
 my ($from,$to,$subject,$messagebody) = @_;

 open MAIL, "|$mail_program"
 or die "Can’t open a pipe to a $mail_program :$!\n";

 print MAIL <<__END_OF_MAIL__;
 To: $to
 From: $from
 Subject: $subject

 $messagebody

 __END_OF_MAIL__

 close MAIL;
 }

7.11 Running a Server in Single Process Mode
Often while developing new code, you will want to run the server in single process mode. See Sometimes
it works Sometimes it does Not and Names collisions with Modules and libs. Running in single process
mode inhibits the server from "daemonizing", and this allows you to run it under the control of a debugger
more easily.

16115 Feb 2014

7.11 Running a Server in Single Process ModeControlling and Monitoring the Server

 % /usr/local/sbin/httpd_perl/httpd_perl -X

When you use the -X switch the server will run in the foreground of the shell, so you can kill it with
Ctrl-C.

Note that in -X (single-process) mode the server will run very slowly when fetching images.

Note for Netscape users:

If you use Netscape while your server is running in single-process mode, HTTP’s KeepAlive feature
gets in the way. Netscape tries to open multiple connections and keep them open. Because there is only
one server process listening, each connection has to time out before the next succeeds. Turn off
KeepAlive in httpd.conf to avoid this effect while developing. If you use the image size parameters,
Netscape will be able to render the page without the images so you can press the browser’s STOP button
after a few seconds.

In addition you should know that when running with -X you will not see the control messages that the
parent server normally writes to the error_log ("server started", "server stopped" etc). Since httpd -X
causes the server to handle all requests itself, without forking any children, there is no controlling parent to
write the status messages.

7.12 Starting a Personal Server for Each Developer
If you are the only developer working on the specific server:port you have no problems, since you have
complete control over the server. However, often you will have a group of developers who need to
develop mod_perl scripts and modules concurrently. This means that each developer will want to have
control over the server - to kill it, to run it in single server mode, to restart it, etc., as well as having control
over the location of the log files, configuration settings like MaxClients , and so on.

You can work around this problem by preparing a few httpd.conf files and forcing each developer to use

 httpd_perl -f /path/to/httpd.conf

but I approach it in a different way. I use the -Dparameter startup option of the server. I call my
version of the server

 % http_perl -Dstas

In httpd.conf I write:

 # Personal development Server for stas
 # stas uses the server running on port 8000
 <IfDefine stas>
 Port 8000
 PidFile /usr/local/var/httpd_perl/run/httpd.pid.stas
 ErrorLog /usr/local/var/httpd_perl/logs/error_log.stas
 Timeout 300
 KeepAlive On
 MinSpareServers 2
 MaxSpareServers 2

15 Feb 2014162

7.12 Starting a Personal Server for Each Developer

 StartServers 1
 MaxClients 3
 MaxRequestsPerChild 15
 </IfDefine>

 # Personal development Server for userfoo
 # userfoo uses the server running on port 8001
 <IfDefine userfoo>
 Port 8001
 PidFile /usr/local/var/httpd_perl/run/httpd.pid.userfoo
 ErrorLog /usr/local/var/httpd_perl/logs/error_log.userfoo
 Timeout 300
 KeepAlive Off
 MinSpareServers 1
 MaxSpareServers 2
 StartServers 1
 MaxClients 5
 MaxRequestsPerChild 0
 </IfDefine>

With this technique we have achieved full control over start/stop, number of children, a separate error log
file, and port selection for each server. This saves Stas from getting called every few minutes by Eric:
"Stas, I’m going to restart the server".

In the above technique, you need to discover the PID of your parent httpd_perl process, which is
written in /usr/local/var/httpd_perl/run/httpd.pid.stas (and the same for the user
eric). To make things even easier we change the apachectl script to do the work for us. We make a copy
for each developer called apachectl.username and we change two lines in each script:

 PIDFILE=/usr/local/var/httpd_perl/run/httpd.pid.username
 HTTPD=’/usr/local/sbin/httpd_perl/httpd_perl -Dusername’

So for the user stas we prepare a startup script called apachectl.stas and we change these two lines in the
standard apachectl script as it comes unmodified from Apache distribution.

 PIDFILE=/usr/local/var/httpd_perl/run/httpd.pid.stas
 HTTPD=’/usr/local/sbin/httpd_perl/httpd_perl -Dstas’

So now when user stas wants to stop the server he will execute:

 apachectl.stas stop

And to start:

 apachectl.stas start

Certainly the rest of the apachectl arguments apply as before.

You might think about having only one apachectl and know who is calling by checking the UID, but
since you have to be root to start the server it is not possible, unless you make the setuid bit on this script,
as we’ve explained in the beginning of this chapter. If you do so, you can have a single apachectl
script for all developers, after you modify it to automatically find out the UID of the user, who executes
the script and set the right paths.

16315 Feb 2014

7.12 Starting a Personal Server for Each DeveloperControlling and Monitoring the Server

The last thing is to provide developers with an option to run in single process mode by:

 /usr/local/sbin/httpd_perl/httpd_perl -Dstas -X

In addition to making life easier, we decided to use relative links everywhere in the static documents,
including the calls to CGIs. You may ask how using relative links will get to the right server port. It’s very
simple, we use mod_rewrite .

To use mod_rewrite you have to configure your httpd_docs server with --enable-module=rewrite
and recompile, or use DSO and load the module in httpd.conf. In the httpd.conf of our httpd_docs
server we have the following code:

 RewriteEngine on

 # stas’s server
 # port = 8000
 RewriteCond %{REQUEST_URI} ^/(perl|cgi-perl)
 RewriteCond %{REMOTE_ADDR} 123.34.45.56
 RewriteRule ^(.*) http://example.com:8000/$1 [P,L]

 # eric’s server
 # port = 8001
 RewriteCond %{REQUEST_URI} ^/(perl|cgi-perl)
 RewriteCond %{REMOTE_ADDR} 123.34.45.57
 RewriteRule ^(.*) http://example.com:8001/$1 [P,L]

 # all the rest
 RewriteCond %{REQUEST_URI} ^/(perl|cgi-perl)
 RewriteRule ^(.*) http://example.com:81/$1 [P]

The IP addresses are the addresses of the developer desktop machines (where they are running their web
browsers). So if an html file includes a relative URI /perl/test.pl or even
http://www.example.com/perl/test.pl, clicking on the link will be internally proxied to
http://www.example.com:8000/perl/test.pl if the click has been made at the user stas’s desktop machine,
or to http://www.example.com:8001/perl/test.pl for a request generated from the user eric’s machine, per
our above URI rewrite example.

Another possibility is to use REMOTE_USER variable if all the developers are forced to authenticate them-
selves before they can access the server. If you do, you will have to change the RewriteRule s to match
REMOTE_USER in the above example.

We wish to stress again, that the above setup will work only with relative URIs in the HTML code. If you
choose to generate full URIs including non-80 port the requests originated from this HTML code will
bypass the light server listening to the default port 80, and go directly to the server:port of the full URI.

7.13 Wrapper to Emulate the Server Perl Environment
Often you will start off debugging your script by running it from your favorite shell program. Sometimes
you encounter a very weird situation when the script runs from the shell but dies when processed as a CGI
script by a web-server. The real problem often lies in the difference between the environment variables

15 Feb 2014164

7.13 Wrapper to Emulate the Server Perl Environment

http://www.example.com/perl/test.pl
http://www.example.com:8000/perl/test.pl
http://www.example.com:8001/perl/test.pl

that is used by your web-server and the ones used by your shell program.

For example you may have a set of non-standard Perl directories, used for local Perl modules. You have to
tell the Perl interpreter where these directories are. If you don’t want to modify @INC in all scripts and
modules, you can use a PERL5LIB environment variable, to tell Perl where the directories are. But then
you might forget to alter the mod_perl startup script to correct @INC there as well. And if you forget this,
you can be quite puzzled why the scripts are running from the shell program, but not from the web.

Of course the error_log will help as well to find out what the problem is, but there can be other obscure
cases, where you do something different at the shell program and your scripts refuse to run under the
web-server.

Another example is when you have more than one version of Perl installed. You might call the first
version of the Perl executable in the first script’s line (the shebang line), but to have the web-server
compiled with another Perl version. Since mod_perl ignores the path to the Perl executable at the first line
of the script, you can get quite confused the code won’t do the same when processed as request, compared
to be executed from the command line. it will take a while before you realize that you test the scripts from
the shell program using the wrong Perl version.

The best debugging approach is to write a wrapper that emulates the exact environment of the server, first
deleting environment variables like PERL5LIB and then calling the same perl binary that it is being used
by the server. Next, set the environment identical to the server’s by copying the Perl run directives from
the server startup and configuration files or even require()’ing the startup file, if it doesn’t include
Apache:: modules stuff, unavailable under shell. This will also allow you to remove completely the first
line of the script, since mod_perl doesn’t need it anyway and the wrapper knows how to call the script.

Here is an example of such a script. Note that we force the use of -Tw when we call the real script. Since
when debugging we want to make sure that the code is working when the taint mode is on, and we want to
see all the warnings, to help Perl help us have a better code.

We have also added the ability to pass parameters, which will not happen when you will issue a request to
script, but it can be helpful at times.

 #!/usr/bin/perl -w

 # This is a wrapper example

 # It simulates the web server environment by setting @INC and other
 # stuff, so what will run under this wrapper will run under Web and
 # vice versa.

 #
 # Usage: wrap.pl some_cgi.pl
 #
 BEGIN {
 # we want to make a complete emulation, so we must reset all the
 # paths and add the standard Perl libs
 @INC =
 qw(/usr/lib/perl5/5.00503/i386-linux
 /usr/lib/perl5/5.00503
 /usr/lib/perl5/site_perl/5.005/i386-linux

16515 Feb 2014

7.13 Wrapper to Emulate the Server Perl EnvironmentControlling and Monitoring the Server

 /usr/lib/perl5/site_perl/5.005
 .
);
 }

 use strict;
 use File::Basename;

 # process the passed params
 my $cgi = shift || ’’;
 my $params = (@ARGV) ? join(" ", @ARGV) : ’’;

 die "Usage:\n\t$0 some_cgi.pl\n" unless $cgi;

 # Set the environment
 my $PERL5LIB = join ":", @INC;

 # if the path includes the directory
 # we extract it and chdir there
 if (index($cgi,’/’) >= 0) {
 my $dirname = dirname($cgi);
 chdir $dirname or die "Can’t chdir to $dirname: $! \n";

 $cgi =~ m|$dirname/(.*)|;
 $cgi = $1;
 }

 # run the cgi from the script’s directory
 # Note that we set Warning and Taint modes ON!!!
 system qq{/usr/bin/perl -I$PERL5LIB -Tw $cgi $params};

7.14 Server Maintenance Chores
It’s not enough to have your server and service up and running. You have to maintain the server even
when everything seems to be fine. This includes security auditing, keeping an eye on the size of remaining
unused disk space, available RAM, the load of the system, etc.

If you forget about these chores one day (sooner or later) your system will crash either because it has run
out of free disk space, all the available CPU has been used and system has started heavily to swap or
someone has broken in. Unfortunately the scope of this guide is not covering the latter, since it will take
more than one book to profoundly cover this issue, but the rest of the thing are quite easy to prevent if you
follow our advices.

Certainly, your particular system might have maintenance chores that aren’t covered here, but at least you
will be alerted that these chores are real and should be taken care of.

7.14.1 Handling Log Files

There are two issues to solve with log files. First they should be rotated and compressed on the constant
basis, since they tend to use big parts of the disk space over time. Second these should be monitored for
possible sudden explosive growth rates, when something goes astray in your code running at the mod_perl

15 Feb 2014166

7.14 Server Maintenance Chores

server and the process starts to log thousands of error messages in second without stopping, until all the
disk space is used, and the server cannot work anymore.

7.14.1.1 Log Rotation

The first issue is solved by having a process run by crontab at certain times (usually off hours, if this term
is still valid in the Internet era) and rotate the logs. The log rotation includes the current log file renaming,
server restart (which creates a fresh new log file), and renamed file compression and/or moving it on a
different disk.

For example if we want to rotate the access_log file we could do:

 % mv access_log access_log.renamed
 % apachectl restart
 % sleep 5; # allow all children to complete requests and logging
 # now it’s safe to use access_log.renamed
 % mv access_log.renamed /some/directory/on/another/disk

This is the script that we run from the crontab to rotate the log files:

 #!/usr/local/bin/perl -Tw

 # This script does log rotation. Called from crontab.

 use strict;
 $ENV{PATH}=’/bin:/usr/bin’;

 ### configuration
 my @logfiles = qw(access_log error_log);
 umask 0;
 my $server = "httpd_perl";
 my $logs_dir = "/usr/local/var/$server/logs";
 my $restart_command = "/usr/local/sbin/$server/apachectl restart";
 my $gzip_exec = "/usr/bin/gzip";

 my ($sec,$min,$hour,$mday,$mon,$year) = localtime(time);
 my $time = sprintf "%0.4d.%0.2d.%0.2d-%0.2d.%0.2d.%0.2d",
 $year+1900,++$mon,$mday,$hour,$min,$sec;
 $^I = ".$time";

 # rename log files
 chdir $logs_dir;
 @ARGV = @logfiles;
 while (<>) {
 close ARGV;
 }

 # now restart the server so the logs will be restarted
 system $restart_command;

 # allow all children to complete requests and logging
 sleep 5;

16715 Feb 2014

7.14.1 Handling Log FilesControlling and Monitoring the Server

 # compress log files
 foreach (@logfiles) {
 system "$gzip_exec $_.$time";
 }

Note: Setting $^I sets the in-place edit flag to a dot followed by the time. We copy the names of the
logfiles into @ARGV, and open each in turn and immediately close them without doing any changes; but
because the in-place edit flag is set they are effectively renamed.

As you see the rotated files will include the date and the time in their filenames.

Here is a more generic set of scripts for log rotation. Cron job fires off setuid script called log-roller that
looks like this:

 #!/usr/bin/perl -Tw
 use strict;
 use File::Basename;

 $ENV{PATH} = "/usr/ucb:/bin:/usr/bin";

 my $ROOT = "/WWW/apache"; # names are relative to this
 my $CONF = "$ROOT/conf/httpd.conf"; # master conf
 my $MIDNIGHT = "MIDNIGHT"; # name of program in each logdir

 my ($user_id, $group_id, $pidfile); # will be set during parse of conf
 die "not running as root" if $>;

 chdir $ROOT or die "Cannot chdir $ROOT: $!";

 my %midnights;
 open CONF, "<$CONF" or die "Cannot open $CONF: $!";
 while (<CONF>) {
 if (/^User (\w+)/i) {
 $user_id = getpwnam($1);
 next;
 }
 if (/^Group (\w+)/i) {
 $group_id = getgrnam($1);
 next;
 }
 if (/^PidFile (.*)/i) {
 $pidfile = $1;
 next;
 }
 next unless /^ErrorLog (.*)/i;
 my $midnight = (dirname $1)."/$MIDNIGHT";
 next unless -x $midnight;
 $midnights{$midnight}++;
 }
 close CONF;

 die "missing User definition" unless defined $user_id;
 die "missing Group definition" unless defined $group_id;
 die "missing PidFile definition" unless defined $pidfile;

15 Feb 2014168

7.14.1 Handling Log Files

 open PID, $pidfile or die "Cannot open $pidfile: $!";
 <PID> =~ /(\d+)/;
 my $httpd_pid = $1;
 close PID;
 die "missing pid definition" unless defined $httpd_pid and $httpd_pid;
 kill 0, $httpd_pid or die "cannot find pid $httpd_pid: $!";

 for (sort keys %midnights) {
 defined(my $pid = fork) or die "cannot fork: $!";
 if ($pid) {
 ## parent:
 waitpid $pid, 0;
 } else {
 my $dir = dirname $_;
 ($(,$)) = ($group_id,$group_id);
 ($<,$>) = ($user_id,$user_id);
 chdir $dir or die "cannot chdir $dir: $!";
 exec "./$MIDNIGHT";
 die "cannot exec $MIDNIGHT: $!";
 }
 }

 kill 1, $httpd_pid or die "Cannot SIGHUP $httpd_pid: $!";

And then individual MIDNIGHT scripts can look like this:

 #!/usr/bin/perl -Tw
 use strict;

 die "bad guy" unless getpwuid($<) =~ /^(root|nobody)$/;
 my @LOGFILES = qw(access_log error_log);
 umask 0;
 $^I = ".".time;
 @ARGV = @LOGFILES;
 while (<>) {
 close ARGV;
 }

Can you spot the security holes? Take your time... This code shouldn’t be used in hostile situations.

7.14.1.2 Non-Scheduled Emergency Log Rotation

As we have mentioned before, there are times when the web server goes wild and starts to log lots of
messages to the error_log file non-stop. If no one monitors this, it possible that in a few minutes all the
free disk spaces will be filled and no process will be able to work normally. When this happens, the I/O
the faulty server causes is so heavy that its sibling processes cannot serve requests.

Generally this not the case, but a few people have reported to encounter this problem. If you are one of
these people, you should run the monitoring program that checks the log file size and if it notices that the
file has grown too large, it should attempt to restart the server and probably trim the log file.

16915 Feb 2014

7.14.1 Handling Log FilesControlling and Monitoring the Server

When we have used a quite old mod_perl version, sometimes we have had bursts of an error Callback
called exit showing up in our error_log. The file could grow to 300 Mbytes in a few minutes.

We will show you is an example of the script that should be executed from the crontab, to handle the situa-
tions like this. The cron job should run every few minutes or even every minute, since if you experience
this problem you know that log files fills up very fast. The example script will rotate when the error_log
will grow over 100K. Note that this script is useful when you have the normal scheduled log rotation facil-
ity working, remember that this one is an emergency solver and not to be used for routine log rotation.

 emergency_rotate.sh

 #!/bin/sh
 S=‘ls -s /usr/local/apache/logs/error_log | awk ’{print $1}’‘
 if ["$S" -gt 100000] ; then
 mv /usr/local/apache/logs/error_log /usr/local/apache/logs/error_log.old
 /etc/rc.d/init.d/httpd restart
 date | /bin/mail -s "error_log $S kB on inx" admin@example.com
 fi

Of course you could write a more advanced script, using the timestamps and other whistles. This example
comes to illustrate how to solve the problem in question.

Another solution is to use an out of box tools that are written for this purpose. The daemontools
package (ftp://koobera.math.uic.edu/www/daemontools.html) includes a utility called multilog . This
utility saves stdin stream to one or more log files. It optionally timestamps each line and, for each log,
includes or excludes lines matching specified patterns. It automatically rotates logs to limit the amount of
disk space used. If the disk fills up, it pauses and tries again, without losing any data.

The obvious caveat is that it doesn’t restart the server, so while it tries to solve the log file handling
problem it doesn’t handle the originator of the problem. But since the I/O of the log writing process
Apache process will be quite heavy, the rest of the servers will work very slowly if at all, and a normal
watchdog should detect this abnormal situation and restart the Apache server.

7.15 Swapping Prevention
Before I delve into swapping process details, let’s refresh our knowledge of memory components and
memory management

The computer memory is called RAM, which stands for Random Access Memory. Reading and writing to
RAM is, by a few orders, faster than doing the same operations on a hard disk, the former uses
non-movable memory cells, while the latter uses rotating magnetic media.

On most operating systems swap memory is used as an extension for RAM and not as a duplication of it.
So if your OS is one of those, if you have 128MB of RAM and 256MB swap partition, you have a total of
384MB of memory available. You should never count the extra memory when you decide on the
maximum number of processes to be run, and I will show why in the moment.

15 Feb 2014170

7.15 Swapping Prevention

ftp://koobera.math.uic.edu/www/daemontools.html

The swapping memory can be built of a number of hard disk partitions and swap files formatted to be used
as swap memory. When you need more swap memory you can always extend it on demand as long as you
have some free disk space (for more information see the mkswap and swapon manpages).

System memory is quantified in units called memory pages. Usually the size of a memory page is between
1KB and 8KB. So if you have 256MB of RAM installed on your machine and the page size is 4KB your
system has 64,000 main memory pages to work with and these pages are fast. If you have 256MB swap
partition the system can use yet another 64,000 memory pages, but they are much slower.

When the system is started all memory pages are available for use by the programs (processes).

Unless the program is really small, the process running this program uses only a few segments of the
program, each segment mapped onto its own memory page. Therefore only a few memory pages are
required to be loaded into the memory.

When the process needs an additional program’s segment to be loaded into the memory, it asks the system
whether the page containing this segment is already loaded in the memory. If the page is not found--an
event know as a page fault occurs, which requires the system to allocate a free memory page, go to the
disk, read and load the requested program’s segment into the allocated memory page.

If a process needs to bring a new page into physical memory and there are no free physical pages avail-
able, the operating system must make room for this page by discarding another page from physical
memory.

If the page to be discarded from physical memory came from an image or data file and has not been
written to then the page does not need to be saved. Instead it can be discarded and if the process needs that
page again it can be brought back into memory from the image or data file.

However, if the page has been modified, the operating system must preserve the contents of that page so
that it can be accessed at a later time. This type of page is known as a dirty page and when it is removed
from memory it is saved in a special sort of file called the swap file. This process is referred to as a swap-
ping out.

Accesses to the swap file are very long relative to the speed of the processor and physical memory and the
operating system must juggle the need to write pages to disk with the need to retain them in memory to be
used again.

In order to improve the swapping out process, to decrease the possibility that the page that has just been
swapped out, will be needed at the next moment, the LRU (least recently used) or a similar algorithm is
used.

To summarize the two swapping scenarios, read-only pages discarding incurs no overhead in contrast with
the discarding scenario of the data pages that have been written to, since in the latter case the pages have
to be written to a swap partition located on the slow disk. Therefore your machine’s overall performance
will be much better if there will be less memory pages that can become dirty.

17115 Feb 2014

7.15 Swapping PreventionControlling and Monitoring the Server

But the problem is, Perl is a language with no strong data types, which means that both the program code
and the program data are seen as a data pages by OS since both mapped to the same memory pages. There-
fore a big chunk of your Perl code becomes dirty when its variables are modified and when the pages need
to be discarded they have to be written to the swap partition.

This leads us to two important conclusions about swapping and Perl.

Running your system when there is no free main memory available hinders performance, because
processes memory pages should be discarded and then reread from disk again and again.

Since a majority of the running code is a Perl code, in addition to the overhead of reading the previ-
ously discarded pages in, the overhead of saving the dirty pages to the swap partition is occurring.

When the system has to swap memory pages in and out, the system slows down, not serving the processes
as fast as before. This leads to an accumulation of processes waiting for their turn to run, which further
causes processing demands to go up, which in turn slows down the system even more as more memory is
required. This ever worsening spiral will lead the machine to halt, unless the resource demand suddenly
drops down and allows the processes to catch up with their tasks and go back to normal memory usage.

In addition it’s important to know that for a better performance, most programs, particularly programs
written in Perl, on most modern OSs don’t return memory pages while they are running. If some of the
memory gets freed it’s reused when needed by the process, without creating the additional overhead of
asking the system to allocate new memory pages. That’s why you will observe that Perl programs grow in
size as they run and almost never shrink.

When the process quits it returns its memory pages to the pool of freely available pages for other processes
to use.

This scenario is certainly educating, and it should be now obvious that your system that runs the web
server should never swap. It’s absolutely normal for your desktop to start swapping. You will see it imme-
diately since things will slow down and sometimes the system will freeze for a short periods. But as I’ve
just mentioned, you can stop starting new programs and can quit some, thus allowing the system to catch
up with the load and come back to use the RAM.

In the case of the web server you have much less control since it’s users who load your machine by issuing
requests to your server. Therefore you should configure the server, so that the maximum number of possi-
ble processes will be small enough using the MaxClients directive (For the technique for choosing the
right MaxClients refer to the section ’Choosing MaxClients’). This will ensure that at peak hours the
system won’t swap. Remember that swap space is an emergency pool, not a resource to be used routinely.
If you are low on memory and you badly need it, buy it or reduce the number of processes to prevent
swapping.

However sometimes, due to the faulty code, some process might start spinning in an unconstrained loop,
consuming all the available RAM and starting to heavily use swap memory. In such a situation it helps
when you have a big emergency pool (i.e. lots of swap memory). But you have to resolve this problem as
soon as possible since this pool won’t last for a long time. In the meanwhile the Apache::Resource
module can be handy.

15 Feb 2014172

7.15 Swapping Prevention

For swapping monitoring techniques see the section ’Apache::VMonitor -- Visual System and Apache
Server Monitor’.

7.16 Preventing mod_perl Processes From Going Wild
Sometimes people report that they had a problem with their code running under mod_perl that has caused
all the RAM or all the disk to be used. The following tips should help you prevent these problems, before
if at all they hit you.

7.16.1 All RAM Consumed

Sometimes calling an undefined subroutine in a module can cause a tight loop that consumes all the avail-
able memory. Here is a way to catch such errors. Define an UNIVERSAL::AUTOLOAD subroutine in
your startup.pl, or in a <Perl></Perl> section in your httpd.conf file:

 sub UNIVERSAL::AUTOLOAD {
 my $class = shift;
 warn "$class can’t \$UNIVERSAL::AUTOLOAD=$UNIVERSAL::AUTOLOAD!\n";
 }

You can either put it in your startup.pl, or in a <Perl></Perl> section in your httpd.conf file. I do the
latter. Putting it in all your mod_perl modules would be redundant (and might give you compile-time
errors).

This will produce a nice error in error_log, giving the line number of the call and the name of the unde-
fined subroutine.

7.17 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

7.18 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

17315 Feb 2014

7.16 Preventing mod_perl Processes From Going WildControlling and Monitoring the Server

http://stason.org/
http://stason.org/

8 mod_perl Advocacy

15 Feb 2014174

8 mod_perl Advocacy

8.1 Description
Having a hard time getting mod_perl into your organization? We have collected some arguments you can
use to convince your boss why the organization wants mod_perl.

You can contact the mod_perl advocacy list if you have any more questions, or good arguments you have
used (any success-stories are also welcome to the docs-dev list).

Also see Popular Perl Complaints and Myths.

8.2 Thoughts about scalability and flexibility
Your need for scalability and flexibility depends on what you need from your web site. If you only want a
simple guest book or database gateway with no feature headroom, you can get away with any
EASY_AND_FAST_TO_DEVELOP_TOOL (Exchange, MS IIS, Lotus Notes, etc).

Experience shows that you will soon want more functionality, at which point you’ll discover the limita-
tions of these "easy" tools. Gradually, your boss will ask for increasing functionality and at some point
you’ll realize that the tool lacks flexibility and/or scalability. Then your boss will either buy another
EASY_AND_FAST_TO_DEVELOP_WITH_TOOLS and repeat the process (with different unforseen
problems), or you’ll start investing time in learning how to use a powerful, flexible tool to make the
long-term development cycle easier.

If you and your company are serious about delivering flexible Internet functionality, do your homework.
Then urge your boss to invest a little extra time and resources in choosing the right tool for the job. The
extra quality and manageability of your site along with your ability to deliver new and improved function-
ality of high quality and in good time will prove the superiority of using solid flexible tools.

8.3 The boss, the developer and advocacy
Each developer has a boss who participates in the decision-making process. Remember that the boss
considers input from sales people, developers, the media and associates before handing down large deci-
sions. Of course, results count! A sales brochure makes very little impact compared to a working demon-
stration, and demonstrations of company-specific and developer-specific results count for a lot!

Personally, when I discovered mod_perl I did a lot of testing and coding at home and at work. Once I had
a working heavy application, I came to my boss with two URLs - one for the plain CGI server and the
other for the mod_perl-enabled server. It took about 30 secs for my boss to say: ‘Go with it’. Of course
since then I have had to provide all the support for other developers, which is why I took time to learn it in
first place (and why this guide was created!).

Chances are that if you’ve done your homework, learnt the tools and can deliver results, you’ll have a
successful project. If you convince your boss to try a tool that you don’t know very well, your results may
suffer. If your boss follows your development process closely and sees that your progress is much worse
than expected, you might be told to "forget it" and mod_perl might not get a second chance.

17515 Feb 2014

8.1 Descriptionmod_perl Advocacy

Advocacy is a great thing for the open-source software movement, but it’s best done quietly until you have
confidence that you can show productivity. If you can demonstrate to your boss a heavy CGI which is
running much faster under mod_perl, that may be a strong argument for further evaluation. Your company
may even sponsor a portion of your learning process.

Learn the technology by working on sample projects. Learn how to support yourself and learn how to get
support from the community; then advocate your ideas to your boss. Then you’ll have the knowledge;
your company will have the benefit; and mod_perl will have the reputation it deserves.

8.4 A summary of perl/CGI discussion at slashdot.org
Well, there was a nice discussion of merits of Perl in CGI world. I took the time to summarize this thread,
so here is what I’ve got:

Perl Domination in CGI Programming? http://slashdot.org/askslashdot/99/10/20/1246241.shtml

Perl is cool and fun to code with.

Perl is very fast to develop with.

Perl is even faster to develop with if you know what CPAN is. :)

Math intensive code and other stuff which is faster in C/C++, can be plugged into Perl with
XS/SWIG and may be used transparently by Perl programmers.

Most CGI applications do text processing, at which Perl excels

Forking and loading (unless the code is shared) of C/C++ CGI programs produces an overhead.

Except for Intranets, bandwidth is usually a bigger bottleneck than Perl performance, although this
might change in the future.

For database driven applications, the database itself is a bottleneck. Lots of posts talk about latency vs
throughput.

mod_perl, FastCGI, Velocigen and PerlEx all give good performance gains over plain mod_cgi.

Other light alternatives to Perl and its derivatives which have been mentioned: PHP, Python.

There were almost no voices from users of M$ and similar technologies, I guess that’s because they
don’t read http://slashdot.org :)

Many said that in many people’s minds: ’CGI’ eq ’Perl’

15 Feb 2014176

8.4 A summary of perl/CGI discussion at slashdot.org

http://slashdot.org/askslashdot/99/10/20/1246241.shtml
http://slashdot.org/

8.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

8.6 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

17715 Feb 2014

8.5 Maintainersmod_perl Advocacy

http://stason.org/
http://stason.org/

9 Popular Perl Complaints and Myths

15 Feb 2014178

9 Popular Perl Complaints and Myths

9.1 Description
This document tries to explain the myths about Perl and overturn the FUD certain bodies try to spread.

9.2 Abbreviations
M = Misconception or Myth

R = Response

9.2.1 Interpreted vs. Compiled

M:

Each dynamic perl page hit needs to load the Perl interpreter and compile the script, then run it each
time a dynamic web page is hit. This dramatically decreases performance as well as makes Perl an
unscalable model since so much overhead is required to search each page.

R:

This myth was true years ago before the advent of mod_perl. mod_perl loads the interpreter once into
memory and never needs to load it again. Each perl program is only compiled once. The compiled
version is then kept into memory and used each time the program is run. In this way there is no extra
overhead when hitting a mod_perl page.

9.2.1.1 Interpreted vs. Compiled (More Gory Details)

R:

Compiled code always has the potential to be faster than interpreted code. Ultimately, all interpreted
code needs to eventually be converted to native instructions at some point, and this is invariably has
to be done by a compiled application.

That said, an interpreted language CAN be faster than a comprable native application in certain situa-
tions, given certain, common programming practices. For example, the allocation and de-allocation of
memory can be a relatively expensive process in a tightly scoped compiled language, wheras inter-
preted languages typically use garbage collectors which don’t need to do expensive deallocation in a
tight loop, instead waiting until additional memory is absolutely necessary, or for a less computation-
ally intensive period. Of course, using a garbage collector in C would eliminate this edge in this situa-
tion, but where using garbage collectors in C is uncommon, Perl and most other interpreted languages
have built-in garbage collectors.

It is also important to point out that few people use the full potential of their modern CPU with a
single application. Modern CPUs are not only more than fast enough to run interpreted code, many
processors include instruction sets designed to increase the performance of interpreted code.

17915 Feb 2014

9.1 DescriptionPopular Perl Complaints and Myths

9.2.2 Perl is overly memory intensive making it unscalable

M:

Each child process needs the Perl interpreter and all code in memory. Even with mod_perl httpd
processes tend to be overly large, slowing performance, and requiring much more hardware.

R:

In mod_perl the interpreter is loaded into the parent process and shared between the children. Also,
when scripts are loaded into the parent and the parent forks a child httpd process, that child shares
those scripts with the parent. So while the child may take 6MB of memory, 5MB of that might be
shared meaning it only really uses 1MB per child. Even 5 MB of memory per child is not uncommon
for most web applications on other languages.

Also, most modern operating systems support the concept of shared libraries. Perl can be compiled as
a shared library, enabling the bulk of the perl interpreter to be shared between processes. Some
executable formats on some platforms (I believe ELF is one such format) are able to share entire
executable TEXT segments between unrelated processes.

9.2.2.1 More Tuning Advice:

Stas Bekman’s Performance Guide

9.2.3 Not enough support, or tools to develop with Perl. (Myth)

R:

Of all web applications and languages, Perl arguable has the most support and tools. CPAN is a
central repository of Perl modules which are freely downloadable and usually well supported. There
are literally thousands of modules which make building web apps in Perl much easier. There are also
countless mailing lists of extremely responsive Perl experts who usually respond to questions within
an hour. There are also a number of Perl development environments to make building Perl Web
applications easier. Just to name a few, there is Apache::ASP , Mason, embPerl , ePerl , etc...

9.2.4 If Perl scales so well, how come no large sites use it? (myth)

R:

Actually, many large sites DO use Perl for the bulk of their web applications. Here are some, just as
an example: e-Toys, CitySearch, Internet Movie Database(http://imdb.com), Value Click (
http://valueclick.com), Paramount Digital Entertainment, CMP (http://cmpnet.com), HotBot
Mail /HotBot Homepages, and DejaNews to name a few. Even Microsoft has taken interest in Perl
via http://www.activestate.com/.

15 Feb 2014180

9.2.2 Perl is overly memory intensive making it unscalable

http://imdb.com/
http://valueclick.com/
http://cmpnet.com/
http://www.activestate.com/

9.2.5 Perl even with mod_perl, is always slower then C.

R:

The Perl engine is written in C. There is no point arguing that Perl is faster than C because anything
written in Perl could obviously be re-written in C. The same holds true for arguing that C is faster
than assembly.

There are two issues to consider here. First of all, many times a web application written in Perl CAN
be faster than C thanks to the low level optimizations in the Perl compiler. In other words, its easier
to write poorly written C then well written Perl. Secondly its important to weigh all factors when
choosing a language to build a web application in. Time to market is often one of the highest priori-
ties in creating a web application. Development in Perl can often be twice as fast as in C. This is
mostly due to the differences in the language themselves as well as the wealth of free examples and
modules which speed development significantly. Perl’s speedy development time can be a huge
competitive advantage.

9.2.6 Java does away with the need for Perl.

M:

Perl had its place in the past, but now there’s Java and Java will kill Perl.

R:

Java and Perl are actually more complimentary languages then competitive. Its widely accepted that
server side Java solutions such as JServ , JSP and JRUN, are far slower then mod_perl solutions
(see next myth). Even so, Java is often used as the front end for server side Perl applications. Unlike
Perl, with Java you can create advanced client side applications. Combined with the strength of server
side Perl these client side Java applications can be made very powerful.

9.2.7 Perl can’t create advanced client side applications

R:

True. There are some client side Perl solutions like PerlScript in MSIE 5.0, but all client side Perl
requires the user to have the Perl interpreter on their local machine. Most users do not have a Perl
interpreter on their local machine. Most Perl programmers who need to create an advanced client side
application use Java as their client side programming language and Perl as the server side solution.

9.2.8 ASP makes Perl obsolete as a web programming language.

M:

With Perl you have to write individual programs for each set of pages. With ASP you can write
simple code directly within HTML pages. ASP is the Perl killer.

18115 Feb 2014

9.2.5 Perl even with mod_perl, is always slower then C.Popular Perl Complaints and Myths

R:

There are many solutions which allow you to embed Perl in web pages just like ASP. In fact, you can
actually use Perl IN ASP pages with PerlScript. Other solutions include: Mason, Apache::ASP ,
ePerl , embPerl and XPP. Also, Microsoft and ActiveState have worked very hard to make Perl
run equally well on NT as Unix. You can even create COM modules in Perl that can be used from within
ASP pages. Some other advantages Perl has over ASP: mod_perl is usually much faster then ASP,
Perl has much more example code and full programs which are freely downloadable, and Perl is cross
platform, able to run on Solaris, Linux, SCO, Digital Unix, Unix V, AIX, OS2, VMS MacOS,
Win95-98 and NT to name a few.

Also, Benchmarks show that embedded Perl solutions outperform ASP/VB on IIS by several orders
of magnitude. Perl is a much easier language for some to learn, especially those with a background in
C or C++.

9.3 Credits
Thanks to the mod_perl list for all of the good information and criticism. I’d especially like to thank,

Stas Bekman <stas@stason.org>

Thornton Prime <thornton@cnation.com>

Chip Turner <chip@ns.zfx.com>

Clinton <clint@drtech.co.uk>

Joshua Chamas <joshua@chamas.com>

John Edstrom <edstrom@Poopsie.hmsc.orst.edu>

Rasmus Lerdorf <rasmus@lerdorf.on.ca>

Nedim Cholich <nedim@comstar.net>

Mike Perry < http://www.icorp.net/icorp/feedback.htm >

Finally, I’d like to thank Robert Santos <robert@cnation.com>, CyberNation’s lead Business Devel-
opment guy for inspiring this document.

9.4 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Contact the mod_perl docs list

15 Feb 2014182

9.3 Credits

http://www.icorp.net/icorp/feedback.htm

9.5 Authors
Adam Pisoni <adam@cnation.com>

Only the major authors are listed above. For contributors see the Changes file.

18315 Feb 2014

9.5 AuthorsPopular Perl Complaints and Myths

Table of Contents:
................. 1General Documentation
................... 4Perl Reference
.................. 41 Perl Reference
.................. 51.1 Description
......... 51.2 perldoc’s Rarely Known But Very Useful Options
.............. 61.3 Tracing Warnings Reports
....... 81.4 Variables Globally, Lexically Scoped And Fully Qualified
........ 81.4.1 Symbols, Symbol Tables and Packages; Typeglobs
........... 101.4.1.1 Lexical Variables and Symbols
............. 111.4.2 Additional reading references
.......... 111.5 my () Scoped Variable in Nested Subroutines
................. 111.5.1 The Poison
................ 121.5.2 The Diagnosis
................ 131.5.3 The Remedy
........... 141.6 Understanding Closures -- the Easy Way
...... 161.6.1 Mike Guy’s Explanation of the Inner Subroutine Behavior
......... 171.7 When You Cannot Get Rid of The Inner Subroutine
............ 191.7.1 Remedies for Inner Subroutines
......... 261.8 use(), require(), do(), %INC and @INC Explained
................ 261.8.1 The @INC array
................ 261.8.2 The %INC hash
........... 291.8.3 Modules, Libraries and Program Files
................. 311.8.4 require()
.................. 321.8.5 use()
.................. 331.8.6 do()
.... 341.9 Using Global Variables and Sharing Them Between Modules/Packages
.............. 341.9.1 Making Variables Global
........ 341.9.2 Making Variables Global With strict Pragma On
......... 341.9.3 Using Exporter.pm to Share Global Variables
...... 371.9.4 Using the Perl Aliasing Feature to Share Global Variables
....... 381.9.5 Using Non-Hardcoded Configuration Module Names
........... 391.10 The Scope of the Special Perl Variables
............. 401.11 Compiled Regular Expressions
............ 421.12 Exception Handling for mod_perl
............. 431.12.1 Trapping Exceptions in Perl
......... 441.12.2 Alternative Exception Handling Techniques
............. 451.12.3 Better Exception Handling
............. 461.12.3.1 A Little Housekeeping
.............. 471.12.3.2 An Exception Class
............ 481.12.4 Catching Uncaught Exceptions
............. 481.12.4.1 Using $SIG{__DIE__}
.......... 491.12.4.2 Overriding the Core die() Function
........... 491.12.5 A Single UnCaught Exception Class
................. 501.12.6 Some Uses

i15 Feb 2014

Table of Contents:Popular Perl Complaints and Myths

.................. 511.12.7 Conclusions

............ 511.12.8 The My::Exception class in its entirety

............... 521.12.9 Other Implementations

............... 531.13 Customized __DIE__ handler

................... 541.14 Maintainers

.................... 541.15 Authors

.............. 55Preparing mod_perl modules for CPAN

............. 552 Preparing mod_perl modules for CPAN

................... 562.1 Description

......... 562.2 Defining Makefile.PL Prerequisites that Require mod_perl

................. 562.3 Writing the Test Suite

................... 572.4 Maintainers

.................... 572.5 Authors

........ 58Running and Developing Tests with the Apache::Test Framework

........ 583 Running and Developing Tests with the Apache::Test Framework

................... 593.1 Description

............... 593.2 Basics of Perl Module Testing

................... 603.3 Prerequisites

.................. 613.4 Running Tests

................. 613.4.1 Testing Options

.................. 613.4.2 Basic Testing

................. 623.4.3 Individual Testing

................. 623.4.4 Repetitive Testing

................. 633.4.5 Parallel Testing

................. 633.4.6 Verbose Mode

................ 643.4.7 Colored Trace Mode

......... 643.4.8 Controlling the Apache::Test’s Signal to Noise Ratio

.................. 653.4.9 Stress Testing

................. 653.4.9.1 The Problem

................. 653.4.9.2 The Solution

............. 673.4.9.3 Resolving Sequence Problems

............ 673.4.9.4 Apache::TestSmoke Solution

............ 693.4.10 RunTime Configuration Overriding

........... 703.4.11 Request Generation and Response Options

.................. 723.4.12 Batch Mode

.............. 723.5 Setting Up Testing Environment

............. 723.5.1 Know Your Target Environment

............... 723.5.2 Basic Testing Environment

.............. 793.5.3 Extending Configuration Setup

............... 803.5.4 Special Configuration Files

............ 803.5.5 Inheriting from System-wide httpd.conf

............. 813.6 Apache::Test Framework’s Architecture

............ 823.6.1 Developing Response-only Part of a Test

.......... 833.6.2 Developing Response and Request Parts of a Test

........... 853.6.3 Developing Test Response Handlers in C

.............. 873.6.4 Request and Response Methods

............. 913.6.5 Other Request Generation helpers

15 Feb 2014ii

Table of Contents:

............... 913.6.6 Starting Multiple Servers

................ 913.6.7 Multiple User Agents

....... 923.6.8 Hitting the Same Interpreter (Server Thread/Process Instance)

................... 933.7 Writing Tests

.......... 933.7.1 Defining How Many Sub-Tests Are to Be Run

................ 943.7.2 Skipping a Whole Test

............... 973.7.3 Skipping Numerous Tests

........... 983.7.4 Reporting a Success or a Failure of Sub-tests

................ 993.7.5 Skipping Sub-tests

............. 1013.7.6 Running only Selected Sub-tests

................. 1013.7.7 Todo Sub-tests

............... 1023.7.8 Making it Easy to Debug

.......... 1033.7.9 Tie-ing STDOUT to a Response Handler Object

................. 1053.7.10 Helper Functions

................ 1053.7.11 Auto Configuration

........ 1063.7.11.1 Forcing Configuration Sections into the Top Level

............. 1073.7.11.2 Bypassing Auto-Configuration

................ 1073.7.11.3 Virtual Hosts

............ 1083.7.11.4 Running Pre-Configuration Code

........... 1093.7.11.5 Controlling the Configuration Order

........ 1103.7.12 Threaded versus Non-threaded Perl Test’s Compatibility

........... 1103.7.13 Retrieving the Server Configuration Data

.............. 1103.7.13.1 Module Magic Number

.................. 1113.8 Debugging Tests

................. 1113.8.1 Under C debugger

................ 1123.8.2 Under Perl debugger

................... 1123.8.3 Tracing

.......... 1133.9 Using Apache::Test to Speed up Project Development

............... 1143.10 Writing Tests Methodology

............. 1143.10.1 When Tests Should Be Written

.......... 1143.11 Other Webserver Regression Testing Frameworks

.................. 1153.12 Got a question?

................... 1153.13 References

................... 1163.14 Maintainers

.................... 1163.15 Authors

................ 117Issuing Correct HTTP Headers

............... 1174 Issuing Correct HTTP Headers

................... 1184.1 Description

................ 1184.2 The Origin of this Chapter

................... 1184.3 Why Headers

.................. 1184.4 Which Headers

................ 1194.4.1 Date Related Headers

................... 1194.4.1.1 Date

................ 1194.4.1.2 Last-Modified

.............. 1204.4.1.3 Expires and Cache-Control

............... 1214.4.2 Content Related Headers

................. 1214.4.2.1 Content-Type

iii15 Feb 2014

Table of Contents:Popular Perl Complaints and Myths

................ 1214.4.2.2 Content-Length

................. 1224.4.2.3 Entity Tags

................ 1234.4.3 Content Negotiation

................... 1244.4.3.1 Vary

.................... 1244.5 Requests

................... 1244.5.1 HEAD

................... 1254.5.2 POST

.................... 1254.5.3 GET

................. 1264.5.4 Conditional GET

............... 1274.6 Avoiding Dealing with Headers

................... 1274.7 References

.................... 1274.7.1 [1]

.................... 1274.7.2 [2]

.................... 1274.7.3 [3]

.................... 1284.7.4 [4]

.................... 1284.7.5 [5]

.................. 1284.8 Other resources

................... 1284.9 Maintainers

.................... 1284.10 Authors

............ 129mod_perl for ISPs. mod_perl and Virtual Hosts

............ 1295 mod_perl for ISPs. mod_perl and Virtual Hosts

................... 1305.1 Description

......... 1305.2 ISPs providing mod_perl services - a fantasy or a reality

.............. 1335.2.1 Virtual Servers Technologies

................ 1345.3 Virtual Hosts in the guide

................... 1355.4 Maintainers

.................... 1355.5 Authors

............. 136Choosing an Operating System and Hardware

............ 1366 Choosing an Operating System and Hardware

................... 1376.1 Description

............... 1376.2 Choosing an Operating System

............... 1376.2.1 Stability and Robustness

................ 1386.2.2 Memory Management

................. 1386.2.3 Memory Leaks

................. 1386.2.4 Sharing Memory

................. 1386.2.5 Cost and Support

................ 1396.2.6 Discontinued Products

.................. 1396.2.7 OS Releases

................. 1406.3 Choosing Hardware

....... 1416.3.1 Machine Strength Demands According to Expected Site Traffic

........ 1416.3.1.1 Single Strong Machine vs Many Weaker Machines

................ 1416.3.2 Internet Connection

................. 1426.3.3 I/O Performance

................... 1436.3.4 Memory

.................... 1436.3.5 CPU

.................. 1436.3.6 Bottlenecks

.......... 1446.3.6.1 Solving Hardware Requirement Conflicts

15 Feb 2014iv

Table of Contents:

.................. 1446.3.7 Conclusion

................... 1446.4 Maintainers

.................... 1446.5 Authors

............... 145Controlling and Monitoring the Server

.............. 1457 Controlling and Monitoring the Server

................... 1467.1 Description

................. 1467.2 Restarting Techniques

............... 1477.3 Server Stopping and Restarting

........... 1487.4 Speeding up the Apache Termination and Restart

............. 1487.5 Using apachectl to Control the Server

........... 1497.6 Safe Code Updates on a Live Production Server

............. 1517.7 An Intentional Disabling of Live Scripts

................. 1537.8 SUID Start-up Scripts

............. 1537.8.1 Introduction to SUID Executables

............ 1537.8.2 Apache Startup SUID Script’s Security

............. 1547.8.3 Sample Apache Startup SUID Script

............... 1557.9 Preparing for Machine Reboot

............. 1587.10 Monitoring the Server. A watchdog.

............ 1617.11 Running a Server in Single Process Mode

........... 1627.12 Starting a Personal Server for Each Developer

.......... 1647.13 Wrapper to Emulate the Server Perl Environment

............... 1667.14 Server Maintenance Chores

................ 1667.14.1 Handling Log Files

................ 1677.14.1.1 Log Rotation

.......... 1697.14.1.2 Non-Scheduled Emergency Log Rotation

................. 1707.15 Swapping Prevention

.......... 1737.16 Preventing mod_perl Processes From Going Wild

................ 1737.16.1 All RAM Consumed

................... 1737.17 Maintainers

.................... 1737.18 Authors

................... 174mod_perl Advocacy

.................. 1748 mod_perl Advocacy

................... 1758.1 Description

............ 1758.2 Thoughts about scalability and flexibility

............. 1758.3 The boss, the developer and advocacy

.......... 1768.4 A summary of perl/CGI discussion at slashdot.org

................... 1778.5 Maintainers

.................... 1778.6 Authors

............... 178Popular Perl Complaints and Myths

.............. 1789 Popular Perl Complaints and Myths

................... 1799.1 Description

................... 1799.2 Abbreviations

............... 1799.2.1 Interpreted vs. Compiled

......... 1799.2.1.1 Interpreted vs. Compiled (More Gory Details)

......... 1809.2.2 Perl is overly memory intensive making it unscalable

............... 1809.2.2.1 More Tuning Advice:

........ 1809.2.3 Not enough support, or tools to develop with Perl. (Myth)

v15 Feb 2014

Table of Contents:Popular Perl Complaints and Myths

....... 1809.2.4 If Perl scales so well, how come no large sites use it? (myth)

.......... 1819.2.5 Perl even with mod_perl, is always slower then C.

............ 1819.2.6 Java does away with the need for Perl.

.......... 1819.2.7 Perl can’t create advanced client side applications

........ 1819.2.8 ASP makes Perl obsolete as a web programming language.

.................... 1829.3 Credits

................... 1829.4 Maintainers

.................... 1839.5 Authors

15 Feb 2014vi

Table of Contents:

	1€€Perl Reference
	1.1€€Description
	1.2€€perldoc's Rarely Known But Very Useful Options
	1.3€€Tracing Warnings Reports
	1.4€€Variables Globally, Lexically Scoped And Fully Qualified
	1.4.1€€Symbols, Symbol Tables and Packages; Typeglobs
	1.4.1.1€€Lexical Variables and Symbols

	1.4.2€€Additional reading references

	1.5€€my () Scoped Variable in Nested Subroutines
	1.5.1€€The Poison
	1.5.2€€The Diagnosis
	1.5.3€€The Remedy

	1.6€€Understanding Closures -- the Easy Way
	1.6.1€€Mike Guy's Explanation of the Inner Subroutine Behavior

	1.7€€When You Cannot Get Rid of The Inner Subroutine
	1.7.1€€Remedies for Inner Subroutines

	1.8€€use(), require(), do(), %INC and @INC Explained
	1.8.1€€The @INC array
	1.8.2€€The %INC hash
	1.8.3€€Modules, Libraries and Program Files
	1.8.4€€require()
	1.8.5€€use()
	1.8.6€€do()

	1.9€€Using Global Variables and Sharing Them Between Modules/Packages
	1.9.1€€Making Variables Global
	1.9.2€€Making Variables Global With strict Pragma On
	1.9.3€€Using Exporter.pm to Share Global Variables
	1.9.4€€Using the Perl Aliasing Feature to Share Global Variables
	1.9.5€€Using Non-Hardcoded Configuration Module Names

	1.10€€The Scope of the Special Perl Variables
	1.11€€Compiled Regular Expressions
	1.12€€Exception Handling for mod_perl
	1.12.1€€Trapping Exceptions in Perl
	1.12.2€€Alternative Exception Handling Techniques
	1.12.3€€Better Exception Handling
	1.12.3.1€€A Little Housekeeping
	1.12.3.2€€An Exception Class

	1.12.4€€Catching Uncaught Exceptions
	1.12.4.1€€Using $SIG{__DIE__}
	1.12.4.2€€Overriding the Core die() Function

	1.12.5€€A Single UnCaught Exception Class
	1.12.6€€Some Uses
	1.12.7€€Conclusions
	1.12.8€€The My::Exception class in its entirety
	1.12.9€€Other Implementations

	1.13€€Customized __DIE__ handler
	1.14€€Maintainers
	1.15€€Authors

	2€€Preparing mod_perl modules for CPAN
	2.1€€Description
	2.2€€Defining Makefile.PL Prerequisites that Require mod_perl
	2.3€€Writing the Test Suite
	2.4€€Maintainers
	2.5€€Authors

	3€€Running and Developing Tests with the Apache::Test Framework
	3.1€€Description
	3.2€€Basics of Perl Module Testing
	3.3€€Prerequisites
	3.4€€Running Tests
	3.4.1€€Testing Options
	3.4.2€€Basic Testing
	3.4.3€€Individual Testing
	3.4.4€€Repetitive Testing
	3.4.5€€Parallel Testing
	3.4.6€€Verbose Mode
	3.4.7€€Colored Trace Mode
	3.4.8€€Controlling the Apache::Test's Signal to Noise Ratio
	3.4.9€€Stress Testing
	3.4.9.1€€The Problem
	3.4.9.2€€The Solution
	3.4.9.3€€Resolving Sequence Problems
	3.4.9.4€€Apache::TestSmoke Solution

	3.4.10€€RunTime Configuration Overriding
	3.4.11€€Request Generation and Response Options
	3.4.12€€Batch Mode

	3.5€€Setting Up Testing Environment
	3.5.1€€Know Your Target Environment
	3.5.2€€Basic Testing Environment
	3.5.3€€Extending Configuration Setup
	3.5.4€€Special Configuration Files
	3.5.5€€Inheriting from System-wide httpd.conf

	3.6€€Apache::Test Framework's Architecture
	3.6.1€€Developing Response-only Part of a Test
	3.6.2€€Developing Response and Request Parts of a Test
	3.6.3€€Developing Test Response Handlers in C
	3.6.4€€Request and Response Methods
	3.6.5€€Other Request Generation helpers
	3.6.6€€Starting Multiple Servers
	3.6.7€€Multiple User Agents
	3.6.8€€Hitting the Same Interpreter (Server Thread/Process Instance)

	3.7€€Writing Tests
	3.7.1€€Defining How Many Sub-Tests Are to Be Run
	3.7.2€€Skipping a Whole Test
	3.7.3€€Skipping Numerous Tests
	3.7.4€€Reporting a Success or a Failure of Sub-tests
	3.7.5€€Skipping Sub-tests
	3.7.6€€Running only Selected Sub-tests
	3.7.7€€Todo Sub-tests
	3.7.8€€Making it Easy to Debug
	3.7.9€€Tie-ing STDOUT to a Response Handler Object
	3.7.10€€Helper Functions
	3.7.11€€Auto Configuration
	3.7.11.1€€Forcing Configuration Sections into the Top Level
	3.7.11.2€€Bypassing Auto-Configuration
	3.7.11.3€€Virtual Hosts
	3.7.11.4€€Running Pre-Configuration Code
	3.7.11.5€€Controlling the Configuration Order

	3.7.12€€Threaded versus Non-threaded Perl Test's Compatibility
	3.7.13€€Retrieving the Server Configuration Data
	3.7.13.1€€Module Magic Number

	3.8€€Debugging Tests
	3.8.1€€Under C debugger
	3.8.2€€Under Perl debugger
	3.8.3€€Tracing

	3.9€€Using Apache::Test to Speed up Project Development
	3.10€€Writing Tests Methodology
	3.10.1€€When Tests Should Be Written

	3.11€€Other Webserver Regression Testing Frameworks
	3.12€€Got a question?
	3.13€€References
	3.14€€Maintainers
	3.15€€Authors

	4€€Issuing Correct HTTP Headers
	4.1€€Description
	4.2€€The Origin of this Chapter
	4.3€€Why Headers
	4.4€€Which Headers
	4.4.1€€Date Related Headers
	4.4.1.1€€Date
	4.4.1.2€€Last-Modified
	4.4.1.3€€Expires and Cache-Control

	4.4.2€€Content Related Headers
	4.4.2.1€€Content-Type
	4.4.2.2€€Content-Length
	4.4.2.3€€Entity Tags

	4.4.3€€Content Negotiation
	4.4.3.1€€Vary

	4.5€€Requests
	4.5.1€€HEAD
	4.5.2€€POST
	4.5.3€€GET
	4.5.4€€Conditional GET

	4.6€€Avoiding Dealing with Headers
	4.7€€References
	4.7.1€€[1]
	4.7.2€€[2]
	4.7.3€€[3]
	4.7.4€€[4]
	4.7.5€€[5]

	4.8€€Other resources
	4.9€€Maintainers
	4.10€€Authors

	5€€mod_perl for ISPs. mod_perl and Virtual Hosts
	5.1€€Description
	5.2€€ISPs providing mod_perl services - a fantasy or a reality
	5.2.1€€Virtual Servers Technologies

	5.3€€Virtual Hosts in the guide
	5.4€€Maintainers
	5.5€€Authors

	6€€Choosing an Operating System and Hardware
	6.1€€Description
	6.2€€Choosing an Operating System
	6.2.1€€Stability and Robustness
	6.2.2€€Memory Management
	6.2.3€€Memory Leaks
	6.2.4€€Sharing Memory
	6.2.5€€Cost and Support
	6.2.6€€Discontinued Products
	6.2.7€€OS Releases

	6.3€€Choosing Hardware
	6.3.1€€Machine Strength Demands According to Expected Site Traffic
	6.3.1.1€€Single Strong Machine vs Many Weaker Machines

	6.3.2€€Internet Connection
	6.3.3€€I/O Performance
	6.3.4€€Memory
	6.3.5€€CPU
	6.3.6€€Bottlenecks
	6.3.6.1€€Solving Hardware Requirement Conflicts

	6.3.7€€Conclusion

	6.4€€Maintainers
	6.5€€Authors

	7€€Controlling and Monitoring the Server
	7.1€€Description
	7.2€€Restarting Techniques
	7.3€€Server Stopping and Restarting
	7.4€€Speeding up the Apache Termination and Restart
	7.5€€Using apachectl to Control the Server
	7.6€€Safe Code Updates on a Live Production Server
	7.7€€An Intentional Disabling of Live Scripts
	7.8€€SUID Start-up Scripts
	7.8.1€€Introduction to SUID Executables
	7.8.2€€Apache Startup SUID Script's Security
	7.8.3€€Sample Apache Startup SUID Script

	7.9€€Preparing for Machine Reboot
	7.10€€Monitoring the Server. A watchdog.
	7.11€€Running a Server in Single Process Mode
	7.12€€Starting a Personal Server for Each Developer
	7.13€€Wrapper to Emulate the Server Perl Environment
	7.14€€Server Maintenance Chores
	7.14.1€€Handling Log Files
	7.14.1.1€€Log Rotation
	7.14.1.2€€Non-Scheduled Emergency Log Rotation

	7.15€€Swapping Prevention
	7.16€€Preventing mod_perl Processes From Going Wild
	7.16.1€€All RAM Consumed

	7.17€€Maintainers
	7.18€€Authors

	8€€mod_perl Advocacy
	8.1€€Description
	8.2€€Thoughts about scalability and flexibility
	8.3€€The boss, the developer and advocacy
	8.4€€A summary of perl/CGI discussion at slashdot.org
	8.5€€Maintainers
	8.6€€Authors

	9€€Popular Perl Complaints and Myths
	9.1€€Description
	9.2€€Abbreviations
	9.2.1€€Interpreted vs. Compiled
	9.2.1.1€€Interpreted vs. Compiled (More Gory Details)

	9.2.2€€Perl is overly memory intensive making it unscalable
	9.2.2.1€€More Tuning Advice:

	9.2.3€€Not enough support, or tools to develop with Perl. (Myth)
	9.2.4€€If Perl scales so well, how come no large sites use it? (myth)
	9.2.5€€Perl even with mod_perl, is always slower then C.
	9.2.6€€Java does away with the need for Perl.
	9.2.7€€Perl can't create advanced client side applications
	9.2.8€€ASP makes Perl obsolete as a web programming language.

	9.3€€Credits
	9.4€€Maintainers
	9.5€€Authors

