APR::Bucket - Perl API for manipulating APR Buckets 1 APR::Bucket - Perl API for manipulating APR Buckets

1 APR::Bucket - Perl API for manipulating APR
Buckets

15 Feb 2014 1

1.1 Synopsis

1.1 Synopsis

use APR :Bucket ();
ny $ba = $c->bucket _all oc;

$bl = APR: : Bucket->new $ba, "aaa");
$b2 = APR : Bucket:: eos_create($ba);
$b3 = APR : Bucket::flush_create($bha);

$b2->i s_eos;
$b3->is_flush;

$l en b1l- >l engt h;
$l en bl- >read($dat a);
$type = $bl->type;

= $
=$

$bl->i nsert_after($b2);

$bl->i nsert_bef ore($b3);

$b1- >r enove;

$b1- >dest r oy;

$b2- >del ete; # renove+destroy

$b4 = APR : Bucket->new $ba, "to be setaside");
$b4- >set asi de($pool) ;

1.2 Description
APR: : Bucket allows you to create, manipulate and delete APR buckets.

You will probably find the various insert methods confusing, the tip is to read the function right to left.
The following code sample helps to visualize the operations:

ny $bb = APR: : Bri gade->new($r - >pool, $ba);
ny $dl1 = APR : Bucket->new $ba, "di1");

ny $d2 = APR : Bucket - >new($ba, "d2");

ny $f1 = APR : Bucket::flush_create($ba);
ny $f2 = APR : Bucket::flush_create($ba);
ny $el = APR : Bucket::eos_create($ba);

head- >t ai |

head- >d1->tai |

head- >d1- >d2- >t ai |

head- >d1- >f 1- >d2- >t ai |

head- >d1->f 1- >d2->f 2- >t ai |
head- >d1- >f 1- >d2- >f 2- >el- >t ai |

$bb- >i nsert _head($d1);
$d1->insert_after($d2);
$d2- >i nsert _before($f1);
$d2->insert _after($f2);
$bb->insert _tail ($el);

B H HH

1.3 API

APR: : Bucket provides the following functions and/or methods:

2 15 Feb 2014

APR::Bucket - Perl API for manipulating APR Buckets 1.3.1 delete

1.3.1del ete

Tell the bucket to remove itself from the bucket brigade it belongs to, and destroy itself.

$bucket - >del et e() ;

® obj: $bucket (JAPR.: Bucket obj ect])
® ret: no return value
® since: 2.0.00

If the bucket is not attached to any bucket brigade then this operation just destroys the bucket.

del et e is a convenience wrapper, internally doing:

$b- >r enove;
$b- >dest roy;

Examples:

Assuming thatsbb already exists and filled with buckets, replace the existing data buckets with new
buckets with upcased data;

for (my $b = $bb->first; $b; $b = $bb->next ($b)) {
if ($b->read(ny $data)) {
ny $nb = APR : Bucket - >new($bb- >bucket _al oc, uc $dat a);
$b- >i nsert _bef ore($nb);
$b- >del et e;
$b = $nb;

}

1.3.2 destr oy

Free the resources used by a bucket. If multiple buckets refer to the same resource it is freed when the last
one goes away.

$bucket - >destroy();

® obj: $bucket (JAPR : Bucket obj ect])
® ret: no return value
® since: 2.0.00

A bucket needs to be destroyed if it [vas rempved from a bucket brigade, to avoid memory leak.
If a bucket is linked to a bucket brigade, it needs {o be rerhoved from it, before it can be destroyed.

Usually instead of calling:

15 Feb 2014 3

1.3.3 eos_create

$b- >renove;
$b- >dest r oy;

it's better to caldel et e]which does exactly that.

1.3.3e0s _create

Create arEndOfStream bucket.

$b = APR: : Bucket::eos_create($ba);
e argl: $ba (APR : Bucket Al | oc object)

The freelist from which this bucket should be allocated

e ret: $b ([APR: : Bucket obj ect])

The new bucket
® since: 2.0.00

This bucket type indicates that there is no more data coming from down the filter stack. All filters should
flush any buffered data at this point.

Example:
use APR : Bucket ();
use Apache2:: Connection ();

ny $ba = $c->bucket _all oc;
ny $eos_b = APR : Bucket::eos_create($ba);

1.3.4flush _create

Create a flush bucket.

$b = APR: : Bucket::flush_create($ba);
® argl: $ba (APR : Bucket Al | oc obj ect)

The freelist from which this bucket should be allocated

e ret: $b ([APR : Bucket obj ect])

The new bucket
® since: 2.0.00

This bucket type indicates that filters should flush their data. There is no guarantee that they will flush it,
but this is the best we can do.

4 15 Feb 2014

APR::Bucket - Perl API for manipulating APR Buckets 1.3.5 insert_after

1.3.5insert _after

Insert a list of buckets after a specified bucket

$aft er _bucket - >i nsert _after ($add_bucket);

® obj: $after_bucket (JAPR : Bucket obj ect])

The bucket to insert after

® argl: $add_bucket (JAPR.: Bucket obj ect])

The buckets to insert. It says buckets, sifadd_bucket may have more buckets attached after
itself.

® ret: no return value
® since: 2.0.00

1.3.6insert_before

Insert a list of buckets before a specified bucket

$bef or e_bucket - >i nsert _bef or e($add_bucket);

® obj: $bef ore_bucket (JAPR_ : Bucket obj ect])

The bucket to insert before

® argl: $add_bucket (JAPR.: Bucket obj ect])

The buckets to insert. It says buckets, sifadd_bucket may have more buckets attached after
itself.

® ret: no return value
® since: 2.0.00

1.3.7is_eos

Determine if a bucket is an EOS bucket

$ret = $bucket->is_eos();

® obj: $bucket (JAPR:.: Bucket obj ect])
® ret: $ret (boolean)
® since: 2.0.00

15 Feb 2014 5

1.3.8 is_flush

1.3.8is_flush

Determine if a bucket is a FLUSH bucket

$ret = $bucket->is flush();

® obj: $bucket (JAPR.: Bucket obj ect])
® ret: $ret (boolean)
® since: 2.0.00

1.3.91 ength

Get the length of the data in the bucket.

$l en = $b->l engt h;

® obj: $b (JAPR: : Bucket obj ect])
® ret: $l en (integer)

If the length is unknowr$l en value will be -1.

® since: 2.0.00

1.3.10 new

Create a new bucket and initialize it with data:

$nb = APR: : Bucket - >new($ba, $data);

$nb = $b- >new $ba, $data);

$nb = APR : Bucket->new $ba, $data, $offset);

$nb = APR : Bucket - >new($ba, $data, $offset, $len);

® obj: $b (JAPR: : Bucket object or class|)
® argl: $ba (APR: : Bucket Al | oc obj ect)
® arg2: $dat a (string)

The data to initialize with.

Important: in order to avoid unnecessary data copying the variable is stored in the bucket object.
That means that if you modif§dat a after passing it tmew() you will modify the data in the
bucket as well. To avoid that passew() a copy which you won’t modify.

® opt arg3: $of f set (number)
Optional offset insidédat a. Default: 0.

® optarg4: $l en (number)

6 15 Feb 2014

APR::Bucket - Perl API for manipulating APR Buckets

Optional partial length to read.
If $of f set is specified, then:
I ength $buffer - $offset;
will be used. Otherwise the default is to use:

| ength $buffer;

e ret: $nb (JAPR: : Bucket obj ect])

a newly created bucket object
® since: 2.0.00
Examples:

e (Create a new bucket using a whole string:
use APR : Bucket ();

nmy $data = "ny data";
ny $b = APR : Bucket - >new($ba, $data);

now the bucket contains the stringy data’.
® (Create a new bucket using a sub-string:
use APR : Bucket ();
ny $data = "ny data";
ny $offset = 3;
ny $b = APR: : Bucket - >new($ba, $data, $offset);

now the bucket contains the strirdata’.

e Create a new bucket not using the whole length and starting from an offset:

use APR : Bucket ();

ny $data = "ny data";
ny $offset = 3;
nmy $len = 3;

ny $b = APR : Bucket - >new($ba, $data, $offset, $len);

now the bucket contains the strituat’.

1.3.11read

Read the data from the bucket.

$l en = $b->read(S$buffer);
$l en = $b->read($buffer, $bl ock);
15 Feb 2014

1.3.11 read

1.3.12 remove

® obj: $b (JAPR. : Bucket obj ect])

The bucket to read from
e argl: $buffer (SCALAR)

The buffer to fill. All previous data will be lost.
® optarg2: $bl ock (APR: : Const :read_type constant)

optional reading mode constant.

By default the read is blocking, viPR: : Const : : BLOCK_READ const ant .
e ret: $l en (number)

How many bytes were actually read

$buf f er gets populated with the string that is read. It will contain an empty string if there was
nothing to read.

e since: 2.0.00
® excpt: APR: : Error

It's important to know that certain bucket types (e.g. file bucket), may perform a split and insert extra
buckets following the current one. Therefore nevengiadl>r enove| before callingbb- >r ead, or you
may lose data.

Examples:
Blocking read:

ny $len = $b->read(ny $buffer);
Non-blocking read:

use APR : Const -conpile ' NONBLOCK READ ;
ny $len = $b->read(ny $buffer, APR : Const:: NONBLOCK READ);

1.3.12r enove

Tell the bucket to remove itself from the bucket brigade it belongs to.

$bucket - >r emove() ;

® obj: $bucket (JAPR:: Bucket object])
® ret: no return value
® since: 2.0.00

8 15 Feb 2014

APR::Bucket - Perl API for manipulating APR Buckets 1.3.13 setaside

If the bucket is not attached to any bucket brigade then this operation doesn’t do anything.

When the bucket is removed, it's not not destroyed. Usually this is done in order to move the bucket to
another bucket brigade. Or to copy the data way before destroying the bucket. If the bucket wasn’'t moved
to another bucket brigade it must be destrpyed.

Examples:

Assuming thattbb1 already exists and filled with buckets, move every odd bucket numBébtd and
every even t&bb3:

nmy $bb2 = APR: : Bri gade- >new($c- >pool , $c- >bucket _al | oc);
ny $bb3 = APR: : Bri gade- >new($c- >pool , $c- >bucket _al | oc);
ny $count = 0

while (my $bucket = $bb->first) {

}

$count ++;

$bucket - >r enove

$count % 2
? $bb2->insert _tail ($bucket)
. $bb3->insert _tail ($bucket);

1.3.13 set asi de

Ensure the bucket’'s data lasts at least as long as the given pool:

ny $status = $b->set asi de($pool);

obj: $b (|[APR: : Bucket obj ect])
argl: $pool (APR: : Pool object)
ret: (APR: : Const status constant)

On successAPR: : Const : : SUCCESS is returned. Otherwise a failure code is returned.
excpt: APR: : Error

when your code deals only with mod_perl buckets, you don’t have to ask for the return value. If this
method is called in theéQ D context, i.e.:

$b- >set asi de($pool) ;

mod_perl will do the error checking on your behalf, and if the return code is not
APR: : Const : : SUCCESS, anAPR: : Err or excepti on will be thrown.

However if your code doesn’t know which bucket types it may need to setaside, you may want to
check the return code and deal with any errors. For example one of the possible error codes is
APR: : Const : : ENOTI MPL. As of this writing the pipe and socket buckets carttasi de(), in

which case you may want to look at yg save_bri gade() implementation.

15 Feb 2014 9

1.4 Unsupported API

® since: 2.0.00

Usually setaside is called by certain output filters, in order to buffer socket writes of smaller buckets into a
single write. This method works on all bucket types (not only the mod_perl bucket type), but as explained
in the exceptions section, not all bucket types implement this method.

When a mod_perl bucket is setaside, its data is detached from the original perl scalar and copied into a
pool bucket. That allows downstream filters to deal with the data originally owned by a Perl interpreter,
making it possible for that interpreter to go away and do other things, or be destroyed.

1.3.14t ype

Get the type of the data in the bucket.

$type = $b->type

® obj: $b (JAPR: : Bucket obj ect])
e ret: $t ype (APR : Bucket Type obj ect)
® since: 2.0.00

You need to invoké&PR: : Bucket Type methods to access the data.
Example:

Create a flush bucket and read its type’s hame:

use APR : Bucket ();

use APR: : Bucket Type ();

ny $b = APR : Bucket::flush_create($ba);
ny $type = $b->type;

ny $type_nane = $type->nane; # FLUSH

The type name will b&FLUSH’ in this example.

1.4 Unsupported API

APR: : Socket also provides auto-generated Perl interface for a few other methods which aren’t tested at
the moment and therefore their API is a subject to change. These methods will be finalized later as a need
arises. If you want to rely on any of the following methods please contact the the mod_perl development
mailing list so we can help each other take the steps necessary to shift the method to an officially
supported API.

1.4.1 dat a

$data = $b->dat a;

10 15 Feb 2014

APR::Bucket - Perl API for manipulating APR Buckets 1.5 See Also

Gives a C pointer to the address of the data in the bucket. | can’'t see what use can be done of it in Perl.

® obj: $b (JAPR. : Bucket obj ect])
e ret: $dat a (C pointer)
® since: subject to change

1.4.2start

$start = $b->start;

It gives the offset to when a new bucket is created with a non-zero offset value:

ny $b = APR: : Bucket - >new($ba, $data, $offset, $len);
So if the offset was &st art will be 3 too.

| fail to see what it can be useful for to the end user (it's mainly used internally).

® obj: $b (JAPR. : Bucket obj ect])
e ret: $start (offset number)
® since: subject to change

1.5 See Also

mod_perl 2.0 documentation.

1.6 Copyright

mod_perl 2.0 and its core modules are copyrighted under The Apache Software License, Version 2.0.

1.7 Authors

The mod_perl development team and numerous contributors.

15 Feb 2014 11

APR::Bucket - Perl API for manipulating APR Buckets

Table of Contents:

1| APR::Bucket - Perl API for manipulating APR BucKets .

1.1|Synops|s .
1.2 [Descriptioh
13[AP . .
1.3.1[deletq .
1.3.2[destroy] .

1.3.3feos_create] .
1.3.4ffl ush cr eat €|

1.35|insert after|
1.3.6]i nsert before| .
1.3.7[s_eos| .
1.3.8[s_fTush|
1.3.9[engt h|
1.3.10[new .
1.3.11fead. .
1.3.12[r enove] .
1.3.13[set asi de]
1.3.14ftype]. . .

1.4 |Unsupported API .
1.4.1[dat 4 .
1.4.2[start]

1.5[See Also .

1.6 [CopyrigHt .

1.7 [Authork

15 Feb 2014

Table of Contents:

OCO~NOOODOUUITUOARADWWNNDNE

	1€€APR::Bucket - Perl API for manipulating APR Buckets
	1.1€€Synopsis
	1.2€€Description
	1.3€€API
	1.3.1€€delete
	1.3.2€€destroy
	1.3.3€€eos_create
	1.3.4€€flush_create
	1.3.5€€insert_after
	1.3.6€€insert_before
	1.3.7€€is_eos
	1.3.8€€is_flush
	1.3.9€€length
	1.3.10€€new
	1.3.11€€read
	1.3.12€€remove
	1.3.13€€setaside
	1.3.14€€type

	1.4€€Unsupported API
	1.4.1€€data
	1.4.2€€start

	1.5€€See Also
	1.6€€Copyright
	1.7€€Authors

