Controlling and Monitoring the Server 1 Controlling and Monitoring the Server

1 Controlling and Monitoring the Server

15 Feb 2014 1

1.1 Description

1.1 Description

Covers techniques to restart mod_perl enabled Apache, SUID scripts, monitoring, and other maintenance
chores, as well as some specific setups.

1.2 Restarting Techniques

All of these techniques require that you know the server process id (PID). The easiest way to find the PID
is to look it up in théhttpd.pidfile. It's easy to discover where to look, by looking in Higpd.conffile.
Open the file and locate the enRydFi | e. Here is the line from one of my oviatipd.conffiles:

PidFile /usr/local/var/httpd_perl/run/httpd.pid
As you see, with my configuration the file/issr/local/var/httpd_perl/run/httpd.pid

Another way is to use thes andgr ep utilities. Assuming that the binary is callbttpd_per| we would
do:

% ps auxc | grep httpd_perl

or maybe:
% ps -ef | grep httpd_perl

This will produce a list of all that t pd_per | (parent and children) processes. You are looking for the
parent process. If you run your server as root, you will easily locate it since it belongs to root. If you run
the server as some other user (when you don’t have root access, the processes will belong to that user
unless defined differently ihttpd.conf It's still easy to find which is the parent--usually it's the process

with the smallest PID.

You will see severdht t pd processes running on your system, but you should never need to send signals
to any of them except the parent, whose pid is irPid&ile. There are three signals that you can send to
the parentS|I GTERM S| GHUP, andSI GUSRL.

Some folks prefer to specify signals using numerical values, rather than using symbols. If you are looking
for these, check out yolii | | (1) man page. My page points fgsr/include/linux/signal.hthe relevant
entries are:

#define Sl GHUP 1 /* hangup, generated when term nal disconnects */
#define SI &Kl LL 9 /* last resort */

#define SI GTERM 15 /* software termnation signal */

#define SI GUSRL 30 /* user defined signal 1 */

Note that to send these signals from the command lin8Iteprefix must be omitted and under some
operating systems they will need to be preceded by a minus sigrki ¢lg. - 15 orkill -TERM
followed by the PID.

2 15 Feb 2014

Controlling and Monitoring the Server 1.3 Server Stopping and Restarting

1.3 Server Stopping and Restarting

We will concentrate here on the implications of sendig@®M HUP, andUSRL signals (as arguments to
kill(1)) to a mod_perl enabled server. $ee http://www.apache.org/docs/stopping.html for documentation on
the implications of sending these signals to a plain Apache server.

e TERM Signal: Stop Now

Sending th& ERMsignal to the parent causes it to immediately attempt to kill off all its children. Any
requests in progress are terminated, and no further requests are served. This process may take quite a
few seconds to complete. To stop a child, the parent send &dJP signal. If that fails it sends

another. If that fails it sends ti®% GTERM signal, and as a last resort it sendsSheKI LL signal.

For each failed attempt to kill a child it makes an entry irether_log.

When all the child processes were terminated, the parent itself exits and any open log files are closed.
This is when all the accumulat&iND blocks, apart from the ones located in scripts running under
Apache: : Regi stry or Apache:: Perl Run handlers. In the latter cas&ND blocks are
executed after each request is served.

e HUP Signal: Restart Now

Sending theHUP signal to the parent causes it to kill off its children as iftBBM signal had been

sent, i.e. any requests in progress are terminated; but the parent does not exit. Instead, the parent
re-reads its configuration files, spawns a new set of child processes and continues to serve requests. It
is almost equivalent to stopping and then restarting the server.

If the configuration files contain errors when restart is signaled, the parent will exit, so it is important
to check the configuration files for errors before issuing a restart. How to perform the check will be
covered shortly;

Sometimes using this approach to restart mod_perl enabled Apache may cause the processes memory
incremental growth after each restart. This happens when Perl code loaded in memory is not
completely torn down, leading to a memory leak.

e USRI Signal: Gracefully Restart Now

The USR1 signal causes the parent process to advise the children to exit after serving their current
requests, or to exit immediately if they’re not serving a request. The parent re-reads its configuration
files and re-opens its log files. As each child dies off the parent replaces it with a child from the new
generation (the new children use the new configuration) and it begins serving new requests immedi-
ately.

The only difference betweddSR1 andHUP is thatUSR1 allows the children to complete any current
requests prior to killing them off and there is no interruption in the services compared to the Kkilling
with HUP signal, where it might take a few seconds for a restart to get completed and there is no real
service at this time.

15 Feb 2014 3

http://www.apache.org/docs/stopping.html

1.4 Speeding up the Apache Termination and Restart

By default, if a server is restarted (usiigl | -USR1 ‘cat | ogs/httpd. pid° or with theHUP
signal), Perl scripts and modules are not reloaded. To réeatlRequi r es, Per | Modul es, other
use() 'd modules and flush thpache: : Regi st ry cache, use this directive limtpd.conf

Per| FreshRestart On

Make sure you read Evil things might happen when using PerlFreshRestart.

1.4 Speeding up the Apache Termination and Restart

We've already mentioned that restart or termination can sometimes take quite a long time, (e.g. tens of
seconds), for a mod_perl server. The reason for that is a call pethe dest ruct () Perl API func-

tion during the child exit phase. This will cause proper executioBNDf blocks found during server
startup and will invoke thBESTROY method on global objects which are still alive.

It is also possible that this operation may take a long time to finish, causing a long delay during a restart.
Sometimes this will be followed by a series of messages appearing in theesesveog file, warning

that certain child processes did not exit as expected. This happens when after a few attempts advising the
child process to quit, the child is still in the middle of perl_destruct(), and a kthal signal is sent,

aborting any operation the child has happened to executaratadly killing it.

If your code does not contain aBND blocks orDESTROY methods which need to be run during child
server shutdown, or may have these, but it's insignificant to execute them, this destruction can be avoided
by setting the?PERL _DESTRUCT LEVEL environment variable tol. For example add this setting to the
httpd.conffile:

Per | Set Env PERL_DESTRUCT_LEVEL -1

What constitutes a significant cleanup? Any change of state outside of the current process that would not
be handled by the operating system itself. So committing database transactions and removing the lock on
some resource are significant operations, but closing an ordinary file isn't.

1.5 Using apachectl to Control the Server

The Apache distribution comes with a script to control the server. It's cafjiadhect| and it is
installed into the same location as the httpd executable. We will assume for the sake of our examples that
it'sin/usr/ | ocal /sbin/httpd_perl/apachectl:

To start httpd_perl:

% /usr/ | ocal /sbin/httpd_perl/apachectl start

To stop httpd_perl:

% /usr/ | ocal /sbin/httpd_perl/apachect!| stop

4 15 Feb 2014

Controlling and Monitoring the Server 1.6 Safe Code Updates on a Live Production Server

To restart httpd_perl (if it is running, seBHdGHUP; if it is not already running just start it):

% /usr/ 1 ocal /sbin/httpd_perl/apachect| restart

Do a graceful restart by sendinbGUSR1, or start if not running:

% [usr/ | ocal /sbin/httpd_perl/apachect!| graceful

To do a configuration test:

% /usr/ | ocal /shin/httpd_perl/apachectl configtest
Replaceht t pd_per | with ht t pd_docs in the above calls to control thé t pd_docs server.
There are other options fapachect | , use thénel p option to see them all.

It's important to remember thapachect | uses the PID file, which is specified by ®leDFI LE direc-
tive in httpd.conf If you delete the PID file by hand while the server is runnggachect | will be
unable to stop or restart the server.

1.6 Safe Code Updates on a Live Production Server

You have prepared a new version of code, uploaded it into a production server, restarted it and it doesn’t
work. What could be worse than that? You also cannot go back, because you have overwritten the good
working code.

It's quite easy to prevent it, just don’t overwrite the previous working files!

Personally | do all updates on the live server with the following sequence. Assume that the server root
directory is /home/httpd/perl/rel When I'm about to update the files | create a new directory
/home/httpd/perl/betacopy the old files fronthome/httpd/perl/reand update it with the new files. Then |

do some last sanity checks (check file permissions are [read+executable], @ Fur ¢ on the new
modules to make sure there no errors in them). When | think I'm ready | do:

% cd / home/ ht't pd/ per|l
%n rel old & nv beta rel && stop & sleep 3 && restart && err

Let me explain what this does.

Firstly, note that | put all the commands on one line, separat&d,and only then press tlimt er key.

As | am working remotely, this ensures that if | suddenly lose my connection (sadly this happens some-
times) | won't leave the server down if only theop command squeezed i&& also ensures that if any
command fails, the rest won't be executed. | am using aliases (which | have already defined) to make the
typing easier:

15 Feb 2014 5

1.6 Safe Code Updates on a Live Production Server

% alias | grep apachectl

graceful /usr/local/apache/bin/apachect!l graceful
r ehup /usr/| ocal / apache/ shi n/ apachect| restart
restart /usr/local/apache/bin/apachect| restart
start /usr/ | ocal / apache/ bi n/ apachect| start
stop /usr/ | ocal / apache/ bi n/ apachect| stop

% alias err
tail -f /usr/local/apache/logs/error_|og

Taking the line apart piece by piece:

mv rel old &&

back up the working directory wd
m/ beta rel &&
put the new one in its place
stop &&
stop the server
sleep 3 &&
give it a few seconds to shut down (it might take even longer)
restart &&
restart the server
err
view of the tail of theerror_log file in order to see that everything is OK

apachect | generates the status messages a little too early (e.g. when yoapssueect | st op it
says the server has been stopped, while in fact it's still running) so don’t rely on it, rely on the
error_I og file instead.

Also notice that | useest art and not jusst art . | do this because of Apache’s potentially long stop-
ping times (it depends on what you do with it of course!). If yousatsart and Apache hasn’t yet
released the port it's listening to, the start would fail andor _| og would tell you that the port is in
use, e.g.:

Address already in use: nmake_sock: could not bind to port 8080
But if you user est ar t , it will wait for the server to quit and then will cleanly restart it.

Now what happens if the new modules are broken? First of all, | see immediately an indication of the
problems reported in ther r or _I og file, which Itai |l -f immediately after a restart command. If
there’s a problem, I just put everything back as it was before:

6 15 Feb 2014

Controlling and Monitoring the Server 1.7 An Intentional Disabling of Live Scripts

% rel bad & nv old rel && stop && sleep 3 && restart && err

Usually everything will be fine, and | have had only about 10 seconds of downtime, which is pretty good!

1.7 An Intentional Disabling of Live Scripts

What happens if you really must take down the server or disable the scripts? This situation might happen
when you need to do some maintenance work on your database server. If you have to take your database
down then any scripts that use it will fail.

If you do nothing, the user will see either the ghey Err or has happened message or perhaps a
customized error message if you have added code to trap and customize the errors. See Redirecting Errors
to the Client instead of to the error_log for the latter case.

A much friendlier approach is to confess to your users that you are doing some maintenance work and
plead for patience, promising (keep the promise!) that the service will become fully functional in X
minutes. There are a few ways to do this:

The first doesn’t require messing with the server. It works when you have to disable a script running under
Apache: : Regi st ry and relies on the fact that it checks whether the file was modified before using the
cached version. Obviously it won't work under other handlers because these serve the compiled version of
the code and don't check to see if there was a change in the code on the disk.

So if you want to disable apache: : Regi st ry script, prepare a little script like this:

/ hone/ htt p/ perl / mai nt enance. pl

#! /usr/ bin/perl -Tw

use strict;
use C4d;
ny $q = new CG ;
print $g->header, $qg->p(
"Sorry, the service is tenporarily down for maintenance
It will be back in ten to fifteen mnutes
Pl ease, bear with us.
Thank you!");

So if you now have to disable a script for examiglenre/ ht t p/ per| / chat . pl, just do this:

% nmv [hone/ http/perl/chat.pl /home/http/perl/chat.pl.orig
%I n -s [home/ http/perl/maintenance. pl /home/http/perl/chat.p

Of course you server configuration should allow symbolic links for this trick to work. Make sure you have
the directive

Options Fol | owSynLi nks

15 Feb 2014 7

1.7 An Intentional Disabling of Live Scripts

in the<Locat i on> or<Di r ect or y> section of youhttpd.conf

When you're done, it's easy to restore the previous setup. Just do this:

% nmv [hone/ http/perl/chat.pl.orig /hone/http/perl/chat.p
which overwrites the symbolic link.

Now make sure that the script will have the current timestamp:

% touch /hone/ http/ perl/chat. pl
Apache will automatically detect the change and will use the moved script instead.

The second approach is to change the server configuration and configure a whole directory to be handled
by aMy: : Mai nt enance handler (which you must write). For example if you write something like this:

My/ Mai nt enance. pm

package My:: Mai nt enance;

use strict;

use Apache:: Constants gw : conmon);
sub handl er {

ny $r = shift;

print $r->send_http_header("text/plain");

print qaf
We apol ogi ze, but this service is tenporarily stopped for
mai ntenance. It will be back inten to fifteen minutes
Pl ease, bear with us. Thank you!

b

return oK

}
1

and put it in a directory that is in the serve@NC, to disable all the scripts in Locatidrper | you
would replace:

<Location /perl>
Set Handl er perl -script
Per | Handl er My:: Handl er
[snip]

</ Locati on>

with

<Location /perl>
Set Handl er perl-script
Per | Handl er My:: Mai nt enance
[snip]

</ Locati on>

8 15 Feb 2014

Controlling and Monitoring the Server 1.8 SUID Start-up Scripts

Now restart the server. Your users will be happy to go and[read http://slashdot.org for ten minutes,
knowing that you are working on a much better version of the service.

If you need to disable a location handled by some module, the second approach would work just as well.

1.8 SUID Start-up Scripts

If you want to allow a few people in your team to start and stop the server you will have to give them the
root password, which is not a good thing to do. The less people know the password, the less problems are
likely to be encountered. But there is an easy solution for this problem available on UNIX platforms. It's
called a setuid executable.

1.8.1 Introduction to SUID Executables

The setuid executable has a setuid permissions bit set. This sets the process’s effective user ID to that of
the file upon execution. You perform this setting with the following command:

% chnod u+s fil ename

You probably have used setuid executables before without even knowing about it. For example when you
change your password you execute tesswd utility, which among other things modifies the
letc/passwdile. In order to change this file you need root permissionspésswd utility has the setuid

bit set, therefore when you execute this utility, its effective ID is the same of the root user ID.

You should avoid using setuid executables as a general practice. The less setuid executables you have the
less likely that someone will find a way to break into your system, by exploiting some bug you didn't
know about.

When the executable is setuid to root, you have to make sure that it doesn’t have the group and world read
and write permissions. If we take a look at praes swd utility we will see:

%Ils -1 /usr/bin/passwd
-r-s--x--x 1 root root 12244 Feb 8 00: 20 /usr/bi n/ passwd

You achieve this with the following command:
% chrmod 4511 fil enane

The first digit (4) stands for setuid bit, the second digit (5) is a compound of read (4) and executable (1)
permissions for the user, and the third and the fourth digits are setting the executable permissions for the
group and the world.

1.8.2 Apache Startup SUID Script’'s Security

In our case, we want to allow setuid access only to a specific group of users, who all belong to the same
group. For the sake of our example we will use the group napache It's important that users who

aren’'t root or who don’t belong to ttegachegroup will not be able to execute this script. Therefore we
perform the following commands:

15 Feb 2014 9

http://slashdot.org/

1.8.3 Sample Apache Startup SUID Script

% chgrp apache apachect]|
% chnod 4510 apachectl

The execution order is important. If you swap the command execution order you will lose the setuid bit.

Now if we look at the file we see:

%I|s -1 apachectl
-r-s--x--- 1 root apache 32 May 13 21:52 apachectl|

Now we are all set... Almost...

When you start Apache, Apache and Perl modules are being loaded, code can be executed. Since all this
happens with root effective ID, any code executed as if the root user was doing that. You should be very
careful because while you didn’'t gave anyone the root password, all the userapadhegroup have an

indirect root access. Which means that if Apache loads some module or executes some code that is
writable by some of these users, users can plant code that will allow them to gain a shell access to root
account and become a real root.

Of course if you don't trust your team you shouldn’t use this solution in first place. You can try to check
that all the files Apache loads aren’t writable by anyone but root, but there are too many of them, espe-
cially in the mod_perl case, where many Perl modules are loaded at the server startup.

By the way, don't let all this setuid stuff to confuse you -- when the parent process is loaded, the children
processes are spawned as non-root processes. This section has presented a way to allow non-root users to
start the server as root user, the rest is exactly the same as if you were executing the script as root in first
place.

1.8.3 Sample Apache Startup SUID Script

Now if you are still with us, here is an example of the setuid Apache startup script.

Note the line markedMORKAROUND, which fixes an obscure error when starting mod_perl enabled
Apache by setting the real UID to the effective UID. Without this workaround, a mismatch between the
real and the effective UID causes Perl to croak on éhewitch.

Note that you must be using a version of Perl that recognizes and emulates the suid bits in order for this to
work. This script will do different things depending on whether it is namsedrt _htt pd,
stop_httpdorrestart _htt pd. You can use symbolic links for this purpose.

sui d_apache_ct|

#1/usr/bin/perl -T

These constants will need to be adjusted.
$PI D FILE = '/ home/ ww/ | ogs/ httpd. pid';
$HTTPD = '/ homme/ ww/ htt pd -d / home/ ww ;

These prevent taint warnings while running suid

$ENV{ PATH} =" / bi n: / usr/bin’;
$ENV{ I FS} =" ;

10 15 Feb 2014

Controlling and Monitoring the Server 1.9 Preparing for Machine Reboot

This sets the real to the effective ID, and prevents
an obscure error when starting apache/ nod_perl

$< = $>; # WORKAROUND

$(= $) = 0; # set the group to root too

Do different things depending on our nane
($name) = $0 =~ n{ ([N]1+)$];

if ($name eq 'start_httpd) {
system $HTTPD and die "Unable to start HTTP";
print "HTTP started.\n";
exit 0;

}

extract the process id and confirmthat it is nuneric
$pid = ‘cat $PID_FILE ;

$pid =~ /(\d+)/ or die "PID $pid not nuneric";

$pid = $1;

if ($name eq 'stop_httpd) {
kill *TERM , $pid or die "Unable to signal HITP";
print "HTTP stopped.\n";
exit O;

}

if ($name eq 'restart_httpd') {
kill "HUP' ,$pid or die "Unable to signal HTTP";
print "HTTP restarted.\n";

exit O;

}

die "Script nust be nanmed start_httpd, stop_httpd, or restart_httpd.\n";

1.9 Preparing for Machine Reboot

When you run your own development box, it's okay to start the webserver by hand when you need to. On
a production system it is possible that the machine the server is running on will have to be rebooted. When
the reboot is completed, who is going to remember to start the server? It's easy to forget this task, and
what happens if you aren’t around when the machine is rebooted?

After the server installation is complete, it's important not to forget that you need to put a script to perform
the server startup and shutdown into the standard system location, for exetwipted under RedHat
Linux, or/etc/init.d/apachainder Debian Slink Linux.

This is the directory which contains scripts to start and stop all the other daemons. The directory and file

names vary from one Operating System (OS) to another, and even between different distributions of the
same OS.

15 Feb 2014 11

1.9 Preparing for Machine Reboot

Generally the simplest solution is to copy ty@achect | script to your startup directory or create a
symbolic link from the startup directory to tlapachect| script. You will findapachect!| in the

same directory as the httpd executable after Apache installation. If you have more than one Apache server
you will need a separate script for each one, and of course you will have to rename them so that they can
co-exist in the same directories.

For example on a RedHat Linux machine with two servers, | have the following setup:

/etc/rc.d/init.d/ httpd_docs
/etc/rc.d/init.d/ httpd_perl
/etc/rc.d/rc3.d/ S91httpd_docs -> ../init.d/ httpd_docs
/etc/rc.d/rc3.d/ S91lhttpd_perl -> ../init.d/ httpd_perl
/etc/rc.d/rc6.d/ Ki6httpd_docs -> ../init.d/ httpd_docs
/etc/rc.d/rc6.d/ Ki6httpd_perl -> ../init.d/ httpd_perl

The scripts themselves reside in th&c/rc.d/init.ddirectory. There are symbolic links to these scripts in
other directories. The names are the same as the script names but they have numerical prefixes, which are
used for executing the scripts in a particular order: the lower numbers are executed earlier.

When the system starts (level 3) we want the Apache to be started when almost all of the services are
running already, therefore I've useé®91l For example if the mod_perl enabled Apache issues a
connect _on_init () the SQL server should be started before Apache.

When the system shuts down (level 6), Apache should be stopped as one of the first processes, therefore
I've usedK16. Again if the server does some cleanup processing during the shutdown event and requires
third party services to be running (e.g. SQL server) it should be stopped before these services.

Notice that it's normal for more than one symbolic link to have the same sequence number.

Under RedHat Linux and similar systems, when a machine is booted and its runlevel set to 3 (multiuser +
network), Linux goes intdetc/rc.d/rc3.d/and executes the scripts the symbolic links point to with the
st art argument. When it se&@91httpd_perlit executes:

/etc/rc.d/init.d/ httpd_perl start

When the machine is shut down, the scripts are executed through links fréetcitteed/rc6.d/directory.
This time the scripts are called with thieop argument, like this:

/etc/rc.d/init.d/ httpd_perl stop

Most systems have GUI utilities to automate the creation of symbolic links. For example RedHat Linux
includes thecont r ol - panel utility, which amongst other things includes fRenLevel Manager .

(which can be invoked directly as either ntsysv(8) or tksysv(8)). This will help you to create the proper
symbolic links. Of course before you use it, you shouldamatchect | or similar scripts into thait.d

or equivalent directory. Or you can have a symbolic link to some other location instead.

The simplest approach is to use the chkconfig(8) utility which adds and removes the services for you. The
following example shows how to add lttpd_perlistartup script to the system.

12 15 Feb 2014

Controlling and Monitoring the Server 1.9 Preparing for Machine Reboot

First move or copy the file into the directdstc/rc.d/init.d

% mv httpd_perl /etc/rc.d/init.d

Now open the script in your favorite editor and add the following lines after the main header of the script:

Comments to support chkconfig on RedHat Linux
chkconfig: 2345 91 16
description: nod_perl enabled Apache Server

So now the beginning of the script looks like:

#!/ bi n/ sh

#

Apache control script designed to allow an easy conmand |ine
interface to controlling Apache. Witten by Marc Sl enko,

1997/ 08/ 23

Comments to support chkconfig on RedHat Linux
chkconfig: 2345 91 16
description: nod_perl enabl ed Apache Server

H* HH

The exit codes returned are:

H* HH

Adjust the line:

chkconfig: 2345 91 16

to your needs. The above setting says to says that the script should be started in levels 2, 3, 4, and 5, that
its start priority should be 91, and that its stop priority should be 16.

Now all you have to do is to ashkconf i g to configure the startup scripts. Before we do that let’s look
at what we have:

%find /etc/rc.d | grep httpd_per

/etc/rc.d/init.d/ httpd_perl

Which means that we only have the startup script itself. Now we execute:

% chkconfig --add httpd_per

and see what has changed:

15 Feb 2014 13

1.10 Monitoring the Server. A watchdog.

%find /etc/rc.d | grep httpd_perl
/etc/rc.d/linit.d/ httpd_perl
/etc/rc.d/rc0.d/ Kl6httpd_perl
/etc/rc.d/rcl. d/ Kl6httpd_perl
/etc/rc.d/rc2.d/ S91htt pd_perl
/etc/rc.d/rc3.d/ S91htt pd_perl
/etc/rc.d/rc4.d/ S91htt pd_perl

/etc/rc.d/rc5.d/ S91htt pd_perl
/etc/rc.d/rc6.d/ Kl6htt pd_perl

As you can seehkconfi g created all the symbolic links for us, using the startup and shutdown priori-
ties as specified in the line:

chkconfig: 2345 91 16

If for some reason you want to remove the service from the startup scripts, all you have to do is to tell
chkconf i g to remove the links:

% chkconfig --del httpd_perl
Now if we look at the files under the directdgtc/rc.d/we see again only the script itself.
%find /etc/rc.d | grep httpd_perl

/etc/rc.d/linit.d/ httpd_perl

Of course you may keep the startup script in any other directory as long as you can link to it. For example
if you want to keep this file with all the Apache binariegusr/local/apache/binall you have to do is to
provide a symbolic link to this file:

%I n -s /usr/local/apache/bin/apachectl /etc/rc.d/init.d/ httpd_perl

and then:

% chkconfig --add httpd_perl

Note that in case of using symlinks the link naméeto/rc.d/init.dis what matters and not the name of the
script the link points to.

1.10 Monitoring the Server. A watchdog.

With mod_perl many things can happen to your server. It is possible that the server might die when you
are not around. As with any other critical service you need to run some kind of watchdog.

One simple solution is to use a slightly modifeggachect | script, which I've namedpache.watchdag
Call it from the crontab every 30 minutes -- or even every minute -- to make sure the server is up all the
time.

14 15 Feb 2014

Controlling and Monitoring the Server 1.10 Monitoring the Server. A watchdog.

The crontab entry for 30 minutes intervals:
0,30 * * * * [path/to/thel/apache. wat chdog >/dev/null 2>&1

The script:
#1/bin/sh

this script is a watchdog to see whether the server is online
It tries to restart the server, and if it’'s
down it sends an enmil alert to admn

admn’'s emil
EMAI L=webrast er @xanpl e. com

the path to your PID file
Pl DFI LE=/ usr/ | ocal /var/ httpd_perl/run/httpd. pid

the path to your httpd binary, including options if necessary
HTTPD=/ usr /| ocal / sbi n/ httpd_perl/httpd_perl

check for pidfile
if [-f $PIDFILE] ; then
Pl D=' cat $PI DFI LE'

if kill -0 $PID; then
STATUS="httpd (pid $PI D) running"
RUNNI NG=1
el se
STATUS="httpd (pid $PI D?) not running"
RUNNI NG=0
fi
el se
STATUS="httpd (no pid file) not running"
RUNNI NG=0
fi

if [SRUNNING -eq 0]; then
echo "$0 $ARG httpd not running, trying to start"
if SHTTPD ; then
echo "$0 $ARG httpd started”
mai | $EMAIL -s "$0 $ARG httpd started" > /dev/null 2>&1
el se
echo "$0 $ARG httpd could not be started”
mai | $EMAIL -s \
"$0 $ARG httpd could not be started" > /dev/null 2>&1

fi
fi

Another approach, probably even more practical, is to use thé.@¥EdPerl package to test the server by
trying to fetch some document (script) served by the server. Why is it more practical? Because while the
server can be up as a process, it can be stuck and not working. Failing to get the document will trigger
restart, and "probably” the problem will go away.

15 Feb 2014 15

1.10 Monitoring the Server. A watchdog.

Like before we set a cronjob to call this script every few minutes to fetch some very light script. The best
thing of course is to call it every minute. Why so often? If your server starts to spin and trash your disk
space with multiple error messages filling #reor_log, in five minutes you might run out of free disk
space which might bring your system to its knees. Chances are that no other child will be able to serve
requests, since the system will be too busy writing toether_log file. Think big--if you are running a

heavy service (which is very fast since you are running under mod_perl) adding one more request every
minute will not be felt by the server at all.

So we end up with a crontab entry like this:

* * x % * [path/to/the/watchdog. pl >/dev/null 2>&1

And the watchdog itself:
#! /usr/bin/perl -wT

unt ai nt
$ENV{' PATH } = '/bin:/usr/bin’;
delete @NV{'IFS, 'CDPATH , 'ENV', 'BASH ENV };

use strict;

use di agnosti cs;

use URI:: URL

use LWP:: Medi aTypes qw(medi a_suffix);

ny $VERSION = ' 0.01’;
use vars gw $ua $proxy);
$proxy = '";

require LWP: : User Agent ;
use HITP: : St at us;

#H#H##E Confi g #HE##H#RHH
ny $test_script_url
ny $nonitor_email
ny $restart_comand
ny $mai | _program
HHHRHBHSRHBH IR BT RS RH

"http://ww. exanpl e.com 81/ perl/test.pl’;

" root @ ocal host '’ ;
"lusr/local/sbin/httpd_perl/apachectl restart’;
"fusr/lib/sendmail -t -n';

$ua = new LWP:: User Agent ;

$ua- >agent (" $0/ wat chdog " . $ua->agent);

Uncomment the proxy if you access a nachine frombehind a firewall
$proxy = "http://ww proxy. cont;

$ua->proxy(’ http’, $proxy) if $proxy;

If it returns 1" it neans we are alive
exit 1 if checkurl ($test_script_url);

Houston, we have a problem
The server seens to be down, try to restart it.
my $status = system $restart_conmand;

ny $nessage = ($status == 0)
? "Server was down and successfully restarted!"

16 15 Feb 2014

Controlling and Monitoring the Server

"Server is dowmn. Can't restart.";

ny $subject = ($status == 0)
? "Attention! Webserver restarted"

1.11 Running a Server in Single Process Mode

"Attention! Wbserver is down. can’'t restart";

emai | the nonitoring person

ny $to = $nonitor_emil;

my $from = $nonitor_enunil;

send_mai | ($from $t o, $subj ect, $nmessage) ;

input: URL to check

output: 1 for success, 0 for failure
HARHHARFH R RHHHRHH R RH RS

sub checkurl {

ny (Surl) = @;

Fetch docunent
my $res = $ua->request (HTTP: : Request - >new GET => $url));

Check the result status
return 1 if is_success(%res->code);

fail ed
return O;
} # end of sub checkurl

send enmi| about the problem
HERHHARFH B RHHHRHH R RH RS
sub send_mai | {

nmy ($from $to, $subj ect, $nessagebody) = @;

open MAIL, "|$mail _progrant
or die "Can’t open a pipe to a $nmail_program:$!'\n";

print MAIL <<_ END OF_ MAIL__;
To: $to
From $from
Subj ect: $subj ect
$nessagebody

__END OF MAIL__

cl ose MAIL;
}

1.11 Running a Server in Single Process Mode

Often while developing new code, you will want to run the server in single process mode. See Sometimes
it works Sometimes it does Not and Names collisions with Modules and libs. Running in single process
mode inhibits the server from "daemonizing”, and this allows you to run it under the control of a debugger

more easily.

15 Feb 2014

17

1.12 Starting a Personal Server for Each Developer

% /usr/local/sbin/httpd_perl/httpd_perl -X

When you use the X switch the server will run in the foreground of the shell, so you can Kill it with
Ctrl-C.

Note that in- X (single-process) mode the server will run very slowly when fetching images.
Note for Netscape users:

If you use Netscape while your server is running in single-process mode, HRGEPA i ve feature

gets in the way. Netscape tries to open multiple connections and keep them open. Because there is only
one server process listening, each connection has to time out before the next succeeds. Turn off
KeepAl i ve in httpd.confto avoid this effect while developing. If you use the image size parameters,
Netscape will be able to render the page without the images so you can press the bEdv@de'stton

after a few seconds.

In addition you should know that when running witk you will not see the control messages that the
parent server normally writes to teeror_log ("server started, "server stoppedetc). Sincent t pd - X
causes the server to handle all requests itself, without forking any children, there is no controlling parent to

write the status messages.

1.12 Starting a Personal Server for Each Developer

If you are the only developer working on the specific server:port you have no problems, since you have
complete control over the server. However, often you will have a group of developers who need to

develop mod_perl scripts and modules concurrently. This means that each developer will want to have
control over the server - to kill it, to run it in single server mode, to restart it, etc., as well as having control

over the location of the log files, configuration settings MaxCl i ent s, and so on.

You canwork around this problem by preparing a fettpd.conffiles and forcing each developer to use

httpd_perl -f /path/to/httpd.conf

but | approach it in a different way. | use thBpar anet er startup option of the server. | call my
version of the server

% http_perl -Dstas

In httpd.confl write:

Personal devel opnent Server for stas

stas uses the server running on port 8000

<| fDefine stas>

Port 8000

PidFile /usr/local/var/httpd_perl/run/httpd. pid.stas
ErrorLog /usr/local/var/httpd_perl/logs/error_| og.stas
Ti meout 300

KeepAlive On

M nSpareServers 2

MaxSpar eServers 2

18 15 Feb 2014

Controlling and Monitoring the Server 1.12 Starting a Personal Server for Each Developer

StartServers 1
MaxClients 3
MaxRequest sPer Chil d 15
</|fDefine>

Personal devel opnent Server for userfoo

userfoo uses the server running on port 8001

<| f Define userfoo>

Port 8001

PidFile /usr/local/var/httpd_perl/run/httpd.pid.userfoo
ErrorLog /usr/local/var/httpd_perl/logs/error_|og.userfoo
Ti meout 300

KeepAlive Of

M nSpareServers 1

MaxSpar eServers 2

Start Servers 1

MaxC ients 5

MaxRequest sPerChild 0

</ | fDefine>

With this technique we have achieved full control over start/stop, number of children, a separate error log
file, and port selection for each server. This saves Stas from getting called every few minutes by Eric:
"Stas, I'm going to restart the server".

In the above technique, you need to discover the PID of your parémd_per| process, which is
written in /usr/ | ocal /var/ httpd_perl/run/ httpd. pid.stas (and the same for the user
eric). To make things even easier we changeabechectlscript to do the work for us. We make a copy
for each developer callepachectl.usernameand we change two lines in each script:

Pl DFI LE=/ usr/ | ocal / var/ htt pd_perl|/run/ httpd. pi d. user name
HTTPD="/usr/ | ocal / sbin/ httpd_perl/httpd_perl -Dusernange’

So for the usestaswe prepare a startup script calkgolchectl.stasind we change these two lines in the
standard apachectl script as it comes unmodified from Apache distribution.

Pl DFI LE=/ usr/ | ocal / var/ httpd_perl/run/httpd. pi d. stas
HTTPD="/usr/1 ocal / shin/ httpd_perl/httpd_per| -Dstas’

So now when usestaswants to stop the server he will execute:
apachect!| .stas stop

And to start:
apachect!| .stas start

Certainly the rest of thepachect | arguments apply as before.

You might think about having only orapachect | and know who is calling by checking the UID, but

since you have to be root to start the server it is not possible, unless you make the setuid bit on this script,
as we've explained in the beginning of this chapter. If you do so, you can have aagiagleect |

script for all developers, after you modify it to automatically find out the UID of the user, who executes
the script and set the right paths.

15 Feb 2014 19

1.13 Wrapper to Emulate the Server Perl Environment

The last thing is to provide developers with an option to run in single process mode by:

lusr/local/sbin/httpd_perl/httpd_perl -Dstas -X

In addition to making life easier, we decided to use relative links everywhere in the static documents,
including the calls to CGls. You may ask how using relative links will get to the right server port. It's very
simple, we usend_rewite.

To use mod_rewrite you have to configure ybtipd_docsserver with- - enabl e- nodul e=rewrite
and recompile, or use DSO and load the modulbttipd.conf In the httpd.confof our ht t pd_docs
server we have the following code:

Rewr i t eEngi ne on

stas’s server

port = 8000

RewriteCond 9% REQUEST_URI} ~/(perl|cgi-perl)

RewriteCond 9% REMOTE_ADDR} 123.34.45.56

RewriteRule ~(.*) http://exanpl e.com 8000/ $1 [P, L]

eric’s server

port = 8001

RewriteCond 9% REQUEST_URI} ~/(perl|cgi-perl)

RewriteCond 9% REMOTE_ADDR} 123. 34.45.57

RewriteRule ~(.*) http://exanpl e.com 8001/ $1 [P, L]

all the rest
RewriteCond 9% REQUEST_URI} ~/(perl|cgi-perl)
RewriteRule ~(.*) http://exanpl e.com 81/ $1 [P]

The IP addresses are the addresses of the developer desktop machines (where they are running their web
browsers). So if an html file includes a relative URIlperl/itest.pl or even

[http://www.example.com/perl/tes}.pl clicking on the link will be internally proxied to
[http://www.example.com:8000/perlitest.pl if the click has been made at thetasemdesktop machine,
or tofhttp://www.example.com:8001/perl/tedtfpl a request generated from the usec's machine, per
our above URI rewrite example.

Another possibility is to uSBEMOTE_USER variable if all the developers are forced to authenticate them-
selves before they can access the server. If you do, you will have to chaRgemtié eRul es to match
REMOTE_USER in the above example.

We wish to stress again, that the above setup will work only with relative URIs in the HTML code. If you
choose to generate full URIs including non-80 port the requests originated from this HTML code will
bypass the light server listening to the default port 80, and go directly sertrex:portof the full URI.

1.13 Wrapper to Emulate the Server Perl Environment

Often you will start off debugging your script by running it from your favorite shell program. Sometimes
you encounter a very weird situation when the script runs from the shell but dies when processed as a CGlI
script by a web-server. The real problem often lies in the difference between the environment variables

20 15 Feb 2014

http://www.example.com/perl/test.pl
http://www.example.com:8000/perl/test.pl
http://www.example.com:8001/perl/test.pl

Controlling and Monitoring the Server 1.13 Wrapper to Emulate the Server Perl Environment

that is used by your web-server and the ones used by your shell program.

For example you may have a set of non-standard Perl directories, used for local Perl modules. You have to
tell the Perl interpreter where these directories are. If you don’t want to m@dNg in all scripts and
modules, you can useRERL5LI B environment variable, to tell Perl where the directories are. But then
you might forget to alter the mod_perl startup script to co@@diC there as well. And if you forget this,

you can be quite puzzled why the scripts are running from the shell program, but not from the web.

Of course theerror_log will help as well to find out what the problem is, but there can be other obscure
cases, where you do something different at the shell program and your scripts refuse to run under the
web-server.

Another example is when you have more than one version of Perl installed. You might call the first
version of the Perl executable in the first script’'s line (the shebang line), but to have the web-server
compiled with another Perl version. Since mod_perl ignores the path to the Perl executable at the first line
of the script, you can get quite confused the code won't do the same when processed as request, compared
to be executed from the command line. it will take a while before you realize that you test the scripts from
the shell program using tlverong Perl version.

The best debugging approach is to write a wrapper that emulates the exact environment of the server, first
deleting environment variables liIIRERL5LI B and then calling the same perl binary that it is being used

by the server. Next, set the environment identical to the server’s by copying the Perl run directives from
the server startup and configuration files or evequire(jing the startup file, if it doesn't include
Apache: : modules stuff, unavailable under shell. This will also allow you to remove completely the first
line of the script, since mod_perl doesn’t need it anyway and the wrapper knows how to call the script.

Here is an example of such a script. Note that we force the usenofthen we call the real script. Since
when debugging we want to make sure that the code is working when the taint mode is on, and we want to
see all the warnings, to help Perl help us have a better code.

We have also added the ability to pass parameters, which will not happen when you will issue a request to
script, but it can be helpful at times.

#! /usr/ bin/perl -w
This is a wapper exanple
It simulates the web server environnent by setting @NC and ot her

#
stuff, so what will run under this wapper will run under Wb and
vice versa.

#
Usage: wrap.pl some_cgi.p
#
Bl

EG N {

we want to nmake a conplete enulation, so we nust reset all the
paths and add the standard Perl 1ibs

@NC =

gw(/usr/lib/perl5/5.00503/i386-11inux
[fusr/lib/perl5/5. 00503
[fusr/libl/perl5/site_perl/5.005/i386-1inux

15 Feb 2014 21

1.14 Server Maintenance Chores

lusr/lib/perl5/site_perl/5.005

);
}

use strict;
use Fil e:: Basenane;

process the passed parans

ny $cgi = shift || ;
ny $parans = (@GARGY) ? join(" ", @RGV) : '';

die "Usage:\n\t$0 some_cgi.pl\n" unless $cgi;

Set the environnent
my $PERLSLIB = join ":", @NC

if the path includes the directory
we extract it and chdir there
if (index($cgi,’'/’) >=0) {
ny $dirnanme = di rnanme($cgi);
chdir $dirnane or die "Can’t chdir to $dirnane: $' \n"

~ m $dirnane/ (.*)];
$1,

$cg
$cg
}

run the cgi fromthe script’'s directory
Note that we set Warning and Tai nt npdes ON'!
system qqg{/usr/bin/perl -1$PERL5LIB -Tw $cgi $par ans};

1.14 Server Maintenance Chores

It's not enough to have your server and service up and running. You have to maintain the server even
when everything seems to be fine. This includes security auditing, keeping an eye on the size of remaining
unused disk space, available RAM, the load of the system, etc.

If you forget about these chores one day (sooner or later) your system will crash either because it has run
out of free disk space, all the available CPU has been used and system has started heavily to swap or
someone has broken in. Unfortunately the scope of this guide is not covering the latter, since it will take
more than one book to profoundly cover this issue, but the rest of the thing are quite easy to prevent if you
follow our advices.

Certainly, your particular system might have maintenance chores that aren’t covered here, but at least you
will be alerted that these chores are real and should be taken care of.

1.14.1 Handling Log Files

There are two issues to solve with log files. First they should be rotated and compressed on the constant
basis, since they tend to use big parts of the disk space over time. Second these should be monitored for
possible sudden explosive growth rates, when something goes astray in your code running at the mod_perl

22 15 Feb 2014

Controlling and Monitoring the Server 1.14.1 Handling Log Files

server and the process starts to log thousands of error messages in second without stopping, until all the
disk space is used, and the server cannot work anymore.

1.14.1.1 Log Rotation

The first issue is solved by having a process run by crontab at certain times (usually off hours, if this term
is still valid in the Internet era) and rotate the logs. The log rotation includes the current log file renaming,

server restart (which creates a fresh new log file), and renamed file compression and/or moving it on a
different disk.

For example if we want to rotate thecess_lodile we could do:

% nmv access_| og access_I| og. renaned

% apachect| restart

% sleep 5; # allow all children to conplete requests and | oggi ng
nowit’'s safe to use access_| og. renaned

% nv access_| og. renaned /sone/di rectory/ on/ anot her/ di sk

This is the script that we run from the crontab to rotate the log files:
#!/usr/local /bin/perl -Tw
This script does log rotation. Called from crontab.

use strict;
$ENV{ PATH} =" / bi n: /usr/bin’;

configuration

my @ogfiles = gw(access_|log error_Ilog);

umask O;

ny $server = "httpd_perl";

my $logs_dir = "/usr/local/var/$server/logs";

my $restart_comrand = "/usr/local /sbin/$server/apachect| restart”;
ny $gzi p_exec = "/usr/bin/gzip";
ny
ny

($sec, $mi n, $hour, $nday, $non, $year) = localtine(tine);
$time = sprintf "9%0. 4d. 99. 2d. %0. 2d- %0. 2d. 9®. 2d. ¥®. 2d",
$year +1900, ++$non, $nday, $hour, $ni n, $sec;
$M o= " Stine";

rename log files
chdir $logs_dir;
@A\RGV = @ogfiles;
while (<>) {

cl ose ARGV,
}

now restart the server so the logs will be restarted
system $restart_comand,

allow all children to conplete requests and | oggi ng
sl eep 5;

15 Feb 2014 23

1.14.1 Handling Log Files

conpress log files
foreach (@ogfiles) {

system "$gzi p_exec $_. $tine";
}

Note: Setting$”™| sets the in-place edit flag to a dot followed by the time. We copy the names of the
logfiles into @GARGV, and open each in turn and immediately close them without doing any changes; but
because the in-place edit flag is set they are effectively renamed.

As you see the rotated files will include the date and the time in their filenames.

Here is a more generic set of scripts for log rotation. Cron job fires off setuid script called log-roller that
looks like this:

#!/usr/bin/perl -Tw
use strict;
use Fil e:: Basenane;

$ENV{ PATH = "/usr/ucbh:/bin:/usr/bin";
my $ROOT "/ WAV apache"; # nanes are relative to this

my $CONF "$ROOT/ conf/ httpd.conf"; # master conf
nmy SMDNIGHT = "M DNI GHT"; # nanme of programin each |ogdir

ny ($user_id, $group_id, $pidfile); # will be set during parse of conf
die "not running as root" if $>

chdir $ROOT or die "Cannot chdir $ROOT: $!"

nmy % dni ghts
open CONF, "<$CONF" or die "Cannot open $CONF: $!"
whil e (<CONF>) {
if (/~User (\w)/i) {
$user _id = get pwnan($1)
next ;

}

if (/"Goup (\w)/i) {
$group_i d = getgrnan($1);
next;

}
if (/"PidFile (.*)/i) {
$pidfile = $1
next ;
}
next unless /"ErrorLog (.*)/i;
ny $mdnight = (dirnane $1)."/$M DNI GHT";
next unl ess -x $m dnight;
$mi dni ght s{ $nmi dni ght } ++
}
cl ose CONF;

die "mssing User definition" unless defined $user_id;

die "mssing Goup definition" unless defined $group_id;
die "mssing PidFile definition" unless defined $pidfile;

24 15 Feb 2014

Controlling and Monitoring the Server 1.14.1 Handling Log Files

open PID, $pidfile or die "Cannot open $pidfile: $!";

<PI D> =~ [(\d+)/;

ny $httpd_pid = $1;

cl ose PID;

die "mssing pid definition" unless defined $httpd_pid and $httpd_pid;
kill 0, $httpd_pid or die "cannot find pid $httpd_pid: $!'";

for (sort keys % dni ghts) {
defined(nmy $pid = fork) or die "cannot fork: $!";
if ($pid) {
parent:
waitpid $pid, O;
} else {
ny $dir dirname $_;
($(.9%)) ($group_id, $group_id);
(%<, $>) ($user _i d, $user_i d);
chdir $dir or die "cannot chdir $dir: $!'";
exec "./$M DNI GHT";
di e "cannot exec $M DNI GHT: $!";
}
}

kill 1, $httpd_pid or die "Cannot SIGHUP $httpd_pid: $!'";

And then individuaM DNI GHT scripts can look like this:

#1/usr/bin/perl -Tw
use strict;

die "bad guy" unless getpwid($<) =~ /”~(root| nobody)$/;
my @QOGFI LES = gw(access_|l og error_Ilog);
umask O;
$M o= "L tie;
@\RGY = @Q.OGFI LES;
while (<>) {
cl ose ARGV,
}

Can you spot the security holes? Take your time... This code shouldn’t be used in hostile situations.

1.14.1.2 Non-Scheduled Emergency Log Rotation

As we have mentioned before, there are times when the web server goes wild and starts to log lots of
messages to therror_log file non-stop. If no one monitors this, it possible that in a few minutes all the
free disk spaces will be filled and no process will be able to work normally. When this happens, the 1/O
the faulty server causes is so heavy that its sibling processes cannot serve requests.

Generally this not the case, but a few people have reported to encounter this problem. If you are one of
these people, you should run the monitoring program that checks the log file size and if it notices that the
file has grown too large, it should attempt to restart the server and probably trim the log file.

15 Feb 2014 25

1.15 Swapping Prevention

When we have used a quite old mod_perl version, sometimes we have had bursts of @allbacik
called exitshowing up in ouerror_log. The file could grow to 300 Mbytes in a few minutes.

We will show you is an example of the script that should be executed from the crontab, to handle the situa-
tions like this. The cron job should run every few minutes or even every minute, since if you experience
this problem you know that log files fills up very fast. The example script will rotate whenrtrelog

will grow over 100K. Note that this script is useful when you have the normal scheduled log rotation facil-
ity working, remember that this one is an emergency solver and not to be used for routine log rotation.

emer gency_rot at e. sh

#!/ bi n/ sh
S='ls -s /usr/local/apache/logs/error_log | awk '{print $1}"°
if ["$S" -gt 100000] ; then

mv /usr/local /apache/l ogs/error_log /usr/local /apache/l ogs/error_log.old
/etc/rc.d/init.d/ httpd restart
date | /bin/mail -s "error_log $S kB on inx" adm n@xanpl e. com

fi

Of course you could write a more advanced script, using the timestamps and other whistles. This example
comes to illustrate how to solve the problem in question.

Another solution is to use an out of box tools that are written for this purposedadmont ool s

package [(ftp://koobera.math.uic.edu/www/daemontools.html) includes a utility calledi | og. This

utility saves stdin stream to one or more log files. It optionally timestamps each line and, for each log,
includes or excludes lines matching specified patterns. It automatically rotates logs to limit the amount of
disk space used. If the disk fills up, it pauses and tries again, without losing any data.

The obvious caveat is that it doesn'’t restart the server, so while it tries to solve the log file handling
problem it doesn’'t handle the originator of the problem. But since the I/O of the log writing process
Apache process will be quite heavy, the rest of the servers will work very slowly if at all, and a normal
watchdog should detect this abnormal situation and restart the Apache server.

1.15 Swapping Prevention

Before | delve into swapping process details, let's refresh our knowledge of memory components and
memory management

The computer memory is called RAM, which stands for Random Access Memory. Reading and writing to
RAM is, by a few orders, faster than doing the same operations on a hard disk, the former uses
non-movable memory cells, while the latter uses rotating magnetic media.

On most operating systems swap memory is used as an extension for RAM and not as a duplication of it.
So if your OS is one of those, if you have 128MB of RAM and 256MB swap patrtition, you have a total of
384MB of memory available. You should never count the extra memory when you decide on the
maximum number of processes to be run, and | will show why in the moment.

26 15 Feb 2014

ftp://koobera.math.uic.edu/www/daemontools.html

Controlling and Monitoring the Server 1.15 Swapping Prevention

The swapping memory can be built of a number of hard disk partitions and swap files formatted to be used
as swap memory. When you need more swap memory you can always extend it on demand as long as you
have some free disk space (for more information semkis&vapandswaponmanpages).

System memory is quantified in units called memory pages. Usually the size of a memory page is between
1KB and 8KB. So if you have 256MB of RAM installed on your machine and the page size is 4KB your
system has 64,000 main memory pages to work with and these pages are fast. If you have 256MB swap
partition the system can use yet another 64,000 memory pages, but they are much slower.

When the system is started all memory pages are available for use by the programs (processes).

Unless the program is really small, the process running this program uses only a few segments of the
program, each segment mapped onto its own memory page. Therefore only a few memory pages are
required to be loaded into the memory.

When the process needs an additional program’s segment to be loaded into the memory, it asks the system
whether the page containing this segment is already loaded in the memory. If the page is not found--an
event know as page faultoccurs, which requires the system to allocate a free memory page, go to the
disk, read and load the requested program’s segment into the allocated memory page.

If a process needs to bring a new page into physical memory and there are no free physical pages avail-
able, the operating system must make room for this page by discarding another page from physical
memory.

If the page to be discarded from physical memory came from an image or data file and has not been
written to then the page does not need to be saved. Instead it can be discarded and if the process needs that
page again it can be brought back into memory from the image or data file.

However, if the page has been modified, the operating system must preserve the contents of that page so
that it can be accessed at a later time. This type of page is knowdirgsgageand when it is removed

from memory it is saved in a special sort of file called the swap file. This process is referrecsteaps a

ping out

Accesses to the swap file are very long relative to the speed of the processor and physical memory and the
operating system must juggle the need to write pages to disk with the need to retain them in memory to be
used again.

In order to improve the swapping out process, to decrease the possibility that the page that has just been
swapped out, will be needed at the next moment, the LRU (least recently used) or a similar algorithm is
used.

To summarize the two swapping scenarios, read-only pages discarding incurs no overhead in contrast with
the discarding scenario of the data pages that have been written to, since in the latter case the pages have
to be written to a swap partition located on the slow disk. Therefore your machine’s overall performance
will be much better if there will be less memory pages that can become dirty.

15 Feb 2014 27

1.15 Swapping Prevention

But the problem is, Perl is a language with no strong data types, which means that both the program code
and the program data are seen as a data pages by OS since both mapped to the same memory pages. There-
fore a big chunk of your Perl code becomes dirty when its variables are modified and when the pages need

to be discarded they have to be written to the swap patrtition.

This leads us to two important conclusions about swapping and Perl.

® Running your system when there is no free main memory available hinders performance, because
processes memory pages should be discarded and then reread from disk again and again.

® Since a majority of the running code is a Perl code, in addition to the overhead of reading the previ-
ously discarded pages in, the overhead of saving the dirty pages to the swap partition is occurring.

When the system has to swap memory pages in and out, the system slows down, not serving the processes
as fast as before. This leads to an accumulation of processes waiting for their turn to run, which further
causes processing demands to go up, which in turn slows down the system even more as more memory is
required. This ever worsening spiral will lead the machine to halt, unless the resource demand suddenly
drops down and allows the processes to catch up with their tasks and go back to normal memory usage.

In addition it's important to know that for a better performance, most programs, particularly programs
written in Perl, on most modern OSs don’t return memory pages while they are running. If some of the
memory gets freed it's reused when needed by the process, without creating the additional overhead of
asking the system to allocate new memory pages. That's why you will observe that Perl programs grow in
size as they run and almost never shrink.

When the process quits it returns its memory pages to the pool of freely available pages for other processes
to use.

This scenario is certainly educating, and it should be now obvious that your system that runs the web
server should never swap. It's absolutely normal for your desktop to start swapping. You will see it imme-
diately since things will slow down and sometimes the system will freeze for a short periods. But as I've
just mentioned, you can stop starting new programs and can quit some, thus allowing the system to catch
up with the load and come back to use the RAM.

In the case of the web server you have much less control since it's users who load your machine by issuing
requests to your server. Therefore you should configure the server, so that the maximum number of possi-
ble processes will be small enough usinghh&Cl i ent s directive (For the technique for choosing the

right MaxC i ent s refer to the section 'Choosing MaxClients’). This will ensure that at peak hours the
system won’t swap. Remember that swap space is an emergency pool, not a resource to be used routinely.
If you are low on memory and you badly need it, buy it or reduce the number of processes to prevent
swapping.

However sometimes, due to the faulty code, some process might start spinning in an unconstrained loop,
consuming all the available RAM and starting to heavily use swap memory. In such a situation it helps
when you have a big emergency pool (i.e. lots of swap memory). But you have to resolve this problem as
soon as possible since this pool won't last for a long time. In the meanwhidpaitdne: : Resour ce

module can be handy.

28 15 Feb 2014

Controlling and Monitoring the Server 1.16 Preventing mod_perl Processes From Going Wild

For swapping monitoring techniques see the section 'Apache::VMonitor -- Visual System and Apache
Server Monitor’.

1.16 Preventing mod_perl Processes From Going Wild

Sometimes people report that they had a problem with their code running under mod_perl that has caused
all the RAM or all the disk to be used. The following tips should help you prevent these problems, before
if at all they hit you.

1.16.1 All RAM Consumed

Sometimes calling an undefined subroutine in a module can cause a tight loop that consumes all the avail-
able memory. Here is a way to catch such errors. DefindNRIWERSAL : : AUTCOLQAD subroutine in
your startup.pl or in a <Perl></Perl> section in yohitpd.conffile:

sub UNI VERSAL: : AUTOLOAD {
ny $class = shift;
warn "$class can't \$UNI VERSAL: : AUTOLOAD=$UNI VERSAL: : AUTOLOAD! \ n";

}

You can either put it in your startup.pl, or irkBer | ></ Per | > section in your httpd.conf file. | do the
latter. Putting it in all your mod_perl modules would be redundant (and might give you compile-time
errors).

This will produce a nice error iarror_log, giving the line number of the call and the name of the unde-
fined subroutine.

1.17 Maintainers

Maintainer is the person(s) you should contact with updates, corrections and patches.

e Stas Bekmar) [http://stason.qrg/]

1.18 Authors

e Stas Bekmar [http://stason.qrg/]

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 2014 29

http://stason.org/
http://stason.org/

Controlling and Monitoring the Server Table of Contents:

Table of Contents:

1] Controlling and Monitoring the Senjer . 1
1.1 [Descriptio 2
1.2 | Restartlng Technlqdes . 2
1.3|Server Stopping and Restarting .) 3
1.4 |Speeding up the Apache Termination and Rbstart) 4
1.5|Using apachectl to Control the Sefver . . 4
1.6 |Safe Code Updates on a Live Production Server 5
1.7 |An Intentional Disabling of Live Scripts . 7
1.8 |SUID Start-up Scrigts . . . 9

1.8.1] Introduction to SUID Executaules . 9
1.8.2| Apache Startup SUID Script’s Security . S 9
1.8.3| Sample Apache Startup SUID S¢ript 10
1.9|Preparing for Machine Rebpot. 11
1.10[Monitoring the Server. A watchdpg. 14
1.11[Running a Server in Single Process Mlode. 17
1.12(Starting a Personal Server for Each Devglopet 18
1.13[Wrapper to Emulate the Server Perl Environment. 20
1.14(Server Maintenance Chqres 22
1.14.1| Handling Log Fildas e s 22
1.14.1.1] Log Rotatign 23
1.14.1.2| Non-Scheduled Emergency Log Rotatlon 25
1.15[Swapping Preventijpn. 26
1.16 [Preventing mod perl Processes From Gomgl Wl|d. 2 |
1.16.1| All RAM Consumedd29
1.17[Maintainets 29
1.18[Authors2

15 Feb 2014 i

	1€€Controlling and Monitoring the Server
	1.1€€Description
	1.2€€Restarting Techniques
	1.3€€Server Stopping and Restarting
	1.4€€Speeding up the Apache Termination and Restart
	1.5€€Using apachectl to Control the Server
	1.6€€Safe Code Updates on a Live Production Server
	1.7€€An Intentional Disabling of Live Scripts
	1.8€€SUID Start-up Scripts
	1.8.1€€Introduction to SUID Executables
	1.8.2€€Apache Startup SUID Script's Security
	1.8.3€€Sample Apache Startup SUID Script

	1.9€€Preparing for Machine Reboot
	1.10€€Monitoring the Server. A watchdog.
	1.11€€Running a Server in Single Process Mode
	1.12€€Starting a Personal Server for Each Developer
	1.13€€Wrapper to Emulate the Server Perl Environment
	1.14€€Server Maintenance Chores
	1.14.1€€Handling Log Files
	1.14.1.1€€Log Rotation
	1.14.1.2€€Non-Scheduled Emergency Log Rotation

	1.15€€Swapping Prevention
	1.16€€Preventing mod_perl Processes From Going Wild
	1.16.1€€All RAM Consumed

	1.17€€Maintainers
	1.18€€Authors

