

1 Introducing mod_perl Handlers

115 Feb 2014

1 Introducing mod_perl HandlersIntroducing mod_perl Handlers

1.1 Description
This chapter provides an introduction into mod_perl handlers.

1.2 What are Handlers?
Apache distinguishes between numerous phases for which it provides hooks (because the C functions are
called ap_hook_<phase_name>) where modules can plug various callbacks to extend and alter the default
behavior of the webserver. mod_perl provides a Perl interface for most of the available hooks, so
mod_perl modules writers can change the Apache behavior in Perl. These callbacks are usually referred to
as handlers and therefore the configuration directives for the mod_perl handlers look like: Perl-
FooHandler , where Foo is one of the handler names. For example PerlResponseHandler config-
ures the response callback.

A typical handler is simply a perl package with a handler subroutine. For example:

 file:MyApache2/CurrentTime.pm

 package MyApache2::CurrentTime;

 use strict;
 use warnings;

 use Apache2::RequestRec ();
 use Apache2::RequestIO ();

 use Apache2::Const -compile => qw(OK);

 sub handler {
 my $r = shift;

 $r->content_type(’text/plain’);
 $r->print("Now is: " . scalar(localtime) . "\n");

 return Apache2::Const::OK;
 }
 1;

This handler simply returns the current date and time as a response.

Since this is a response handler, we configure it as a such in httpd.conf:

 PerlResponseHandler MyApache2::CurrentTime

Since the response handler should be configured for a specific location, let’s write a complete configura-
tion section:

 PerlModule MyApache2::CurrentTime
 <Location /time>
 SetHandler modperl
 PerlResponseHandler MyApache2::CurrentTime
 </Location>

15 Feb 20142

1.1 Description

Now when a request is issued to http://localhost/time this response handler is executed and a response that
includes the current time is returned to the client.

1.3 Handler Return Values
Different handler groups are supposed to return different values.

Make sure that you always explicitly return a wanted value and don’t rely on the result of last expression
to be used as the return value -- things will change in the future and you won’t know why things aren’t
working anymore.

The only value that can be returned by all handlers is Apache2::Const::OK , which tells Apache that
the handler has successfully finished its execution.

Apache2::Const::DECLINED is another return value that indicates success, but it’s only relevant for
phases of type RUN_FIRST.

HTTP handlers may also return Apache2::Const::DONE which tells Apache to stop the normal
HTTP request cycle and fast forward to the PerlLogHandler , followed by PerlCleanupHandler .
HTTP handlers may return any HTTP status, which similarly to Apache2::Const::DONE will cause
an abort of the request cycle, by also will be interpreted as an error. Therefore you don’t want to return
Apache2::Const::HTTP_OK from your HTTP response handler, but Apache2::Const::OK and
Apache will send the 200 OK status by itself.

Filter handlers return Apache2::Const::OK to indicate that the filter has successfully finished. If the
return value is Apache2::Const::DECLINED , mod_perl will read and forward the data on behalf of
the filter. Please notice that this feature is specific to mod_perl. If there is some problem with obtaining or
sending the bucket brigades, or the buckets in it, filters need to return the error returned by the method that
tried to manipulate the bucket brigade or the bucket. Normally it’d be an APR:: constant.

Protocol handler return values aren’t really handled by Apache, the handler is supposed to take care of any
errors by itself. The only special case is the PerlPreConnectionHandler handler, which, if return-
ing anything but Apache2::Const::OK or Apache2::Const::DONE , will prevent from Perl-
ConnectionHandler to be run. PerlPreConnectionHandler handlers should always return
Apache2::Const::OK .

1.4 mod_perl Handlers Categories
The mod_perl handlers can be divided by their application scope in several categories:

Server life cycle
PerlOpenLogsHandler
PerlPostConfigHandler
PerlChildInitHandler
PerlChildExitHandler

Protocols

315 Feb 2014

1.3 Handler Return ValuesIntroducing mod_perl Handlers

http://localhost/time

PerlPreConnectionHandler
PerlProcessConnectionHandler

Filters
PerlInputFilterHandler
PerlOutputFilterHandler

HTTP Protocol
PerlPostReadRequestHandler
PerlTransHandler
PerlMapToStorageHandler
PerlInitHandler
PerlHeaderParserHandler
PerlAccessHandler
PerlAuthenHandler
PerlAuthzHandler
PerlTypeHandler
PerlFixupHandler
PerlResponseHandler
PerlLogHandler
PerlCleanupHandler

1.5 Stacked Handlers
For each phase there can be more than one handler assigned (also known as hooks, because the C func-
tions are called ap_hook_<phase_name>). Phases’ behavior varies when there is more then one handler
registered to run for the same phase. The following table specifies each handler’s behavior in this situa-
tion:

 Directive Type

 PerlOpenLogsHandler RUN_ALL
 PerlPostConfigHandler RUN_ALL
 PerlChildInitHandler VOID
 PerlChildExitHandler VOID

 PerlPreConnectionHandler RUN_ALL
 PerlProcessConnectionHandler RUN_FIRST

 PerlPostReadRequestHandler RUN_ALL
 PerlTransHandler RUN_FIRST
 PerlMapToStorageHandler RUN_FIRST
 PerlInitHandler RUN_ALL
 PerlHeaderParserHandler RUN_ALL
 PerlAccessHandler RUN_ALL
 PerlAuthenHandler RUN_FIRST
 PerlAuthzHandler RUN_FIRST
 PerlTypeHandler RUN_FIRST
 PerlFixupHandler RUN_ALL
 PerlResponseHandler RUN_FIRST
 PerlLogHandler RUN_ALL

15 Feb 20144

1.5 Stacked Handlers

 PerlCleanupHandler RUN_ALL

 PerlInputFilterHandler VOID
 PerlOutputFilterHandler VOID

Note: PerlChildExitHandler and PerlCleanupHandler are not real Apache hooks, but to
mod_perl users they behave as all other hooks.

And here is the description of the possible types:

1.5.1 VOID

Handlers of the type VOID will be all executed in the order they have been registered disregarding their
return values. Though in mod_perl they are expected to return Apache2::Const::OK .

1.5.2 RUN_FIRST

Handlers of the type RUN_FIRST will be executed in the order they have been registered until the first
handler that returns something other than Apache2::Const::DECLINED . If the return value is
Apache2::Const::DECLINED , the next handler in the chain will be run. If the return value is
Apache2::Const::OK the next phase will start. In all other cases the execution will be aborted.

1.5.3 RUN_ALL

Handlers of the type RUN_ALL will be executed in the order they have been registered until the first
handler that returns something other than Apache2::Const::OK or
Apache2::Const::DECLINED .

For C API declarations see include/ap_config.h, which includes other types which aren’t exposed by
mod_perl handlers.

Also see mod_perl Directives Argument Types and Allowed Location

1.6 Hook Ordering (Position)
The following constants specify how the new hooks (handlers) are inserted into the list of hooks when
there is at least one hook already registered for the same phase.

META: Not working yet.

META: need to verify the following:

APR::Const::HOOK_REALLY_FIRST

run this hook first, before ANYTHING.

515 Feb 2014

1.6 Hook Ordering (Position)Introducing mod_perl Handlers

APR::Const::HOOK_FIRST

run this hook first.

APR::Const::HOOK_MIDDLE

run this hook somewhere.

APR::Const::HOOK_LAST

run this hook after every other hook which is defined.

APR::Const::HOOK_REALLY_LAST

run this hook last, after EVERYTHING.

META: more information in mod_example.c talking about position/predecessors, etc.

1.7 Bucket Brigades
Apache 2.0 allows multiple modules to filter both the request and the response. Now one module can pipe
its output as an input to another module as if another module was receiving the data directly from the TCP
stream. The same mechanism works with the generated response.

With I/O filtering in place, simple filters, like data compression and decompression, can be easily imple-
mented and complex filters, like SSL, are now possible without needing to modify the the server code
which was the case with Apache 1.3.

In order to make the filtering mechanism efficient and avoid unnecessary copying, while keeping the data
abstracted, the Bucket Brigades technology was introduced. It’s also used in protocol handlers.

A bucket represents a chunk of data. Buckets linked together comprise a brigade. Each bucket in a brigade
can be modified, removed and replaced with another bucket. The goal is to minimize the data copying
where possible. Buckets come in different types, such as files, data blocks, end of stream indicators, pools,
etc. To manipulate a bucket one doesn’t need to know its internal representation.

The stream of data is represented by bucket brigades. When a filter is called it gets passed the brigade that
was the output of the previous filter. This brigade is then manipulated by the filter (e.g., by modifying
some buckets) and passed to the next filter in the stack.

The following figure depicts an imaginary bucket brigade:

bucket brigades

The figure tries to show that after the presented bucket brigade has passed through several filters some
buckets were removed, some modified and some added. Of course the handler that gets the brigade cannot
tell the history of the brigade, it can only see the existing buckets in the brigade.

15 Feb 20146

1.7 Bucket Brigades

Bucket brigades are discussed in detail in the protocol handlers and I/O filtering chapters.

1.8 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

1.9 Authors

Only the major authors are listed above. For contributors see the Changes file.

715 Feb 2014

1.8 MaintainersIntroducing mod_perl Handlers

http://stason.org/

Table of Contents:
............... 11 Introducing mod_perl Handlers
................... 21.1 Description
................. 21.2 What are Handlers?
................ 31.3 Handler Return Values
.............. 31.4 mod_perl Handlers Categories
................. 41.5 Stacked Handlers
................... 51.5.1 VOID
................. 51.5.2 RUN_FIRST
.................. 51.5.3 RUN_ALL
............... 51.6 Hook Ordering (Position)
................. 61.7 Bucket Brigades
................... 71.8 Maintainers
................... 71.9 Authors

i15 Feb 2014

Table of Contents:Introducing mod_perl Handlers

	1€€Introducing mod_perl Handlers
	1.1€€Description
	1.2€€What are Handlers?
	1.3€€Handler Return Values
	1.4€€mod_perl Handlers Categories
	1.5€€Stacked Handlers
	1.5.1€€VOID
	1.5.2€€RUN_FIRST
	1.5.3€€RUN_ALL

	1.6€€Hook Ordering (Position)
	1.7€€Bucket Brigades
	1.8€€Maintainers
	1.9€€Authors

