

1 Apache2::PerlSections - write Apache configuration
files in Perl

115 Feb 2014

1 Apache2::PerlSections - write Apache configuration files in PerlApache2::PerlSections - write Apache configuration files in Perl

1.1 Synopsis
 <Perl>
 @PerlModule = qw(Mail::Send Devel::Peek);

 #run the server as whoever starts it
 $User = getpwuid(>) || >;
 $Group = getgrgid()) ||);

 $ServerAdmin = $User;

 </Perl>

1.2 Description
With <Perl> ...</Perl> sections, it is possible to configure your server entirely in Perl.

<Perl> sections can contain any and as much Perl code as you wish. These sections are compiled into a
special package whose symbol table mod_perl can then walk and grind the names and values of Perl vari-
ables/structures through the Apache core configuration gears.

Block sections such as <Location> ..</Location> are represented in a %Location hash, e.g.:

 <Perl>
 $Location{"/~dougm/"} = {
 AuthUserFile => ’/tmp/htpasswd’,
 AuthType => ’Basic’,
 AuthName => ’test’,
 DirectoryIndex => [qw(index.html index.htm)],
 Limit => {
 "GET POST" => {
 require => ’user dougm’,
 }
 },
 };
 </Perl>

If an Apache directive can take two or three arguments you may push strings (the lowest number of argu-
ments will be shifted off the @list) or use an array reference to handle any number greater than the
minimum for that directive:

 push @Redirect, "/foo", "http://www.foo.com/";

 push @Redirect, "/imdb", "http://www.imdb.com/";

 push @Redirect, [qw(temp "/here" "http://www.there.com")];

Other section counterparts include %VirtualHost , %Directory and %Files .

To pass all environment variables to the children with a single configuration directive, rather than listing
each one via PassEnv or PerlPassEnv , a <Perl> section could read in a file and:

15 Feb 20142

1.1 Synopsis

 push @PerlPassEnv, [$key => $val];

or

 Apache2->httpd_conf("PerlPassEnv $key $val");

These are somewhat simple examples, but they should give you the basic idea. You can mix in any Perl
code you desire. See eg/httpd.conf.pl and eg/perl_sections.txt in the mod_perl distribution for more exam-
ples.

Assume that you have a cluster of machines with similar configurations and only small distinctions
between them: ideally you would want to maintain a single configuration file, but because the configura-
tions aren’t exactly the same (e.g. the ServerName directive) it’s not quite that simple.

<Perl> sections come to rescue. Now you have a single configuration file and the full power of Perl to
tweak the local configuration. For example to solve the problem of the ServerName directive you might
have this <Perl> section:

 <Perl>
 $ServerName = ‘hostname‘;
 </Perl>

For example if you want to allow personal directories on all machines except the ones whose names start
with secure:

 <Perl>
 $ServerName = ‘hostname‘;
 if ($ServerName !~ /^secure/) {
 $UserDir = "public.html";
 }
 else {
 $UserDir = "DISABLED";
 }
 </Perl>

1.3 API
Apache2::PerlSections provides the following functions and/or methods:

1.3.1 server

Get the current server’s object for the <Perl> section

 <Perl>
 $s = Apache2::PerlSections->server();
 </Perl>

obj: Apache2::PerlSections (class name)
ret: $s (Apache2::ServerRec object)
since: 2.0.03

315 Feb 2014

1.3 APIApache2::PerlSections - write Apache configuration files in Perl

1.4 @PerlConfig and $PerlConfig
This array and scalar can be used to introduce literal configuration into the apache configuration. For
example:

 push @PerlConfig, ’Alias /foo /bar’;

Or: $PerlConfig .= "Alias /foo /bar\n";

See also $r->add_config

1.5 Configuration Variables
There are a few variables that can be set to change the default behaviour of <Perl> sections.

1.5.1 $Apache2::PerlSections::Save

Each <Perl> section is evaluated in its unique namespace, by default residing in a sub-namespace of
Apache2::ReadConfig:: , therefore any local variables will end up in that namespace. For example
if a <Perl> section happened to be in file /tmp/httpd.conf starting on line 20, the namespace:
Apache2::ReadConfig::tmp::httpd_conf::line_20 will be used. Now if it had:

 <Perl>
 $foo = 5;
 my $bar = 6;
 $My::tar = 7;
 </Perl>

The local global variable $foo becomes $Apache2::ReadCon-
fig::tmp::httpd_conf::line_20::foo , the other variable remain where they are.

By default, the namespace in which <Perl> sections are evaluated is cleared after each block closes. In
our example nuking $Apache2::ReadConfig::tmp::httpd_conf::line_20::foo , leaving
the rest untouched.

By setting $Apache2::PerlSections::Save to a true value, the content of those namespaces will
be preserved and will be available for inspection by Apache2::Status and Apache2::PerlSec-
tions->dump In our example $Apache2::ReadCon-
fig::tmp::httpd_conf::line_20::foo will still be accessible from other perl code, after the
<Perl> section was parsed.

1.6 PerlSections Dumping

15 Feb 20144

1.4 @PerlConfig and $PerlConfig

1.6.1 Apache2::PerlSections->dump

This method will dump out all the configuration variables mod_perl will be feeding to the apache config
gears. The output is suitable to read back in via eval .

 my $dump = Apache2::PerlSections->dump;

ret: $dump (string / undef)

A string dump of all the Perl code encountered in <Perl> blocks, suitable to be read back via eval

For example:

 <Perl>

 $Apache2::PerlSections::Save = 1;

 $Listen = 8529;

 $Location{"/perl"} = {
 SetHandler => "perl-script",
 PerlHandler => "ModPerl::Registry",
 Options => "ExecCGI",
 };

 @DirectoryIndex = qw(index.htm index.html);

 $VirtualHost{"www.foo.com"} = {
 DocumentRoot => "/tmp/docs",
 ErrorLog => "/dev/null",
 Location => {
 "/" => {
 Allowoverride => ’All’,
 Order => ’deny,allow’,
 Deny => ’from all’,
 Allow => ’from foo.com’,
 },
 },
 };
 </Perl>

 <Perl>
 print Apache2::PerlSections->dump;
 </Perl>

This will print something like this:

 $Listen = 8529;

 @DirectoryIndex = (
 ’index.htm’,
 ’index.html’
);

 $Location{’/perl’} = (

515 Feb 2014

1.6.1 Apache2::PerlSections->dumpApache2::PerlSections - write Apache configuration files in Perl

 PerlHandler => ’Apache2::Registry’,
 SetHandler => ’perl-script’,
 Options => ’ExecCGI’
);

 $VirtualHost{’www.foo.com’} = (
 Location => {
 ’/’ => {
 Deny => ’from all’,
 Order => ’deny,allow’,
 Allow => ’from foo.com’,
 Allowoverride => ’All’
 }
 },
 DocumentRoot => ’/tmp/docs’,
 ErrorLog => ’/dev/null’
);

 1;
 __END__

It is important to put the call to dump in it’s own <Perl> section, otherwise the content of the current
<Perl> section will not be dumped.

1.6.2 Apache2::PerlSections->store

This method will call the dump method, writing the output to a file, suitable to be pulled in via require
or do .

 Apache2::PerlSections->store($filename);

arg1: $filename (string)

The filename to save the dump output to

ret: no return value

1.7 Advanced API
mod_perl 2.0 now introduces the same general concept of handlers to <Perl> sections. Apache2::Perl-
Sections simply being the default handler for them.

To specify a different handler for a given perl section, an extra handler argument must be given to the
section:

 <Perl handler="My::PerlSection::Handler" somearg="test1">
 $foo = 1;
 $bar = 2;
 </Perl>

15 Feb 20146

1.7 Advanced API

And in My/PerlSection/Handler.pm:

 sub My::Handler::handler : handler {
 my ($self, $parms, $args) = @_;
 #do your thing!
 }

So, when that given <Perl> block in encountered, the code within will first be evaluated, then the
handler routine will be invoked with 3 arguments:

arg1: $self

self-explanatory

arg2: $parms (Apache2::CmdParms)

$parms is specific for the current Container, for example, you might want to call
$parms->server() to get the current server.

arg3: $args (APR::Table object)

the table object of the section arguments. The 2 guaranteed ones will be:

 $args->{’handler’} = ’My::PerlSection::Handler’;
 $args->{’package’} = ’Apache2::ReadConfig’;

Other name="value" pairs given on the <Perl> line will also be included.

At this point, it’s up to the handler routing to inspect the namespace of the $args ->{’package’} and
chooses what to do.

The most likely thing to do is to feed configuration data back into apache. To do that, use
Apache2::Server->add_config("directive"), for example:

 $parms->server->add_config("Alias /foo /bar");

Would create a new alias. The source code of Apache2::PerlSections is a good place to look for a
practical example.

1.8 Verifying <Perl> Sections
If the <Perl> sections include no code requiring a running mod_perl, it is possible to check those from
the command line. But the following trick should be used:

715 Feb 2014

1.8 Verifying <Perl> SectionsApache2::PerlSections - write Apache configuration files in Perl

 # file: httpd.conf
 <Perl>
 #!perl

 # ... code here ...

 __END__
 </Perl>

Now you can run:

 % perl -c httpd.conf

1.9 Bugs

1.9.1 <Perl> directive missing closing ’>’

httpd-2.0.47 had a bug in the configuration parser which caused the startup failure with the following
error:

 Starting httpd:
 Syntax error on line ... of /etc/httpd/conf/httpd.conf:
 <Perl> directive missing closing ’>’ [FAILED]

This has been fixed in httpd-2.0.48. If you can’t upgrade to this or a higher version, please add a space
before the closing ’>’ of the opening tag as a workaround. So if you had:

 <Perl>
 # some code
 </Perl>

change it to be:

 <Perl >
 # some code
 </Perl>

1.9.2 <Perl>[...]> was not closed.

On encountering a one-line <Perl> block, httpd’s configuration parser will cause a startup failure with an
error similar to this one:

 Starting httpd:
 Syntax error on line ... of /etc/httpd/conf/httpd.conf:
 <Perl>use> was not closed.

If you have written a simple one-line <Perl> section like this one :

15 Feb 20148

1.9 Bugs

 <Perl>use Apache::DBI;</Perl>

change it to be:

 <Perl>
 use Apache::DBI;
 </Perl>

This is caused by a limitation of httpd’s configuration parser and is not likely to be changed to allow
one-line block like the example above. Use multi-line blocks instead.

1.10 See Also
mod_perl 2.0 documentation.

1.11 Copyright
mod_perl 2.0 and its core modules are copyrighted under The Apache Software License, Version 2.0.

1.12 Authors
The mod_perl development team and numerous contributors.

915 Feb 2014

1.10 See AlsoApache2::PerlSections - write Apache configuration files in Perl

Table of Contents:
........ 11 Apache2::PerlSections - write Apache configuration files in Perl
................... 21.1 Synopsis
................... 21.2 Description
.................... 31.3 API
.................. 31.3.1 server
............. 41.4 @PerlConfig and $PerlConfig
................ 41.5 Configuration Variables
........... 41.5.1 $Apache2::PerlSections::Save
................ 41.6 PerlSections Dumping
........... 51.6.1 Apache2::PerlSections->dump
........... 61.6.2 Apache2::PerlSections->store
.................. 61.7 Advanced API
............... 71.8 Verifying <Perl> Sections
.................... 81.9 Bugs
............ 81.9.1 <Perl> directive missing closing ’>’
.............. 81.9.2 <Perl>[...]> was not closed.
................... 91.10 See Also
................... 91.11 Copyright
................... 91.12 Authors

i15 Feb 2014

Table of Contents:Apache2::PerlSections - write Apache configuration files in Perl

	1€€Apache2::PerlSections - write Apache configuration files in Perl
	1.1€€Synopsis
	1.2€€Description
	1.3€€API
	1.3.1€€server

	1.4€€@PerlConfig and $PerlConfig
	1.5€€Configuration Variables
	1.5.1€€$Apache2::PerlSections::Save

	1.6€€PerlSections Dumping
	1.6.1€€Apache2::PerlSections->dump
	1.6.2€€Apache2::PerlSections->store

	1.7€€Advanced API
	1.8€€Verifying <Perl> Sections
	1.9€€Bugs
	1.9.1€€<Perl> directive missing closing '>'
	1.9.2€€<Perl>[...]> was not closed.

	1.10€€See Also
	1.11€€Copyright
	1.12€€Authors

