

Win32 Platforms

mod_perl installation and configuration on Windows plat-
forms

Last modified Sun Feb 16 01:33:20 2014 GMT

115 Feb 2014

Table of Contents:Win32 Platforms

- 1. mod_perl 1.0 Win32 Installation Instructions
This document discusses how to install mod_perl 1.0 under Win32, both in building from sources and
in installing pre-compiled binary packages.

- 2. mod_perl 1.0 Win32 Configuration Instructions
This document discusses how to configure mod_perl 1.0 under Win32.

- 3. Discussion of multithreading on Win32 mod_perl 1.xx
This document discusses the multithreading limitations of mod_perl-1.xx on Win32.

15 Feb 20142

Table of Contents:

1 mod_perl 1.0 Win32 Installation Instructions

315 Feb 2014

1 mod_perl 1.0 Win32 Installation Instructionsmod_perl 1.0 Win32 Installation Instructions

1.1 Description
This document discusses how to install mod_perl 1.0 under Win32, both in building from sources and in
installing pre-compiled binary packages.

1.2 Synopsis
Unless you are using an all-in-one package, you should first install Perl and Apache, either from the
sources or as binaries. The Perl sources are available from http://www.cpan.org/src/, with directions for
building contained in README.win32. ActiveState also makes the sources available for their binary
builds at ftp://ftp.activestate.com/ActivePerl/src/, which may contain, in particular, Win32-specific fixes
not in the CPAN Perl sources. As a binary, at present, an ActivePerl-compatible Perl, compiled with
Visual C++, is the most common one used in the Win32 mod_perl/Apache environment; you can obtain
such a prebuilt Perl binary from http://www.activestate.com/.

mod_perl 1 builds and tests successfully with either an ActivePerl Perl in the 6xx series, based on
perl-5.6.1, or with an ActivePerl Perl in the 8xx series, based on perl-5.8.0 (for the latter, this requires
mod_perl-1.29 or later). If you are using perl-5.8, you may want to consider mod_perl 2.0, which although
still in a development phase offers several significant performance improvements for Win32 - see
modperl-2 in Win32 for details.

The Apache sources and binaries are available at http://httpd.apache.org/.

When installing Perl or other related binaries, subtleties may arise in using path names that have spaces in
them - you may, for example, have to specify C:\Program Files\ by the DOS 8.3 path name C:\Progra~1\
in certain Apache directives. If you want to avoid this, install, if possible, these packages to locations
without spaces in their names (eg, C:\Perl for Perl and C:\Apache for Apache).

In the following, it may be necessary to invoke certain commands through a DOS prompt. A DOS window
may be opened either through a Command Prompt option of the Start menu, or by choosing to run, from
the Start menu, command or cmd, as appropriate.

1.3 Building from sources
You will need

patience - mod_perl is considered alpha under Win32.

MSVC++ 5.0+, Apache version 1.3-dev or higher and Perl 5.004_02 or higher.

As of version 1.24_01, mod_perl will build on Win32 ActivePerls based on Perl-5.6.x (builds 6xx).
For ActivePerl builds 8xx, you will need mod_perl-1.29 or later. For binary compatibility you should
use the same compiler in building mod_perl that was used to compile your Perl binary; for
ActivePerl, this means using VC++ 6.

15 Feb 20144

1.1 Description

http://www.cpan.org/src/
ftp://ftp.activestate.com/ActivePerl/src/
http://www.activestate.com/
http://httpd.apache.org/

First obtain the mod_perl 1.0 sources as a tar.gz file - when unpacked, using Winzip or similar tools, a
subdirectory mod_perl-1.xx will be created.

There are two ways to build mod_perl - with MS Developer Studio, and through command-line arguments
to ’perl Makefile.PL’. In both cases Apache should previously have been built and installed - if you are
using a binary build of Apache, make sure that you obtain a binary build that includes the Apache libraries
and header files. If you’re building Apache yourself from sources, make sure to obtain the win32-src.zip
archive, which has the necessary VC++ makefiles.

1.3.1 Building with MS Developer Studio

Setup the Perl side

Run, from a DOS window in the top-level directory of the mod_perl sources,

 C:\modperl_src> perl Makefile.PL
 C:\modperl_src> nmake

This will set up the Perl side of mod_perl for the library build.

Build mod_perl.so

Using MS developer studio,

 select "File -> Open Workspace ...",
 select "Files of type [Projects (*.dsp)]"
 open mod_perl-x.xx/src/modules/win32/mod_perl.dsp

Settings

 select "Tools -> Options -> [Directories]"

 select "Show directories for: [Include files]", and add

 C:\Apache\include
 . (should expand to C:\...\mod_perl-x.xx\src\modules\perl)
 C:\Perl\lib\Core

 select "Project -> Add to Project -> Files", adding:

 perl.lib (or perl56.lib) (e.g. C:\perl\lib\Core\perl.lib)
 ApacheCore.lib (e.g. C:\Apache\ApacheCore.lib)

 select "Build -> Set Active Configuration -> [mod_perl - Win32 Release]"

 select "Build -> Build mod_perl.so"

You may see some harmless warnings, which can be reduced (along with the size of the DLL), by
setting:

515 Feb 2014

1.3.1 Building with MS Developer Studiomod_perl 1.0 Win32 Installation Instructions

 "Project -> Settings -> [C/C++] -> Category: [Code Generation] ->
 Use runtime library: [Multithreaded DLL]"

As well, if you are using a mod_ssl enabled Apache, you should add EAPI to the list of preprocessor
definitions under

 "Project -> Settings -> [C/C++]"

Testing

Once mod_perl.so is built you may test mod_perl with:

 C:\modperl_src> nmake test

after which, assuming the tests are OK,

 C:\modperl_src> nmake install

will install the Perl side of mod_perl. The mod_perl.so file built under
mod_perl-1.xx/src/modules/win32/Release should be copied to your Apache modules directory (eg,
C:\Apache\modules).

1.3.2 Building with Makefile.PL arguments

Generating the Makefile as, for example,

 C:\modperl_src> perl Makefile.PL APACHE_SRC=\Apache

will build mod_perl (including mod_perl.so) entirely from the command line. The arguments accepted
include

APACHE_SRC

This can be one of two values: either the path to the Apache build directory (eg, ..\apache_1.3.xx), or
to the installed Apache location (eg, \Apache). This is used to set the locations of ApacheCore.lib and
the Apache header files.

INSTALL_DLL

This gives the location of where to install mod_perl.so (eg, \Apache\modules). No default is assumed
- if this argument is not given, mod_perl.so must be copied manually (in mod_perl-1.29 or later,
INSTALL_DLL, if not supplied, will assume a default of APACHE_SRC/modules, if this directory
exists).

INSTALL_LIB

This option, which is available only in mod_perl-1.29 or later, gives the location of where to install
mod_perl.lib (eg, \Apache\libexec). This library is needed for building certain 3rd party Apache
modules. If this is not supplied, a default of APACHE_SRC/libexec will be assumed, if this directory
exists.

15 Feb 20146

1.3.2 Building with Makefile.PL arguments

DEBUG

If true (DEBUG=1), a Debug version will be built (this assumes that a Debug Apache has been built).
If false, or not given, a Release version will be built.

EAPI

If true (EAPI=1), EAPI (Extended API) will be defined when compiling. This is useful when building
mod_perl against mod_ssl patched Apache sources. If false, or not given, EAPI will not be defined.

After this, running

 C:\modperl_src> nmake
 C:\modperl_src> nmake test
 C:\modperl_src> nmake install

will complete the installation.

This latter method of building mod_perl will also install the Apache and mod_perl header files, which can
then be accessed through the Apache::src module.

If this build fails, you may want to try the sources obtained from svn - see the discussion on the Develop-
ment Source Distribution for details. Be aware, though, that as well as providing bug fixes, there may be
new features being added and tested in the svn versions, so at any given time there are no guarantees that
these packages will build and test successfully.

1.4 Binaries
There are two major types of binary packages available for Win32 mod_perl - all-in-one
Perl/Apache/mod_perl binaries, and mod_perl ppm (Perl Package Manager) packages.

1.4.1 All-in-one packages

There are a number of binary packages for Win32 that contain the necessary Perl and Apache binaries:

IndigoPerl from http://www.indigostar.com/,

XAMPP for Windows from http://www.apachefriends.org/en/xampp-windows.html

DeveloperSide.NET for Windows at http://www.devside.net/web/server/free/software

zangweb from http://www.arbingersys.com/hostsites/zangweb/

As well, there is a package perl-win32-bin.exe from http://www.apache.org/dyn/closer.cgi/perl/win32-bin/
- see the file perl-win32-bin.readme for a description. If you have trouble fetching the whole file at once,
the directory http://www.apache.org/dyn/closer.cgi/perl/win32-bin/perl-win32-bin/ contains this distribu-
tion split across multiple files - see README.join for instructions on how to join them. Alternatively, if
you have Perl already, you can get the script distinstall:

715 Feb 2014

1.4 Binariesmod_perl 1.0 Win32 Installation Instructions

http://www.indigostar.com/
http://www.apachefriends.org/en/xampp-windows.html
http://www.devside.net/web/server/free/software
http://www.arbingersys.com/hostsites/zangweb/
http://www.apache.org/dyn/closer.cgi/perl/win32-bin/
http://www.apache.org/dyn/closer.cgi/perl/win32-bin/perl-win32-bin/

###
A Perl script to retrieve and join split files
making up a Win32 Perl/Apache binary distribution
#
Files created by hjsplit (http://www.freebyte.com/hjsplit/)
with the joining accomplished by hj-join
#
This script is Copyright 2003, by Randy Kobes,
and may be distributed under the same terms as Perl itself.
Please report problems to Randy Kobes

use strict;
use warnings;
use Net::FTP;
use Safe;
use Digest::MD5;
use IO::File;
use ExtUtils::MakeMaker;

die ’This is intended for Win32’ unless ($^O =~ /Win32/i);

my $theoryx5 = ’theoryx5.uwinnipeg.ca’;
my $bsize = 102400;
my $kb = sprintf("%d", $bsize / 1024);
my $cs = ’CHECKSUMS’;
my $join = ’join32.exe’;

print <<"END";

This script will fetch and then join the files needed for
creating and installing a Perl/Apache Win32 binary distribution from
 ftp://$theoryx5/pub/other/.

If the file transfer is interrupted before all the neccessary
files are obtained, run the script again in the same directory;
files successfully fetched earlier will not be downloaded again.

A hash mark represents transfer of $kb kB.

Available distributions are:

1. Perl 5.8.7 / Apache 2.0.54 / mod_perl-2.0.1
2. Perl 5.6.1 / Apache 1.3.27 / mod_perl 1.27

It is recommended to install Perl and Apache into fresh locations,
so that current files are not overwritten and that old files do
not linger which may confuse the new installation.

END

my $dist;
my $ans = prompt("Desired distribution (1, 2, or ’q’ to quit)?", 1);
CHECK: {
 ($ans =~ /^q/i) and die ’Installation aborted’;
 ($ans == 1) and do {
 $dist = ’Perl-5.8-win32-bin’;
 last CHECK;
 };
 ($ans == 2) and do {
 $dist = ’perl-win32-bin’;
 last CHECK;
 };
 die ’Please answer either 1, 2, or q’;
}

my $exe = $dist . ’.exe’;

my $ftp = Net::FTP->new($theoryx5);
$ftp->login(’anonymous’, "$dist\@perl.apache.org")
 or die "Cannot login to $theoryx5";
$ftp->cwd("pub/other/$dist")

15 Feb 20148

1.4.1 All-in-one packages

 or die "Cannot cwd to pub/other/$dist";

my $max;
die "Unable to determine number of files to get" unless ($max = get_max());
my @files = ();

fetch the CHECKSUMS file
print qq{Fetching "$cs" ...};
$ftp->ascii;
$ftp->get($cs);
print " done!\n";
die qq{Failed to fetch "$cs"} unless (-e $cs);
push @files, $cs;

evaluate CHECKSUMS
my $cksum;
die qq{Cannot load "$cs" file} unless ($cksum = load_cs($cs));

$ftp->binary;
$ftp->hash(1, $bsize);

fetch the join program
die qq{Cannot fetch "$join"} unless (fetch($join));
push @files, $join;

fetch the split files
print "\nFetching $max split files\n\n";
for (1 .. $max) {
 my $num = $_ < 10 ? "00$_" : "0$_";
 my $file = $dist . ’.exe.’ . $num;
 push @files, $file;
 die qq{Cannot fetch "$file"} unless (fetch($file));
}
print "\nFinished fetching split files.\n";
$ftp->quit;

now join them
if (-e $exe) {
 unlink($exe) or warn qq{Cannot unlink $exe: $!};
}
my @args = ($join);
system(@args);
die qq{Joining files to create "$exe" failed} unless (-e $exe);

remove the temporary files, if desired
$ans = prompt(’Remove temporary files?’, ’yes’);
if ($ans =~ /^y/i) {
 unlink(@files) or warn "Cannot unlink temporary files: $!\n";
}

run the exe, if desired
$ans = prompt("Run $exe now?", ’yes’);
if ($ans =~ /^y/i) {
 @args = ($exe);
 system(@args);
}
else {
 print "\nDouble click on $exe to install.\n";
}

fetch a file, unless it exists and the checksum checks
sub fetch {
 my $file = shift;
 local $| = 1;
 if (-e $file) {
 if (verifyMD5($file)) {
 print qq{Skipping "$file" ...\n};
 return 1;
 }
 else {
 unlink $file or warn qq{Could not unlink "$file"\n};

915 Feb 2014

1.4.1 All-in-one packagesmod_perl 1.0 Win32 Installation Instructions

 }
 }
 my $size = sprintf("%d", $ftp->size($file) / 1024);
 print "\nFetching $file ($size kB) ...\n";
 $ftp->get($file);
 print "Done!\n";
 unless (-e $file) {
 warn qq{Unable to fetch "$file"\n};
 return;
 }
 unless (verifyMD5($file)) {
 print qq{CHECKSUM check for "$file" failed.\n};
 unlink $file or warn qq{Cannot unlink "$file": $!\n};
 return;
 }
 return 1;
}

routines to verify the CHECKSUMS for a file
adapted from the MD5 check of CPAN.pm

load the CHECKSUMS file into $cksum
sub load_cs {
 my $cs = shift;
 my $fh = IO::File->new;
 unless ($fh->open($cs)) {
 warn qq{Could not open "$cs": $!\n};
 return;
 }
 local($/);
 my $eval = <$fh>;
 $fh->close;
 $eval =~ s/\015?\012/\n/g;
 my $comp = Safe->new();
 my $cksum = $comp->reval($eval);
 if ($@) {
 warn qq{eval of "$cs" failed: $@\n};
 return;
 }
 return $cksum;
}

verify a CHECKSUM for a file
sub verifyMD5 {
 my $file = shift;
 my ($is, $should);
 my $fh = IO::File->new;
 unless ($fh->open($file)) {
 warn qq{Cannot open "$file": $!};
 return;
 }
 binmode($fh);
 unless ($is = Digest::MD5->new->addfile($fh)->hexdigest) {
 warn qq{Could not compute checksum for "$file": $!};
 $fh->close;
 return;
 }
 $fh->close;
 if ($should = $cksum->{$file}->{md5}) {
 my $test = ($is eq $should);
 printf qq{ Checksum for "$file" is %s\n},
 ($test) ? ’OK.’ : ’NOT OK.’;
 return $test;
 }
 else {
 warn qq{Checksum data for "$file" not present in $cs.\n};
 return;
 }
}

get number of split files

15 Feb 201410

1.4.1 All-in-one packages

sub get_max {
 my $dir = $ftp->ls();
 my $count = 0;
 foreach (@$dir) {
 $count++ if m!$dist.exe.\d+$!;
 }
 return $count;
}

which, when invoked as perl distinstall, will fetch and join the files for you.

As well as including a number of non-core modules, both of these packages contain mod_perl. See the
documentation on the web sites and that included with the packages for installation instructions. Both of
these also include an ActiveState-compatible ppm (Perl Package Manager) utility for adding and upgrad-
ing modules.

For the adventuresome who want a taste of things to come, or for those who want to avoid the multithread-
ing limitations of mod_perl 1.0, a mod_perl-2.0/Apache-2.0 binary distribution is available - see the
discussion of modperl-2 on Win32 for details. Be aware though that mod_perl 2.0 is still in a development
phase, and that a minimum Perl version of 5.8 (ActivePerl 8xx) is required.

1.4.2 PPM Packages

For ActivePerl users (or compatible), there are also PPM mod_perl packages available. For this, if you
don’t already have it, get and install the latest Win32 Apache binary from http://httpd.apache.org/.

Both ActivePerl and Apache binaries are available as MSI files for use by the Microsoft Installer - as
discussed on the ActiveState site, users of Windows 95 and 98 may need to obtain this. In installing these
packages, you may find it convenient when transcribing any Unix-oriented documentation to choose
installation directories that do not have spaces in their names (eg, C:\Perl and C:\Apache).

After installing Perl and Apache, you can then install mod_perl via the PPM utility. ActiveState does not
maintain mod_perl in their ppm repository, so you must get it from a different location other than ActiveS-
tate’s site. A quick way to do this is to download the script mpinstall:

#!C:/Perl/bin
###
A Perl script to fetch and install via ppm mod_perl on Win32
Copyright 2002, by Randy Kobes.
This script may be distributed under the same terms as Perl itself.
Please report problems to Randy Kobes

use strict;
use warnings;
use ExtUtils::MakeMaker;
use LWP::Simple;
use File::Copy;
use Config;
use Safe;
use Digest::MD5;
require Win32;
require File::Spec;

die "This only works for Win32" unless $^O =~ /Win32/i;
die "No mod_perl ppm package available for this Perl" if ($] < 5.006001);

my ($apache2, $apache, $apache22);
my @drives = drives();

1115 Feb 2014

1.4.2 PPM Packagesmod_perl 1.0 Win32 Installation Instructions

http://httpd.apache.org/

find a possible Apache2 directory
APACHE2: {
 for my $drive (@drives) {
 for my $p (’Apache2’, ’Program files/Apache2’,
 ’Program Files/Apache Group/Apache2’) {
 my $candidate = File::Spec->catpath($drive, $p);
 if (-d $candidate) {
 $apache2 = $candidate;
 last APACHE2;
 }
 }
 }
}
if ($apache2) {
 $apache2 = fix_path($apache2);
 my $ans = prompt(qq{Install mod_perl-2 for "$apache2"?}, ’yes’);
 $apache2 = undef unless ($ans =~ /^y/i);
}

if no Apache2, try to find Apache1
unless ($apache2) {
 APACHE: {
 for my $drive (@drives) {
 for my $p (’Apache’, ’Program Files/Apache’,
 ’Program Files/Apache Group/Apache’) {
 my $candidate = File::Spec->catpath($drive, $p);
 if (-d $candidate) {
 $apache = $candidate;
 last APACHE;
 }
 }
 }
 }
}
if ($apache) {
 $apache = fix_path($apache);
 my $ans = prompt(qq{Install mod_perl 1 for "$apache"?}, ’yes’);
 $apache = undef unless ($ans =~ /^y/i);
}

check Apache versions
if ($apache or $apache2) {
 my $vers;
 if ($apache) {
 $vers = qx{"$apache/apache.exe" -v};
 die qq{"$apache" does not appear to be version 1.3}
 unless $vers =~ m!Apache/1.3!;
 }
 else {
 my $vers;
 for my $binary(qw(Apache.exe httpd.exe)) {
 my $b = File::Spec->catfile($apache2, ’bin’, $binary);
 next unless -x $b;
 $vers = qx{$b -v};
 last;
 }
 die qq{Cannot determine the Apache version} unless $vers;
 die qq{"$apache2" does not appear to be version 2.x}
 unless $vers =~ m!Apache/2.!;
 $apache22 = 1 if $vers =~ m!Apache/2.2!;
 }
}
prompt to get an Apache installation directory
else {
 my $dir = prompt("Where is your apache installation directory?", ’’);
 die ’Need to specify the Apache installation directory’ unless $dir;
 $dir = fix_path($dir);
 die qq{"$dir" does not exist} unless (-d $dir);
 if ($dir =~ /Apache2/) {
 my $ans = prompt(qq{Install mod_perl 2 for "$dir"?}, ’yes’);

15 Feb 201412

1.4.2 PPM Packages

 $apache2 = $dir if ($ans =~ /^y/i);
 }
 else {
 my $ans = prompt(qq{Install mod_perl 1 for "$dir"?}, ’yes’);
 $apache = $dir if ($ans =~ /^y/i);
 }
 unless ($apache or $apache2) {
 my $mpv = prompt(’Which mod_perl version would you like [1 or 2]?’, 2);
 if ($mpv == 1) {
 $apache = $dir;
 }
 elsif ($mpv == 2) {
 $apache2 = $dir;
 }
 else {
 die ’Please specify either "1" or "2"’;
 }
 }
}

die ’Please specify an Apache directory’ unless ($apache or $apache2);
my $theoryx5 = ’http://theoryx5.uwinnipeg.ca’;
my $ppms = $theoryx5 . ’/ppms/’;
my $ppmsx86 = $ppms . ’x86/’;
my $ppmpackages = $theoryx5 . ’/ppmpackages/’;
my $ppmpackagesx86 = $ppmpackages . ’x86/’;
my ($ppd, $tgz, $ppdfile, $tgzfile, $checksums, $so_fetch, $so_fake);
my $so = ’mod_perl.so’;
my $cs = ’CHECKSUMS’;

set appropriate ppd and tar.gz files
if ($] < 5.008) {
 $checksums = $ppmpackagesx86 . $cs;
 if ($apache2) {
 die ’No mod_perl 2 package available for this perl version’;
 }
 else {
 my $ans = prompt(’Do you need EAPI support for mod_ssl?’, ’no’);
 if ($ans =~ /^n/i) {
 $ppdfile = ’mod_perl.ppd’;
 $tgzfile = ’mod_perl.tar.gz’;
 $so_fake = ’mod_perl.so’;
 }
 else {
 $ppdfile = ’mod_perl-eapi.ppd’;
 $tgzfile = ’mod_perl-eapi.tar.gz’;
 $so_fake = ’mod_perl-eapi.so’;
 }
 $ppd = $ppmpackages . $ppdfile;
 $tgz = $ppmpackagesx86 . $tgzfile;
 $so_fetch = $ppmpackagesx86 . $so_fake;
 }
}
else {
 $checksums = $ppmsx86 . $cs;
 if ($apache2) {
 my $ans = prompt(’Do you want the latest mod_perl 2 development version?’, ’no’);
 if ($ans =~ /^n/i) {
 if ($apache22) {
 $ppdfile = ’mod_perl.ppd’;
 $tgzfile = ’mod_perl.tar.gz’;
 $so_fake = ’mod_perl.so’;
 }
 else {
 $ppdfile = ’mod_perl-2.0.ppd’;
 $tgzfile = ’mod_perl-2.0.tar.gz’;
 $so_fake = ’mod_perl-2.0.so’;
 }
 }
 else {
 $ppdfile = ’mod_perl-dev.ppd’;

1315 Feb 2014

1.4.2 PPM Packagesmod_perl 1.0 Win32 Installation Instructions

 $tgzfile = ’mod_perl-dev.tar.gz’;
 $so_fake = ’mod_perl-dev.so’;
 }
 $ppd = $ppms . $ppdfile;
 $tgz = $ppmsx86 . $tgzfile;
 $so_fetch = $ppmsx86 . $so_fake;
 }
 else {
 my $ans = prompt(’Do you need EAPI support for mod_ssl?’, ’no’);
 if ($ans =~ /^n/i) {
 $ppdfile = ’mod_perl-1.ppd’;
 $tgzfile = ’mod_perl-1.tar.gz’;
 $so_fake = ’mod_perl-1.so’;
 }
 else {
 $ppdfile = ’mod_perl-eapi-1.ppd’;
 $tgzfile = ’mod_perl-eapi-1.tar.gz’;
 $so_fake = ’mod_perl-eapi-1.so’;
 }
 $ppd = $ppms . $ppdfile;
 $tgz = $ppmsx86 . $tgzfile;
 $so_fetch = $ppmsx86 . $so_fake;
 }
}

my $tmp = $ENV{TEMP} || $ENV{TMP} || ’.’;
chdir $tmp or die "Cannot chdir to $tmp: $!";

fetch the ppd and tar.gz files
print "Fetching $ppd ...";
getstore($ppd, $ppdfile);
print " done!\n";
die "Failed to fetch $ppd" unless -e $ppdfile;
print "Fetching $tgz ...";
getstore($tgz, $tgzfile);
print " done!\n";
die "Failed to fetch $tgz" unless -e $tgzfile;
print "Fetching $so_fetch ...";
getstore($so_fetch, $so_fake);
print " done!\n";
die "Failed to fetch $so_fetch" unless -e $so_fake;
print "Fetching $checksums ...";
getstore($checksums, $cs);
print " done!\n";
die "Failed to fetch $checksums" unless -e $cs;

check CHECKSUMS for the tar.gz and so files
my $cksum = load_cs($cs);
die "Could not load $cs: $!" unless $cksum;
die qq{CHECKSUM check for "$tgzfile" failed.\n}
 unless (verifyMD5($cksum, $tgzfile));
die qq{CHECKSUM check for "$so_fake" failed.\n}
 unless (verifyMD5($cksum, $so_fake));
unless ($so_fake eq $so) {
 rename($so_fake, $so) or die "Rename of $so_fake to $so failed: $!";
}

edit the ppd file to reflect a local installation
my $old = $ppdfile . ’.old’;
rename ($ppdfile, $old)
 or die "renaming $ppdfile to $old failed: $!";
open(my $oldfh, $old) or die "Cannot open $old: $!";
open(my $newfh, ">$ppdfile") or die "Cannot open $ppdfile: $!";
while (<$oldfh>) {
 next if /;
 $eval =~ s/\015?\012/\n/g;
 close $fh;
 my $comp = Safe->new();
 $cksum = $comp->reval($eval);
 if ($@) {
 warn $@;

15 Feb 201414

1.4.2 PPM Packages

 return;
 }
 return $cksum;
}

sub verifyMD5 {
 my ($cksum, $file) = @_;
 my ($fh, $is, $should);
 unless (open($fh, $file)) {
 warn "Cannot open $file: $!";
 return;
 }
 binmode($fh);
 unless ($is = Digest::MD5->new->addfile($fh)->hexdigest) {
 warn "Could not compute checksum for $file: $!";
 close($fh);
 return;
 }
 close($fh);
 if ($should = $cksum->{$file}->{md5}) {
 my $test = $is eq $should ? 1 : 0;
 printf qq{Checksum for "$file" is %s\n},
 ($test == 1) ? ’OK.’ : ’NOT OK.’;
 return $test;
 }
 else {
 warn "Checksum data for $file not present in CHECKSUMS.\n";
 return;
 }
}

sub fix_path {
 my $file = shift;
 $file = Win32::GetShortPathName($file);
 $file =~ s!\\!/!g;
 return $file;
}

sub drives {
 my @drives = ();
 eval{require Win32API::File;};
 return map {"$_:\\"} (’C’ .. ’Z’) if $@;
 my @r = Win32API::File::getLogicalDrives();
 return unless @r > 0;
 for (@r) {
 my $t = Win32API::File::GetDriveType($_);
 push @drives, $_ if ($t == 3 or $t == 4);
 }
 return @drives > 0 ? @drives : undef;
}

and save it as, for example, mpinstall. Invoking this as perl mpinstall on a command line will take
you through a dialogue, based on your configuration, which will determine and install, via ppm, the
desired mod_perl ppm package.

The direct way to install mod_perl via ppm is simply as (broken over two lines for readability)

 C:\> ppm install
 http://theoryx5.uwinnipeg.ca/ppmpackages/mod_perl.ppd

for Activeperl 6xx builds, and as

 C:\> ppm install
 http://theoryx5.uwinnipeg.ca/ppms/mod_perl-1.ppd

1515 Feb 2014

1.4.2 PPM Packagesmod_perl 1.0 Win32 Installation Instructions

for 8xx builds. Another way, which will be useful if you plan on installing additional Apache modules, is
to add the repository where the mod_perl package is kept to the ppm shell utility. For ppm2 this may be
done with the set repository alias location command, while for ppm3 (the default with
ActivePerl 8xx) the appropriate command is repository add alias location; see the help
utility within the ppm shell for details. For 6xx builds, the appropriate location is

 http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver?urn:/PPMServer

while for for 8xx builds it is

 http://theoryx5.uwinnipeg.ca/cgi-bin/ppmserver?urn:/PPMServer58

After this, you can, within the ppm shell, use the install command to either install mod_perl, for
6xx, or mod_perl-1, for 8xx. For ppm2, use the set save command to save the theoryx5 reposi-
tory to your PPM configuration file, so that future PPM sessions will search this repository, as well as
ActiveState’s, for requested packages. If you are running mod_ssl under Apache, then you should obtain
the mod_perl-eapi package for 6xx or the mod_perl-eapi-1 package for 8xx instead.

Note that, because of binary incompatibilities, one should not install packages for ActivePerl 8xx from a
repository containing packages for ActivePerl 6xx, and vice-versa, particularly if these packages contain
XS-based modules.

The mod_perl PPM package also includes the necessary Apache DLL mod_perl.so; a post-installation
script should be run which will offer to copy this file to your Apache modules directory (eg,
C:\Apache\modules). If this fails, you can grab the appropriate dll and install it manually. For 6xx builds,
this is at http://theoryx5.uwinnipeg.ca/ppmpackages/x86/, for which the relevant file is either
mod_perl.so or, for EAPI support, mod_perl-eapi.so. For 8xx builds, the location is
http://theoryx5.uwinnipeg.ca/ppms/x86/, for which the relevant file is either mod_perl-1.so or, for
EAPI support, mod_perl-eapi-1.so. You should then copy this file to your Apache modules direc-
tory and rename it as mod_perl.so, if necessary.

The mod_perl package available from this site will always use the latest mod_perl sources compiled
against the latest official Apache release; depending on changes made in Apache, you may or may not be
able to use an earlier Apache binary. However, in the Apache Win32 world it is particularly a good idea to
use the latest version, for bug and security fixes. If you encounter problems in loading mod_perl.so, ensure
that the mod_perl version you are using matches that of Apache, make certain Perl is in your PATH envi-
ronment variable, or try adding the Apache directive

 LoadFile "C:/Path/to/your/Perl/bin/perlxx.dll"

before loading mod_perl.so. If all else fails, a reboot may help.

If the theoryx5.uwinnipeg.ca repository is down, you can access these packages at
http://www.apache.org/dyn/closer.cgi/perl/win32-bin/ppms/, for builds 8xx, and
http://www.apache.org/dyn/closer.cgi/perl/win32-bin/ppmpackages/, for builds 6xx.

15 Feb 201416

1.4.2 PPM Packages

http://theoryx5.uwinnipeg.ca/ppmpackages/x86/
http://theoryx5.uwinnipeg.ca/ppms/x86/
http://www.apache.org/dyn/closer.cgi/perl/win32-bin/ppms/
http://www.apache.org/dyn/closer.cgi/perl/win32-bin/ppmpackages/

1.5 See Also
The directions for configuring mod_perl 1.0 on Win32, the mod_perl documentation, and the FAQs for
mod_perl on Win32. Help is also available through the archives of and subscribing to the mod_perl
mailing list.

1.6 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Randy Kobes <randy@theoryx5.uwinnipeg.ca>

1.7 Authors
Randy Kobes <randy@theoryx5.uwinnipeg.ca>

Only the major authors are listed above. For contributors see the Changes file.

1715 Feb 2014

1.5 See Alsomod_perl 1.0 Win32 Installation Instructions

2 mod_perl 1.0 Win32 Configuration Instructions

15 Feb 201418

2 mod_perl 1.0 Win32 Configuration Instructions

2.1 Description
This document discusses how to configure mod_perl 1.0 under Win32.

2.2 Configuration
Add this line to C:\Apache\conf\httpd.conf:

 LoadModule perl_module modules/mod_perl.so

Be sure that the path to your Perl binary (eg, C:\Perl\bin) is in your PATH environment variable. This can
be done either through editing C:\AutoExec.bat, if present, or through the Environment Variables option of
the Advanced tab in the System area of the Control Panel. Especially when running Apache as a service,
you may also want to add

 LoadFile "C:/Path/to/Perl/bin/perl56.dll"

in httpd.conf, before loading mod_perl.so, to load your perl dll.

If you have a ClearModuleList directive enabled in httpd.conf, you may also need to add

 AddModule mod_perl.c

See the descriptions of the ClearModuleList and AddModule directives in the Apache documents
for more details, especially concerning the relative order of these and the LoadModule directive.

2.3 Registry scripts
Using Apache::Registry to speed up cgi scripts may be done as follows. Create a directory, for
example, C:\Apache\mod_perl, which will hold your scripts, such as

 ## printenv -- demo CGI program which just prints its environment
 ##
 use strict;
 print "Content-type: text/html\n\n";
 print "<HTML><BODY><H3>Environment variables</H3>";
 foreach (sort keys %ENV) {
 my $val = $ENV{$_};
 $val =~ s|\n|\\n|g;
 $val =~ s|"|\\"|g;
 print "$_ = \"${val}\"\n";
 }
 #sleep(10);
 print "</BODY></HTML>";

Note that Apache takes care of using the proper line endings when sending the Content-type header. Next,
insert in C:\Apache\conf\httpd.conf the following directives:

1915 Feb 2014

2.1 Descriptionmod_perl 1.0 Win32 Configuration Instructions

 Alias /mod_perl/ "/Apache/mod_perl/"
 <Location /mod_perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options +ExecCGI
 PerlSendHeader On
 </Location>

whereby the script would be called as

 http://localhost/mod_perl/name_of_script

2.4 Hello World
As you will discover, there is much to mod_perl beyond simple speed-up of cgi scripts. Here is a simple
Hello, World example that illustrates the use of mod_perl as a content handler. Create a file Hello.pm as
follows:

 package Apache::Hello;
 use strict;
 use Apache::Constants qw(OK);

 sub handler {
 my $r = shift;
 $r->send_http_header;
 $r->print("<html><body>Hello World!</body></html>\n");
 return OK;
 }

 1;

and save it in, for example, the C:\Perl\site\lib\Apache\ directory. Next put the following directives in
C:\Apache\conf\httpd.conf:

 PerlModule Apache::Hello
 <Location /hello>
 SetHandler perl-script
 PerlHandler Apache::Hello
 </Location>

With this, calls to

 http://localhost/hello

will use Apache::Hello to deliver the content.

2.5 Apache modules
The theorxy5 repository containing the mod_perl ppm package also contains a number of other Apache
modules, such as Apache::ASP, HTML::Embperl, and HTML::Mason. However, there may be ones
you find that are not available through a repository; in such cases, you might try sending a message to the

15 Feb 201420

2.4 Hello World

maintainer of the repository asking if a particular package could be included.

Alternatively, you can use the CPAN.pm module to fetch, build, and install the module - see perldoc
CPAN for details. You will need the nmake utility for this, download it from http://down-
load.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/Nmake15.exe (it’s a self extracting archive,
so run it and then copy the files to somewhere in your PATH environment variable).

2.6 See Also
The directions for installing mod_perl 1.0 on Win32, the mod_perl documentation, and the FAQs for
mod_perl on Win32. Help is also available through the archives of and subscribing to the mod_perl
mailing list.

2.7 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Randy Kobes <randy@theoryx5.uwinnipeg.ca>

2.8 Authors
Randy Kobes <randy@theoryx5.uwinnipeg.ca>

Only the major authors are listed above. For contributors see the Changes file.

2115 Feb 2014

2.6 See Alsomod_perl 1.0 Win32 Configuration Instructions

http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/Nmake15.exe
http://download.microsoft.com/download/vc15/Patch/1.52/W95/EN-US/Nmake15.exe

3 Discussion of multithreading on Win32 mod_perl
1.xx

15 Feb 201422

3 Discussion of multithreading on Win32 mod_perl 1.xx

3.1 Description
This document discusses the multithreading limitations of mod_perl-1.xx on Win32.

3.2 The problem
On Win32, mod_perl is effectively single threaded. What this means is that a single instance of the inter-
preter is created, and this is then protected by a server-wide lock that prevents more than one thread from
using the interpreter at any one time. The fact that this will prevent parallel processing of requests, includ-
ing static requests, can have serious implications for production servers that often must handle concurrent
or long-running requests.

This situation changes with Apache/mod_perl 2.0, which is based on a multi-process/multi-thread
approach using a native Win32 threads implementation. See the mod_perl 2 overview for more details,
and the discussion of modperl-2 in Win32 on getting modperl-2 for Win32 in particular.

3.3 Does it really matter?
How serious is this? For some people and application classes it may be a non-problem, assuming the static
material issue is handled differently.

Low traffic and single user development sites will likely be unaffected (though the lattest are likely to
experience some surprises when moving to an environment where requests are no longer serialized and
concurrency kicks in).

If your application is CPU bound, and all requests take roughly the same time to complete, then having
more processing threads than processors (CPUs) will actually slow things down, because of the context
switching overhead. Note that, even in this case, the current state of mod_perl will bar owners of multipro-
cessor Win32 machines from gaining any load balancing advantage from their superior hardware.

On the other hand, applications dealing with a large service times spread - say ranging from fractions of a
second to a minute and above - stand to lose a great deal of responsiveness from being single threaded.
The reason is that short requests that happen to be queueued after long ones will be delayed for the entire
duration of the "jobs" that precede them in the queue; with multitasking they would get a chance to
complete much earlier.

3.4 Workarounds
If you need multithreading on Win32, either because your application has long running requests, or
because you can afford multiprocessor hardware, and assuming you cannot switch operating systems, you
may want to consider a few workarounds and/or alternatives - which do not require waiting for 2.0.

You may be able to make Win32 multithreading a non-issue by tuning or rearranging your application and
your architecture (useful tips on both counts can be found elsewhere in this document). You may be able
to significantly reduce your worst-case timing problems or you may find that you can move the webserver

2315 Feb 2014

3.1 DescriptionDiscussion of multithreading on Win32 mod_perl 1.xx

to a more mod_perl friendly operating system by using a multi-tier scheme.

If your application needs the full power of the Apache modules (often the case for people running outside
Apache::Registry) you may want to consider a multi-server load balancing setup which uses mod_rewrite
(or a similar URL partitioning scheme) to spread requests to several web servers, listening on different
ports.

The mod_proxy dual server setup, discussed in the "Strategy" section, is also a possibility, although people
who have tried it have reported problems with Win32 mod_proxy.

If you code to Apache::Registry (writing CGI compliant code) and can characterize the time demanded by
a request from its URL, you can use a rewrite-based load balancing with a single server, by sending short
requests to mod_perl while routing longer ones to the pure CGI environment - on the basis that startup,
compilation and init times will matter less in this case.

If none of the above works for you, then you will have to turn to some non mod_perl alternatives: this,
however, implies giving up on most of the flexibility of the Apache modules.

For CGI compliant scripts, two possible (portable) alternatives which are supported in an Apache/perl
environment are straight CGI and FastCGI. In theory a CGI application that runs under mod_perl should
have very few or no problems to run under straight CGI (though its performance may be unacceptable). A
FastCGI port should also be relatively painless. However, as always, your mileage may vary.

If you do not mind replacing Apache with IIS/PWS, you may want to experiment with ActiveState’s value
added PerlEx extension, which speeds up CGI scripts much in a way similar to what FastCGI does. PerlEx
is transparently supported by CGI.pm, so users of this package should be more or less covered. (A
IIS-FastCGI accelerator is, regrettably, no longer available.)

3.5 See Also
The mod_perl documentation and http://httpd.apache.org/, especially the discussion of Apache-2 and
modperl-2. Help is also available through the archives of and subscribing to the mod_perl mailing list.

3.6 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Randy Kobes <randy@theoryx5.uwinnipeg.ca>

3.7 Authors
Randy Kobes <randy@theoryx5.uwinnipeg.ca>

Only the major authors are listed above. For contributors see the Changes file.

15 Feb 201424

3.5 See Also

http://httpd.apache.org/

Table of Contents:
................... 1Win32 Platforms
............ 3mod_perl 1.0 Win32 Installation Instructions
........... 31 mod_perl 1.0 Win32 Installation Instructions
.................. 41.1 Description
................... 41.2 Synopsis
................ 41.3 Building from sources
............ 51.3.1 Building with MS Developer Studio
........... 61.3.2 Building with Makefile.PL arguments
................... 71.4 Binaries
............... 71.4.1 All-in-one packages
................ 111.4.2 PPM Packages
................... 171.5 See Also
.................. 171.6 Maintainers
................... 171.7 Authors
........... 18mod_perl 1.0 Win32 Configuration Instructions
........... 182 mod_perl 1.0 Win32 Configuration Instructions
.................. 192.1 Description
................. 192.2 Configuration
................. 192.3 Registry scripts
.................. 202.4 Hello World
................. 202.5 Apache modules
................... 212.6 See Also
.................. 212.7 Maintainers
................... 212.8 Authors
.......... 22Discussion of multithreading on Win32 mod_perl 1.xx
......... 223 Discussion of multithreading on Win32 mod_perl 1.xx
.................. 233.1 Description
.................. 233.2 The problem
................ 233.3 Does it really matter?
.................. 233.4 Workarounds
................... 243.5 See Also
.................. 243.6 Maintainers
................... 243.7 Authors

i15 Feb 2014

Table of Contents:Discussion of multithreading on Win32 mod_perl 1.xx

	1€€mod_perl 1.0 Win32 Installation Instructions
	1.1€€Description
	1.2€€Synopsis
	1.3€€Building from sources
	1.3.1€€Building with MS Developer Studio
	1.3.2€€Building with Makefile.PL arguments

	1.4€€Binaries
	1.4.1€€All-in-one packages
	1.4.2€€PPM Packages

	1.5€€See Also
	1.6€€Maintainers
	1.7€€Authors

	2€€mod_perl 1.0 Win32 Configuration Instructions
	2.1€€Description
	2.2€€Configuration
	2.3€€Registry scripts
	2.4€€Hello World
	2.5€€Apache modules
	2.6€€See Also
	2.7€€Maintainers
	2.8€€Authors

	3€€Discussion of multithreading on Win32 mod_perl 1.xx
	3.1€€Description
	3.2€€The problem
	3.3€€Does it really matter?
	3.4€€Workarounds
	3.5€€See Also
	3.6€€Maintainers
	3.7€€Authors

