

1 How to use mod_perl’s Method Handlers

115 Feb 2014

1 How to use mod_perl’s Method HandlersHow to use mod_perl’s Method Handlers

1.1 Description
Described here are a few examples and hints on how to use method handlers with mod_perl.

This document assumes familiarity with at least the perltoot manpage and "normal" usage of the
Perl*Handlers.

It isn’t strictly mod_perl related, more like "what I use objects for in my mod_perl environment".

1.2 Synopsis
If a Perl*Handler is prototyped with ’$$’, this handler will be invoked as method, being passed a class
name or blessed object as its first argument and the blessed request_rec as the second argument, e.g.

 package My;
 @ISA = qw(BaseClass);

 sub handler ($$) {
 my ($class, $r) = @_;
 ...;
 }

 package BaseClass;

 sub method ($$) {
 my ($class, $r) = @_;
 ...;
 }

 __END__

Configuration:

 PerlHandler My

or

 PerlHandler My->handler

Since the handler is invoked as a method, it may inherit from other classes:

 PerlHandler My->method

In this case, the ’My’ class inherits this method from ’BaseClass’.

To build in this feature, configure with:

 % perl Makefile.PL PERL_METHOD_HANDLERS=1 [PERL_FOO_HOOK=1,etc]

15 Feb 20142

1.1 Description

1.3 Why?
The short version: For pretty much the same reasons we’re using OO perl everywhere else. :-) See the
perltoot manpage.

The slightly longer version would include some about code reusage and more clean interface between
modules.

1.4 Simple example
Let’s start with a simple example.

In httpd.conf:

 <Location /obj-handler>
 SetHandler perl-script
 PerlHandler $My::Obj->method
 </Location>

In startup.pl or another PerlRequire’d file:

 package This::Class;

 $My::Obj = bless {};

 sub method ($$) {
 my ($obj, $r) = @_;
 $r->send_http_header("text/plain");
 print "$obj isa ", ref($obj);
 0;
 }

which displays:

 This::Class=HASH(0x8411edc) isa This::Class

1.5 A little more advanced
That wasn’t really useful, so let’s try something little more advanced.

I’ve a little module which creates a graphical ’datebar’ for a client. It’s reading a lot of small gifs with
numbers and weekdays, and keeping them in memory in GD.pm’s native format, ready to be copied
together and served as gifs.

Now I wanted to use it at another site too, but with a different look. Obviously something to do with a
object. Hence I changed the module to a object, and can now do a

315 Feb 2014

1.3 Why?How to use mod_perl’s Method Handlers

 $Client1::Datebar = new Datebar(
 -imagepath => ’/home/client1/datebar/’,
 -size => [131,18],
 -elements => ’wday mday mon year hour min’,
);

 $Client2::Datebar = new Datebar
 -imagepath => ’/home/client2/datebar/’,
 -size => [90,14],
 -elements => ’wday hour min’,
);

And then use $Client1::Datebar and $Client2::Datebar as PerlHandlers in my Apache
configuration. Remember to pass them in literal quotes (’’) and not "" which will be interpolated!

I’ve a webinterface system to our content-database. I’ve created objects to handle the administration of
articles, banners, images and other content. It’s then very easy (a few lines of code) to enable certain
modules for each client, depending on their needs.

Another area where I use objects with great success in my modperl configurations is database abstraction.
All our clients using the webinterface to handle f.x. articles will use a simple module to handle everything
related to the database. Each client have

 $Client::Article = new WebAjour::Article(-host => ’www.client.com’);

in a module what will be run at server startup.

I can then use some simple methods from the $Client::Article object in my embperl documents, like:

 [- $c = $Client::Article->GetCursor(-layout=>’Frontpage’) -]
 [$ while($c->Fetch) $]
 <h2>[+ $c->f(’header’) +]</h2>
 [+ $c->f(’textfield’) +]
 [$ endwhile $]

Very very useful!

1.6 Traps
mod_perl expects object handlers to be in the form of a string, which it will thaw for you. That means that
something like

 $r->push_handlers(PerlHandler => ’$self->perl_handler_method’);

This doesn’t work as you might expect, since Perl isn’t able to see $self once it goes to PerlHandler.

The best solution to this is to use an anonymous subroutine and pass it $r yourself, like this:

15 Feb 20144

1.6 Traps

 $r->push_handlers(PerlHandler =>
 sub {
 my $r = shift;
 $self->perl_handler_method($r);
 }
);

1.7 Author
This document is written by Ask Bjoern Hansen <ask@netcetera.dk> or <ask@apache.org>. Corrections
and suggestions are most welcome. In particular would more examples be appreciated, most of my own
code is way too integrated with our system, which isn’t suitable for public release.

Some codesnippets is from Doug MacEachern.

1.8 See Also
The Apache, the perltoot manpages (also available at
http://www.perl.com/CPAN/doc/FMTEYEWTK/perltoot.html)

1.9 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

modperl docs list

1.10 Authors
Ask Bjoern Hansen, <ask (at) netcetera.dk> or <ask (at) apache.org>.

Only the major authors are listed above. For contributors see the Changes file.

515 Feb 2014

1.7 AuthorHow to use mod_perl’s Method Handlers

http://www.perl.com/CPAN/doc/FMTEYEWTK/perltoot.html

Table of Contents:
............. 11 How to use mod_perl’s Method Handlers
................... 21.1 Description
................... 21.2 Synopsis
.................... 31.3 Why?
.................. 31.4 Simple example
................ 31.5 A little more advanced
.................... 41.6 Traps
.................... 51.7 Author
................... 51.8 See Also
................... 51.9 Maintainers
................... 51.10 Authors

i15 Feb 2014

Table of Contents:How to use mod_perl’s Method Handlers

	1€€How to use mod_perl's Method Handlers
	1.1€€Description
	1.2€€Synopsis
	1.3€€Why?
	1.4€€Simple example
	1.5€€A little more advanced
	1.6€€Traps
	1.7€€Author
	1.8€€See Also
	1.9€€Maintainers
	1.10€€Authors

