Apache2::Reload - Reload Perl Modules when Changed on Disk 1 Apache2::Reload - Reload Perl Modules when Changed on Disk

1 Apache2::Reload - Reload Perl Modules when
Changed on Disk

15 Feb 2014 1

1.1 Synopsis

1.1 Synopsis

Monitor and reload all modules in %INC:
httpd.conf:

PerlIModule Apache2::Reload
PerlinitHandler Apache2::Reload

when working with protocols and connection filters
PerlPreConnectionHandler Apache2::Reload

Reload groups of modules:

httpd.conf:

PerlIModule Apache2::Reload

PerlinitHandler Apache2::Reload

PerlSetVar ReloadAll Off

PerlSetVar ReloadModules "ModPerl::* Apache2::*"
#PerlSetVar ReloadDebug On

Reload a single module from within itself:
package My::Apache2::Module;

use Apache2::Reload,;

sub handler { ... }

1

1.2 Description
Apache2::Reload reloads modules that change on the disk.

When Perl pulls a file viaequire , it stores the filename in the global h&INC The next time Perl
tries torequire the same file, it sees the file MINC and does not reload from disk. This module’s
handler can be configured to iterate over the modulesNCand reload those that have changed on disk
or only specific modules that have registered themselvesApitithe2::Reload . It can also do the
check for modified modules, when a special touch-file has been modified.

Note thatApache2::Reload operates on the current context@fNC Which means, when called as a
Perl*Handler it will not see@INCpaths added or removed bodPerl::Registry scripts, as the

value of @INCis saved on server startup and restored to that value after each request. In other words, if
you wantApache2::Reload to work with modules that live in custo@INCpaths, you should modify

@INC when the server is started. Besidese lib’ in the startup script, you can also set the
PERLS5LIB variable in the httpd’s environment to include any non-standard 'lib’ directories that you
choose. For example, to accomplish that you can include a line:

PERL5LIB=/home/httpd/perl/extra; export PERL5LIB

in the script that starts Apache. Alternatively, you can set this environment variatifeliconf:

PerlSetEnv PERL5LIB /home/httpd/perl/extra

2 15 Feb 2014

Apache2::Reload - Reload Perl Modules when Changed on Disk 1.2.1 Monitor All Modules in %INC

1.2.1 Monitor All Modules in%4 NC

To monitor and reload all modules #INC at the beginning of request’s processing, simply add the
following configuration to youhttpd.conf:

PerlIModule Apache2::Reload
PerlinitHandler Apache2::Reload

When working with connection filters and protocol moduemche2::Reload should be invoked in
the pre_connection stage:

PerlPreConnectionHandler Apache2::Reload

See also the discussion BerlPreConnectionHandler

1.2.2 Register Modules Implicitly

To only reload modules that have registered wijhache2::Reload , add the following to the
httpd.conf:

PerlModule Apache2::Reload

PerlinitHandler Apache2::Reload

PerlSetVar ReloadAll Off
ReloadAll defaults to On

Then any modules with the line:
use Apache2::Reload;

Will be reloaded when they change.

1.2.3 Register Modules Explicitly

You can also register modules explicitly in yditipd.conf file that you want to be reloaded on change:
PerlIModule Apache2::Reload
PerlinitHandler Apache2::Reload

PerlSetVar ReloadAll Off
PerlSetVar ReloadModules "My::Foo My::Bar Foo::Bar::Test"

Note that these are split on whitespace, but the modulmlist be in quotes, otherwise Apache tries to
parse the parameter list.

The* wild character can be used to register groups of files under the same namespace. For example the
setting:

PerlSetVar ReloadModules "ModPerl::* Apache2::*"

15 Feb 2014 3

1.2.4 Monitor Only Certain Sub Directories

will monitor all modules under the namespabkxiPerl:: andApache2:

1.2.4 Monitor Only Certain Sub Directories

To reload modules only in certain directories (and their subdirectories) add the followindpttipdioent:
PerIModule Apache2::Reload

PerlinitHandler Apache2::Reload
PerlSetVar ReloadDirectories "/tmp/projectl /tmp/project2"

You can further narrow the list of modules to be reloaded from the chosen directori@eloadMod-
ules asin:

PerlIModule Apache2::Reload

PerlinitHandler Apache2::Reload

PerlSetVar ReloadDirectories "/tmp/projectl /tmp/project2"

PerlSetVar ReloadAll Off
PerlSetVar ReloadModules "MyApache2::*"

In this configuration example only modules from the namespb@pache2:: found in the directories
/tmp/projectl/ and/tmp/project2/ (and their subdirectories) will be reloaded.

1.2.5 Special "Touch" File

You can also declare a file, which when getsch(l) ed, causes the reloads to be performed. For
example if you set:

PerlSetVar ReloadTouchFile /tmp/reload_modules

and don'ttouch(l) the file /tmp/reload modules, the reloads won't happen until you go to the
command line and type:

% touch /tmp/reload_modules

When you do that, the modules that have been changed, will be magically reloaded on the next request.
This option works with any mode described before.

1.2.6 Unregistering a module

In some cases, it might be necessary to explicitely stop reloading a module.

Apache2::Reload->unregister_module('Some::Module’);

But be carefull, since unregistering a module in this way will only do so for the current interpreter. This
feature should be used with care.

4 15 Feb 2014

Apache2::Reload - Reload Perl Modules when Changed on Disk 1.3 Performance Issues

1.3 Performance Issues

This module is perfectly suited for a development environment. Though it's possible that you would like
to use it in a production environment, since wiflache2::Reload you don’t have to restart the server
in order to reload changed modules during software updates. Though this convenience comes at a price:

e |If the "touch" file feature is usedpache2::Reload has to stat(2) the touch file on each request,
which adds a slight but most likely insignificant overhead to response times. Otherwise
Apache2::Reload will stat(2) each registered module or even worse--all module%IhC
which will significantly slow everything down.

® Once the child process reloads the modules, the memory used by these modules is not shared with the
parent process anymore. Therefore the memory consumption may grow significantly.

Therefore doing a full server stop and restart is probably a better solution.

1.4 Debug

If you aren’t sure whether the modules that are supposed to be reloaded, are actually getting reloaded, turn
the debug mode on:

PerlSetVar ReloadDebug On

1.5 Caveats

1.5.1 Problems With Reloading Modules Which Do Not Declare Their
Package Name

If you modify modules, which don't declare thei@ckage , and rely omApache2::Reload to reload

them, you may encounter problems: i.e., it'll appear as if the module wasn’t reloaded when in fact it was.
This happens because wha&pache2::Reload require() s such a module all the global symbols

end up in theApache2::Reload namespace! So the module does get reloaded and you see the compile

time errors if there are any, but the symbols don't get imported to the right namespace. Therefore the old
version of the code is running.

1.5.2 Failing to Find a File to Reload

Apache2::Reload uses%INCto find the files on the filesystem. If an entry for a certain filepath in
%INCis relative,Apache2::Reload will use @INCto try to resolve that relative path. Now remember
that mod_perl freezes the value@iNCat the server startup, and you can modify it only for the duration
of one request when you need to load some module which is not in on @IM@directories. So a
module gets loaded, and registere@dNCwith a relative path. Now whelypache2::Reload tries to

find that module to check whether it has been modified, it can't find since its directory is@tt{® So
Apache2::Reload will silently skip that module.

15 Feb 2014 5

1.5.3 Problems with Scripts Running with Registry Handlers that Cache the Code

You can enable thBebug|/Debug mode to see wh#{pache2::Reload does behind the scenes.

1.5.3 Problems with Scripts Running with Registry Handlers that
Cache the Code

The following problem is relevant only to registry handlers that cache the compiled script. For example it
concerndModPerl::Registry but notModPerl::PerlRun

1.5.3.1 The Problem

Let's say that there is a modwy::Utils
#file:My/Utils.pm
package My::Utils;
BEGIN { warn __PACKAGE__, " was reloaded\n" }
use base qw(Exporter);
@EXPORT = gw(colour);

sub colour { "white" }
1

And a registry scriptest.pl:
#file:test.pl
use My::Utils;

print "Content-type: text/plain\n\n";
print "the color is " . colour();

Assuming that the server is running in a single mode, we request the script for the first time and we get the
response:

the color is white
Now we chang®y/Utils.pm:

- sub colour { "white" }
+ sub colour { "red" }

And issue the request agaipache2::Reload does its job and we can see that::Utils was
reloaded (look in therror_log file). However the script still returns:

the color is white

1.5.3.2 The Explanation

Even thoughMy/Utilspm was reloadedModPerl::Registry 's cached code won’t runuse
My::Utils; ' again (since it happens only once, i.e. during the compile time). Therefore the script
doesn’t know that the subroutine reference has been changed.

6 15 Feb 2014

Apache2::Reload - Reload Perl Modules when Changed on Disk 1.6 Threaded MPM and Multiple Perl Interpreters

This is easy to verify. Let’'s change the script to be:
#file:test.pl
use My::Utils;
print "Content-type: text/plain\n\n";
my $sub_int = \&colour;
my $sub_ext = \&My::Utils::colour;

print "int $sub_int\n";
print "ext $sub_ext\n";

Issue a request, you will see something similar to:

int CODE(0x8510af8)
ext CODE(0x8510af8)

As you can see both point to the same CODE reference (meaning that it's the same symbol). After modify-
ing My/Utils.pm again:

- sub colour {"red" }
+ sub colour { "blue" }

and calling the script on the secondnd time, we get:

int CODE(0x8510af8)
ext CODE(0x851112c)

You can see that the internal CODE reference is not the same as the external one.

1.5.3.3 The Solution
There are two solutions to this problem:

Solution 1: replacease() with an explicitrequire() +import()

- use My::Utils;
+ require My::Utils; My::Utils->import();

now the changed functions will be reimported on every request.

Solution 2: remember to touch the script itself every time you change the module that it requires.

1.6 Threaded MPM and Multiple Perl Interpreters

If you useApache2::Reload with a threaded MPM and multiple Perl interpreters, the modules will be
reloaded by each interpreter as they are used, not every interpreters at once. Similar to mod_perl 1.0 where
each child has its own Perl interpreter, the modules are reloaded as each child is hit with a request.

If a module is loaded at startup, the syntax tree of each subroutine is shared between interpreters (big win),
but each subroutine has its own padlist (where lexical my variables are stored). Once
Apache2::Reload reloads a module, this sharing goes away and each Perl interpreter will have its own

15 Feb 2014 7

1.7 Pseudo-hashes

copy of the syntax tree for the reloaded subroutines.

1.7 Pseudo-hashes

The short summary of this is: Don’'t use pseudo-hashes. They are deprecated since Perl 5.8 and are
removed in 5.9.

Use an array with constant indexes. Its faster in the general case, its more guaranteed, and generally, it
works.

The long summary is that some work has been done to get this module working with modules that use
pseudo-hashes, but it's still broken in the case of a single module that contains multiple packages that all
use pseudo-hashes.

So don't do that.

1.8 Copyright

mod_perl 2.0 and its core modules are copyrighted under The Apache Software License, Version 2.0.

1.9 Authors

Matt Sergeant, matt@sergeant.org
Stas Bekman (porting to mod_perl 2.0)

A few concepts borrowed fro®tonehenge::Reload by Randal Schwartz amgpache::StatINC
(mod_perl 1.x) by Doug MacEachern and Ask Bjoern Hansen.

8 15 Feb 2014

Apache2::Reload - Reload Perl Modules when Changed on Disk Table of Contents:

Table of Contents:

1] Apache2::ReIoad - Reload Perl Modules when Changed o Disk
11 :
1.2 [Descriptio

1.2. 1| Monltor All Modules |r%IN(1
1.2.2| Register Modules Implicifly .
1.2.3| Register Modules Explicifly . .
1.2.4| Monitor Only Certain Sub Directotfies
1.2.5| Special "Touch" File
1.2.6| Unregistering a module .

1.3 |Performance Issues.

1.4 [Debyf

15 s :
1.5.1| Problems With Reloadlng Modules WhICh Do Not Declare Thelr Packagde Name .

1.5.2| Failing to Find a File to Relgad . . .
1.5.3| Problems with Scripts Running with Reglstry Handlers that Cache thIe Code .

1.5.3.1| The Problem
1.5.3.2[The Explanatibn

1.5.3.3| The Solutign
1.6 |Threaded MPM and Multiple PerI Interprelters
1.7 |Pseudo-hashes.
1.8 [CopyrigHt
1.9 [Authork.

OO ~N~NOOOoOOOOUTU OO, BRABDMWWWNN PR

15 Feb 2014 i

	1€€Apache2::Reload - Reload Perl Modules when Changed on Disk
	1.1€€Synopsis
	1.2€€Description
	1.2.1€€Monitor All Modules in %INC
	1.2.2€€Register Modules Implicitly
	1.2.3€€Register Modules Explicitly
	1.2.4€€Monitor Only Certain Sub Directories
	1.2.5€€Special "Touch" File
	1.2.6€€Unregistering a module

	1.3€€Performance Issues
	1.4€€Debug
	1.5€€Caveats
	1.5.1€€Problems With Reloading Modules Which Do Not Declare Their Package Name
	1.5.2€€Failing to Find a File to Reload
	1.5.3€€Problems with Scripts Running with Registry Handlers that Cache the Code
	1.5.3.1€€The Problem
	1.5.3.2€€The Explanation
	1.5.3.3€€The Solution

	1.6€€Threaded MPM and Multiple Perl Interpreters
	1.7€€Pseudo-hashes
	1.8€€Copyright
	1.9€€Authors

