

1 ModPerl::Registry - Run unaltered CGI scripts
persistently under mod_perl

115 Feb 2014

1 ModPerl::Registry - Run unaltered CGI scripts persistently under mod_perlModPerl::Registry - Run unaltered CGI scripts persistently under mod_perl

1.1 Synopsis
 # httpd.conf
 PerlModule ModPerl::Registry
 Alias /perl/ /home/httpd/perl/
 <Location /perl>
 SetHandler perl-script
 PerlResponseHandler ModPerl::Registry
 #PerlOptions +ParseHeaders
 #PerlOptions -GlobalRequest
 Options +ExecCGI
 </Location>

1.2 Description
URIs in the form of http://example.com/perl/test.pl will be compiled as the body of a Perl
subroutine and executed. Each child process will compile the subroutine once and store it in memory. It
will recompile it whenever the file (e.g. test.pl in our example) is updated on disk. Think of it as an object
oriented server with each script implementing a class loaded at runtime.

The file looks much like a "normal" script, but it is compiled into a subroutine.

For example:

 my $r = Apache2::RequestUtil->request;
 $r->content_type("text/html");
 $r->send_http_header;
 $r->print("mod_perl rules!");

XXX: STOPPED here. Below is the old Apache::Registry document which I haven’t worked through yet.

META: document that for now we don’t chdir() into the script’s dir, because it affects the whole process
under threads. ModPerl::RegistryPrefork should be used by those who run only under prefork
MPM.

This module emulates the CGI environment, allowing programmers to write scripts that run under CGI or
mod_perl without change. Existing CGI scripts may require some changes, simply because a CGI script
has a very short lifetime of one HTTP request, allowing you to get away with "quick and dirty" scripting.
Using mod_perl and ModPerl::Registry requires you to be more careful, but it also gives new meaning to
the word "quick"!

Be sure to read all mod_perl related documentation for more details, including instructions for setting up
an environment that looks exactly like CGI:

 print "Content-type: text/html\n\n";
 print "Hi There!";

Note that each httpd process or "child" must compile each script once, so the first request to one server
may seem slow, but each request there after will be faster. If your scripts are large and/or make use of
many Perl modules, this difference should be noticeable to the human eye.

15 Feb 20142

1.1 Synopsis

http://example.com/perl/test.pl

1.3 DirectoryIndex
If you are trying setup a DirectoryIndex under a Location covered by ModPerl::Registry* you might run
into some trouble.

META: if this gets added to core, replace with real documenation. See http://marc.theaims-
group.com/?l=apache-modperl&m=112805393100758&w=2

1.4 Special Blocks

1.4.1 BEGIN Blocks

BEGIN blocks defined in scripts running under the ModPerl::Registry handler behave similarly to
the normal mod_perl handlers plus:

Only once, if pulled in by the parent process via Apache2::RegistryLoader.

An additional time, once per child process or Perl interpreter, each time the script file changes on
disk.

BEGIN blocks defined in modules loaded from ModPerl::Registry scripts behave identically to the
normal mod_perl handlers, regardless of whether they define a package or not.

1.4.2 CHECK and INIT Blocks

Same as normal mod_perl handlers.

1.4.3 END Blocks

END blocks encountered during compilation of a script, are called after the script has completed its run,
including subsequent invocations when the script is cached in memory. This is assuming that the script
itself doesn’t define a package on its own. If the script defines its own package, the END blocks in the
scope of that package will be executed at the end of the interpretor’s life.

END blocks residing in modules loaded by registry script will be executed only once, when the interpreter
exits.

1.5 Security
ModPerl::Registry::handler performs the same sanity checks as mod_cgi does, before running
the script.

315 Feb 2014

1.3 DirectoryIndexModPerl::Registry - Run unaltered CGI scripts persistently under mod_perl

http://marc.theaimsgroup.com/?l=apache-modperl&m=112805393100758&w=2
http://marc.theaimsgroup.com/?l=apache-modperl&m=112805393100758&w=2

1.6 Environment
The Apache function ‘exit’ overrides the Perl core built-in function.

1.7 Commandline Switches In First Line
Normally when a Perl script is run from the command line or under CGI, arguments on the ‘#!’ line are
passed to the perl interpreter for processing.

ModPerl::Registry currently only honors the -w switch and will enable the warnings pragma in
such case.

Another common switch used with CGI scripts is -T to turn on taint checking. This can only be enabled
when the server starts with the configuration directive:

 PerlSwitches -T

However, if taint checking is not enabled, but the -T switch is seen, ModPerl::Registry will write a
warning to the error_log file.

1.8 Debugging
You may set the debug level with the $ModPerl::Registry::Debug bitmask

 1 => log recompile in errorlog
 2 => ModPerl::Debug::dump in case of $@
 4 => trace pedantically

1.9 Caveats
ModPerl::Registry makes things look just the CGI environment, however, you must understand that this
is not CGI. Each httpd child will compile your script into memory and keep it there, whereas CGI will
run it once, cleaning out the entire process space. Many times you have heard "always use -w, always use
-w and ’use strict’". This is more important here than anywhere else! Some other important caveats to
keep in mind are discussed on the Perl Reference page.

1.10 Authors
Andreas J. Koenig, Doug MacEachern and Stas Bekman.

15 Feb 20144

1.6 Environment

1.11 See Also
ModPerl::RegistryCooker, ModPerl::RegistryBB and ModPerl::PerlRun.

515 Feb 2014

1.11 See AlsoModPerl::Registry - Run unaltered CGI scripts persistently under mod_perl

Table of Contents:
..... 11 ModPerl::Registry - Run unaltered CGI scripts persistently under mod_perl
................... 21.1 Synopsis
................... 21.2 Description
.................. 31.3 DirectoryIndex
.................. 31.4 Special Blocks
................. 31.4.1 BEGIN Blocks
............... 31.4.2 CHECK and INIT Blocks
.................. 31.4.3 END Blocks
.................... 31.5 Security
.................. 41.6 Environment
............. 41.7 Commandline Switches In First Line
................... 41.8 Debugging
.................... 41.9 Caveats
................... 41.10 Authors
................... 51.11 See Also

i15 Feb 2014

Table of Contents:ModPerl::Registry - Run unaltered CGI scripts persistently under mod_perl

	1€€ModPerl::Registry - Run unaltered CGI scripts persistently under mod_perl
	1.1€€Synopsis
	1.2€€Description
	1.3€€DirectoryIndex
	1.4€€Special Blocks
	1.4.1€€BEGIN Blocks
	1.4.2€€CHECK and INIT Blocks
	1.4.3€€END Blocks

	1.5€€Security
	1.6€€Environment
	1.7€€Commandline Switches In First Line
	1.8€€Debugging
	1.9€€Caveats
	1.10€€Authors
	1.11€€See Also

