APR::Pool - Perl API for APR pools 1 APR::Pool - Perl API for APR pools

1 APR::Pool - Perl API for APR pools

15 Feb 2014 1

1.1 Synopsis

1.1 Synopsis
use APR : Pool ();

ny $sp = $r->pool - >new;
nmy $sp2 = APR: : Pool - >new,

$sp3 is a subpool of $sp,
which in turn is a subpool of $r->pool
$sp3 = $sp->new;
print '$r->pool is an ancestor of $sp3’
i f $r->pool ->i s_ancestor ($sp3);
but sp2 is not a sub-pool of $r->pool
print '$r->pool is not an ancestor of $sp2’
unl ess $r->pool - >i s_ancest or ($sp2);

$sp4 and $sp are the same pool (though you can’t
conpare the handl e as vari abl es)
ny $sp4 = $sp3->parent_get;

regi ster a dunmy cleanup function
that just prints the passed args
$sp->cl eanup_register(sub { print @ $_[0] || []1 } }, [1..3]);

tag the pool
$sp->tag("My very best pool");

cl ear the pool
$sp->clear ();

destroy sub pool
$sp2- >dest roy;

1.2 Description
APR: : Pool provides an access to APR pools, which are used for an easy memory management.

Different pools have different life scopes and therefore one doesn't need to free allocated memory explic-
itly, but instead it's done when the pool’s life is getting to an end. For example a request pool is created at
the beginning of a request and destroyed at the end of it, and all the memory allocated during the request
processing using the request pool is freed at once at the end of the request.

Most of the time you will just pass various pool objects to the methods that require them. And you must
understand the scoping of the pools, since if you pass a long lived server pool to a method that needs the
memory only for a short scoped request, you are going to leak memory. A request pool should be used in
such a case. And vice versa, if you need to allocate some memory for a scope longer than a single request,
then a request pool is inappropriate, since when the request will be over, the memory will be freed and bad
things may happen.

2 15 Feb 2014

APR::Pool - Perl API for APR pools 1.3 API

If you need to create a new pool, you can always do that method.

1.3 API

APR: : Pool provides the following functions and/or methods:

1.3.1 cl eanup_reqi ster

Register cleanup callback to run

$pool - >cl eanup_regi st er ($cal | back) ;
$pool - >cl eanup_r egi st er ($cal | back, $arg);

® obj: $pool (JAPR:: Pool obj ect])

The pool object to register the cleanup callback for
® argl: $cal | back (CODE ref or sub name)

a cleanup callback CODE reference or just a name of the subroutine (fully qualified unless defined in
the current package).

® optarg2: $ar g (SCALAR)

If this optional argument is passed, theal | back function will receive it as the first and only
argument when executed.

To pass more than one argument, use an ARRAY or a HASH reference

® ret: no return value
® excpt:

If a registered callback dies or throws an excepi@s stringified and passed var n() . Usually,
this results in printing it to therror_log. However, aSI G{__WARN__} handler can be used to
catch them.

$pool - >cl eanup_regi ster(sub {die "messagel\n"});
$pool - >cl eanup_regi ster(sub {die "message2\n"});
nmy @war ni ngs;
{
local $SI G{__WARN_ }=sub {push @warnings, @};
$pool - >destroy; # or sinply undef $poo
}

Both of the cleanups above are executed at the $ipuol - >dest r oy is called.@var ni ngs
containsressage2\ n andnmessagel\ n afterwards$pool - >dest r oy itself does not throw an
exception. Any value d@is preserved.

15 Feb 2014 3

1.3.2 clear

® since: 2.0.00

If there is more than one callback registered (Wblkeaanup_r egi st er is called more than once on
the same pool object), the last registered callback will be executed first (LIFO).

Examples:
No arguments, using anon sub as a cleanup callback:
$r->pool - >cl eanup_regi ster(sub { warn "runni ng cl eanup" });
One or more arguments using a cleanup code reference:
$r - >pool - >cl eanup_r egi st er (\ &l eanup, $r);
$r - >pool - >cl eanup_regi ster (\ &l eanup, [$r, $foo]);
sub cl eanup {
my @rgs = (@ && ref $ [0] eq ARRAY) ? @ +shift } : shift;
ny $r = shift @rgs
warn "cl eani ng up";
}
No arguments, using a function name as a cleanup callback:

$r - >pool - >cl eanup_regi ster('foo’);

1.3.2 cl ear

Clear all memory in the pool and run all the registered cleanups. This also destroys all sub-pools.

$pool ->cl ear () ;

® obj: $pool (JAPR: : Pool obj ect])

The pool to clear

® ret: no return value
® since: 2.0.00

This method differs frofdest r oy()]in that it is not freeing the previously allocated, but allows the pool
to re-use it for the future memory allocations.

1.3.3 DESTROY

DESTROY is an alias tddestr oy} It's there so that custorAPR: : Pool objects will get properly
cleaned up, when the pool object goes out of scope. If you ever want to destiBR:arPool object

before it goes out of scope, (dest r oy
® since: 2.0.00

4 15 Feb 2014

APR::Pool - Perl API for APR pools 1.3.4 destroy

1.3.4 destr oy

Destroy the pool.

$pool - >destroy();

® obj: $pool (JAPR:.: Pool obj ect])

The pool to destroy

® ret: no return value
® since: 2.0.00

This method takes a similar actiorjdbear ()]and then frees all the memory.

1.3.5is_ancest or

Determine if pool a is an ancestor of pool b

$ret = $pool _a->i s_ancest or ($pool _b);

® obj: $pool _a (JAPR: : Pool obj ect])

The pool to search

e argl: $pool _b (JAPR: : Pool obj ect])

The pool to search for
® ret: $ret (integer)

True if $pool _a is an ancestor épool _b.
® since: 2.0.00

For example create a sub-pool of a given pool and check that the pool is an ancestor of that sub-pool:

use APR : Pool ();

nmy $pp = $r->pool ;

ny $sp = $pp->new();

$pp->i s_ancestor($sp) or die "Don't nmess with genes!";

1.3.6 new

Create a new sub-pool

ny $pool _child
ny $pool _child

$pool _parent - >new;
APR: : Pool - >new,

15 Feb 2014 5

1.3.7 parent_get

® obj: $pool _parent ([APR.: Pool obj ect])

The parent pool.

If you don't have a parent pool to create the sub-pool from, you can use this object method as a class
method, in which case the sub-pool will be created from the global pool:

ny $pool child = APR : Pool - >new,

e ret: $pool _chil d (JAPR:.: Pool obj ect])

The child sub-pool

® since: 2.0.00

1.3.7 parent _get

Get the parent pool

$parent _pool = $chil d_pool ->parent _get();

® obj: $chi |l d_pool (JAPR:.: Pool obj ect])

the child pool

® ret: $parent _pool (JAPR_: Pool obj ect])

the parent poolndef if there is no parent pool (which is the case for the top-most global pool).
® since: 2.0.00

Example: Calculate how big is the pool's ancestry:

use APR : Pool ();
sub ancestry_count {
ny $child = shift;
ny $gen = O;
while (my $parent = $chil d->parent_get) {
$gen++;
$child = $parent;
}

return $gen

}

1.3.8tag

Tag a pool (give it a name)

$pool - >t ag($t ag) ;

6 15 Feb 2014

APR::Pool - Perl API for APR pools 1.4 Unsupported API

® obj: $pool (JAPR_: Pool obj ect])

The pool to tag
® argl: $t ag (string)
The tag (some unique string)

® ret: no return value
® since: 2.0.00

Each pool can be tagged with a unique label. This can prove useful when doing low level apr_pool C
tracing (when apr is compiled wittDAPR _POOL_DEBUG). It allows you to grep(1) for the tag you have
set, to single out the traces relevant to you.

Though there is no way to get read the tag value, since APR doesn't provide such an accessor method.

1.4 Unsupported API

APR: : Pool also provides auto-generated Perl interface for a few other methods which aren’t tested at
the moment and therefore their API is a subject to change. These methods will be finalized later as a need
arises. If you want to rely on any of the following methods please contact the the mod_perl development
mailing list so we can help each other take the steps necessary to shift the method to an officially
supported API.

1.4.1 cl eanup_f or _exec
META: Autogenerated - needs to be reviewed/completed

Preparing for exec() --- close files, etc., but *don’t* flush I/O buffers, *don’t* wait for subprocesses, and
don't free any memory. Run all of the child_cleanups, so that any unnecessary files are closed because
we are about to exec a new program

® ret: no return value
® since: subject to change

1.5 See Also

mod_perl 2.0 documentation.

1.6 Copyright

mod_perl 2.0 and its core modules are copyrighted under The Apache Software License, Version 2.0.

15 Feb 2014 7

1.7 Authors

1.7 Authors

The mod_perl development team and numerous contributors.

8 15 Feb 2014

APR::Pool - Perl API for APR pools Table of Contents:

Table of Contents:

1| APR::Pool - Perl API for APR podls

1.1[Synops|s .

1.2 [Descriptioh . . .

1.3[AP]
1.3.1|cl eanup regqi ster]| .
1.3.2[clear]. .
1.3.3[DESTROY .
1.3.4[destroy] .
1.3.5]i s ancest or].
1.3.6newy . . .
1.3.7parent get] .

1.38ftaq . .
1.4 |Unsupported API

1.4.1|cl eanup for exec| .
1.5[See Also .
1.6 [CopyrigHt .
1.7 [Authork

ON~N~N~NOOOOUGO OB WWNDNE

15 Feb 2014 i

	1€€APR::Pool - Perl API for APR pools
	1.1€€Synopsis
	1.2€€Description
	1.3€€API
	1.3.1€€cleanup_register
	1.3.2€€clear
	1.3.3€€DESTROY
	1.3.4€€destroy
	1.3.5€€is_ancestor
	1.3.6€€new
	1.3.7€€parent_get
	1.3.8€€tag

	1.4€€Unsupported API
	1.4.1€€cleanup_for_exec

	1.5€€See Also
	1.6€€Copyright
	1.7€€Authors

