

1 Apache::File - advanced functions for manipulating
files at the server side

115 Feb 2014

1 Apache::File - advanced functions for manipulating files at the server sideApache::File - advanced functions for manipulating files at the server side

1.1 Synopsis
 use Apache::File ();

 my $fh = Apache::File->new($filename);
 print $fh ’Hello’;
 $fh->close;

 my ($name, $fh) = Apache::File->tmpfile;

 if ((my $rc = $r->discard_request_body) != OK) {
 return $rc;
 }

 if((my $rc = $r->meets_conditions) != OK) {
 return $rc;
 }

 my $date_string = localtime $r->mtime;

 $r->set_content_length;
 $r->set_etag;
 $r->update_mtime;
 $r->set_last_modified;

1.2 Description
Apache::File does two things: it provides an object-oriented interface to filehandles similar to Perl’s
standard IO::File class . While the Apache::File module does not provide all the functionality
of IO::File , its methods are approximately twice as fast as the equivalent IO::File methods.
Secondly, when you use Apache::File , it adds several new methods to the Apache class which
provide support for handling files under the HTTP/1.1 protocol.

1.3 Apache::File methods
new()

This method creates a new filehandle, returning the filehandle object on success, undef on failure. If
an additional argument is given, it will be passed to the open() method automatically.

 use Apache::File ();
 my $fh = Apache::File->new;

 my $fh = Apache::File->new($filename) or die "Can’t open $filename $!";

open()

Given an Apache::File object previously created with new() , this method opens a file and associates
it with the object. The open() method accepts the same types of arguments as the standard Perl
open() function, including support for file modes.

15 Feb 20142

1.1 Synopsis

 $fh->open($filename);

 $fh->open(">$out_file");

 $fh->open("|$program");

close()

The close() method is equivalent to the Perl builtin close function, returns true upon success, false
upon failure.

 $fh->close or die "Can’t close $filename $!";

tmpfile()

The tmpfile() method is responsible for opening up a unique temporary file. It is similar to the
tmpnam() function in the POSIX module, but doesn’t come with all the memory overhead that
loading POSIX does. It will choose a suitable temporary directory (which must be writable by the
Web server process). It then generates a series of filenames using the current process ID and the
$TMPNAM package global. Once a unique name is found, it is opened for writing, using flags that will
cause the file to be created only if it does not already exist. This prevents race conditions in which the
function finds what seems to be an unused name, but someone else claims the same name before it
can be created.

As an added bonus, tmpfile() calls the register_cleanup() method behind the scenes to
make sure the file is unlinked after the transaction is finished.

Called in a list context, tmpfile() returns the temporary file name and a filehandle opened for
reading and writing. In a scalar context only the filehandle is returned.

 my ($tmpnam, $fh) = Apache::File->tmpfile;

 my $fh = Apache::File->tmpfile;

1.4 Apache Methods added by Apache::File
When a handler pulls in Apache::File , the module adds a number of new methods to the Apache
request object. These methods are generally of interest to handlers that wish to serve static files from disk
or memory using the features of the HTTP/1.1 protocol that provide increased performance through
client-side document caching.

$r->discard_request_body()

This method tests for the existence of a request body and if present, simply throws away the data.
This discarding is especially important when persistent connections are being used, so that the request
body will not be attached to the next request. If the request is malformed, an error code will be
returned, which the module handler should propagate back to Apache.

315 Feb 2014

1.4 Apache Methods added by Apache::FileApache::File - advanced functions for manipulating files at the server side

 if ((my $rc = $r->discard_request_body) != OK) {
 return $rc;
 }

$r->meets_conditions()

In the interest of HTTP/1.1 compliance, the meets_conditions() method is used to implement
‘‘conditional GET’’ rules. These rules include inspection of client headers, including If-Modi-
fied-Since , If-Unmodified-Since , If-Match and If-None-Match .

As far as Apache modules are concerned, they need only check the return value of this method before
sending a request body. If the return value is anything other than OK, the module should return from
the handler with that value. A common return value other than OK is HTTP_NOT_MODIFIED, which
is sent when the document is already cached on the client side, and has not changed since it was
cached.

 if((my $rc = $r->meets_conditions) != OK) {
 return $rc;
 }
 #else ... go and send the response body ...

$r->mtime()

This method returns the last modified time of the requested file, expressed as seconds since the
epoch.

 my $date_string = localtime $r->mtime;

To change the last modified time use the update_mtime() method.

$r->set_content_length()

This method sets the outgoing Content-length header based on its argument, which should be
expressed in byte units. If no argument is specified, the method will use the size returned by
$r->filename . This method is a bit faster and more concise than setting Content-length in
the headers_out table yourself.

 $r->set_content_length;
 $r->set_content_length(-s $r->finfo); #same as above
 $r->set_content_length(-s $filename);

$r->set_etag()

This method is used to set the outgoing ETag header corresponding to the requested file. ETag is an
opaque string that identifies the currrent version of the file and changes whenever the file is modified.
This string is tested by the meets_conditions() method if the client provide an If-Match or
If-None-Match header.

 $r->set_etag;

$r->set_last_modified()

15 Feb 20144

1.4 Apache Methods added by Apache::File

This method is used to set the outgoing Last-Modified header from the value returned by
$r->mtime . The method checks that the specified time is not in the future. In addition, using
set_last_modified() is faster and more concise than setting Last-Modified in the
headers_out table yourself.

You may provide an optional time argument, in which case the method will first call the
update_mtime() to set the file’s last modification date. It will then set the outgoing
Last-Modified header as before.

 $r->update_mtime((stat $r->finfo)[9]);
 $r->set_last_modified;
 $r->set_last_modified((stat $r->finfo)[9]); #same as the two lines above

$r->update_mtime()

Rather than setting the request record mtime field directly, you can use the update_mtime()
method to change the value of this field. It will only be updated if the new time is more recent than
the current mtime. If no time argument is present, the default is the last modified time of $r->file-
name.

 $r->update_mtime;
 $r->update_mtime((stat $r->finfo)[9]); #same as above
 $r->update_mtime(time);

1.5 Maintainers
Maintainer is the person(s) you should contact with updates, corrections and patches.

The documentation mailing list

1.6 Authors
Doug MacEachern

Only the major authors are listed above. For contributors see the Changes file.

515 Feb 2014

1.5 MaintainersApache::File - advanced functions for manipulating files at the server side

Table of Contents:
...... 11 Apache::File - advanced functions for manipulating files at the server side
................... 21.1 Synopsis
................... 21.2 Description
................ 21.3 Apache::File methods
............ 31.4 Apache Methods added by Apache::File
................... 51.5 Maintainers
.................... 51.6 Authors

i15 Feb 2014

Table of Contents:Apache::File - advanced functions for manipulating files at the server side

	1€€Apache::File - advanced functions for manipulating files at the server side
	1.1€€Synopsis
	1.2€€Description
	1.3€€Apache::File methods
	1.4€€Apache Methods added by Apache::File
	1.5€€Maintainers
	1.6€€Authors

