

1 mod_perl Configuration

115 Feb 2014

1 mod_perl Configurationmod_perl Configuration

1.1 Description
This section documents the various configuration options available for Apache and mod_perl, as well as
the Perl startup files, and more esoteric possibilites such as configuring Apache with Perl.

1.2 Server Configuration
The next step after building and installing your new mod_perl enabled Apache server is to configure the
server. There are two separate parts to configure: Apache and mod_perl. Each has its own set of directives.

To configure your mod_perl enabled Apache server, the only file that you should need to edit is httpd.conf.
By default, httpd.conf is put into the conf directory under the server root directory. The default server root
is /usr/local/apache/ on many UNIX platforms, but within reason it can be any directory you choose. If
you are new to Apache and mod_perl, you will probably find it helpful to keep to the directory layouts we
use in this Guide if you can.

Apache versions 1.3.4 and later are distributed with the configuration directives in a single file --
httpd.conf. This Guide uses the same approach in its examples. Prior to version 1.3.4, the default Apache
installation used three configuration files -- httpd.conf, srm.conf, and access.conf. If you wish you can still
use all three files, by setting the AccessConfig and ResourceConfig directives in httpd.conf. You will also
see later on that we use other files, for example perl.conf and startup.pl. This is just for our convenience,
you could still do everything in httpd.conf if you wished.

1.3 Apache Configuration
Apache configuration can be confusing. To minimize the number of things that can go wrong, it can be a
good idea first to configure Apache itself without mod_perl. This will give you the confidence that it
works and maybe that you have some idea how to configure it.

There is a warning in the httpd.conf distributed with Apache about simply editing httpd.conf and running
the server, without understanding all the implications. This is another warning. Modifying the configura-
tion file and adding new directives can introduce security problems, and have performance implications.

The Apache distribution comes with an extensive configuration manual, and in addition each section of the
distributed configuration file includes helpful comments explaining how every directive should be config-
ured and what the defaults values are.

If you haven’t moved Apache’s directories around, the installation program will have configured every-
thing for you. You can just start the server and test it. To start the server use the apachectl utility
which comes bundled with the Apache distribution. It resides in the same directory as httpd , the Apache
server itself. Execute:

 /usr/local/apache/bin/apachectl start

15 Feb 20142

1.1 Description

Now you can test the server, for example by accessing http://localhost from a browser running on the same
host.

1.3.1 Configuration Directives

For a basic setup there are just a few things to configure. If you have moved any directories you have to
update them in httpd.conf. There are many of them, here are just a couple of examples:

 ServerRoot "/usr/local/apache"
 DocumentRoot "/home/httpd/docs"

If you want to run it on a port other than port 80 edit the Port directive:

 Port 8080

You might want to change the user and group names the server will run under. Note that if started as the
root user (which is generally the case), the parent process will continue to run as root, but its children will
run as the user and group you have specified. For example:

 User httpd
 Group httpd

There are many other directives that you might need to configure as well. In addition to directives which
take a single value there are whole sections of the configuration (such as the <Directory> and
<Location> sections) which apply only to certain areas of your Web space. As mentioned earlier you
will find them all in httpd.conf.

1.3.2 .htaccess files

If there is a file with the name .htaccess in any directory, Apache scans it for further configuration direc-
tives which it then applies only to that directory (and its subdirectories). The name .htaccess is confusing
because it can contain any configuration directives, not just those related to access to resources. You will
not be surprised to find that a configuration directive can change the names of the files used in this way.

Note that if there is a

 <Directory />
 AllowOverride None
 </Directory>

directive in httpd.conf, Apache will not try to look for .htaccess at all.

1.3.3 <Directory>, <Location> and <Files> Sections

I’ll explain just the basics of the <Directory> , <Location> and <Files> sections. Remember that
there is more to know and the rest of the information is available in the Apache documentation. The infor-
mation I’ll present here is just what is important for understanding the mod_perl configuration sections.

315 Feb 2014

1.3.1 Configuration Directivesmod_perl Configuration

http://localhost/

Apache considers directories and files on your machine all to be resources. For each resource you can
determine a particular behaviour which will apply to every request for information from that particular
resource.

Obviously the directives in <Directory> sections apply to specific directories on your host machine,
and those in <Files> sections apply only to specific files (actually groups of files with names which
have something in common). In addition to these sections, Apache has the concept of a <Location> ,
which is also just a resource. <Location> sections apply to specific URIs. Locations are based at the
document root, directories are based at the filesystem root. For example, if you have the default server
directory layout where the server root is /usr/local/apache and the document root is
/usr/local/apache/htdocs then static files in the directory /usr/local/apache/htdocs/pub are in the location
/pub.

It is up to you to decide which directories on your host machine are mapped to which locations. You
should be careful how you do it, because the security of your server may be at stake.

Locations do not necessarily have to refer to existing physical directories, but may refer to virtual
resources which the server creates for the duration of a single browser request. As you will see, this is
often the case for a mod_perl server.

When a browser asks for a resource from your server, Apache determines from its configuration whether
or not to serve the request, whether to pass the request to another server, what (if any) authorization is
required for access to the resource, and how to reply. For any given resource, the various sections in your
configuration may provide conflicting information. For example you may have a <Directory> section
which tells Apache that authorization is required for access to the resource but you may have a <Files>
section which says that it is not. It is not always obvious which directive takes precedence in these cases.
This can be a trap for the unwary.

<Directory directoryPath> ... </Directory>

Can appear in server and virtual host configurations.

<Directory> and </Directory> are used to enclose a group of directives which will apply
only to the named directory and sub-directories of that directory. Any directive which is allowed in a
directory context (see the Apache documentation) may be used.

The path given in the <Directory> directive is either the full path to a directory, or a wild-card
string. In a wild-card string, ? matches any single character, * matches any sequence of characters,
and [] matches character ranges. (This is similar to the shell’s file globs.) None of the wildcards will
match a / character. For example:

 <Directory /home/httpd/docs>
 Options Indexes
 </Directory>

If you want to use a regular expression to match then you should use the syntax <Directory-
Match regex> ... </DirectoryMatch> .

15 Feb 20144

1.3.3 <Directory>, <Location> and <Files> Sections

If multiple (non-regular expression) directory sections match the directory (or its parents) containing
a document, then the directives are applied in the order of shortest match first, interspersed with the
directives from any .htaccess files. For example, with

 <Directory />
 AllowOverride None
 </Directory>

 <Directory /home/httpd/docs/*>
 AllowOverride FileInfo
 </Directory>

for access to the document /home/httpd/docs/index.html the steps are:

Apply directive AllowOverride None (disabling .htaccess files).
Apply directive AllowOverride FileInfo for directory /home/httpd/docs/ (which now
enables .htaccess in /home/httpd/docs/ and its sub-directories).
Apply any FileInfo directives in /home/httpd/docs/.htaccess.

<Files filename> ... </Files>

Can appear in server and virtual host configurations, and .htaccess files as well.

The <Files> directive provides for access control by filename. It is comparable to the <Direc-
tory> and <Location> directives. It should be closed with the </Files> directive. The direc-
tives given within this section will be applied to any object with a basename (last component of file-
name) matching the specified filename.

<Files> sections are processed in the order they appear in the configuration file, after the
<Directory> sections and .htaccess files are read, but before <Location> sections. Note that
<Files> can be nested inside <Directory> sections to restrict the portion of the filesystem they
apply to. <Files> cannot be nested inside <Location> sections however.

The filename argument should include a filename, or a wild-card string, where ? matches any single
character, and * matches any sequence of characters. Extended regular expressions can also be used,
simply place a tilde character ~ between the directive and the regular expression. The regular expres-
sion should be in quotes. The dollar symbol refers to the end of the string. The pipe character indi-
cates alternatives. Special characters in extended regular expressions must escaped with a backslash.
For example:

 <Files ~ "\.(gif|jpe?g|png)$">

would match most common Internet graphics formats. Alternatively you can use the <FilesMatch
regex> ... </FilesMatch> syntax.

<Location URL> ... </Location>

Can appear in server and virtual host configurations.

515 Feb 2014

1.3.3 <Directory>, <Location> and <Files> Sectionsmod_perl Configuration

The <Location> directive provides for access control by URL. It is similar to the <Directory>
directive, and starts a section which is terminated with the </Location> directive.

<Location> sections are processed in the order they appear in the configuration file, after the
<Directory> sections, .htaccess files and <Files> sections are read.

The <Location> section is the directive that is used most often with mod_perl.

URLs do not have to refer to real directories or files within the filesystem at all, <Location> oper-
ates completely outside the filesystem. Indeed it may sometimes be wise to ensure that <Loca-
tion> s do not match real paths to avoid confusion.

The URL may use wildcards. In a wild-card string, ? matches any single character, and * matches
any sequences of characters, [] groups characters to match. For regular expression matches use the
<LocationMatch regex> ... </LocationMatch> syntax.

The <Location> functionality is especially useful when combined with the SetHandler direc-
tive. For example to enable status requests, but allow them only from browsers at example.com, you
might use:

 <Location /status>
 SetHandler server-status
 order deny,allow
 deny from all
 allow from .example.com
 </Location>

1.3.4 How Directory, Location and Files Sections are Merged

When configuring the server, it’s important to understand the order in which the rules of each section
apply to requests. The order of merging is:

1. <Directory> (except regular expressions) and .htaccess are processed simultaneously, with
.htaccess overriding <Directory>

2. <DirectoryMatch>, and <Directory> with regular expressions
3. <Files> and <FilesMatch> are processed simultaneously
4. <Location> and <LocationMatch> are processed simultaneously

Apart from <Directory> , each group is processed in the order that it appears in the configuration files.
<Directory> (group 1 above) is processed in the order shortest directory component to longest. If
multiple <Directory> sections apply to the same directory then they are processed in the configuration
file order.

Sections inside <VirtualHost> sections are applied as if you were running several independent
servers. The directives inside <VirtualHost> sections do not interact with each other. They are
applied after first processing any sections outside the virtual host definition. This allows virtual host
configurations to override the main server configuration.

15 Feb 20146

1.3.4 How Directory, Location and Files Sections are Merged

Later sections override earlier ones.

1.3.5 Sub-Grouping of <Location>, <Directory> and <Files> Sections

Let’s say that you want all files, except for a few of the files in a specific directory and below, to be
handled in the same way. For example if you want all the files in /home/http/docs to be served as plain
files, but any files with ending .html and .txt to be processed by the content handler of your
Apache::MyFilter module.

 <Directory /home/httpd/docs>
 <FilesMatch "\.(html|txt)$">
 SetHandler perl-script
 PerlHandler Apache::MyFilter
 </FilesMatch>
 </Directory>

Thus it is possible to embed sections inside sections to create subgroups which have their own distinct
behavior. Alternatively you could use a <Files> section inside an .htaccess file.

Note that you can’t put <Files> or <FilesMatch> sections inside a <Location> section, but you
can put them inside a <Directory> section.

1.3.6 Options Directive

Normally, if multiple Options directives apply to a directory, then the most specific one is taken
complete; the options are not merged.

However if all the options on the Options directive are preceded by a + or - symbol, the options are
merged. Any options preceded by + are added to the options currently in force, and any options preceded
by - are removed.

For example, without any + and - symbols:

 <Directory /home/httpd/docs>
 Options Indexes FollowSymLinks
 </Directory>
 <Directory /home/httpd/docs/shtml>
 Options Includes
 </Directory>

then only Includes will be set for the /home/httpd/docs/shtml directory. However if the second
Options directive uses the + and - symbols:

 <Directory /home/httpd/docs>
 Options Indexes FollowSymLinks
 </Directory>
 <Directory /home/httpd/docs/shtml>
 Options +Includes -Indexes
 </Directory>

715 Feb 2014

1.3.5 Sub-Grouping of <Location>, <Directory> and <Files> Sectionsmod_perl Configuration

then the options FollowSymLinks and Includes are set for the /home/httpd/docs/shtml directory.

1.4 mod_perl Configuration
When you have tested that the Apache server works on your machine, it’s time to configure mod_perl.
Some of the configuration directives are already familiar to you, but mod_perl introduces a few new ones.

It can be a good idea to keep all the mod_perl related configuration at the end of the configuration file,
after the native Apache configuration directives.

To ease maintenance and to simplify multiple server installations, the Apache/mod_perl configuration
system allows you several alternative ways to keep your configuration directives in separate places. The
Include directive in httpd.conf allow you to include the contents of other files, just as if the information
were all contained in httpd.conf. This is a feature of Apache itself. For example if you want all your
mod_perl configuration to be placed in a separate file mod_perl.conf you can do that by adding to
httpd.conf this directive:

 Include conf/mod_perl.conf

If you want to include this configuration conditionally, depending on whether your apache has been
compiled with mod_perl, you can use the IfModule directive:

 <IfModule mod_perl.c>
 Include conf/mod_perl.conf
 </IfModule>

mod_perl adds two further directives: <Perl> sections allow you to execute Perl code from within any
configuration file at server startup time, and as you will see later, a file containing any Perl program can be
executed (also at server startup time) simply by mentioning its name in a PerlRequire or PerlMod-
ule directive.

1.4.1 Alias Configurations

The ScriptAlias and Alias directives provide a mapping of a URI to a file system directory. The
directive:

 Alias /foo /home/httpd/foo

will map all requests starting with /foo onto the files starting with /home/httpd/foo/. So when Apache gets
a request http://www.example.com/foo/test.pl the server will map this into the file test.pl in the directory
/home/httpd/foo/.

In addition ScriptAlias assigns all the requests that match the URI (i.e. /cgi-bin) to be executed under
mod_cgi.

 ScriptAlias /cgi-bin /home/httpd/cgi-bin

15 Feb 20148

1.4 mod_perl Configuration

http://www.example.com/foo/test.pl

is actually the same as:

 Alias /cgi-bin /home/httpd/cgi-bin
 <Location /cgi-bin>
 SetHandler cgi-script
 Options +ExecCGI
 </Location>

where latter directive invokes mod_cgi. You shouldn’t use the ScriptAlias directive unless you want
the request to be processed under mod_cgi. Therefore when you configure mod_perl sections use Alias
instead.

Under mod_perl the Alias directive will be followed by two further directives. The first is the
SetHandler perl-script directive, which tells Apache to invoke mod_perl to run the script. The second
directive (for example PerlHandler) tells mod_perl which handler (Perl module) the script should be
run under, and hence for which phase of the request. Refer to the section Perl*Handlers for more informa-
tion about handlers for the various request phases.

When you have decided which methods to use to run your scripts and where you will keep them, you can
add the configuration directive(s) to httpd.conf. They will look like those below, but they will of course
reflect the locations of your scripts in your file-system and the decisions you have made about how to run
the scripts:

 ScriptAlias /cgi-bin/ /home/httpd/cgi-bin/
 Alias /perl/ /home/httpd/perl/

In the examples above all the requests issued for URIs starting with /cgi-bin will be served from the direc-
tory /home/httpd/cgi-bin/, and starting with /perl from the directory /home/httpd/perl/.

1.4.1.1 Running CGI, PerlRun, and Registry Scripts Located in the Same Directory

 # Typical for plain cgi scripts:
 ScriptAlias /cgi-bin/ /home/httpd/perl/

 # Typical for Apache::Registry scripts:
 Alias /perl/ /home/httpd/perl/

 # Typical for Apache::PerlRun scripts:
 Alias /cgi-perl/ /home/httpd/perl/

In the examples above we have mapped the three different URIs (http://www.example.com/perl/test.pl
http://www.example.com/cgi-bin/test.pl and http://www.example.com/cgi-perl/test.pl) all to the same file
/home/httpd/perl/test.pl. This means that we can have all our CGI scripts located at the same place in the
file-system, and call the script in any of three ways simply by changing one component of the URI
(cgi-bin|perl|cgi-perl).

This technique makes it easy to migrate your scripts to mod_perl. If your script does not seem to be
working while running under mod_perl, then in most cases you can easily call the script in straight
mod_cgi mode or under Apache::PerlRun without making any script changes. Simply change the
URL you use to invoke it.

915 Feb 2014

1.4.1 Alias Configurationsmod_perl Configuration

http://www.example.com/perl/test.pl
http://www.example.com/cgi-bin/test.pl
http://www.example.com/cgi-perl/test.pl

Although in the configuration above we have configured all three Aliases to point to the same directory
within our file system, you can of course have them point to different directories if you prefer.

You should remember that it is undesirable to run scripts in plain mod_cgi mode from a mod_perl-enabled
server--the resource consumption is too high. It is better to run these on a plain Apache server. See Stan-
dalone mod_perl Enabled Apache Server.

1.4.2 <Location> Configuration

The <Location> section assigns a number of rules which the server should follow when the request’s
URI matches the Location. Just as it is the widely accepted convention to use /cgi-bin for your mod_cgi
scripts, it is conventional to use /perl as the base URI of the perl scripts which you are running under
mod_perl. Let’s review the following very widely used <Location> section:

 Alias /perl/ /home/httpd/perl/
 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

This configuration causes all requests for URIs starting with /perl to be handled by the mod_perl Apache
module with the handler from the Apache::Registry Perl module. Let’s review the directives inside
the <Location> section in the example:

 <Location /perl>

Remember the Alias from the above section? We use the same Alias here; if you were to use a
<Location> that does not have the same Alias , the server would fail to locate the script in the file
system. You need the Alias setting only if the code that should be executed is located in the file. So
Alias just provides the URI to filepath translation rule.

Sometimes there is no script to be executed. Instead there is some module whose method is being
executed, similar to /perl-status, where the code is stored in an Apache module. In such cases we don’t
need Alias settings for those <Location> s.

 SetHandler perl-script

This assigns the mod_perl Apache module to handle the content generation phase.

 PerlHandler Apache::Registry

Here we tell Apache to use the Apache::Registry Perl module for the actual content generation.

 Options ExecCGI

15 Feb 201410

1.4.2 <Location> Configuration

The Options directive accepts various parameters (options), one of which is ExecCGI . This tells the
server that the file is a program and should be executed, instead of just being displayed like a static file
(like HTML file). If you omit this option then the script will either be rendered as plain text or else it will
trigger a Save-As dialog, depending on the client’s configuration.

 allow from all

This directive is used to set access control based on domain. The above settings allow clients from any
domain to run the script.

 PerlSendHeader On

PerlSendHeader On tells the server to send an HTTP headers to the browser on every script invoca-
tion. You will want to turn this off for nph (non-parsed-headers) scripts.

The PerlSendHeader On setting invokes the Apache’s ap_send_http_header() method after
parsing the headers generated by the script. It is only meant for emulation of mod_cgi behavior with
regard to headers.

To send the HTTP headers it’s always better either to use the $r->send_http_header method using
the Apache Perl API or to use the $q->header method from the CGI.pm module.

 </Location>

Closes the <Location> section definition.

Note that sometimes you will have to preload the module before using it in the <Location> section. In
the case of Apache::Registry the configuration will look like this:

 PerlModule Apache::Registry
 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

PerlModule is equivalent to Perl’s native use() function call.

No changes are required to the /cgi-bin location (mod_cgi), since it has nothing to do with mod_perl.

Here is another very similar example, this time using Apache::PerlRun (For more information see
Apache::PerlRun):

 <Location /cgi-perl>
 SetHandler perl-script
 PerlHandler Apache::PerlRun
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

1115 Feb 2014

1.4.2 <Location> Configurationmod_perl Configuration

The only difference from the Apache::Registry configuration is the argument of the PerlHan-
dler directive, where Apache::Registry has been replaced with Apache::PerlRun .

1.4.3 Overriding <Location> Setting in "Sub-Location"

So if you have:

 <Location /foo>
 SetHandler perl-script
 PerlHandler My::Module
 </Location>

If you want to remove a mod_perl handler setting from a location beneath a location where the handler
was set (i.e. /foo/bar), all you have to do is to reset it, like this:

 <Location /foo/bar>
 SetHandler default-handler
 </Location>

Now, all the requests starting with /foo/bar would be served by Apache’s default handler.

1.4.4 PerlModule and PerlRequire Directives

As we saw earlier, a module should be loaded before it is used. PerlModule and PerlRequire are
the two mod_perl directives which are used to load modules and code. They are almost equivalent to
Perl’s use() and require() functions respectively and called from the Apache configuration file. You
can pass one or more module names as arguments to PerlModule :

 PerlModule Apache::DBI CGI DBD::Mysql

Generally the modules are preloaded from the startup script, which is usually called startup.pl. This is a
file containing plain Perl code which is executed through the PerlRequire directive. For example:

 PerlRequire /home/httpd/perl/lib/startup.pl

A PerlRequire file name can be absolute or relative to ServerRoot or a path in @INC.

As with any file with Perl code that gets use() ’d or require() ’d, it must return a true value. To
ensure that this happens don’t forget to add 1; at the end of startup.pl.

Notice that unless mod_perl is compiled as DSO and unless PerlFreshRestart is set to On, one
needs to fully stop and start Apache for any changes to take affect, if the files and modules have been
modified.

1.4.5 Perl*Handlers

As you probably know Apache traverses a loop for each HTTP request it receives.

15 Feb 201412

1.4.3 Overriding <Location> Setting in "Sub-Location"

After you have compiled and installed mod_perl, your Apache mod_perl configuration directives tell
Apache to invoke the module mod_perl as the handler for some request which it receives. Although it
could in fact handle all the phases of the request loop, usually it does not. You tell mod_perl which phases
it is to handle (and so which to leave to other modules, or to the default Apache routines) by putting
Perl*Handler directives in the configuration files.

Because you need the Perl interpreter to be present for your Perl script to do any processing at all, there is
a slight difference between the way that you configure Perl and C handlers to handle parts of the request
loop. Ordinarily a C module is written, compiled and configured to hook into a specific phase of the
request loop. For a Perl handler you compile mod_perl itself to hook into the appropriate phases, as if it
were to handle the phases itself. Then you put Perl*Handler directives in your configuration file to
tell mod_perl that it is to pass the responsibility for handling that part of the request phase to your Perl
module.

mod_perl is an Apache module written in C. As most programmers will only need to handle the response
phase, in the default compilation most of the Perl*Handler s are disabled. When you configure the
Makefile.PL file for its compilation, you must specify whether or not you will want to handle parts of the
request loop other than the usual content generation phase. If so you need to specify which parts. See the
"Callback Hooks" section for how to do this.

Apache specifies about eleven phases of the request loop, namely (and in order of processing):
Post-Read-Request, URI Translation, Header Parsing, Access Control, Authentication, Authorization,
MIME type checking, FixUp, Response (also known as the Content handling phase), Logging and finally
Cleanup. These are the stages of a request where the Apache API allows a module to step in and do some-
thing. There is a dedicated Perl*Handler for each of these stages plus a couple of others which don’t
correspond to parts of the request loop.

We call them Perl*Handler directives because the names of the many mod_perl handler directives for
the various phases of the request loop all follow the same format. The * in Perl*Handler is a place-
holder to be replaced by something which identifies the phase to be handled. For example PerlLogHan-
dler is a Perl Handler which (fairly obviously) handles the logging phase.

The slight exception is PerlHandler , which you can think of as PerlResponseHandler . It is the
content generation handler and so it is probably the one that you will use most frequently.

Note that it is mod_perl which recognizes these directives, and not Apache. They are mod_perl directives,
and an ordinary Apache does not recognize them. If you get error messages about these directives being
"perhaps mis-spelled" it is a sure sign that the appropriate part of mod_perl (or the entire mod_perl
module!) is not present in your copy of Apache executable.

The full list of Perl*Handler s follows. They are in the order that they are processed by Apache and
mod_perl:

 PerlChildInitHandler
 PerlPostReadRequestHandler
 PerlInitHandler
 PerlTransHandler
 PerlHeaderParserHandler
 PerlAccessHandler

1315 Feb 2014

1.4.5 Perl*Handlersmod_perl Configuration

 PerlAuthenHandler
 PerlAuthzHandler
 PerlTypeHandler
 PerlFixupHandler
 PerlHandler
 PerlLogHandler
 PerlCleanupHandler
 PerlChildExitHandler
 PerlDispatchHandler
 PerlRestartHandler

PerlChildInitHandler and PerlChildExitHandler do not refer to parts of the request loop,
they are to allow your modules to initialize data structures and to clean up at the child process start-up and
shutdown respectively, for example by allocating and deallocating memory.

All <Location> , <Directory> and <Files> sections contain a physical path specification. Like
PerlChildInitHandler and PerlChildExitHandler , the directives PerlPostRead-
RequestHandler and PerlTransHandler cannot be used in these sections, nor in .htaccess files,
because it is not until the end of the Translation Handler (PerlTransHandler) phase that the path
translation is completed and a physical path is known.

PerlInitHandler changes its behaviour depending upon where it is used. In any case it is the first
handler to be invoked in serving a request. If found outside any <Location> , <Directory> or
<Files> section (at the top level), it is an alias for PerlPostReadRequestHandler . When inside
any such section it is an alias for PerlHeaderParserHandler .

Starting from PerlHeaderParserHandler the requested URI has been mapped to a physical server
pathname, and thus it can be used to match a <Location> , <Directory> or <Files> configuration
section, or to look in a .htaccess file if such a file exists in the specified directory in the translated path.

PerlDispatchHandler and PerlRestartHandler do not correspond to parts of the Apache API,
but allow you to fine-tune the mod_perl API.

The Apache documentation will tell you all about these stages and what your modules can do. By default,
most of these hooks are disabled at compile time, see the"Callback Hooks" section for information on
enabling them.

1.4.6 The handler subroutine

By default the mod_perl API expects a subroutine called handler() to handle the request in the regis-
tered Perl*Handler module. Thus if your module implements this subroutine, you can register the
handler with mod_perl like this:

 Perl*Handler Apache::Foo

Replace Perl*Handler with the name of a specific handler from the list given above. mod_perl will
preload the specified module for you. Please note that this approach will not preload the module at startup.
To make sure it gets loaded you have three options: you can explicitly preload it with the PerlModule
directive:

15 Feb 201414

1.4.6 The handler subroutine

 PerlModule Apache::Foo

You can preload it at the startup file:

 use Apache::Foo ();

Or you can use a nice shortcut that the Perl*Handler syntax provides:

 Perl*Handler +Apache::Foo

Note the leading + character. This directive is equivalent to:

 PerlModule Apache::Foo
 Perl*Handler Apache::Foo

If you decide to give the handler routine a name other than handler , for example my_handler , you
must preload the module and explicitly give the name of the handler subroutine:

 PerlModule Apache::Foo
 Perl*Handler Apache::Foo::my_handler

As you have seen, this will preload the module at server startup.

If a module needs to know which handler is currently being run, it can find out with the current_callback
method. This method is most useful to PerlDispatchHandlers which wish to take action for certain phases
only.

 if ($r->current_callback eq "PerlLogHandler") {
 $r->warn("Logging request");
 }

1.4.7 Stacked Handlers

With the mod_perl stacked handlers mechanism, during any stage of a request it is possible for more than
one Perl*Handler to be defined and run.

Perl*Handler directives (in your configuration files) can define any number of subroutines. For
example:

 PerlTransHandler OneTrans TwoTrans RedTrans BlueTrans

With the method Apache->push_handlers() , callbacks (handlers) can be added to a stack at
runtime by mod_perl scripts.

Apache->push_handlers() takes the callback hook name as its first argument and a subroutine
name or reference as its second.

Here’s an example:

1515 Feb 2014

1.4.7 Stacked Handlersmod_perl Configuration

 use Apache::Constants qw(:common);
 sub my_logger {
 #some code here
 return OK;
 }
 Apache->push_handlers("PerlLogHandler", \&my_logger);

Here’s another one:

 use Apache::Constants qw(:common);
 $r->push_handlers("PerlLogHandler", sub {
 print STDERR "__ANON__ called\n";
 return OK;
 });

After each request, this stack is erased.

All handlers will be called unless a handler returns a status other than OK or DECLINED.

Example uses:

CGI.pm maintains a global object for its plain function interface. Since the object is global, it does not go
out of scope, DESTROY is never called. CGI->new can call:

 Apache->push_handlers("PerlCleanupHandler", \&CGI::_reset_globals);

This function will be called during the final stage of a request, refreshing CGI.pm ’s globals before the
next request comes in.

Apache::DCELogin establishes a DCE login context which must exist for the lifetime of a request, so
the DCE::Login object is stored in a global variable. Without stacked handlers, users must set

 PerlCleanupHandler Apache::DCELogin::purge

in the configuration files to destroy the context. This is not "user-friendly". Now, Apache::DCELo-
gin::handler can call:

 Apache->push_handlers("PerlCleanupHandler", \&purge);

Persistent database connection modules such as Apache::DBI could push a PerlCleanupHandler
handler that iterates over %Connected , refreshing connections or just checking that connections have not
gone stale. Remember, by the time we get to PerlCleanupHandler , the client has what it wants and
has gone away, so we can spend as much time as we want here without slowing down response time to the
client (although the process itself is unavailable for serving new requests before the operation is
completed).

PerlTransHandlers (e.g. Apache::MsqlProxy) may decide, based on the URI or some arbitrary
condition, whether or not to handle a request. Without stacked handlers, users must configure it them-
selves:

15 Feb 201416

1.4.7 Stacked Handlers

 PerlTransHandler Apache::MsqlProxy::translate
 PerlHandler Apache::MsqlProxy

PerlHandler is never actually invoked unless translate() sees that the request is a proxy request
($r->proxyreq). If it is a proxy request, translate() sets $r->handler("perl-script") ,
and only then will PerlHandler handle the request. Now users do not have to specify PerlHandler
Apache::MsqlProxy , the translate() function can set it with push_handlers() .

Imagine that you want to include footers, headers, etc., piecing together a document, without using SSI.
The following example shows how to implement it. First we prepare the code as follows:

 Test/Compose.pm

 package Test::Compose;
 use Apache::Constants qw(:common);

 sub header {
 my $r = shift;
 $r->content_type("text/plain");
 $r->send_http_header;
 $r->print("header text\n");
 return OK;
 }
 sub body { shift->print("body text\n") ; return OK}
 sub footer { shift->print("footer text\n") ; return OK}
 1;
 __END__

 # in httpd.conf or perl.conf
 PerlModule Test::Compose
 <Location /foo>
 SetHandler "perl-script"
 PerlHandler Test::Compose::header Test::Compose::body Test::Compose::footer
 </Location>

Parsing the output of another PerlHandler? This is a little more tricky, but consider:

 <Location /foo>
 SetHandler "perl-script"
 PerlHandler OutputParser SomeApp
 </Location>

 <Location /bar>
 SetHandler "perl-script"
 PerlHandler OutputParser AnotherApp
 </Location>

Now, OutputParser goes first, but it untie() ’s *STDOUT and re-tie() ’s it to its own package
like so:

 package OutputParser;

 sub handler {
 my $r = shift;
 untie *STDOUT;

1715 Feb 2014

1.4.7 Stacked Handlersmod_perl Configuration

 tie *STDOUT => ’OutputParser’, $r;
 }

 sub TIEHANDLE {
 my ($class, $r) = @_;
 bless { r => $r}, $class;
 }

 sub PRINT {
 my $self = shift;
 for (@_) {
 #do whatever you want to $_ for example:
 $self->{r}->print($_ . "[insert stuff]");
 }
 }

 1;
 __END__

To build in this feature, configure with:

 % perl Makefile.PL PERL_STACKED_HANDLERS=1 [...]

If you want to test whether your running mod_perl Apache can stack handlers, the method
Apache->can_stack_handlers will return TRUE if mod_perl was configured with
PERL_STACKED_HANDLERS=1, and FALSE otherwise.

1.4.8 Perl Method Handlers

If a Perl*Handler is prototyped with $$, this handler will be invoked as a method. For example:

 package MyClass;
 @ISA = qw(BaseClass);

 sub handler ($$) {
 my ($class, $r) = @_;
 ...;
 }

 package BaseClass;

 sub method ($$) {
 my ($class, $r) = @_;
 ...;
 }

 1;

Configuration:

 PerlHandler MyClass

15 Feb 201418

1.4.8 Perl Method Handlers

or

 PerlHandler MyClass->handler

Since the handler is invoked as a method, it may inherit from other classes:

 PerlHandler MyClass->method

In this case, the MyClass class inherits this method from BaseClass . This means that any method of
MyClass or any of its parent classes can serve as a mod_perl handler, and that you can apply good OO
methodology within your mod_perl handlers.

For instance, you could have this base class:

 package ServeContent;

 use Apache::Constants qw(OK);

 sub handler($$) {
 my ($class, $r) = @_;

 $r->send_http_header(’text/plain’);
 $r->print($class->get_content());

 return OK;
 }

 sub get_content {
 return ’Hello World’;
 }

 1;

And then use the same base class for different contents:

 package HelloWorld;

 use ServeContent;
 @ISA = qw(ServeContent);

 sub get_content {
 return ’Hello, happy world!’;
 }

 package GoodbyeWorld;

 use ServeContent;
 @ISA = qw(ServeContent);

 sub get_content {
 return ’Goodbye, cruel world!’;
 }

 1;

1915 Feb 2014

1.4.8 Perl Method Handlersmod_perl Configuration

Now you can keep the same handler subroutine for a group of modules which are similiar. The following
configuration will enable the handlers from the subclasses:

 <Location /hello>
 SetHandler perl-script
 PerlHandler HelloWorld->handler
 </Location>

 <Location /bye>
 SetHandler perl-script
 PerlHandler GoodbyeWorld->handler
 </Location>

To build in this feature, configure with:

 % perl Makefile.PL PERL_METHOD_HANDLERS=1 [...]

1.4.9 PerlFreshRestart

To reload PerlRequire , PerlModule and other use() ’d modules, and to flush the
Apache::Registry cache on server restart, add to httpd.conf:

 PerlFreshRestart On

Make sure you read Evil things might happen when using PerlFreshRestart.

Starting from mod_perl version 1.22 PerlFreshRestart is ignored when mod_perl is compiled as a
DSO. But it almost doesn’t matter, since mod_perl as a DSO will do a full tear-down (perl_destruct()). So
it’s still a FreshRestart, just fresher than static (non-DSO) mod_perl :)

But note that even if you have

 PerlFreshRestart Off

and mod_perl as a DSO you will still get a FreshRestart.

1.4.10 PerlSetEnv and PerlPassEnv
 PerlSetEnv key val
 PerlPassEnv key

PerlPassEnv passes, PerlSetEnv sets and passes ENVironment variables to your scripts. You can
access them in your scripts through %ENV (e.g. $ENV{"key"}). These commands are useful to pass
information to your handlers or scripts, or to any modules you use that require some additional configura-
tion.

For example, the Oracle RDBMS requires a number of ORACLE_* environment variables to be set so that
you can connect to it through DBI . So you might want to put this in your httpd.conf:

15 Feb 201420

1.4.9 PerlFreshRestart

 PerlSetEnv ORACLE_BASE /oracle
 PerlSetEnv ORACLE_HOME /oracle
 : :

You can then use DBI to access your oracle server without having to set the environment variables in your
handlers.

PerlPassEnv proposes another approach: you might want to set the corresponding environment vari-
ables in your shell, and not reproduce the information in your httpd.conf. For example, you might have this
in your .bash_profile:

 ORACLE_BASE=/oracle
 ORACLE_HOME=/oracle
 export ORACLE_BASE ORACLE_HOME

However, Apache (or mod_perl) don’t pass on environment variables from the shell by default; you’ll
have to specify these using either the standard PassEnv or mod_perl’s PerlPassEnv directives.

 PerlPassEnv ORACLE_BASE ORACLE_HOME

One thing to be aware of is that when you start Apache under a shell different than the one you are logged
in from, the environment variables could be totally different, so don’t be surprised if you get a different
value when using Passenv /PerlPassEnv or none at all. Check the environment Apache is started
from. Often it’s started from a special account like apache, or nobody, and can be anything else. Check the
value of User variable in httpd.conf to find out the right answer. Once you figure that out, make sure that
the shell Apache starts from has the desired environment variables right. And may be it’s a better idea not
to rely on the shell variables, but instead set those explicitly using Setenv /PerlSetEnv .

Regarding the setting of PerlPassEnv PERL5LIB in httpd.conf: if you turn on taint checks (Perl-
TaintCheck On), $ENV{PERL5LIB} will be ignored (unset). See the ’Switches -w, -T’ section.

While the Apache’s SetEnv /PassEnv and mod_perl’s PerlSetEnv /PerlPassEnv apparently do
the same thing, the former doesn’t happen until the fixup phase, the latter happens as soon as possible, so
those variables are available before then, e.g. in PerlAuthenHandler for $ENV{ORACLE_HOME} (or
another environment variable that you need in these early request processing stages).

1.4.11 PerlSetVar and PerlAddVar

PerlSetVar is very similar to PerlSetEnv ; however, variables set using PerlSetVar are only
available through the mod_perl API, and is thus more suitable for configuration. For example, environ-
ment variables are available to all, and might show up on casual "print environment" scripts, which you
might not like. PerlSetVar is well-suited for modules needing some configuration, but not wanting to
implement first-class configuration handlers just to get some information.

 PerlSetVar foo bar

or

2115 Feb 2014

1.4.11 PerlSetVar and PerlAddVarmod_perl Configuration

 <Perl>
 push @{ $Location{"/"}->{PerlSetVar} }, [foo => ’bar’];
 </Perl>

and in the code you read it with:

 my $r = Apache->request;
 print $r->dir_config(’foo’);

The above prints:

 bar

Note that you cannot do this:

 push @{ $Location{"/"}->{PerlSetVar} }, [foo => \%bar];

All values are treated as strings, so you will get a stringified reference to a hash as a value (something
which will look like "HASH(0x87a5108) "). This cannot be turned back into a reference and therefore
into the original hash upon retrieval.

However you can use the PerlAddVar directive to push more values into the variable, emulating arrays.
For example:

 PerlSetVar foo bar
 PerlAddVar foo bar1
 PerlAddVar foo bar2

or the equivalent:

 PerlAddVar foo bar
 PerlAddVar foo bar1
 PerlAddVar foo bar2

To retrieve the values use the $r->dir_config->get() method:

 my @foo = $r->dir_config->get(’foo’);

or

 my %foo = $r->dir_config->get(’foo’);

Make sure that you use an even number of elements if you store the retrieved values in a hash, like this:

 PerlAddVar foo key1
 PerlAddVar foo value1
 PerlAddVar foo key2
 PerlAddVar foo value2

Then %foo will have a structure like this:

15 Feb 201422

1.4.11 PerlSetVar and PerlAddVar

 %foo = (
 key1 => ’value1’,
 key2 => ’value2’,
);

There are some things you should know about sub requests and $r->dir_config . For
$r->lookup_uri , everything works as expected, because all normal phases are run. You can then
retrieve variables set in the server scope of the configuration, in <VirtualHost> sections, in <Loca-
tion> sections, etc.

However, when using the $r->lookup_file method, you are effectively skipping the URI translation
phase. This means that the URI won’t be known by Apache, only the file name to retrieve. As such,
<Location> sections won’t be applied. This means that if you were using:

 Alias /perl-subr/ /home/httpd/perl-subr/
 <Location /perl-subr>
 PerlSetVar foo bar
 PerlSetVar foo2 bar2
 </Location>

And issue a subrequest using $r->lookup_file and try to retrieve its directory configuration
(Apache::SubRequest class is just a subclass of Apache):

 my $subr = $r->lookup_file(’/home/httpd/perl-subr/script.pl’);
 print $subr->dir_config(’foo’);

You won’t get the results you wanted.

As a side note: the issue we discussed here means that /perl-subr/script.pl won’t even run under mod_perl
if configured in the normal Apache::Registry way (using a <Location> section), because the <Loca-
tion> blocks won’t be applied. You’d have to use a <Directory> or <Files> section configuration
to achieve the desired effect. As to the PerlSetVar discussion, using <Directory> or <Files>
section would solve the problem.

1.4.12 PerlSetupEnv

PerlSetupEnv On will allow you to access the environment variables like $ENV{REQUEST_URI},
which are available under CGI. However, when programming handlers, there are always better ways to
access these variables through the Apache API. Therefore, it is recommended to turn it Off except for
scripts which absolutely require it. See PerlSetupEnv Off.

1.4.13 PerlWarn and PerlTaintCheck

For PerlWarn and PerlTaintCheck directives see the ’Switches -w, -T’ section.

2315 Feb 2014

1.4.12 PerlSetupEnvmod_perl Configuration

1.4.14 MinSpareServers MaxSpareServers StartServers MaxClients
MaxRequestsPerChild

MinSpareServers , MaxSpareServers , StartServers and MaxClients are standard Apache
configuration directives that control the number of servers that will be launched at server startup and kept
alive during the server’s operation.

MaxRequestsPerChild lets you specify the maximum number of requests which each child will be
allowed to serve. When a process has served MaxRequestsPerChild requests the parent kills it and
replaces it with a new one. There may also be other reasons why a child is killed, so it does not mean that
each child will in fact serve this many requests, only that it will not be allowed to serve more than that
number.

These five directives are very important for achieving the best performance from your server. The section
’ Performance Tuning by Tweaking Apache Configuration’ provides all the details.

1.5 The Startup File
At server startup, before child processes are spawned to receive incoming requests, there is more that can
be done than just preloading files. You might want to register code that will initialize a database connec-
tion for each child when it is forked, tie read-only dbm files, etc.

The startup.pl file is an ideal place to put the code that should be executed when the server starts. Once
you have prepared the code, load it in httpd.conf before the rest of the mod_perl configuration directives
like this:

 PerlRequire /home/httpd/perl/lib/startup.pl

I must stress that all the code that is run at server initialization time is run with root privileges if you are
executing it as the root user (which you have to do unless you choose to run the server on an unprivileged
port, above 1024). This means that anyone who has write access to a script or module that is loaded by
PerlModule or PerlRequire effectively has root access to the system. You might want to take a
look at the new and experimental PerlOpmask directive and PERL_OPMASK_DEFAULT compile time
option to try to disable some of the more dangerous operations.

Since the startup file is a file written in plain Perl, one can validate its syntax with:

 % perl -c /home/httpd/perl/lib/startup.pl

1.5.1 The Sample Startup File

Let’s look at a real world startup file:

 startup.pl

 use strict;

 # Extend @INC if needed

15 Feb 201424

1.5 The Startup File

 use lib qw(/dir/foo /dir/bar);

 # Make sure we are in a sane environment.
 $ENV{MOD_PERL} or die "not running under mod_perl!";

 # For things in the "/perl" URL
 use Apache::Registry;

 # Load Perl modules of your choice here
 # This code is interpreted *once* when the server starts
 use LWP::UserAgent ();
 use Apache::DBI ();
 use DBI ();

 # Tell me more about warnings
 use Carp ();
 $SIG{__WARN__} = \&Carp::cluck;

 # Load CGI.pm and call its compile() method to precompile
 # (but not to import) its autoloaded methods.
 use CGI ();
 CGI->compile(’:all’);

 # Initialize the database connections for each child
 Apache::DBI->connect_on_init
 ("DBI:mysql:database=test;host=localhost",
 "user","password",
 {
 PrintError => 1, # warn() on errors
 RaiseError => 0, # don’t die on error
 AutoCommit => 1, # commit executes immediately
 }
);

 1;

Now we’ll review the code explaining why each line is used.

 use strict;

This pragma is worth using in every script longer than half a dozen lines. It will save a lot of time and
debugging later on.

 use lib qw(/dir/foo /dir/bar);

The only chance to permanently modify @INC before the server is started is with this command. Later the
running code can modify @INC just for the moment it require() ’s some file, and then @INC’s value
gets reset to what it was originally.

 $ENV{MOD_PERL} or die "not running under mod_perl!";

A sanity check, if Apache/mod_perl wasn’t properly built, the above code will abort the server startup.

2515 Feb 2014

1.5.1 The Sample Startup Filemod_perl Configuration

 use Apache::Registry;
 use LWP::UserAgent ();
 use Apache::DBI ();
 use DBI ();

Preload the modules that get used by our Perl code serving the requests. Unless you need the symbols
(variables and subroutines) exported by the modules you preload to accomplish something within the
startup file, don’t import them, since it’s just a waste of startup time. Instead use the empty list () to tell
the import() function not to import anything.

 use Carp ();
 $SIG{__WARN__} = \&Carp::cluck;

This is a useful snippet to enable extended warnings logged in the error_log file. In addition to basic warn-
ings, a trace of calls is added. This makes the tracking of the potential problem a much easier task, since
you know who called whom. For example, with normal warnings you might see:

 Use of uninitialized value at
 /usr/lib/perl5/site_perl/5.005/Apache/DBI.pm line 110.

but you have no idea where it was called from. When we use Carp as shown above we might see:

 Use of uninitialized value at
 /usr/lib/perl5/site_perl/5.005/Apache/DBI.pm line 110.
 Apache::DBI::connect(undef, ’mydb::localhost’, ’user’,
 ’passwd’, ’HASH(0x87a5108)’) called at
 /usr/lib/perl5/site_perl/5.005/i386-linux/DBI.pm line 382
 DBI::connect(’DBI’, ’DBI:mysql:mydb::localhost’, ’user’,
 ’passwd’, ’HASH(0x8375e4c)’) called at
 /usr/lib/perl5/site_perl/5.005/Apache/DBI.pm line 36
 Apache::DBI::__ANON__(’Apache=SCALAR(0x87a50c0)’) called at
 PerlChildInitHandler subroutine
 ‘Apache::DBI::__ANON__’ line 0
 eval {...} called at PerlChildInitHandler subroutine
 ‘Apache::DBI::__ANON__’ line 0

we clearly see that the warning was triggered by eval()’uating the Apache::DBI::__ANON__ which
called DBI::connect (with the arguments that we see as well), which in turn called the
Apache::DBI::connect method. Now we know where to look for our problem.

 use CGI ();
 CGI->compile(’:all’);

Some modules create their subroutines at run time to improve their load time. This helps when the module
includes many subroutines, but only a few are actually used. CGI.pm falls into this category. Since with
mod_perl the module is loaded only once, it might be a good idea to precompile all or a part of its
methods.

CGI.pm ’s compile() method performs this task. Notice that this is a proprietary function of this
module, other modules can implement this feature or not and use this or some other name for this func-
tionality. As with all modules we preload in the startup file, we don’t import symbols from them as they
will be lost when they go out of the file’s scope.

15 Feb 201426

1.5.1 The Sample Startup File

Note that starting with CGI.pm version 2.46, the recommended method to precompile the code in
CGI.pm is:

 use CGI qw(-compile :all);

But the old method is still available for backward compatibility.

 1;

As startup.pl is run through Perl’s require() , it has to return a true value so that Perl can make sure it
has been successfully loaded. Don’t forget this (it’s very easy to forget it).

See also the ’Apache::Status -- Embedded interpreter status information’ section.

1.5.2 What Modules You Should Add to the Startup File and Why

Every module loaded at server startup will be shared among the server children, saving a lot of RAM on
your machine. Usually I put most of the code I develop into modules and preload them.

You can even preload your CGI script with Apache::RegistryLoader (See Preload Perl modules at
server startup) and you can get the children to preopen their database connections with Apache::DBI .

1.5.3 The Confusion with use() in the Server Startup File

Some people wonder why you need to duplicate the use() clause in the startup file and in the script
itself. The confusion arises due to misunderstanding the use() function. use() normally performs two
operations, namely require() and import() , called within a BEGIN block. See the section "use()"
for a detailed explanation of the use(), require() and import() functions.

In the startup file we don’t want to import any symbols since they will be lost when we leave the scope of
the startup file anyway, i.e. they won’t be visible to any of the child processes which run our mod_perl
scripts. Instead we want to preload the module in the startup file and then import any symbols that we
actually need in each script individually.

Normally when we write use MyModule; , use() will both load the module and import its symbols;
so for the startup file we write use MyModule (); and the empty parentheses will ensure that the
module is loaded but that no symbols are imported. Then in the actual mod_perl script we write use() in
the standard way, e.g. use MyModule; . Since the module has already been preloaded, the only action
taken is to import the symbols. For example in the startup file you write:

 use CGI ();

since you probably don’t need any symbols to be imported there. But in your code you would probably
write:

 use CGI qw(:html);

2715 Feb 2014

1.5.2 What Modules You Should Add to the Startup File and Whymod_perl Configuration

For example, if you have use() ’d Apache::Constants in the startup file, it does not mean you can
have the following handler:

 package MyModule;
 sub handler {
 my $r = shift;
 ## Cool stuff goes here
 return OK;
 }
 1;

You would either need to add:

 use Apache::Constants qw(OK);

Or use the fully qualified name:

 return Apache::Constants::OK;

If you want to use the function interface without exporting the symbols, use fully qualified function
names, e.g. CGI::param . The same rule applies to variables, you can import variables and you can
access them by their full name. e g. $My::Module::bar . When you use the object oriented (method)
interface you don’t need to export the method symbols.

Technically, you aren’t required to supply the use() statement in your (handler?) code if it was already
loaded during server startup (i.e. by ’PerlRequire startup.pl ’). When writing your code,
however, you should not assume the module code has been preloaded. In the future, you or someone else
will revisit this code and will not understand how it is possible to use a module’s methods without first
loading the module itself.

Read the Exporter and perlmod manpages for more information about import() .

1.6 Apache Configuration in Perl
With <Perl> ...</Perl> sections, it is possible to configure your server entirely in Perl.

1.6.1 Usage

<Perl> sections can contain any and as much Perl code as you wish. These sections are compiled into a
special package whose symbol table mod_perl can then walk and grind the names and values of Perl vari-
ables/structures through the Apache core configuration gears. Most of the configuration directives can be
represented as scalars ($scalar) or lists (@list). A @list inside these sections is simply converted
into a space delimited string for you. Here is an example:

 httpd.conf

 <Perl>
 @PerlModule = qw(Mail::Send Devel::Peek);

 #run the server as whoever starts it

15 Feb 201428

1.6 Apache Configuration in Perl

 $User = getpwuid($>) || $>;
 $Group = getgrgid($)) || $);

 $ServerAdmin = $User;

 </Perl>

Block sections such as <Location> ..</Location> are represented in a %Location hash, e.g.:

 <Perl>

 $Location{"/~dougm/"} = {
 AuthUserFile => ’/tmp/htpasswd’,
 AuthType => ’Basic’,
 AuthName => ’test’,
 DirectoryIndex => [qw(index.html index.htm)],
 Limit => {
 METHODS => ’GET POST’,
 require => ’user dougm’,
 },
 };

 </Perl>

If an Apache directive can take two or three arguments you may push strings (the lowest number of argu-
ments will be shifted off the @list) or use an array reference to handle any number greater than the
minimum for that directive:

 push @Redirect, "/foo", "http://www.foo.com/";

 push @Redirect, "/imdb", "http://www.imdb.com/";

 push @Redirect, [qw(temp "/here" "http://www.there.com")];

Other section counterparts include %VirtualHost , %Directory and %Files .

To pass all environment variables to the children with a single configuration directive, rather than listing
each one via PassEnv or PerlPassEnv , a <Perl> section could read in a file and:

 push @PerlPassEnv, [$key => $val];

or

 Apache->httpd_conf("PerlPassEnv $key $val");

These are somewhat simple examples, but they should give you the basic idea. You can mix in any Perl
code you desire. See eg/httpd.conf.pl and eg/perl_sections.txt in the mod_perl distribution for more exam-
ples.

Assume that you have a cluster of machines with similar configurations and only small distinctions
between them: ideally you would want to maintain a single configuration file, but because the configura-
tions aren’t exactly the same (e.g. the ServerName directive) it’s not quite that simple.

2915 Feb 2014

1.6.1 Usagemod_perl Configuration

<Perl> sections come to rescue. Now you have a single configuration file and the full power of Perl to
tweak the local configuration. For example to solve the problem of the ServerName directive you might
have this <Perl> section:

 <Perl>
 $ServerName = ‘hostname‘;
 </Perl>

For example if you want to allow personal directories on all machines except the ones whose names start
with secure:

 <Perl>
 $ServerName = ‘hostname‘;
 if ($ServerName !~ /^secure/) {
 $UserDir = "public.html";
 } else {
 $UserDir = "DISABLED";
 }
 </Perl>

Behind the scenes, mod_perl defines a package called Apache::ReadConfig . Here it keeps all the
variables that you define inside the <Perl> sections. Therefore it’s not necessarily to configure the server
within the <Perl> sections. Actually what you can do is to write the Perl code to configure the server just
like you’d do in the <Perl> sections, but instead place it into a separate file that should be called during
the configuration parsing with either PerlModule or PerlRequire directives, or from within the
startup file. All you have to do is to declare the package Apache::ReadConfig within this file. Using
the last example:

 apache_config.pl

 package Apache::ReadConfig;

 $ServerName = ‘hostname‘;
 if ($ServerName !~ /^secure/) {
 $UserDir = "public.html";
 } else {
 $UserDir = "DISABLED";
 }

 1;

 httpd.conf

 PerlRequire /home/httpd/perl/lib/apache_config.pl

1.6.2 Enabling

To enable <Perl> sections you should build mod_perl with perl Make-
file.PL PERL_SECTIONS=1 [...].

15 Feb 201430

1.6.2 Enabling

1.6.3 Caveats

Be careful when you declare package names inside <Perl> sections, for example this code has a
problem:

 <Perl>
 package My::Trans;
 use Apache::Constants qw(:common);
 sub handler{ OK }

 $PerlTransHandler = "My::Trans";
 </Perl>

When you put code inside a <Perl> section, by default it actually goes into the Apache::ReadCon-
fig package, which is already declared for you. This means that the PerlTransHandler we have
tried to define above is actually undefined. If you define a different package name within a <Perl>
section you must make sure to close the scope of that package and return to the Apache::ReadConfig
package when you want to define the configuration directives, like this:

 <Perl>
 package My::Trans;
 use Apache::Constants qw(:common);
 sub handler{ OK }

 package Apache::ReadConfig;
 $PerlTransHandler = "My::Trans";
 </Perl>

1.6.4 Verifying

This section shows how to check and dump the configuration you have made with the help of <Perl>
sections in httpd.conf.

To check the <Perl> section syntax outside of httpd, we make it look like a Perl script:

 <Perl>
 # !perl
 # ... code here ...
 __END__
 </Perl>

Now you may run:

 perl -cx httpd.conf

In a running httpd you can see how you have configured the <Perl> sections through the URI
/perl-status, by choosing Perl Section Configuration from the menu. In order to make this item show up in
the menu you should set $Apache::Server::SaveConfig to a true value. When you do that the
Apache::ReadConfig namespace (in which the configuration data is stored) will not be flushed, making
configuration data available to Perl modules at request time.

3115 Feb 2014

1.6.3 Caveatsmod_perl Configuration

Example:

 <Perl>
 $Apache::Server::SaveConfig = 1;

 $DocumentRoot = ...
 ...
 </Perl>

At request time, the value of $DocumentRoot can be accessed with the fully qualified name
$Apache::ReadConfig::DocumentRoot.

You can dump the configuration of <Perl> sections like this:

 <Perl>
 use Apache::PerlSections();
 ...
 # Configuration Perl code here
 ...
 print STDERR Apache::PerlSections->dump();
 </Perl>

Alternatively you can store it in a file:

 Apache::PerlSections->store("httpd_config.pl");

You can then require() that file in some other <Perl> section.

1.6.5 Strict <Perl> Sections

If the Perl code doesn’t compile, the server won’t start. If the generated Apache config is invalid, <Perl>
sections have always just logged an error and carried on, since there might be globals in the section that
are not intended for the config.

The variable $Apache::Server::StrictPerlSections has been added in mod_perl version
1.22. If you set this variable to a true value, for example

 $Apache::Server::StrictPerlSections = 1;

then mod_perl will not tolerate invalid Apache configuration syntax and will croak (die) if this is the
case. At the time of writing the default value is 0.

1.6.6 Debugging

If you compile mod_perl with PERL_TRACE=1 and set the environment variable MOD_PERL_TRACE
then you should see some useful diagnostics when mod_perl is processing <Perl> sections.

15 Feb 201432

1.6.5 Strict <Perl> Sections

1.6.7 Perl Section Tricks

The Perl %ENV is cleared during startup, but the C environment is left intact and so you can use it to
set @PassEnv.

1.6.8 References

For more info see Writing Apache Modules with Perl and C, Chapter 8:
http://modperl.com:9000/book/chapters/ch8.html

1.7 Validating the Configuration Syntax
apachectl configtest tests the configuration file without starting the server. You can safely vali-
date the configuration file on your production server, if you run this test before you restart the server with
apachectl restart . Of course it is not 100% perfect, but it will reveal any syntax errors you might
have made while editing the file.

’apachectl configtest ’ is the same as ’httpd -t ’ and it doesn’t just parse the code in
startup.pl, it actually executes it. <Perl> configuration has always started Perl during the configuration
read, and Perl{Require,Module} do so as well.

Of course we assume that the code that gets called during this test cannot cause any harm to your running
production environment. The following hint shows how to prevent the code in the startup script and
<Perl> from being executed during the syntax check, if that’s what you want.

If you want your startup code to get control over the -t (configtest) server launch, start the server
configuration test with:

 httpd -t -Dsyntax_check

and, if for example you want to prevent your startup code from being executed, at the top of the code add:

 return if Apache->define(’syntax_check’);

1.8 Enabling Remote Server Configuration Reports
The nifty mod_info module displays the complete server configuration in your browser. In order to use it
you have compile it in or, if the server was compiled with DSO mode enabled, load it as an object. Then
just uncomment the ready-prepared section in the httpd.conf file:

 <Location /server-info>
 SetHandler server-info
 Order deny,allow
 Deny from all
 Allow from www.example.com
 </Location>

3315 Feb 2014

1.7 Validating the Configuration Syntaxmod_perl Configuration

http://modperl.com:9000/book/chapters/ch8.html

Now restart the server and issue the request:

 http://www.example.com/server-info

1.9 Publishing Port Numbers other than 80
If you are using a two-server setup, with a mod_perl server listening on a high port, it is advised that you
do not publish the number of the high port number in URLs. Rather use a proxying rewrite rule in the
non-mod_perl server:

 RewriteEngine On
 RewriteLogLevel 0
 RewriteRule ^/perl/(.*) http://localhost:8080/perl/$1 [P]
 ProxyPassReverse / http://localhost/

I was told one problem with publishing high port numbers is that IE 4.x has a bug when re-posting data to
a non-port-80 URL. It drops the port designator, and uses port 80 anyway.

Another reason is that firewalls probably will have the high port closed, therefore users behind the fire-
walls will be unable to reach your service, running on the blocked port.

1.10 Configuring Apache + mod_perl with mod_macro
mod_macro is an Apache module written by Fabien Coelho that lets you define and use macros in the
Apache configuration file.

mod_macro can be really useful when you have many virtual hosts, and where each virtual host has a
number of scripts/modules, most of them with a moderately complex configuration setup.

First download the latest version of mod_macro from http://www.cri.ensmp.fr/~coelho/mod_macro/ , and
configure your Apache server to use this module.

Here are some useful macros for mod_perl users:

 # set up a registry script
 <Macro registry>
 SetHandler "perl-script"
 PerlHandler Apache::Registry
 Options +ExecCGI
 </Macro>

 # example
 Alias /stuff /usr/www/scripts/stuff
 <Location /stuff>
 Use registry
 </Location>

If your registry scripts are all located in the same directory, and your aliasing rules consistent, you can use
this macro:

15 Feb 201434

1.9 Publishing Port Numbers other than 80

http://www.cri.ensmp.fr/~coelho/mod_macro/

 # set up a registry script for a specific location
 <Macro registry $location $script>
 Alias /$location /home/httpd/perl/scripts/$script
 <Location /$location>
 SetHandler "perl-script"
 PerlHandler Apache::Registry
 Options +ExecCGI
 </Location>
 </Macro>

 # example
 Use registry stuff stuff.pl

If you’re using content handlers packaged as modules, you can use the following macro:

 # set up a mod_perl content handler module
 <Macro modperl $module>
 SetHandler "perl-script"
 Options +ExecCGI
 PerlHandler $module
 </Macro>

 #examples
 <Location /perl-status>
 PerlSetVar StatusPeek On
 PerlSetVar StatusGraph On
 PerlSetVar StatusDumper On
 Use modperl Apache::Status
 </Location>

The following macro sets up a Location for use with HTML::Embperl . Here we define all ".html" files
to be processed by Embperl .

 <Macro embperl>
 SetHandler "perl-script"
 Options +ExecCGI
 PerlHandler HTML::Embperl
 PerlSetEnv EMBPERL_FILESMATCH \.html$
 </Macro>

 # examples
 <Location /mrtg>
 Use embperl
 </Location>

Macros are also very useful for things that tend to be verbose, such as setting up Basic Authentication:

 # Sets up Basic Authentication
 <Macro BasicAuth $realm $group>
 Order deny,allow
 Satisfy any
 AuthType Basic
 AuthName $realm
 AuthGroupFile /usr/www/auth/groups
 AuthUserFile /usr/www/auth/users
 Require group $group

3515 Feb 2014

1.10 Configuring Apache + mod_perl with mod_macromod_perl Configuration

 Deny from all
 </Macro>

 # example of use
 <Location /stats>
 Use BasicAuth WebStats Admin
 </Location>

Finally, here is a complete example that uses macros to set up simple virtual hosts. It uses the Basi-
cAuth macro defined previously (yes, macros can be nested!).

 <Macro vhost $ip $domain $docroot $admingroup>
 <VirtualHost $ip>
 ServerAdmin webmaster@$domain
 DocumentRoot /usr/www/htdocs/$docroot
 ServerName www.$domain
 <Location /stats>
 Use BasicAuth Stats-$domain $admingroup
 </Location>
 </VirtualHost>
 </Macro>

 # define some virtual hosts
 Use vhost 10.1.1.1 example.com example example-admin
 Use vhost 10.1.1.2 example.net examplenet examplenet-admin

mod_macro is also useful in a non vhost setting. Some sites for example have lots of scripts which people
use to view various statistics, email settings and etc. It is much easier to read things like:

 use /forwards email/showforwards
 use /webstats web/showstats

The actual macros for the last example are left as an exercise to reader. These can be easily constructed
based on the examples presented in this section.

1.11 General Pitfalls

1.11.1 My CGI/Perl Code Gets Returned as Plain Text Instead of
Being Executed by the Webserver

Check your configuration files and make sure that the ExecCGI is turned on in your configurations.

 <Location /perl>
 SetHandler perl-script
 PerlHandler Apache::Registry
 Options ExecCGI
 allow from all
 PerlSendHeader On
 </Location>

15 Feb 201436

1.11 General Pitfalls

1.11.2 My Script Works under mod_cgi, but when Called via mod_perl
I Get a ’Save-As’ Prompt

Did you put PerlSendHeader On in the configuration part of the <Location foo></Location> .

1.11.3 Is There a Way to Provide a Different startup.pl File for Each
Individual Virtual Host

No. Any virtual host will be able to see the routines from a startup.pl loaded for any other virtual host.

1.11.4 Is There a Way to Modify @INC on a Per-Virtual-Host or
Per-Location Basis.

You can use PerlSetEnv PERL5LIB ... or a PerlFixupHandler with the lib pragma (use
lib qw(...)).

A better way is to use Apache::PerlVINC

1.11.5 A Script From One Virtual Host Calls a Script with the Same
Path From the Other Virtual Host

This has been a bug before, last fixed in 1.15_01, i.e. if you are running 1.15, that could be the problem.
You should set this variable in a startup file (which you load with PerlRequire in httpd.conf):

 $Apache::Registry::NameWithVirtualHost = 1;

But, as we know sometimes a bug turns out to be a feature. If the same script is running for more than one
Virtual host on the same machine, this can be a waste, right? Set it to 0 in a startup script if you want to
turn it off and have this bug as a feature. (Only makes sense if you are sure that there will be no other
scripts with the same path/name). It also saves you some memory as well.

 $Apache::Registry::NameWithVirtualHost = 0;

1.11.6 the Server no Longer Retrieves the DirectoryIndex Files for a
Directory

The problem was reported by users who declared mod_perl configuration inside a <Directory> section
for all files matching *.pl. The problem went away after placing the directives in a <Files> section.

The mod_alias and mod_rewrite are both Trans handlers in the normal case. So in the setup where both are
used, if mod_alias runs first and matches it will return OK and mod_rewrite won’t see the request.

3715 Feb 2014

1.11.2 My Script Works under mod_cgi, but when Called via mod_perl I Get a ’Save-As’ Promptmod_perl Configuration

The opposite can happen as well, where mod_rewrite rules apply but the Alias directives are completely
ignored.

The behavior is not random, but depends on the Apache modules loading order. Apache modules are being
executed in reverse order, i.e. module that was Added first will be executed last.

The solution is not to mix mod_rewrite and mod_alias. mod_rewrite does everything mod_alias
does--except for ScriptAlias which is not really relevant to mod_perl anyway. Don’t rely on the
module ordering, but use explicitly disjoint URL namespaces for Alias and Rewrite . In other words
any URL regex that can potentially match a Rewrite rule should not be used in an Alias , and vice
versa. Given that mod_rewrite can easily do what mod_alias does, it’s no problem.

Here is one of the examples where Alias is replaced with RedirectMatch . This is a snippet of
configuration at the light non-mod_perl Apache server:

 RewriteEngine on
 RewriteLogLevel 0
 RewriteRule ^/(perl.*)$ http://127.0.0.1:8045/$1 [P,L]
 RewriteRule ^/(mail.*)$ http://127.0.0.1:8045/$1 [P,L]
 NoCache *
 ProxyPassReverse / http://www.example.com/

 RedirectMatch permanent ^/$ /pages/index
 RedirectMatch permanent ^/foo$ /pages/bar

This configuration works fine because any URI that matches one of the redirects will never match one of
the rewrite rules.

In the above setup we proxy requests starting with /perl or /mail to the mod_perl server, forbid proxy
requests to the external sites, and make sure that the proxied requests will use the
http://www.example.com/ as their URL on the way back to the client.

The RedirectMatch settings work exactly like if you’d write:

 Alias / /pages/index
 Alias /foo /pages/bar

But as we told before we don’t want to mix the two.

Here is another example where the redirect is done by a rewrite rule:

 RewriteEngine on
 RewriteLogLevel 0
 RewriteMap lowercase int:tolower
 RewriteRule ^/(perl.*)$ http://127.0.0.1:8042/$1 [P,L]
 RewriteRule ^/$ /pages/welcome.htm [R=301,L]
 RewriteRule ^(.*)$ ${lowercase:$1}
 NoCache *
 ProxyPassReverse / http://www.example.com/

15 Feb 201438

1.11.6 the Server no Longer Retrieves the DirectoryIndex Files for a Directory

http://www.example.com/

If we omit the rewrite rule that matches ^/$, and instead use a redirect, it will never be called, because the
URL is still matched by the last rule ^(.*)$. This is a somewhat contrived example because that last
regex could be rewritten as ^(/.+)$ and all would be well.

1.11.7 Do Perl* Directives Affect Code Running under mod_cgi?

No, they don’t.

So for example if you do:

 PerlSetEnv foo bar

It’ll be seen from mod_perl, but not mod_cgi or any other module.

1.12 Configuration Security Concerns
The more modules you have in your web server, the more complex the code.

The more complex the code in your web server, the more chances for bugs.

The more chances for bugs, the more chance that some of those bugs may involve security breaches.

1.12.1 Choosing User and Group

Because mod_perl runs within an httpd child process, it runs with the User ID and Group ID specified in
the httpd.conf file. This User /Group should have the lowest possible privileges. It should only have
access to world readable files, even better only files that belongs to this user. Even so, careless scripts can
give away information. You would not want your /etc/passwd file to be readable over the net, for instance,
even if you use shadow passwords.

When a handler needs write permissions, make sure that only the user, the server is running under, has
write permissions to the files. Sometimes you need group write permissions, but be very careful, because a
buggy or malicious code run in the server may destroy files writable by the server.

1.12.2 Taint Checking

Make sure to run the server under:

 PerlTaintCheck On

setting in the httpd.conf file. Taint checking doesn’t ensure that your code is completely safe from external
hacks, but it does forces you to improve your code to prevent many potential security problems.

3915 Feb 2014

1.12 Configuration Security Concernsmod_perl Configuration

1.12.3 Exposing Information About the Server’s Component

It is better not to expose the mod_perl server to the outside world, for it creates a potential security risk by
revealing which Apache modules used by the server and the OS the server is running on.

You can see what information is revealed by your server, by telneting to it and issuing some request. For
example:

 % telnet localhost 8080
 Trying 127.0.0.1
 Connected to localhost
 Escape character is ’^]’.
 HEAD / HTTP1.0

 HTTP/1.1 200 OK
 Date: Sun, 16 Apr 2000 11:06:25 GMT
 Server: Apache/1.3.12 (Unix) mod_perl/1.22 mod_ssl/2.6.2 OpenSSL/0.9.5
 [more lines snipped]

So as you see that a lot of information is revealed and a Full ServerTokens has been used.

We never were completely sure why the default of the ServerTokens directive in Apache is Full
rather than Minimal . Seems like you would only make it Full if you are debugging. Probably the
reason for using the ServerTokens Full is for a show-off, so Netcraft (http://netcraft.com) and other
similar survey services will count more Apache servers, which is good for all of us, but you really want to
reveal as little information as possible to the potential crackers.

Another approach is to modify httpd sources to reveal no unwanted information, so all responses will
return an empty or phony Server: field.

From the other point of view, security by obscurity is a lack of security. Any determined cracker will
eventually figure out what version of Apache run and what third party modules you have built in.

An even better approach is to completely hide the mod_perl server behind a front-end or a proxy server, so
the server cannot be accessed directly.

1.13 Apache Restarts Twice On Start
When the server is restarted, the configuration and module initialization phases are called twice in total
before the children are forked. The second restart is done in order to ensure that future restarts will work
correctly, by making sure that all modules can survive a restart (SIGHUP). This is very important if you
restart a production server.

You can control what code will be executed on the start or restart by checking the value of
$Apache::Server::Starting and $Apache::Server::ReStarting respectively. The
former variable is true when the server is starting and the latter is true when it’s restarting.

15 Feb 201440

1.13 Apache Restarts Twice On Start

http://netcraft.com/

For example:

 <Perl>
 print STDERR "Server is Starting\n" if $Apache::Server::Starting;
 print STDERR "Server is ReStarting\n" if $Apache::Server::ReStarting;
 </Perl>

The startup.pl file and similar loaded via PerlModule or PerlRequire are compiled only once.
Because once the module is compiled it enters the special %INC hash. When Apache restarts--Perl checks
whether the module or script in question is already registered in %INC and won’t try to compile it again.

So the only code that you might need to protect from running on restart is the one in the <Perl> sections.
But since one usually uses the <Perl> sections mainly for on the fly configuration creation, there
shouldn’t be a reason why it’d be undesirable to run the code more than once.

1.14 Knowing the proxy_pass’ed Connection Type
Let’s say that you have a frontend server running mod_ssl, mod_rewrite and mod_proxy. You want to
make sure that your user is using a secure connection for some specific actions like login information
submission. You don’t want to let the user login unless the request was submitted through a secure port.

Since you have to proxy_pass the request between front and backend servers, you cannot know where the
connection has come from. Neither is using the HTTP headers reliable.

A possible solution for this problem is to have the mod_perl server listen on two different ports (e.g. 8000
and 8001) and have the mod_rewrite proxy rule in the regular server redirect to port 8000 and the
mod_rewrite proxy rule in the SSL virtual host redirect to port 8001. In the mod_perl server just check the
PORT variable to tell if the connection is secure.

1.15 Adding Custom Configuration Directives
This is covered in the Eagle Book in a great detail. This is just a simple example, showing how to add your
own Configuration directives.

 Makefile.PL

 package Apache::TestDirective;

 use ExtUtils::MakeMaker;

 use Apache::ExtUtils qw(command_table);
 use Apache::src ();

 my @directives = ({
 name => ’Directive4’,
 errmsg => ’Anything’,
 args_how => ’RAW_ARGS’,
 req_override=> ’OR_ALL’,
 });

4115 Feb 2014

1.14 Knowing the proxy_pass’ed Connection Typemod_perl Configuration

 command_table(\@directives);

 WriteMakefile(
 NAME => ’Apache::TestDirective’,
 VERSION_FROM => ’TestDirective.pm’,
 INC => Apache::src->new->inc,
);

 TestDirective.pm

 package Apache::TestDirective;

 use strict;
 use Apache::ModuleConfig ();
 use DynaLoader ();

 if ($ENV{MOD_PERL}) {
 no strict;
 $VERSION = ’0.01’;
 @ISA = qw(DynaLoader);
 __PACKAGE__->bootstrap($VERSION); #command table, etc.
 }

 sub Directive4 {

 warn "Directive4 @_\n";
 }

 1;
 __END__

In the mod_perl source tree, add this to t/docs/startup.pl:

 use blib qw(/home/dougm/test/Apache/TestDirective);

and at the bottom of t/conf/httpd.conf:

 PerlModule Apache::TestDirective
 Directive4 hi

Test it:

 % make start_httpd
 % make kill_httpd

You should see:

 Directive4 Apache::TestDirective=HASH(0x83379d0)
 Apache::CmdParms=SCALAR(0x862b80c) hi

And in the error log file:

 % grep Directive4 t/logs/error_log
 Directive4 Apache::TestDirective=HASH(0x83119dc)
 Apache::CmdParms=SCALAR(0x8326878) hi

15 Feb 201442

1.15 Adding Custom Configuration Directives

If it didn’t work as expected try building mod_perl with PERL_TRACE=1, then do:

 setenv MOD_PERL_TRACE all

before starting the server. Now you should get some useful diagnostics.

1.16 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

Stas Bekman [http://stason.org/]

1.17 Authors
Stas Bekman [http://stason.org/]

Only the major authors are listed above. For contributors see the Changes file.

4315 Feb 2014

1.16 Maintainersmod_perl Configuration

http://stason.org/
http://stason.org/

Table of Contents:
................ 11 mod_perl Configuration
................... 21.1 Description
................ 21.2 Server Configuration
................ 21.3 Apache Configuration
............... 31.3.1 Configuration Directives
................. 31.3.2 .htaccess files
.......... 31.3.3 <Directory>, <Location> and <Files> Sections
........ 61.3.4 How Directory, Location and Files Sections are Merged
...... 71.3.5 Sub-Grouping of <Location>, <Directory> and <Files> Sections
................ 71.3.6 Options Directive
................ 81.4 mod_perl Configuration
............... 81.4.1 Alias Configurations
.. 91.4.1.1 Running CGI, PerlRun, and Registry Scripts Located in the Same Directory
.............. 101.4.2 <Location> Configuration
......... 121.4.3 Overriding <Location> Setting in "Sub-Location"
........... 121.4.4 PerlModule and PerlRequire Directives
................. 121.4.5 Perl*Handlers
............... 141.4.6 The handler subroutine
................ 151.4.7 Stacked Handlers
............... 181.4.8 Perl Method Handlers
................ 201.4.9 PerlFreshRestart
............. 201.4.10 PerlSetEnv and PerlPassEnv
.............. 211.4.11 PerlSetVar and PerlAddVar
................. 231.4.12 PerlSetupEnv
............. 231.4.13 PerlWarn and PerlTaintCheck
. 241.4.14 MinSpareServers MaxSpareServers StartServers MaxClients MaxRequestsPerChild
................. 241.5 The Startup File
............... 241.5.1 The Sample Startup File
....... 271.5.2 What Modules You Should Add to the Startup File and Why
......... 271.5.3 The Confusion with use() in the Server Startup File
............... 281.6 Apache Configuration in Perl
................... 281.6.1 Usage
.................. 301.6.2 Enabling
.................. 311.6.3 Caveats
.................. 311.6.4 Verifying
............... 321.6.5 Strict <Perl> Sections
.................. 321.6.6 Debugging
................ 331.6.7 Perl Section Tricks
.................. 331.6.8 References
............. 331.7 Validating the Configuration Syntax
........... 331.8 Enabling Remote Server Configuration Reports
............ 341.9 Publishing Port Numbers other than 80
.......... 341.10 Configuring Apache + mod_perl with mod_macro
................. 361.11 General Pitfalls

i15 Feb 2014

Table of Contents:mod_perl Configuration

1.11.1 My CGI/Perl Code Gets Returned as Plain Text Instead of Being Executed by the
.................... 36Webserver
.371.11.2 My Script Works under mod_cgi, but when Called via mod_perl I Get a ’Save-As’ Prompt
.. 371.11.3 Is There a Way to Provide a Different startup.pl File for Each Individual Virtual Host
... 371.11.4 Is There a Way to Modify @INC on a Per-Virtual-Host or Per-Location Basis.

1.11.5 A Script From One Virtual Host Calls a Script with the Same Path From the Other Virtual
...................... 37Host
..... 371.11.6 the Server no Longer Retrieves the DirectoryIndex Files for a Directory
........ 391.11.7 Do Perl* Directives Affect Code Running under mod_cgi?
............... 391.12 Configuration Security Concerns
............... 391.12.1 Choosing User and Group
.................. 391.12.2 Taint Checking
......... 401.12.3 Exposing Information About the Server’s Component
............... 401.13 Apache Restarts Twice On Start
............ 411.14 Knowing the proxy_pass’ed Connection Type
............. 411.15 Adding Custom Configuration Directives
................... 431.16 Maintainers
.................... 431.17 Authors

15 Feb 2014ii

Table of Contents:

	1€€mod_perl Configuration
	1.1€€Description
	1.2€€Server Configuration
	1.3€€Apache Configuration
	1.3.1€€Configuration Directives
	1.3.2€€.htaccess files
	1.3.3€€<Directory>, <Location> and <Files> Sections
	1.3.4€€How Directory, Location and Files Sections are Merged
	1.3.5€€Sub-Grouping of <Location>, <Directory> and <Files> Sections
	1.3.6€€Options Directive

	1.4€€mod_perl Configuration
	1.4.1€€Alias Configurations
	1.4.1.1€€Running CGI, PerlRun, and Registry Scripts Located in the Same Directory

	1.4.2€€<Location> Configuration
	1.4.3€€Overriding <Location> Setting in "Sub-Location"
	1.4.4€€PerlModule and PerlRequire Directives
	1.4.5€€Perl*Handlers
	1.4.6€€The handler subroutine
	1.4.7€€Stacked Handlers
	1.4.8€€Perl Method Handlers
	1.4.9€€PerlFreshRestart
	1.4.10€€PerlSetEnv and PerlPassEnv
	1.4.11€€PerlSetVar and PerlAddVar
	1.4.12€€PerlSetupEnv
	1.4.13€€PerlWarn and PerlTaintCheck
	1.4.14€€MinSpareServers MaxSpareServers StartServers MaxClients MaxRequestsPerChild

	1.5€€The Startup File
	1.5.1€€The Sample Startup File
	1.5.2€€What Modules You Should Add to the Startup File and Why
	1.5.3€€The Confusion with use() in the Server Startup File

	1.6€€Apache Configuration in Perl
	1.6.1€€Usage
	1.6.2€€Enabling
	1.6.3€€Caveats
	1.6.4€€Verifying
	1.6.5€€Strict <Perl> Sections
	1.6.6€€Debugging
	1.6.7€€Perl Section Tricks
	1.6.8€€References

	1.7€€Validating the Configuration Syntax
	1.8€€Enabling Remote Server Configuration Reports
	1.9€€Publishing Port Numbers other than 80
	1.10€€Configuring Apache + mod_perl with mod_macro
	1.11€€General Pitfalls
	1.11.1€€My CGI/Perl Code Gets Returned as Plain Text Instead of Being Executed by the Webserver
	1.11.2€€My Script Works under mod_cgi, but when Called via mod_perl I Get a 'Save-As' Prompt
	1.11.3€€Is There a Way to Provide a Different startup.pl File for Each Individual Virtual Host
	1.11.4€€Is There a Way to Modify @INC on a Per-Virtual-Host or Per-Location Basis.
	1.11.5€€A Script From One Virtual Host Calls a Script with the Same Path From the Other Virtual Host
	1.11.6€€the Server no Longer Retrieves the DirectoryIndex Files for a Directory
	1.11.7€€Do Perl* Directives Affect Code Running under mod_cgi?

	1.12€€Configuration Security Concerns
	1.12.1€€Choosing User and Group
	1.12.2€€Taint Checking
	1.12.3€€Exposing Information About the Server's Component

	1.13€€Apache Restarts Twice On Start
	1.14€€Knowing the proxy_pass'ed Connection Type
	1.15€€Adding Custom Configuration Directives
	1.16€€Maintainers
	1.17€€Authors

