

1 Apache2::RequestIO - Perl API for Apache request
record IO

115 Feb 2014

1 Apache2::RequestIO - Perl API for Apache request record IOApache2::RequestIO - Perl API for Apache request record IO

1.1 Synopsis
 use Apache2::RequestIO ();

 $rc = $r->discard_request_body();

 $r->print("foo", "bar");
 $r->puts("foo", "bar"); # same as print, but no flushing
 $r->printf("%s $d", "foo", 5);

 $r->read($buffer, $len);

 $r->rflush();

 $r->sendfile($filename);

 $r->write("foobartarcar", 3, 5);

1.2 Description
Apache2::RequestIO provides the API to perform IO on the Apache request object.

1.3 API
Apache2::RequestIO provides the following functions and/or methods:

1.3.1 discard_request_body

In HTTP/1.1, any method can have a body. However, most GET handlers wouldn’t know what to do with
a request body if they received one. This helper routine tests for and reads any message body in the
request, simply discarding whatever it receives. We need to do this because failing to read the request
body would cause it to be interpreted as the next request on a persistent connection.

 $rc = $r->discard_request_body();

obj: $r (Apache2::RequestRec object)

The current request

ret: $rc (integer)

APR::Const status constant if request is malformed, Apache2::Const::OK other-
wise.

since: 2.0.00

Since we return an error status if the request is malformed, this routine should be called at the beginning of
a no-body handler, e.g.,

15 Feb 20142

1.1 Synopsis

 use Apache2::Const -compile => qw(OK);
 $rc = $r->discard_request_body;
 return $rc if $rc != Apache2::Const::OK;

1.3.2 print

Send data to the client.

 $cnt = $r->print(@msg);

obj: $r (Apache2::RequestRec object)
arg1: @msg (ARRAY)

Data to send

ret: $cnt (number)

How many bytes were sent (or buffered). If zero bytes were sent, print will return 0E0, or "zero
but true," which will still evaluate to 0 in a numerical context.

excpt: APR::Error
since: 2.0.00

The data is flushed only if STDOUT stream’s $| is true. Otherwise it’s buffered up to the size of the
buffer, flushing only excessive data.

1.3.3 printf

Format and send data to the client (same as printf).

 $cnt = $r->printf($format, @args);

obj: $r (Apache2::RequestRec object)
arg1: $format (string)

Format string, as in the Perl core printf function.

arg2: @args (ARRAY)

Arguments to be formatted, as in the Perl core printf function.

ret: $cnt (number)

How many bytes were sent (or buffered)

excpt: APR::Error
since: 2.0.00

315 Feb 2014

1.3.2 printApache2::RequestIO - Perl API for Apache request record IO

The data is flushed only if STDOUT stream’s $| is true. Otherwise it’s buffered up to the size of the
buffer, flushing only excessive data.

1.3.4 puts

Send data to the client

 $cnt = $r->puts(@msg);

obj: $r (Apache2::RequestRec object)
arg1: @msg (ARRAY)

Data to send

ret: $cnt (number)

How many bytes were sent (or buffered)

excpt: APR::Error
since: 2.0.00

puts() is similar to print(), but it won’t attempt to flush data, no matter what the value of STDOUT
stream’s $| is. Therefore assuming that STDOUT stream’s $| is true, this method should be a tiny bit
faster than print(), especially if small strings are printed.

1.3.5 read

Read data from the client.

 $cnt = $r->read($buffer, $len);
 $cnt = $r->read($buffer, $len, $offset);

obj: $r (Apache2::RequestRec object)
arg1: $buffer (SCALAR)

The buffer to populate with the read data

arg2: $len (number)

How many bytes to attempt to read

opt arg3: $offset (number)

If a non-zero $offset is specified, the read data will be placed at that offset in the $buffer.

META: negative offset and \0 padding are not supported at the moment

ret: $cnt (number)

15 Feb 20144

1.3.4 puts

How many characters were actually read

excpt: APR::Error
since: 2.0.00

This method shares a lot of similarities with the Perl core read() function. The main difference in the
error handling, which is done via APR::Error exceptions

1.3.6 rflush

Flush any buffered data to the client.

 $r->rflush();

obj: $r (Apache2::RequestRec object)
ret: no return value
since: 2.0.00

Unless STDOUT stream’s $| is false, data sent via $r->print() is buffered. This method flushes that
data to the client.

1.3.7 sendfile

Send a file or a part of it

 $rc = $r->sendfile($filename);
 $rc = $r->sendfile($filename, $offset);
 $rc = $r->sendfile($filename, $offset, $len);

obj: $r (Apache2::RequestRec object)
arg1: $filename (string)

The full path to the file (using / on all systems)

opt arg2: $offset (integer)

Offset into the file to start sending.

No offset is used if $offset is not specified.

opt arg3: $len (integer)

How many bytes to send.

If not specified the whole file is sent (or a part of it, if $offset if specified)

ret: $rc (APR::Const status constant)

515 Feb 2014

1.3.6 rflushApache2::RequestIO - Perl API for Apache request record IO

On success, APR::Const::SUCCESS is returned.

In case of a failure -- a failure code is returned, in which case normally it should be returned to the
caller.

excpt: APR::Error

Exceptions are thrown only when this function is called in the VOID context. So if you don’t want to
handle the errors, just don’t ask for a return value and the function will handle all the errors on its
own.

since: 2.0.00

1.3.8 write

Send partial string to the client

 $cnt = $r->write($buffer);
 $cnt = $r->write($buffer, $len);
 $cnt = $r->write($buffer, $len, $offset);

obj: $r (Apache2::RequestRec object)
arg1: $buffer (SCALAR)

The string with data

opt arg2: $len (SCALAR)

How many bytes to send. If not specified, or -1 is specified, all the data in $buffer (or starting
from $offset) will be sent.

opt arg3: $offset (number)

Offset into the $buffer string.

ret: $cnt (number)

How many bytes were sent (or buffered)

excpt: APR::Error
since: 2.0.00

Examples:

Assuming that we have a string:

 $string = "123456789";

15 Feb 20146

1.3.8 write

Then:

 $r->write($string);

sends:

 123456789

Whereas:

 $r->write($string, 3);

sends:

 123

And:

 $r->write($string, 3, 5);

sends:

 678

Finally:

 $r->write($string, -1, 5);

sends:

 6789

1.4 TIE Interface
The TIE interface implementation. This interface is used for HTTP request handlers, when running under
SetHandler perl-script and Perl doesn’t have perlio enabled.

See the perltie manpage for more information.

1.4.1 BINMODE

since: 2.0.00

NoOP

See the binmode Perl entry in the perlfunc manpage

715 Feb 2014

1.4 TIE InterfaceApache2::RequestIO - Perl API for Apache request record IO

1.4.2 CLOSE

since: 2.0.00

NoOP

See the close Perl entry in the perlfunc manpage

1.4.3 FILENO

since: 2.0.00

See the fileno Perl entry in the perlfunc manpage

1.4.4 GETC

since: 2.0.00

See the getc Perl entry in the perlfunc manpage

1.4.5 OPEN

since: 2.0.00

See the open Perl entry in the perlfunc manpage

1.4.6 PRINT

since: 2.0.00

See the print Perl entry in the perlfunc manpage

1.4.7 PRINTF

since: 2.0.00

See the printf Perl entry in the perlfunc manpage

1.4.8 READ

since: 2.0.00

See the read Perl entry in the perlfunc manpage

15 Feb 20148

1.4.2 CLOSE

1.4.9 TIEHANDLE

since: 2.0.00

See the tie Perl entry in the perlfunc manpage

1.4.10 UNTIE

since: 2.0.00

NoOP

See the untie Perl entry in the perlfunc manpage

1.4.11 WRITE

since: 2.0.00

See the write Perl entry in the perlfunc manpage

1.5 Deprecated API
The following methods are deprecated, Apache plans to remove those in the future, therefore avoid using
them.

1.5.1 get_client_block

This method is deprecated since the C implementation is buggy and we don’t want you to use it at all.
Instead use the plain $r->read().

1.5.2 setup_client_block

This method is deprecated since $r->get_client_block is deprecated.

1.5.3 should_client_block

This method is deprecated since $r->get_client_block is deprecated.

1.6 See Also
mod_perl 2.0 documentation.

915 Feb 2014

1.5 Deprecated APIApache2::RequestIO - Perl API for Apache request record IO

1.7 Copyright
mod_perl 2.0 and its core modules are copyrighted under The Apache Software License, Version 2.0.

1.8 Authors
The mod_perl development team and numerous contributors.

15 Feb 201410

1.7 Copyright

Table of Contents:
........ 11 Apache2::RequestIO - Perl API for Apache request record IO
................... 21.1 Synopsis
................... 21.2 Description
.................... 21.3 API
............. 21.3.1 discard_request_body
.................. 31.3.2 print
.................. 31.3.3 printf
................... 41.3.4 puts
................... 41.3.5 read
.................. 51.3.6 rflush
................. 51.3.7 sendfile
.................. 61.3.8 write
.................. 71.4 TIE Interface
.................. 71.4.1 BINMODE
.................. 81.4.2 CLOSE
.................. 81.4.3 FILENO
................... 81.4.4 GETC
................... 81.4.5 OPEN
.................. 81.4.6 PRINT
.................. 81.4.7 PRINTF
................... 81.4.8 READ
................. 91.4.9 TIEHANDLE
.................. 91.4.10 UNTIE
.................. 91.4.11 WRITE
.................. 91.5 Deprecated API
............... 91.5.1 get_client_block
.............. 91.5.2 setup_client_block
.............. 91.5.3 should_client_block
................... 91.6 See Also
................... 101.7 Copyright
................... 101.8 Authors

i15 Feb 2014

Table of Contents:Apache2::RequestIO - Perl API for Apache request record IO

	1€€Apache2::RequestIO - Perl API for Apache request record IO
	1.1€€Synopsis
	1.2€€Description
	1.3€€API
	1.3.1€€discard_request_body
	1.3.2€€print
	1.3.3€€printf
	1.3.4€€puts
	1.3.5€€read
	1.3.6€€rflush
	1.3.7€€sendfile
	1.3.8€€write

	1.4€€TIE Interface
	1.4.1€€BINMODE
	1.4.2€€CLOSE
	1.4.3€€FILENO
	1.4.4€€GETC
	1.4.5€€OPEN
	1.4.6€€PRINT
	1.4.7€€PRINTF
	1.4.8€€READ
	1.4.9€€TIEHANDLE
	1.4.10€€UNTIE
	1.4.11€€WRITE

	1.5€€Deprecated API
	1.5.1€€get_client_block
	1.5.2€€setup_client_block
	1.5.3€€should_client_block

	1.6€€See Also
	1.7€€Copyright
	1.8€€Authors

